US20120157291A1 - Bone substitute material - Google Patents

Bone substitute material Download PDF

Info

Publication number
US20120157291A1
US20120157291A1 US13/331,744 US201113331744A US2012157291A1 US 20120157291 A1 US20120157291 A1 US 20120157291A1 US 201113331744 A US201113331744 A US 201113331744A US 2012157291 A1 US2012157291 A1 US 2012157291A1
Authority
US
United States
Prior art keywords
foam material
pieces
bone substitute
granules
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/331,744
Inventor
Anthony William Miles
Irene Gladys Turner
Paul Gittings Jonathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesuro Ltd
Original Assignee
Mesuro Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mesuro Ltd filed Critical Mesuro Ltd
Priority to US13/331,744 priority Critical patent/US20120157291A1/en
Publication of US20120157291A1 publication Critical patent/US20120157291A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension

Definitions

  • This invention relates to a method of fabricating a bone substitute material, to a bone substitute material that can be produced by such a method and to a method of forming a bone graft.
  • the present invention provides novel methods of fabrication and novel materials that may advantageously be employed as bone substitute materials and have favourable physical properties.
  • the invention also provides improvements to methods of forming bone grafts.
  • a method of fabricating a bone substitute material comprising the steps of:
  • the bone substitute material being “approximately” a positive image of the foam material because it will not usually be an exact image.
  • the walls of the cells in the foam material will be solid whereas the walls of the cells of the bone substitute material will be hollow as a result of the removal of the foam material.
  • the bone substitute material is relatively close to being a positive image of the foam material and certainly is not a negative image.
  • the step of distorting the shape of the foam material preferably comprises stretching the foam material, preferably in one direction only.
  • Such distortion provides a material with different strength characteristics in one direction than in the other two orthogonal directions and in that respect reproduces the structure of various natural bone materials.
  • the foam material may be held in a stretched condition by clamps engaging opposite edge portions of the foam material. The clamps may be held apart at a selected distance, for example by a jig. The foam material may then be heated to deform the material and then cooled to retain the deformation permanently.
  • the degree of distortion of the foam can be chosen according to the degree of orientation required in the bone material. Typically the foam material is distorted by more than 20% in one direction. In an example of the invention described below the foam material is stretched by 30% in one direction.
  • the foam material may be removed by any suitable process. It is preferred, however, that the step of removing the foam material comprises heating the material.
  • the foam material may be a polymeric foam material, for example a polyurethane foam material, and may be removed by combustion.
  • the method preferably comprises a first heating step in which the foam material is removed and a second, subsequent, heating step in which the ceramic slip is heated to a higher temperature and is sintered.
  • the first heating step is a gentle step allowing the foam material to be removed gradually.
  • the temperature to which the filled foam material is heated does not exceed 800° C.
  • the temperature of the filled foam material is preferably increased slowly, preferably at a rate of less than 200° C./hr and more preferably less than 100° C./hr.
  • the filled foam material may be raised to a temperature of 600° C. at a rate of 30 to 60° C./hr in the first heating step; the material may then be maintained at a temperature of 600° C. for 1 hour.
  • the heating step for sintering which is the second heating step in the case where there are first and second heating steps, preferably involves heating the material to over 1,000° C.
  • the material is maintained at a temperature of over 1000° C. for more than 1 hour.
  • the second heating step comprises raising the temperature from 600° C. to 1280° C. at a rate of 120° C./hr and then maintaining the material at 1280° C. for 4 hours. Subsequently the material is cooled to room temperature at the rate of 200° C./hr.
  • the step of coating the walls of the cells of the foam material with a ceramic slip may include the steps of immersing the foam material in the ceramic slip and draining some of the ceramic slip from the foam material. In order to obtain a thicker coating the immersing and draining steps may be repeated. The steps may be repeated six or more times but we have found that repeating the immersing and draining steps once produces good results.
  • Air may be directed, preferably at high velocity, onto the coated foam material, preferably onto all sides of the material, to inhibit the formation of closed cells.
  • the foam material may be mechanically compressed and then allowed to expand while it is immersed in the ceramic slip. That compression is of course a separate distortion of the foam material from the one that causes the product of the method to be orientated and is merely a temporary distortion to facilitate coating.
  • HA Hydroxyapatite
  • TCP tricalcium phosphate
  • the method preferably results in a bone substitute material having a macroporosity in the range of 40 to 70%.
  • Macropores are hereby defined as pores having an equivalent diameter greater than 10 ⁇ m and therefore a material with a macroporosity of 40% has 40% of the space it occupies consisting of pores each of which have an equivalent diameter greater than 10 ⁇ m.
  • the material has many relatively large pores.
  • more than half of the macroporosity of the material is provided by pores having an equivalent diameter greater than 150 ⁇ m and preferably in the range of 150 to 450 ⁇ m.
  • the method may therefore further comprise the step of breaking up the sintered bone substitute material into a plurality of separate pieces.
  • a bone substitute material comprising a porous sintered ceramic having approximately the form of a positive image of an open celled foam material, the walls defining the cells within the material being hollow, wherein the cellular structure is orientated such that the cells generally have a length in one direction greater than a length in a perpendicular direction.
  • the cells may be of generally elongate form having a length in one direction greater than their lengths in the two other perpendicular directions.
  • the cells Preferably, have a length in one direction more than 20% greater than their lengths in the two other perpendicular directions.
  • the material preferably has a macroporosity in the range of 40% to 70%. More than half of the macroporosity of the material is preferably provided by pores having an equivalent diameter in the range of 150 to 450 ⁇ m. In an example of the invention almost 80% of the macroporosity of the material is provided by such pores.
  • the material has a breaking stress of more than 1 MPa, and preferably more than 2 MPa.
  • breaking stress it should be understood that this is the breaking stress as measured by a three point bending test.
  • a method of fabricating a granular bone substitute material comprising the steps of:
  • the pieces of foam material are preferably relatively small and may have a maximum dimension of less than 12 mm.
  • the pieces of foam material may easily be formed from a larger piece of material, for example by cutting up the foam material.
  • the pieces may be cut up into irregular or regular shapes, for example of approximately cuboidal shape.
  • the pieces of foam material may be approximately cubes. In that case the cubes preferably have sides of length less than 8 mm. It is possible to provide pieces of foam material of varying sizes, resulting in a granular material in which the granules vary in size.
  • the pieces of foam material may be all of substantially the same size.
  • the pieces of foam may be all of substantially the same shape or of different shapes.
  • a variety of sizes of granule promotes close packing but it may also be desirable to supply the granules in a series of ranges of size with relatively little size variation within each range. A purchaser can then select whatever mixture of sizes is appropriate for a particular application.
  • the granular sintered material may be treated to reduce the size and/or alter the shape of the granules.
  • the material may be subjected to a milling step, which may comprise ball milling. Such milling may, for example, be carried out in order to round the edges and corners of the granules.
  • the foam material may be removed by any suitable process. It is preferred, however, that the step of removing the foam material comprises heating the material.
  • the foam material may be a polymeric foam material, for example a polyurethane foam material, and may be removed by combustion.
  • the method preferably comprises a first heating step in which the foam material is removed and a second, subsequent, heating step in which the ceramic slip is heated to a higher temperature and is sintered.
  • the first heating step is a gentle step allowing the foam material to be removed gradually.
  • the temperature to which the filled foam material is heated does not exceed 800° C.
  • the temperature of the filled foam material is preferably increased slowly, preferably at a rate of less than 200° C./hr and more preferably less than 100° C./hr.
  • the filled foam material may be raised to a temperature of 600° C. at a rate of 30 to 60° C./hr in the first heating step; the material may then be maintained at a temperature of 600° C. for 1 hour.
  • the heating step for sintering which is the second heating step in the case where there are first and second heating steps, preferably involves heating the material to over 1000° C.
  • the material is maintained at a temperature of over 1000° C. for more than 1 hour.
  • the second heating step comprises raising the temperature from 600° C. to 1280° C. at a rate of 120° C./hr and then maintaining the material at 1280° C. for 4 hours. Subsequently the material is cooled to room temperature at the rate of 200° C./hr.
  • the step of coating the walls of the cells of the pieces of foam material with a ceramic slip may include the steps of immersing the pieces of foam material in the ceramic slip and draining some of the ceramic slip from the pieces of foam material. In order to obtain a thicker coating the immersing and draining steps may be repeated. The steps may be repeated six or more times but we have found that repeating the immersing and draining steps once produces good results.
  • the step of draining some of the ceramic slip from the pieces of foam material may comprise the step of supporting the pieces of foam material on a perforated support surface.
  • the pieces of foam material may be placed in a sieve and may be shaken.
  • the pieces may be mechanically compressed and then allowed to expand while they are immersed in the ceramic slip.
  • HA Hydroxyapatite
  • TCP tricalcium phosphate
  • Air may be directed, preferably at high velocity, onto the coated foam material, preferably onto all sides of the material, to inhibit the formation of closed cells.
  • the method preferably results in a granular bone substitute material having a macroporosity in the range of 40 to 70%.
  • the material has many relatively large pores.
  • more than half of the macroporosity of the material is provided by pores having an equivalent diameter greater than 150 ⁇ m and preferably in the range of 150 to 450 ⁇ m.
  • a granular bone substitute material comprising a multiplicity of granules of a porous sintered ceramic, each granule having approximately the form of a positive image of an open celled foam material, the walls defining the cells within the granules being hollow and the granule occupying a space of less than 1000 mm 3 .
  • the granular bone substitute material may have a compressive modulus at a load of 500 N of more than 40 MPa and/or it may have a compressive modulus at a load of 1000 N of more than 60 MPa.
  • the compressive modulus is measured by a standard die plunger test.
  • a third aspect of the invention is characterized by such properties.
  • a bone substitute material of a porous sintered ceramic having approximately the form of a positive image of an open celled foam material, the material having a macroporosity in the range of 40 to 70% and a breaking stress of more than 1 MPa.
  • a method of forming a bone graft comprising the steps of implanting a bone substitute material that is approximately in the form of a positive image of an open celled foam material into or onto a bone.
  • the bone substitute material may be a granular material and may be of the kind defined above.
  • the material may be implanted into a bone and substantially entirely enclosed therein, but it may also be implanted into a recess on the surface of a bone.
  • the bone substitute material may be in a single piece and may be of the kind defined above.
  • the material is in the form of a cylindrical block, which may be of circular cross-section.
  • Such a block may be implanted into a spine of a person or animal.
  • the material may be in the form of a preshaped block and may be implanted into a correspondingly shaped space in or on the surface of a bone, for example in the case of a condylar defect.
  • the implant may contribute to the structural strength of the bone, and may even provide most of the structural strength in a region of the bone.
  • the implant may provide a scaffold into which or onto which bone can grow. In some applications it may be desirable to place the material in a cage or other structure which is then implanted.
  • the bone material according to the second aspect of the invention may be in the form of a cylindrical block which may be of circular cross-section.
  • a feature described with reference to a method of fabricating a material may also where appropriate be applied to the material and vice versa.
  • FIG. 1 is a schematic drawing of a device for use in a first part of a method of fabricating a bone substitute material
  • FIGS. 2A to 2C are schematic drawings illustrating subsequent parts of a method of fabricating a bone substitute material
  • FIGS. 3A to 3F are schematic drawings illustrating certain applications of materials embodying the invention.
  • Exemplary methods of fabricating a bone substitute material are described below and employ two starting materials: firstly, an organic foam material having an open cell structure with each cell connecting to each neighbouring cell; secondly, a ceramic slip.
  • a first exemplary method is carried out using the device shown schematically in FIG. 1 .
  • a rectangular sheet 1 of open cell foam material (for example, measuring 240 mm ⁇ 80 mm ⁇ 25 mm) is held by G-clamps 2 which grip opposite ends of the material and are held apart from one another at such a spacing that the sheet of material is lengthened to a total length of about 30% more than its natural length.
  • the block 1 While the block 1 is held in position it is placed in an air flowing oven for a period of time and then removed and placed in an air flow chamber (with the air at room temperature) for a further period of time.
  • the air in the oven is at 150° C. and the block is placed in each location for 15 minutes.
  • the effect of the treatment is to introduce a permanent deformation in the foam material.
  • the pores in the material which were originally of mainly spherical shape, become of ellipsoidal shape.
  • the stretched foam material is cut into pieces measuring in a particular example 40 mm ⁇ 25 mm'10 mm and placed overnight in distilled water and then allowed to dry ready for slip impregnation.
  • a piece of foam material 3 is inserted into the female part 4 of a mechanical plunging machine which contains ceramic slip 5 .
  • the male part 6 of the plunger is then lowered and pushes air and slip out of the material.
  • the foam material 3 which is fully immersed in the slip 5 , has the slip drawn into it coating the walls of the cells of the foam material. Those walls may be viewed as struts within the material.
  • the process of lowering and then retracting the plunger is repeated once.
  • the foam material 3 is then held above the female part 4 as illustrated in FIG. 2B and slip is allowed to seep out of the foam leaving the cells mainly full of air but with the cell walls coated by the slip.
  • the foam material is placed on tissue paper to remove any excess moisture.
  • the coated foam material 3 is then sprayed on all sides with high velocity compressed air as illustrated by arrows 7 in FIG. 2C to reduce the likelihood of closed cells forming, to promote even coating of the cell walls and to dry the ceramic slip.
  • the material is placed in an airflow oven at 120° C. for six hours in order to ensure it is moisture free.
  • the coated foam material is then slowly heated from room temperature to cause the organic foam to decompose slowly and completely by combustion, the products of the decomposition being allowed to escape.
  • the heating is then increased substantially to sinter the ceramic slip and form the bone substitute material.
  • the temperature was increased at the rate of 30 to 60° C. per hour from room temperature, until a temperature of 600° C. was reached.
  • the oven was then held at a temperature of 600° C. for 1 hour to complete a first stage of heating. During this slow and relatively gentle heating all of the polyurethane foam decomposed, and the green porous material was left.
  • the temperature of the oven was then further increased for a second stage of heating at the rate of 120° C. per hour until it reached 1280° C.
  • the temperature was maintained at 1280° C. for 4 hours and then cooled to room temperature at the rate of 200° C. per hour. At the end of the second stage of heating the sintered material had been formed.
  • the bone substitute material produced after sintering has a good combination of strength and porosity. Furthermore the stretching of the foam material results in an orientated material with a selected degree of elongation of the pores in the foam material and in the sintered product.
  • the macroporosity of the product was measured using image analysis combined with the Optimas 6.1 imaging software and showed the following results in one particular example:
  • the exemplary method described above was modified to produce a granular material.
  • the step of stretching the foam material was omitted and the foam material was cut up into cubes the sides of which had lengths in the range of 2 to 4 mm.
  • the cubes were coated in substantially the same manner as described above and then shaken gently in a sieve to drain ceramic slip from them. They were then dried and heated in the same manner as described above. After sintering the granules were placed in a polyethylene container together with zirconia milling media and ball milled for 6 hours. The milling rounded off the edges of the granules.
  • the macroporosity of the granules produced in this way was similar to that indicated above.
  • the compressive modulus of the granules was tested using a standard die plunger test. The material was compacted into a die, loaded up to 500 N, then relaxed, taken up to 1000 N and then relaxed. The results with a foam material of 30 ppi were a modulus of 49.6 MPa when loaded up to 500 N and a modulus of 66.5 MPa when loaded up to 1000 N.
  • FIGS. 3A to 3F provide some examples of applications of the materials.
  • granular bone substitute material 11 is shown grafted in a bone 12 and enclosed within the bone.
  • FIG. 3B a single piece of bone substitute material 13 which has been formed into a desired shape by machining of the sintered product, is shown implanted in a bone 14 to deal with an uncontained defect in the bone.
  • FIG. 3C a preformed plug 15 of bone substitute material is shown grafted into a bone 16 to deal with a condylar defect.
  • FIGS. 3D and 3E show the use of cylindrical pieces of sintered bone substitute material in a spinal application.
  • FIG. 3D shows the general arrangement with two cylindrical pieces 17 of bone substitute material housed in cylindrical cages 18 which are located between vertebral bodies 19 .
  • FIG. 3E is a sectional view through one of the cages 18 that is housing a piece 17 of substitute material.
  • the cage is of a kind known per se and has circumferential grooves.
  • FIG. 3F a preformed piece 20 of sintered bone substitute material is shown acting as a structural graft between two pieces of bone 21 , 22 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

A method of fabricating a bone substitute material comprises the steps of providing a foam material (3) having an open cell structure, distorting the shape of the foam material (3) and holding the material in a distorted shape, coating the walls of the cells of the foam material with a ceramic slip (5), removing the foam material, and sintering the ceramic slip to form a bone substitute material that is approximately a positive image of the distorted foam material (3). In another method, a granular bone material is formed from a multiplicity of pieces of foam that are not distorted.

Description

  • This invention relates to a method of fabricating a bone substitute material, to a bone substitute material that can be produced by such a method and to a method of forming a bone graft.
  • Various methods of fabricating bone substitute materials are known. The present invention provides novel methods of fabrication and novel materials that may advantageously be employed as bone substitute materials and have favourable physical properties. The invention also provides improvements to methods of forming bone grafts.
  • According to a first aspect of the invention there is provided a method of fabricating a bone substitute material, the method comprising the steps of:
  • providing a foam material having an open cell structure,
  • distorting the shape of the foam material and holding the material in a distorted shape,
  • coating the walls of the cells of the foam material with a ceramic slip,
  • removing the foam material, and
  • sintering the ceramic slip to form a bone substitute material that is approximately a positive image of the distorted foam material.
  • We have found that by adopting the method defined above it is possible to obtain an orientated bone substitute material with different strength characteristics in different directions. Natural bones also have orientated internal porous structures and the invention enables such natural structures to be reproduced more closely.
  • Reference is made herein to the bone substitute material being “approximately” a positive image of the foam material because it will not usually be an exact image. For example, usually the walls of the cells in the foam material will be solid whereas the walls of the cells of the bone substitute material will be hollow as a result of the removal of the foam material. On the other hand because the walls of the cells of the foam material are merely coated and are not filled, the bone substitute material is relatively close to being a positive image of the foam material and certainly is not a negative image.
  • The step of distorting the shape of the foam material preferably comprises stretching the foam material, preferably in one direction only. Such distortion provides a material with different strength characteristics in one direction than in the other two orthogonal directions and in that respect reproduces the structure of various natural bone materials. Conveniently, the foam material may be held in a stretched condition by clamps engaging opposite edge portions of the foam material. The clamps may be held apart at a selected distance, for example by a jig. The foam material may then be heated to deform the material and then cooled to retain the deformation permanently.
  • The degree of distortion of the foam can be chosen according to the degree of orientation required in the bone material. Typically the foam material is distorted by more than 20% in one direction. In an example of the invention described below the foam material is stretched by 30% in one direction.
  • The foam material may be removed by any suitable process. It is preferred, however, that the step of removing the foam material comprises heating the material. The foam material may be a polymeric foam material, for example a polyurethane foam material, and may be removed by combustion.
  • When the foam material is removed by heating, the method preferably comprises a first heating step in which the foam material is removed and a second, subsequent, heating step in which the ceramic slip is heated to a higher temperature and is sintered. Although the two heating steps may be merged into a single step, it is preferred that the first heating step is a gentle step allowing the foam material to be removed gradually. Preferably the temperature to which the filled foam material is heated does not exceed 800° C. Also, the temperature of the filled foam material is preferably increased slowly, preferably at a rate of less than 200° C./hr and more preferably less than 100° C./hr. For example, the filled foam material may be raised to a temperature of 600° C. at a rate of 30 to 60° C./hr in the first heating step; the material may then be maintained at a temperature of 600° C. for 1 hour.
  • The heating step for sintering, which is the second heating step in the case where there are first and second heating steps, preferably involves heating the material to over 1,000° C. Preferably the material is maintained at a temperature of over 1000° C. for more than 1 hour. In the example of the invention described below, the second heating step comprises raising the temperature from 600° C. to 1280° C. at a rate of 120° C./hr and then maintaining the material at 1280° C. for 4 hours. Subsequently the material is cooled to room temperature at the rate of 200° C./hr.
  • The step of coating the walls of the cells of the foam material with a ceramic slip may include the steps of immersing the foam material in the ceramic slip and draining some of the ceramic slip from the foam material. In order to obtain a thicker coating the immersing and draining steps may be repeated. The steps may be repeated six or more times but we have found that repeating the immersing and draining steps once produces good results.
  • Air may be directed, preferably at high velocity, onto the coated foam material, preferably onto all sides of the material, to inhibit the formation of closed cells.
  • In order to promote even coating of the cells throughout the volume of the foam material, the foam material may be mechanically compressed and then allowed to expand while it is immersed in the ceramic slip. That compression is of course a separate distortion of the foam material from the one that causes the product of the method to be orientated and is merely a temporary distortion to facilitate coating.
  • The sintered bone substitute material may be composed of any suitable ceramic material. Hydroxyapatite (HA, chemical formula Ca10(PO4)6(OH)2, Ca/P=1.67) is one of the preferred materials, together with tricalcium phosphate (TCP, Ca/P=1.50). In the example of the invention described below the sintered product is a mixture of HA and TCP.
  • The method preferably results in a bone substitute material having a macroporosity in the range of 40 to 70%. Macropores are hereby defined as pores having an equivalent diameter greater than 10 μm and therefore a material with a macroporosity of 40% has 40% of the space it occupies consisting of pores each of which have an equivalent diameter greater than 10 μm.
  • Preferably the material has many relatively large pores. Thus it is preferred that more than half of the macroporosity of the material is provided by pores having an equivalent diameter greater than 150 μm and preferably in the range of 150 to 450 μm.
  • For certain applications it is desirable to have a granular material. The method may therefore further comprise the step of breaking up the sintered bone substitute material into a plurality of separate pieces.
  • According to the first aspect of the invention there is further provided a bone substitute material comprising a porous sintered ceramic having approximately the form of a positive image of an open celled foam material, the walls defining the cells within the material being hollow, wherein the cellular structure is orientated such that the cells generally have a length in one direction greater than a length in a perpendicular direction.
  • The cells may be of generally elongate form having a length in one direction greater than their lengths in the two other perpendicular directions. Preferably, the cells have a length in one direction more than 20% greater than their lengths in the two other perpendicular directions.
  • The material preferably has a macroporosity in the range of 40% to 70%. More than half of the macroporosity of the material is preferably provided by pores having an equivalent diameter in the range of 150 to 450 μm. In an example of the invention almost 80% of the macroporosity of the material is provided by such pores.
  • Preferably the material has a breaking stress of more than 1 MPa, and preferably more than 2 MPa. Where reference is made to such a breaking stress, it should be understood that this is the breaking stress as measured by a three point bending test. Also, it is the minimum breaking stress of the material: it will be understood that in the case of an orientated material, the breaking stress will usually depend upon the direction of testing. In such a case, the breaking stress is to be regarded as the stress required to break the material when applied in a direction in which the material is strongest.
  • A balance has to be struck between macroporosity and breaking stress. As the macroporosity is increased so the breaking stress will reduce.
  • According to a second aspect of the invention, there is provided a method of fabricating a granular bone substitute material, the method comprising the steps of:
  • providing a multiplicity of pieces of foam material having an open cell structure, each occupying a space of less than 1000 mm3,
  • coating the walls of the cells of the pieces of foam material with a ceramic slip,
  • removing the foam material, and
  • sintering the ceramic slip to form a granular bone substitute material in which the granules are approximately positive images of the pieces of foam material.
  • By taking the surprising step of using a multiplicity of pieces of foam material, rather than using a single larger piece of material, and then breaking up the sintered product into a multiplicity of pieces, we have found that it is possible to produce a granular product in which each of the granules can be of a controlled size and shape.
  • The pieces of foam material are preferably relatively small and may have a maximum dimension of less than 12 mm. The pieces of foam material may easily be formed from a larger piece of material, for example by cutting up the foam material. The pieces may be cut up into irregular or regular shapes, for example of approximately cuboidal shape. The pieces of foam material may be approximately cubes. In that case the cubes preferably have sides of length less than 8 mm. It is possible to provide pieces of foam material of varying sizes, resulting in a granular material in which the granules vary in size. Alternatively the pieces of foam material may be all of substantially the same size. Similarly, the pieces of foam may be all of substantially the same shape or of different shapes. A variety of sizes of granule promotes close packing but it may also be desirable to supply the granules in a series of ranges of size with relatively little size variation within each range. A purchaser can then select whatever mixture of sizes is appropriate for a particular application.
  • If desired, the granular sintered material may be treated to reduce the size and/or alter the shape of the granules. For example, the material may be subjected to a milling step, which may comprise ball milling. Such milling may, for example, be carried out in order to round the edges and corners of the granules.
  • The foam material may be removed by any suitable process. It is preferred, however, that the step of removing the foam material comprises heating the material. The foam material may be a polymeric foam material, for example a polyurethane foam material, and may be removed by combustion.
  • When the foam material is removed by heating, the method preferably comprises a first heating step in which the foam material is removed and a second, subsequent, heating step in which the ceramic slip is heated to a higher temperature and is sintered. Although the two heating steps may be merged into a single step, it is preferred that the first heating step is a gentle step allowing the foam material to be removed gradually. Preferably the temperature to which the filled foam material is heated does not exceed 800° C. Also, the temperature of the filled foam material is preferably increased slowly, preferably at a rate of less than 200° C./hr and more preferably less than 100° C./hr. For example, the filled foam material may be raised to a temperature of 600° C. at a rate of 30 to 60° C./hr in the first heating step; the material may then be maintained at a temperature of 600° C. for 1 hour.
  • The heating step for sintering, which is the second heating step in the case where there are first and second heating steps, preferably involves heating the material to over 1000° C. Preferably the material is maintained at a temperature of over 1000° C. for more than 1 hour. In the example of the invention described below, the second heating step comprises raising the temperature from 600° C. to 1280° C. at a rate of 120° C./hr and then maintaining the material at 1280° C. for 4 hours. Subsequently the material is cooled to room temperature at the rate of 200° C./hr.
  • The step of coating the walls of the cells of the pieces of foam material with a ceramic slip may include the steps of immersing the pieces of foam material in the ceramic slip and draining some of the ceramic slip from the pieces of foam material. In order to obtain a thicker coating the immersing and draining steps may be repeated. The steps may be repeated six or more times but we have found that repeating the immersing and draining steps once produces good results.
  • The step of draining some of the ceramic slip from the pieces of foam material may comprise the step of supporting the pieces of foam material on a perforated support surface. For example, the pieces of foam material may be placed in a sieve and may be shaken.
  • In order to promote even coating of the cells throughout the volume of the pieces of foam material, the pieces may be mechanically compressed and then allowed to expand while they are immersed in the ceramic slip.
  • The sintered bone substitute material may be composed of any suitable ceramic material. Hydroxyapatite (HA, chemical formula Ca10(PO4)6(OH)2, Ca/P=1.67) is one of the preferred materials, together with tricalcium phosphate (TCP, Ca/P=1.50). In the example of the invention described below the sintered product is a mixture of HA and TCP.
  • Air may be directed, preferably at high velocity, onto the coated foam material, preferably onto all sides of the material, to inhibit the formation of closed cells.
  • The method preferably results in a granular bone substitute material having a macroporosity in the range of 40 to 70%.
  • Preferably the material has many relatively large pores. Thus it is preferred that more than half of the macroporosity of the material is provided by pores having an equivalent diameter greater than 150 μm and preferably in the range of 150 to 450 μm.
  • According to the second aspect of the invention there is also provided a granular bone substitute material comprising a multiplicity of granules of a porous sintered ceramic, each granule having approximately the form of a positive image of an open celled foam material, the walls defining the cells within the granules being hollow and the granule occupying a space of less than 1000 mm3.
  • The granular bone substitute material may have a compressive modulus at a load of 500 N of more than 40 MPa and/or it may have a compressive modulus at a load of 1000 N of more than 60 MPa. The compressive modulus is measured by a standard die plunger test.
  • As mentioned above, materials of the first and second aspects of the invention may possess an especially good combination of macroporosity and breaking stress. Indeed, a third aspect of the invention is characterized by such properties. Thus, according to a third aspect of the invention, there is provided a bone substitute material of a porous sintered ceramic having approximately the form of a positive image of an open celled foam material, the material having a macroporosity in the range of 40 to 70% and a breaking stress of more than 1 MPa.
  • According to a fourth aspect of the invention, there is provided a method of forming a bone graft comprising the steps of implanting a bone substitute material that is approximately in the form of a positive image of an open celled foam material into or onto a bone.
  • The bone substitute material may be a granular material and may be of the kind defined above. The material may be implanted into a bone and substantially entirely enclosed therein, but it may also be implanted into a recess on the surface of a bone.
  • Alternatively the bone substitute material may be in a single piece and may be of the kind defined above. In one example, the material is in the form of a cylindrical block, which may be of circular cross-section. Such a block may be implanted into a spine of a person or animal. The material may be in the form of a preshaped block and may be implanted into a correspondingly shaped space in or on the surface of a bone, for example in the case of a condylar defect. The implant may contribute to the structural strength of the bone, and may even provide most of the structural strength in a region of the bone. The implant may provide a scaffold into which or onto which bone can grow. In some applications it may be desirable to place the material in a cage or other structure which is then implanted.
  • Whilst various features have been described with reference to particular aspects of the invention, it should be understood that such features may where appropriate be applied to other aspects of the invention. For example the bone material according to the second aspect of the invention may be in the form of a cylindrical block which may be of circular cross-section. Also a feature described with reference to a method of fabricating a material may also where appropriate be applied to the material and vice versa.
  • By way of example certain embodiments of the invention will now be described with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic drawing of a device for use in a first part of a method of fabricating a bone substitute material,
  • FIGS. 2A to 2C are schematic drawings illustrating subsequent parts of a method of fabricating a bone substitute material, and
  • FIGS. 3A to 3F are schematic drawings illustrating certain applications of materials embodying the invention.
  • Exemplary methods of fabricating a bone substitute material are described below and employ two starting materials: firstly, an organic foam material having an open cell structure with each cell connecting to each neighbouring cell; secondly, a ceramic slip.
  • A first exemplary method is carried out using the device shown schematically in FIG. 1. A rectangular sheet 1 of open cell foam material (for example, measuring 240 mm×80 mm×25 mm) is held by G-clamps 2 which grip opposite ends of the material and are held apart from one another at such a spacing that the sheet of material is lengthened to a total length of about 30% more than its natural length. While the block 1 is held in position it is placed in an air flowing oven for a period of time and then removed and placed in an air flow chamber (with the air at room temperature) for a further period of time. In a particular example the air in the oven is at 150° C. and the block is placed in each location for 15 minutes. The effect of the treatment is to introduce a permanent deformation in the foam material. The pores in the material, which were originally of mainly spherical shape, become of ellipsoidal shape.
  • The stretched foam material is cut into pieces measuring in a particular example 40 mm×25 mm'10 mm and placed overnight in distilled water and then allowed to dry ready for slip impregnation. Referring now to FIG. 2A, a piece of foam material 3 is inserted into the female part 4 of a mechanical plunging machine which contains ceramic slip 5. The male part 6 of the plunger is then lowered and pushes air and slip out of the material. On retraction of the plunger 6 the foam material 3, which is fully immersed in the slip 5, has the slip drawn into it coating the walls of the cells of the foam material. Those walls may be viewed as struts within the material. The process of lowering and then retracting the plunger is repeated once.
  • The foam material 3 is then held above the female part 4 as illustrated in FIG. 2B and slip is allowed to seep out of the foam leaving the cells mainly full of air but with the cell walls coated by the slip. The foam material is placed on tissue paper to remove any excess moisture.
  • The coated foam material 3 is then sprayed on all sides with high velocity compressed air as illustrated by arrows 7 in FIG. 2C to reduce the likelihood of closed cells forming, to promote even coating of the cell walls and to dry the ceramic slip. To complete this stage of the process, the material is placed in an airflow oven at 120° C. for six hours in order to ensure it is moisture free.
  • The coated foam material is then slowly heated from room temperature to cause the organic foam to decompose slowly and completely by combustion, the products of the decomposition being allowed to escape. The heating is then increased substantially to sinter the ceramic slip and form the bone substitute material. In examples, the temperature was increased at the rate of 30 to 60° C. per hour from room temperature, until a temperature of 600° C. was reached. The oven was then held at a temperature of 600° C. for 1 hour to complete a first stage of heating. During this slow and relatively gentle heating all of the polyurethane foam decomposed, and the green porous material was left. The temperature of the oven was then further increased for a second stage of heating at the rate of 120° C. per hour until it reached 1280° C. The temperature was maintained at 1280° C. for 4 hours and then cooled to room temperature at the rate of 200° C. per hour. At the end of the second stage of heating the sintered material had been formed.
  • The bone substitute material produced after sintering has a good combination of strength and porosity. Furthermore the stretching of the foam material results in an orientated material with a selected degree of elongation of the pores in the foam material and in the sintered product. The macroporosity of the product was measured using image analysis combined with the Optimas 6.1 imaging software and showed the following results in one particular example:
  • Pore range (μm) Total % of porosity
    10-15 12.5
    150-450 79.3
    450+ 8.2
  • The exemplary method described above was modified to produce a granular material. The step of stretching the foam material was omitted and the foam material was cut up into cubes the sides of which had lengths in the range of 2 to 4 mm. The cubes were coated in substantially the same manner as described above and then shaken gently in a sieve to drain ceramic slip from them. They were then dried and heated in the same manner as described above. After sintering the granules were placed in a polyethylene container together with zirconia milling media and ball milled for 6 hours. The milling rounded off the edges of the granules.
  • The procedures described above were carried out with foams of different pore sizes including 20, 30 and 45 ppi (pores per inch).
  • The macroporosity of the granules produced in this way was similar to that indicated above. The compressive modulus of the granules was tested using a standard die plunger test. The material was compacted into a die, loaded up to 500 N, then relaxed, taken up to 1000 N and then relaxed. The results with a foam material of 30 ppi were a modulus of 49.6 MPa when loaded up to 500 N and a modulus of 66.5 MPa when loaded up to 1000 N.
  • The bone substitute materials described above may be used in many different ways. FIGS. 3A to 3F provide some examples of applications of the materials. In FIG. 3A granular bone substitute material 11 is shown grafted in a bone 12 and enclosed within the bone. In FIG. 3B a single piece of bone substitute material 13 which has been formed into a desired shape by machining of the sintered product, is shown implanted in a bone 14 to deal with an uncontained defect in the bone. Similarly in FIG. 3C, a preformed plug 15 of bone substitute material is shown grafted into a bone 16 to deal with a condylar defect. FIGS. 3D and 3E show the use of cylindrical pieces of sintered bone substitute material in a spinal application. FIG. 3D shows the general arrangement with two cylindrical pieces 17 of bone substitute material housed in cylindrical cages 18 which are located between vertebral bodies 19. FIG. 3E is a sectional view through one of the cages 18 that is housing a piece 17 of substitute material. The cage is of a kind known per se and has circumferential grooves. Finally, in FIG. 3F a preformed piece 20 of sintered bone substitute material is shown acting as a structural graft between two pieces of bone 21, 22.

Claims (33)

1-19. (canceled)
20. A method of fabricating a granular bone substitute ozutcrial, the method comprising the steps of:
providing a multiplicity of pieces of foam material having an open cell structure, each occupying a space of less than 1000 mm3,
coating the walls of the cells of the pieces of foam material with a ceramic slip,
removing the foam material, and
sintering the ceramic slip to form a granular bone substitute aterial in which the granules are approximately positive images of the pieces of foam material.
21. A method according to claim 20, in which the pieces of foam material have a maximum dimension of less than 12 mm.
22. A method according to claim 20, in which the pieces of foam material are of irregular shape.
23. A method according to claim 20, in which the pieces of foam material are approximately cubes.
24. A method according to claim 23, in which the cubes have sides of length less than 8 mm.
25. A method according to claim 20, in which the pieces of foam material are all of substantially the same size.
26. A method according to claim 20, in which the pieces of foam material vary in size and/or shape.
27. A method according to claim 20, further comprising the step of treating the granular sintered material to reduce the size of and/or alter the shapes of the granules.
28. A method according to claim 27, in which the treating step comprises a milling step.
29. A method according to claim 28, in which the milling step comprises ball milling.
30. A method according to claim 20, in which the step of removing the foam material comprises heating the material.
31. A method according to claim 30, in which the method comprises a first heating step in which the foam material is removed and a second, subsequent, heating step in which the ceramic slip is heated to a higher temperature and is sintered.
32. A method according to claim 20, in which the step of coating the walls of the cells of the pieces of foam material with a ceramic slip includes the steps of immersing the pieces of foam material in the ceramic slip and draining some of the ceramic slip from the pieces of foam material.
33. A method according to claim 32, in which the step of draining some of the ceramic slip from the pieces of foam material comprises the step of supporting the pieces of foam material on a perforated support surface.
34. A method according to claim 32, in which the immersing and draining steps are repeated.
35. A method according to claim 20, in which the pieces of foam material are mechanically compressed and then allowed to expand while they are immersed in the ceramic slip.
36. A method according to claim 20, in which air is directed onto the coated foam material to inhibit the formation of closed cells.
37. A method according to claim 20, in which the foam material is a polymeric foam material.
38. A method according to claim 20, in which the granular bone substitute material has a macroporosity in the range of 40 to 70%.
39. A method according to claim 20, in which more than half the macroporosity of the material is provided by pores having an equivalent diameter in the range of 150 to 450 μm.
40. A granular bone substitute material comprising a multiplicity of granules of a porous sintered ceramic, each granule having approximately the form of a positive image of an open celled foam material the walls defining the cells within the granules being hollow and the granule occupying a space of less than 1000 mm3.
41. A granular bone substitute material according to claim 40, in which the material has a macroporosity in the range of 40 to 70%.
42. A granular bone substitute material according to claim 40, in which more than half of the macroporosity of the material is provided by pores having an equivalent diameter in the range of 150 to 450 μm.
43. A granular bone substitute material according to claim 40, in which the material has a compressive modulus at a load of 500 N of more than 40 MPa.
44. A granular bone substitute material according to claim 40, in which the granules have a maximum dimension of less than 12 mm.
45. A granular bone substitute material according to claim 40, in which the granules are of irregular shape.
46. A granular bone substitute material according to claim 40, in which the granules are approximately cubes.
47. A granular bone substitute material according to claim 46, in which the cubes have sides of length less than 8 mm.
48. A granular bone substitute material according to claim 40, in which the granules have rounded edges.
49. A granular bone substitute material according to claim 40, in which the granules are all of substantially the same size.
50. A granular bone substitute aterial according to claim 40, in which the granules vary in size and/or shape.
51-61. (canceled)
US13/331,744 2003-08-12 2011-12-20 Bone substitute material Abandoned US20120157291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/331,744 US20120157291A1 (en) 2003-08-12 2011-12-20 Bone substitute material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB0318901A GB0318901D0 (en) 2003-08-12 2003-08-12 Improvements in or relating to bone substitute material
GBGB0318901.6 2003-08-12
PCT/GB2004/003475 WO2005016192A2 (en) 2003-08-12 2004-08-12 Bone substitute material
US56820106A 2006-09-20 2006-09-20
GB0909745.2 2009-06-05
US13/331,744 US20120157291A1 (en) 2003-08-12 2011-12-20 Bone substitute material

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/GB2004/003475 Division WO2005016192A2 (en) 2003-08-12 2004-08-12 Bone substitute material
US56820106A Division 2003-08-12 2006-09-20

Publications (1)

Publication Number Publication Date
US20120157291A1 true US20120157291A1 (en) 2012-06-21

Family

ID=28052356

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/568,201 Expired - Fee Related US8101268B2 (en) 2003-08-12 2004-08-12 Bone substitute material
US13/331,744 Abandoned US20120157291A1 (en) 2003-08-12 2011-12-20 Bone substitute material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/568,201 Expired - Fee Related US8101268B2 (en) 2003-08-12 2004-08-12 Bone substitute material

Country Status (7)

Country Link
US (2) US8101268B2 (en)
EP (2) EP2206525A3 (en)
AT (1) ATE492305T1 (en)
DE (1) DE602004030692D1 (en)
ES (1) ES2360402T3 (en)
GB (1) GB0318901D0 (en)
WO (1) WO2005016192A2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065329A1 (en) * 2003-01-23 2004-08-05 University Of Bath Bone substitute material
WO2010036427A1 (en) 2008-06-17 2010-04-01 Brigham Young University Cationic steroid antimicrobial diagnostic, detection, screening and imaging methods
DE202009000043U1 (en) * 2008-07-29 2009-05-20 Ivoclar Vivadent Ag Burn-out, easy-to-mill CAD foam plastic foam blocks
JP6272224B2 (en) 2011-07-20 2018-01-31 ブリガム・ヤング・ユニバーシティBrigham Young University Hydrophobic ceragenin compound and apparatus incorporating the same
US8945217B2 (en) * 2011-08-25 2015-02-03 Brigham Young University Medical devices incorporating ceragenin-containing composites
US9155746B2 (en) 2011-09-13 2015-10-13 Brigham Young University Compositions and methods for treating bone diseases and broken bones
US9694019B2 (en) 2011-09-13 2017-07-04 Brigham Young University Compositions and methods for treating bone diseases and broken bones
US9603859B2 (en) 2011-09-13 2017-03-28 Brigham Young University Methods and products for increasing the rate of healing of tissue wounds
EP2760454B1 (en) 2011-09-13 2018-08-29 Brigham Young University Products for healing of tissue wounds
AU2011385377B2 (en) 2011-12-21 2017-06-01 Brigham Young University Oral care compositions
US9642935B1 (en) * 2012-01-27 2017-05-09 Robert L. Bundy Synthetic, composite osteogenic bone graft
US9533063B1 (en) 2012-03-01 2017-01-03 Brigham Young University Aerosols incorporating ceragenin compounds and methods of use thereof
EP3225113B1 (en) 2012-05-02 2020-09-02 Brigham Young University Methods for making ceragenin particulate materials
BR112015008804A2 (en) 2012-10-17 2017-07-04 Univ Brigham Young mastitis treatment and prevention
CA2897150C (en) 2013-01-07 2021-07-13 Brigham Young University Methods for reducing cellular proliferation and treating certain diseases
US11524015B2 (en) 2013-03-15 2022-12-13 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
US10568893B2 (en) 2013-03-15 2020-02-25 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
RU2669800C2 (en) 2013-03-15 2018-10-16 Брихэм Янг Юниверсити Methods for treating inflammation, autoimmune disorders and pain
US9387215B2 (en) 2013-04-22 2016-07-12 Brigham Young University Animal feed including cationic cholesterol additive and related methods
US11690855B2 (en) 2013-10-17 2023-07-04 Brigham Young University Methods for treating lung infections and inflammation
US20150203527A1 (en) 2014-01-23 2015-07-23 Brigham Young University Cationic steroidal antimicrobials
CA2844321C (en) 2014-02-27 2021-03-16 Brigham Young University Cationic steroidal antimicrobial compounds
US10220045B2 (en) 2014-03-13 2019-03-05 Brigham Young University Compositions and methods for forming stabilized compositions with reduced CSA agglomeration
US9867836B2 (en) 2014-03-13 2018-01-16 Brigham Young University Lavage and/or infusion using CSA compounds for increasing fertility in a mammal
US9931350B2 (en) 2014-03-14 2018-04-03 Brigham Young University Anti-infective and osteogenic compositions and methods of use
US9686966B2 (en) 2014-04-30 2017-06-27 Brigham Young University Methods and apparatus for cleaning or disinfecting a water delivery system
US10441595B2 (en) 2014-06-26 2019-10-15 Brigham Young University Methods for treating fungal infections
US10238665B2 (en) 2014-06-26 2019-03-26 Brigham Young University Methods for treating fungal infections
US10227376B2 (en) 2014-08-22 2019-03-12 Brigham Young University Radiolabeled cationic steroid antimicrobials and diagnostic methods
US10155788B2 (en) 2014-10-07 2018-12-18 Brigham Young University Cationic steroidal antimicrobial prodrug compositions and uses thereof
WO2016172543A1 (en) 2015-04-22 2016-10-27 Savage Paul B Methods for the synthesis of ceragenins
US9527883B2 (en) 2015-04-22 2016-12-27 Brigham Young University Methods for the synthesis of ceragenins
US9434759B1 (en) 2015-05-18 2016-09-06 Brigham Young University Cationic steroidal antimicrobial compounds and methods of manufacturing such compounds
US10226550B2 (en) 2016-03-11 2019-03-12 Brigham Young University Cationic steroidal antimicrobial compositions for the treatment of dermal tissue
US10959433B2 (en) 2017-03-21 2021-03-30 Brigham Young University Use of cationic steroidal antimicrobials for sporicidal activity
CN109320257B (en) * 2018-10-19 2021-08-10 西安增材制造国家研究院有限公司 Preparation method of high-strength high-porosity porous silicon nitride ceramic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810685A (en) * 1986-09-10 1989-03-07 Imperial Chemical Industries Plc Foam catalysts, method of manufacture and method of using
US20060265081A1 (en) * 2003-01-23 2006-11-23 Turner Irene G Bone substitute material

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7704659A (en) * 1976-05-12 1977-11-15 Battelle Institut E V BONE REPLACEMENT, BONE JOINT, OR PROSTHESIS ANCHORING MATERIAL.
JPS577856A (en) * 1980-06-13 1982-01-16 Mitsubishi Mining & Cement Co Manufacture of calcium phosphate porous body
DE3224265A1 (en) * 1982-06-28 1984-01-05 Schütt und Grundei GmbH Medizintechnische Fabrikation, 2400 Lübeck METHOD FOR PRODUCING AN IMPLANT AS BONE REPLACEMENT
EP0254557A3 (en) * 1986-07-22 1988-09-21 Nippondenso Co., Ltd. A porous structure and a process for production thereof
JP2506826B2 (en) 1986-10-06 1996-06-12 株式会社クラレ Granular inorganic molded body and method for producing the same
JPH0786816B2 (en) 1988-08-23 1995-09-20 セイコー電子工業株式会社 Image recorder
JPH04193742A (en) 1990-11-27 1992-07-13 Nippon Electric Glass Co Ltd Manufacture of porous crystallized glass
JP2922667B2 (en) 1991-04-26 1999-07-26 京セラ株式会社 Ceramic porous body containing sustained-release drug
CN1049202C (en) 1991-07-22 2000-02-09 中南工业大学 Process for mfg. porous ceramic materials with biological activity
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone
ATE222782T1 (en) * 1994-05-24 2002-09-15 Implico Bv BIOMATERIAL AND IMPLANT FOR REPAIR AND REPLACEMENT OF BONE
AU4636297A (en) 1996-10-15 1998-05-11 University College Dublin Bone replacement materials with interconnecting pore system
FR2758988B1 (en) * 1997-02-05 2000-01-21 S H Ind PROCESS FOR THE PREPARATION OF SYNTHETIC BONE SUBSTITUTES OF PERFECTLY MASTERED POROUS ARCHITECTURE
US6136029A (en) * 1997-10-01 2000-10-24 Phillips-Origen Ceramic Technology, Llc Bone substitute materials
US6083264A (en) * 1998-06-30 2000-07-04 Mcdonnell Douglas Corporation Implant material for replacing or augmenting living bone tissue involving thermoplastic syntactic foam
GB9821663D0 (en) * 1998-10-05 1998-11-25 Abonetics Ltd Foamed ceramics
WO2000030998A1 (en) * 1998-11-20 2000-06-02 Board Of Trustees Operating Michigan State University Porous ceramic composites
JP3400740B2 (en) * 1999-04-13 2003-04-28 東芝セラミックス株式会社 Calcium phosphate porous sintered body and method for producing the same
US6458162B1 (en) * 1999-08-13 2002-10-01 Vita Special Purpose Corporation Composite shaped bodies and methods for their production and use
DE19940717A1 (en) * 1999-08-26 2001-03-01 Gerontocare Gmbh Resorbable bone replacement and bone augmentation material
US20020022885A1 (en) * 2000-05-19 2002-02-21 Takahiro Ochi Biomaterial
GB0013870D0 (en) 2000-06-07 2000-08-02 Univ London Foamed ceramics
AU2001275715B2 (en) 2000-08-04 2006-08-03 Orthogem Limited Porous synthetic bone graft and method of manufacture thereof
AU2002325762B2 (en) 2001-09-24 2008-11-06 Warsaw Orthopedic, Inc. Porous ceramic composite bone grafts
US20050049715A1 (en) * 2001-10-21 2005-03-03 Atsuo Ito Porous article of sintered calclium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same
DE10201340A1 (en) * 2002-01-16 2003-07-24 Biovision Gmbh Bone replacement material and process for its manufacture
US20050158535A1 (en) * 2003-05-15 2005-07-21 Miqin Zhang Methods for making porous ceramic structures
JP4327525B2 (en) 2003-07-09 2009-09-09 マスプロ電工株式会社 Cable modem system
JP4193742B2 (en) 2004-04-07 2008-12-10 株式会社デンソー Car navigation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810685A (en) * 1986-09-10 1989-03-07 Imperial Chemical Industries Plc Foam catalysts, method of manufacture and method of using
US20060265081A1 (en) * 2003-01-23 2006-11-23 Turner Irene G Bone substitute material

Also Published As

Publication number Publication date
EP1656167A2 (en) 2006-05-17
DE602004030692D1 (en) 2011-02-03
US8101268B2 (en) 2012-01-24
ATE492305T1 (en) 2011-01-15
WO2005016192A3 (en) 2005-04-21
EP1656167B1 (en) 2010-12-22
ES2360402T3 (en) 2011-06-03
GB0318901D0 (en) 2003-09-17
US20070106393A1 (en) 2007-05-10
EP2206525A3 (en) 2010-11-17
EP2206525A2 (en) 2010-07-14
WO2005016192A2 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US8101268B2 (en) Bone substitute material
US20230001650A1 (en) Shaped bone fiber-based products and method of manufacture thereof
US6221477B1 (en) Material and process for producing the same
US7531004B2 (en) Pliable conformable bone restorative
US20060237877A1 (en) Prosthetic spinal disc nucleus with elevated swelling rate
CN1759889B (en) Block-shaped scaffold for tissue engineering and production method thereof
CN110742711B (en) Manufacturing method of medical bone-like small-beam-structure porous tantalum bone implant prosthesis through laser additive manufacturing and high-temperature vacuum sintering
JPH06121827A (en) Porous bio-prosthetic member and method for treatment for providing elasticity thereto
US20230063323A1 (en) Tissue matrices with controlled porosity or mechanical properties
US20130307177A1 (en) Method for manufacturing porous ceramic bodies with gradient of porosity
EP2289468B1 (en) Implant body and method for manufacturing
Lu et al. Controllable porosity hydroxyapatite ceramics as spine cage: fabrication and properties evaluation
Dorozhkin et al. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings
LIu Porous hydroxyapatite bioceramics
EP1601632B1 (en) Bone substitute material
Ding et al. In vitro degradation behavior of porous calcium phosphates under diametral compression loading
KR20110129007A (en) Graular porous bone substitute and method for preparing the same
JP2006345934A (en) Replacement material for nucleus pulposus of intervertebral disc and its manufacturing method
JP3470038B2 (en) Bone repair material and method for producing the same
JP5280078B2 (en) Method for producing support for block cell engineering
Li et al. Preparation of macroporous polymer scaffolds using calcined cancellous bone as a template
KR20190123308A (en) Medical devices for breast surgery

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION