US20120135911A1 - Acetylation of Chitosan - Google Patents
Acetylation of Chitosan Download PDFInfo
- Publication number
- US20120135911A1 US20120135911A1 US13/361,298 US201213361298A US2012135911A1 US 20120135911 A1 US20120135911 A1 US 20120135911A1 US 201213361298 A US201213361298 A US 201213361298A US 2012135911 A1 US2012135911 A1 US 2012135911A1
- Authority
- US
- United States
- Prior art keywords
- chitosan
- acetylation
- acetylated
- process according
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920001661 Chitosan Polymers 0.000 title claims abstract description 126
- 238000006640 acetylation reaction Methods 0.000 title claims abstract description 45
- 230000021736 acetylation Effects 0.000 title claims description 32
- 238000000034 method Methods 0.000 claims abstract description 46
- 230000008569 process Effects 0.000 claims abstract description 37
- 239000012345 acetylating agent Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims description 54
- 239000003599 detergent Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 23
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical group CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 15
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000006460 hydrolysis reaction Methods 0.000 claims description 10
- 230000007062 hydrolysis Effects 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims description 3
- 125000003158 alcohol group Chemical group 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 23
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- 239000011260 aqueous acid Substances 0.000 abstract description 2
- -1 acetyl halides Chemical class 0.000 description 23
- 239000000047 product Substances 0.000 description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- 239000004094 surface-active agent Substances 0.000 description 16
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000002736 nonionic surfactant Substances 0.000 description 11
- 239000007844 bleaching agent Substances 0.000 description 10
- 229920002101 Chitin Polymers 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 230000000397 acetylating effect Effects 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 5
- 235000013772 propylene glycol Nutrition 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 3
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 3
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000006196 deacetylation Effects 0.000 description 3
- 238000003381 deacetylation reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004851 dishwashing Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229950006780 n-acetylglucosamine Drugs 0.000 description 3
- 150000004967 organic peroxy acids Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 150000003138 primary alcohols Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000002700 tablet coating Substances 0.000 description 3
- 238000009492 tablet coating Methods 0.000 description 3
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 108010056079 Subtilisins Proteins 0.000 description 2
- 102000005158 Subtilisins Human genes 0.000 description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 2
- 239000012346 acetyl chloride Substances 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- 0 *CC([2*])CCCCCC([3*])C[H] Chemical compound *CC([2*])CCCCCC([3*])C[H] 0.000 description 1
- QYIGOGBGVKONDY-UHFFFAOYSA-N 1-(2-bromo-5-chlorophenyl)-3-methylpyrazole Chemical compound N1=C(C)C=CN1C1=CC(Cl)=CC=C1Br QYIGOGBGVKONDY-UHFFFAOYSA-N 0.000 description 1
- KKMOSYLWYLMHAL-UHFFFAOYSA-N 2-bromo-6-nitroaniline Chemical compound NC1=C(Br)C=CC=C1[N+]([O-])=O KKMOSYLWYLMHAL-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 101500000959 Bacillus anthracis Protective antigen PA-20 Proteins 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical class [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- UJHYZJSRAHZNFM-UHFFFAOYSA-N O=P1OCCOP(=O)O1 Chemical compound O=P1OCCOP(=O)O1 UJHYZJSRAHZNFM-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 108010019077 beta-Amylase Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 150000001622 bismuth compounds Chemical class 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- ZUKDFIXDKRLHRB-UHFFFAOYSA-K cobalt(3+);triacetate Chemical compound [Co+3].CC([O-])=O.CC([O-])=O.CC([O-])=O ZUKDFIXDKRLHRB-UHFFFAOYSA-K 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- UPCIBFUJJLCOQG-UHFFFAOYSA-L ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC UPCIBFUJJLCOQG-UHFFFAOYSA-L 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- BQKYBHBRPYDELH-UHFFFAOYSA-N manganese;triazonane Chemical compound [Mn].C1CCCNNNCC1 BQKYBHBRPYDELH-UHFFFAOYSA-N 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 238000000569 multi-angle light scattering Methods 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 239000012088 reference solution Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- QSKQNALVHFTOQX-UHFFFAOYSA-M sodium nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O QSKQNALVHFTOQX-UHFFFAOYSA-M 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- YDLQSTFHBCVEJV-UHFFFAOYSA-M sodium;2-(3,5,5-trimethylhexanoyloxy)benzenesulfonate Chemical compound [Na+].CC(C)(C)CC(C)CC(=O)OC1=CC=CC=C1S([O-])(=O)=O YDLQSTFHBCVEJV-UHFFFAOYSA-M 0.000 description 1
- RPQSWSMNPBZEHT-UHFFFAOYSA-M sodium;2-acetyloxybenzenesulfonate Chemical compound [Na+].CC(=O)OC1=CC=CC=C1S([O-])(=O)=O RPQSWSMNPBZEHT-UHFFFAOYSA-M 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0027—2-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
- C08B37/003—Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/227—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
Definitions
- the present invention relates to a process for acetylating chitosan, especially for N-acetylating chitosan.
- the invention also relates to detergent products comprising chitosan obtainable according to the process.
- Chitin is the main constituent in the shells of crustaceans and is the most abundant naturally occurring biopolymer other than cellulose.
- Chitosan is derived from chitin and can be formed by deacetylation of chitin.
- Chitosan is commercially available in a wide variety of molecular weights (e.g., 10-1,000 kDa) and deacetylation degrees. Chitosan is used for a wide variety of purposes including plant care, cosmetics additives, cleaning products, food and nutrition supplements and medical care.
- chitosan obtained as the initial product from chitin will be referred to herein as primary chitosan and the chitosan obtained from the subsequent treatment of this primary chitosan will be referred as modified chitosan.
- Chitosan is usually only soluble in acidic medium, typically in a pH range from 1 to 5; this limits its applications.
- the acetylation methods proposed in the literature require a large amount of reactants and separation steps which are too cumbersome for use in commercial processes.
- the purpose of this invention is to provide a simplified method for acetylating chitosan which can be readily implemented at industrial scale.
- the present invention provides a process for acetylating chitosan.
- chitosan as used herein not only includes the natural polysaccharide ⁇ -1,4-poly-D-glucosamine obtained by deacetylation of chitin or by direct isolation from fungi but also includes synthetically produced ⁇ -1,4-poly-D-glucosamines and derivatives thereof of equivalent structure to chitosan.
- process for acetylating chitosan (sometimes also referred herein as “acetylation of chitosan”) is understood a process resulting in an increase of the number of acetyl groups in the chitosan N-groups with respect to the initial chitosan.
- a molecule of chitosan has two kinds of acetylatable groups, the N-groups and O-groups.
- the present invention relates to acetylation of the N-groups, i.e, N-acetylation, although it would be understood that a certain amount of the O-acetylation, may occur.
- O-acetylation in the process of the invention is considered negligible or minor in comparison with N-acetylation.
- the first step in the process of the invention is the addition of chitosan to an aqueous acid to form an aqueous chitosan solution or dispersion (referred to herein generally as the “chitosan solution”).
- An acetylating agent is then added to the aqueous acidic chitosan solution, preferably the acetylating agent being added once the chitosan is well dispersed.
- the acetylating agent is added to the chitosan solution in a sub-stoichiometric molar amount with respect to the chitosan N-groups to achieve the desired degree of acetylation, ie the chitosan is present in molar excess of the acetylating agent.
- the amount of acetylating agent required can be theoretically calculated knowing the molecular weight and the N-acetylation degree of the starting chitosan and the desired acetylation degree of the final modified chitos
- the molecular weight and N-acetylation degree of the starting chitosan can be known either from manufacturer specifications or can be determined by analytical techniques.
- the molecular weight can be determined by size exclusion chromatography with multiple angle laser light scattering using pullulan as standards and the acetylation degree using the method published in the “Chitin Handbook” (Muzzarelli et. al, ISBN 88-86889-01-1), pages 109-114.
- This method uses first derivative ultraviolet spectrophotometry to quantify the acetylation degree versus a calibration curve of N-acetyl-D-glucosamine. Details of the method are given herein below.
- a calibration curve can be constructed which correlates the amount of acetylating agent to the acetylation degree of the chitosan, under given reaction conditions. This curve permits easily to determine the amount of acetylating agent required to achieve a determined degree of acetylation.
- the amount of acetylating agent required can be determined indirectly by means of the solubility of chitosan.
- the solubility at a determined pH is governed by the degree of acetylation. The higher the acetylation degree the higher the pH at which the chitosan dissolves.
- a calibration curve can be constructed correlating the acetylation degree with solubility at certain pH.
- a great advantage associated to the process of the invention is that the resulting chitosan is in an aqueous solution which can be directly used or processed as such or if a more concentrated solution is required some of the water can be evaporated avoiding the need of complex separation processes and the handling of large volume of dangerous solvents. This makes the present process ideal for use at commercial scale.
- the acid used to prepare the chitosan solution is preferably selected from acetic, maleic, citric, lactic, salicylic, hydrochloric acid and mixtures thereof.
- Preferred for use herein is acetic acid for its buffer capacity that avoids a great drop in pH.
- the concentration of chitosan in the dilute acidic solution is preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 3% by weight, these values being preferred from the process viewpoint, in order to provide a solution with an easily processable rheology.
- the pH is preferably in the range from about 1 to about 5.
- the reactants are allowed to react until there is substantially no acetylating agent left, ie, at least about 90%, preferably at least about 95% of the acetylating agent has been consumed in acetylating the chitosan (referred to herein as substantial completion of the acetylation reaction).
- the acetylation reaction takes place in aqueous medium. This simplifies the process from the safety and environmental point of view, ie, there is no need to deal with hazardous solvents, which reduces the costs considerably.
- the acetylating agent is acetic anhydride.
- Other acetylating agents suitable for use herein include acetyl halides, in particular acetyl chloride.
- Some acetylating agents in particular acetic anhydride, tend to be unstable in aqueous environment due to hydrolysis thereby reducing the number of acetyl groups available for acetylating chitosan. It has now been found that this can be ameliorated by adding a hydrolysis reducing agent to the chitosan solution, preferably before addition of the acetylating agent. This helps to drive the acetylation reaction versus the hydrolysis reaction. It has also been found that the addition of the hydrolysis reducing agent improves the reproducibility of the reaction in terms of the final degree of acetylation of the chitosan produced.
- the hydrolysis reducing agent is an alcohol, more preferably a low molecular alcohol (ie C1-C6), including methanol, ethanol, propanol, butanol, pentanol, hexanol and mixtures thereof.
- a low molecular alcohol ie C1-C6
- the chitosan has a molecular weight of from about 50,000 to about 500,000 Da, preferably from about 100,000 to about 300,000 Da.
- the degree of acetylation of the initial chitosan is from about 0 to about 30%, preferably from about 10% to about 25%.
- the degree of acetylation of the final chitosan is from about 30% to about 80%, more preferably from about 40 to about 70% and even more preferably from about 42 to about 52%.
- the process of the invention can produce a range of chitosan products that are soluble at different pHs, broadening the number of potential applications of chitosan.
- the chitosan products are particularly valuable in the manufacture of pH-triggered water-soluble films, coatings and polymeric substrates, for applications in a variety of products.
- pH-triggered means that the films or substrates are soluble in aqueous media only under certain pH conditions and are otherwise insoluble in the aqueous media.
- One of these applications includes the use of chitosan for detergent applications, in particular for the manufacture of detergent products in unit dose form.
- the products can be designed for dissolving at determined pH during the cleaning process.
- a unit dose detergent product comprising an enveloping material and a cleaning composition contained therein, wherein the enveloping material comprises acetylated chitosan obtainable or obtained according to the process of the invention.
- the unit dose product comprises two or more compartments and at least one of them is prepared from enveloping material comprising chitosan obtainable according to the process of the invention. This permits the dissolution of different compartments at different pHs. For example, if the product is used for automatic dishwashing, one compartment can dissolve during the main wash cycle and the other compartment during the rinse.
- Preferred enveloping material for use in at least one of the compartments of a product comprising two or more compartments is chitosan having a degree of acetylation of from about 42 to about 52%.
- This chitosan is soluble at a pH of from about 8.5 to about 9.5, thereby delaying the dissolution of the enveloping material during the main wash and allowing dissolution during the rinse.
- the unit dose detergent product can be in the form of a tablet, pouch, sachet, capsule or the like.
- Pouches are preferred herein and in particular multi-compartments, especially dual-compartment pouches.
- Preferred uses of the unit dose detergent product of the invention are laundry and automatic dishwashing, in particular automatic dishwashing.
- acetylated chitosan obtainable or obtained according to the invention as a controlled release agent in detergent products.
- the degree of N-acetylation of chitosan determines the pH at which the chitosan is soluble in aqueous solution.
- Chitosan having a determined degree of acetylation can be used to coat, encapsulate or mix with detergent components or detergents in order to release those components or detergents at the desired pH and to inhibit or prevent release at other pHs.
- the present invention envisages a process for acetylating, in particular for N-acetylating, chitosan.
- the required degree of acetylation is determined a priori and the amount of acetylating agent required to achieve this degree of acetylation is added accordingly.
- Unit dose detergent packages comprising chitosan obtainable or obtained according to the process of the invention and the use of the acetylated chitosan as a controlled release agent for detergent products are also envisaged by this invention.
- the pH at which the product dissolves is determined by the degree of acetylation of the chitosan.
- the starting chitosan material can be any commercially available chitosan. Suitable chitosan sources may be those derived from shellfish, insects or may be fungally derived. Preferred for use herein are chitosan materials having a molecular weight from about 10,000 to about 500,000 Da.
- the first step of the process of the invention is the introduction of chitosan into an aqueous acidic solution.
- the chitosan is added, usually in powder form, the solution should be stirred or otherwise mixed in order to disperse the chitosan into the solution and achieve good wetting of the powder. Solubilisation of the powder is not essential, good dispersion of the powder is usually enough at this stage.
- the acid used in this first step is preferably selected from acetic, maleic, citric, lactic, salicylic, hydrochloric acid and mixtures thereof.
- Preferred for use herein is acetic acid.
- the concentration of chitosan in the dilute acidic solution is preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 2% by weight, these values being preferred from the process viewpoint, in order to provide a solution with the right consistency and easy to process.
- the pH is preferably in the range from about 1 to about 5. Crystallization inhibitors, as for example diethylene triamine penta(methylene phosphonic) acid, can be added to the solution to avoid premature seed formation which can become crystal growth centres.
- the resulting acidic chitosan solution can be optionally filtered to remove insoluble impurities.
- steps a), b) and c) can take place in a single reactor or step a) can take place in a first reactor and step b) and c) in a second reactor.
- Any stirred reactor can be used for the purpose of this invention.
- the process can be carried out in continuous or batch manner. The process is preferably carried out at ambient temperature (ie, about 23° C.) and atmospheric pressure. The temperature and/or pressure of reaction can be increased in order to reduce the residence time.
- 500 mg of dry chitosan (i.e. previously freeze dried) are dissolved in 50 ml of 0.1 M acetic acid and then diluted to 500 ml with water. In case the degree of acetylation is high, a further 10-fold dilution is necessary.
- the solution is transferred to a Far-UV cuvette with 10 mm path length.
- spectrophotometers can be used: for instance the Beckman DU 640, the Kontron Uvikov 810 and the Perkin Elmer 550 SE.
- the derived spectra are obtained at a light with of 1 nm, a scanning speed of 30 nm/min and a time constant of 4 sec, chart speed 10 cm/min.
- the enveloping material may further comprise additional polymeric materials.
- Preferred polymers, copolymers or derivatives thereof suitable for use as polymeric material are selected from polyvinyl alcohols (PVA), polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum.
- PVA polyvinyl alcohols
- polyvinyl pyrrolidone polyalkylene oxides
- acrylamide acrylic acid
- cellulose cellulose ethers
- cellulose esters cellulose amides
- polyvinyl acetates polycarboxylic acids and salts
- More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof.
- Mixtures of polymers can be beneficial to further control the mechanical and/or dissolution properties of the enveloping material, depending on the application thereof and the required needs.
- Suitable mixtures include for example mixtures wherein one polymer has a higher water-solubility than another polymer, and/or one polymer has a higher mechanical strength than another polymer. Also suitable are mixtures of polymers having different average weight molecular weights.
- Most preferred polymeric material is PVA having an average weight molecular weight, preferably from 1,000 Da to 1,000,000 Da, more preferably from 10,000 Da to 300,000 Da, and most preferably from 20,000 Da to 150,000 Da, such as those known under the trade reference Monosol M8630, as sold by Chris-Craft Industrial Products of Gary, Ind., US.
- the weight ratio of the chitosan to the additional polymeric material be from 0.1:100 to 50:100, preferably from 1:100 to 10:100.
- the enveloping material herein can also comprise one or more additive ingredients.
- plasticisers for example glycerol, ethylene glycol, diethyleneglycol, propylene glycol, sorbitol and mixtures thereof.
- Other additives include functional detergent additives to be delivered to the wash water, for example organic polymeric dispersants, etc.
- the enveloping material could be in the form of a film, coating, injection moulding substrate or the like.
- the enveloping material is used to coat solid bodies, such as detergent tablets or other inserts used in detergents, such as balls, noodles, discs, etc.
- the inserts can be used on their own or as part of detergent products.
- the enveloping material can be sprayed on detergent, in powder or compacted form (i.e., tablets and other solid bodies).
- a cleaning composition may be coated using conventional procedures such as those known for tablet coatings.
- the N-acetylated chitosan of the present invention can be sprayed onto the composition from a melt or from a solution or dispersion.
- the composition to be coated is situated on a fluid bed or in a tablet coating pan.
- the composition to be coated may also be dispersed in molten N-acetylated chitosan in order then to be processed to form granulated material by spraying.
- spray-cooling, spray freezing or rotating disc procedures can be used.
- the N-acetylated chitosan layer can be applied from an aqueous solvent or another solvent with the aid of spray-coating.
- composition to be coated is contained in this case in a tablet coating pan or on a fluid bed. It is also possible to disperse the cleaning composition to be coated in the solution with amino-acetylated polysaccharide and then to spray-dry the dispersion. Alternatively, the N-acetylated chitosan may be applied by coacervation technique.
- the unit dose detergent products according to the invention are in the form of a pouch.
- the pouch can be made according to the processes described in WO 02/42408.
- the cleaning compositions herein can comprise traditional detergency components and can also comprise organic solvents having a cleaning function and organic solvents having a carrier or diluent function or some other specialised function.
- the compositions will generally be built and comprise one or more detergent active components which may be selected from bleaching agents, surfactants, alkalinity sources, enzymes, thickeners (in the case of liquid, paste, cream or gel compositions), anti-corrosion agents (e.g. sodium silicate) and disrupting and binding agents (in the case of powder, granules or tablets).
- Highly preferred detergent components include a builder compound, an alkalinity source, a surfactant, an enzyme and a bleaching agent.
- the detergent surfactant is preferably low foaming by itself or in combination with other components (i.e. suds suppressers).
- Surfactants suitable herein include anionic surfactants such as alkyl sulfates, alkyl ether sulfates, alkyl benzene sulfonates, alkyl glyceryl sulfonates, alkyl and alkenyl sulphonates, alkyl ethoxy carboxylates, N-acyl sarcosinates, N-acyl taurates and alkyl succinates and sulfosuccinates, wherein the alkyl, alkenyl or acyl moiety is C 5 -C 20 , preferably C 10 -C 18 linear or branched; cationic surfactants such as chlorine esters (U.S.
- Surfactants suitable herein are disclosed, for example, in U.S. Pat. No. 3,929,678, U.S. Pat. No. 4,259,217, EP-A-0414 549, WO-A-93/08876 and WO-A-93/08874.
- Surfactants are typically present at a level of from about 0.2% 15 to about 30% by weight, more preferably from about 0.5% to about 10% by weight, most preferably from about 1% to about 5% by weight of composition.
- Preferred surfactant for use herein are low foaming and include low cloud point nonionic surfactants and mixtures of higher foaming surfactants with low cloud point nonionic surfactants which act as suds suppresser therefor.
- Builders suitable for use in cleaning compositions herein include water-soluble builders such as citrates, carbonates and polyphosphates e.g. sodium tripolyphosphate and sodium tripolyphosphate hexahydrate, potassium tripolyphosphate and mixed sodium and potassium tripolyphosphate salts; and partially water-soluble or insoluble builders such as crystalline layered silicates (EP-A-0164514 and EP-A-0293640) and aluminosilicates inclusive of Zeolites A, B, P, X, HS and MAP.
- the builder is typically present at a level of from about 1% to about 80% by weight, preferably from about 10% to about 70% by weight, most preferably from about 20% to about 60% by weight of composition.
- Amorphous sodium silicates having an SiO 2 :Na 2 O ratio of from 1.8 to 3.0, preferably from 1.8 to 2.4, most preferably 2.0 can also be used herein although highly preferred from the viewpoint of long term storage stability are compositions containing less than about 22%, preferably less than about 15% total (amorphous and crystalline) silicate.
- Enzymes suitable herein include bacterial and fungal cellulases such as Carezyme and Celluzyme (Novo Nordisk A/S); peroxidases; lipases such as Amano-P (Amano Pharmaceutical Co.), M1 Lipase R and Lipomax R (Gist-Brocades) and Lipolase R and Lipolase Ultra R (Novo); cutinases; proteases such as Esperase R , Alcalase R , Durazym R and Savinase R (Novo) and Maxatase R , Maxacal R , Properase R and Maxapem R (Gist-Brocades); ⁇ and ⁇ amylases such as Purafect Ox Am R (Genencor) and Termamyl R , Ban R , Fungamyl R , Duramyl R , and Natalase R (Novo); pectinases; and mixtures thereof. Enzymes are preferably added herein as prills, granulates,
- Bleaching agents suitable herein include chlorine and oxygen bleaches, especially inorganic perhydrate salts such as sodium perborate mono-and tetrahydrates and sodium percarbonate optionally coated to provide controlled rate of release (see, for example, GB-A-1466799 on sulfate/carbonate coatings), preformed organic peroxyacids and mixtures thereof with organic peroxyacid bleach precursors and/or transition metal-containing bleach catalysts (especially manganese or cobalt).
- Inorganic perhydrate salts are typically incorporated at levels in the range from about 1% to about 40% by weight, preferably from about 2% to about 30% by weight and more preferably from abut 5% to about 25% by weight of composition.
- Peroxyacid bleach precursors preferred for use herein include precursors of perbenzoic acid and substituted perbenzoic acid; cationic peroxyacid precursors; peracetic acid precursors such as TAED, sodium acetoxybenzene sulfonate and pentaacetylglucose; pernonanoic acid precursors such as sodium 3,5,5-trimethylhexanoyloxybenzene sulfonate (iso-NOBS) and sodium nonanoyloxybenzene sulfonate (NOBS); amide substituted alkyl peroxyacid precursors (EP-A-0170386); and benzoxazin peroxyacid precursors (EP-A-0332294 and EP-A-0482807).
- Bleach precursors are typically incorporated at levels in the range from about 0.5% to about 25%, preferably from about 1% to about 10% by weight of composition while the preformed organic peroxyacids themselves are typically incorporated at levels in the range from 0.5% to 25% by weight, more preferably from 1% to 10% by weight of composition.
- Bleach catalysts preferred for use herein include the manganese triazacyclononane and related complexes (U.S. Pat. No. 4,246,612, U.S. Pat. No. 5,227,084); Co, Cu, Mn and Fe bispyridylamine and related complexes (U.S. Pat. No. 5,114,611); and pentamine acetate cobalt(III) and related complexes (U.S. Pat. No. 4,810,410).
- the suds suppressers suitable for use herein include nonionic surfactants having a low cloud point.
- Cloud point is a well known property of nonionic surfactants which is the result of the surfactant becoming less soluble with increasing temperature, the temperature at which the appearance of a second phase is observable is referred to as the “cloud point” (See Kirk Othmer, pp. 360-362).
- a “low cloud point” nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of less than 30° C., preferably less than about 20° C., and even more preferably less than about 10° C., and most preferably less than about 7.5° C.
- Typical low cloud point nonionic surfactants include nonionic alkoxylated surfactants, especially ethoxylates derived from primary alcohol, and polyoxypropylene/polyoxyethylene/polyoxypropylene (PO/BO/PO) reverse block polymers.
- low cloud point nonionic surfactants include, for example, ethoxylated-propoxylated alcohol (e.g., BASF Poly-Tergent® SLF18) and epoxy-capped poly(oxyalkylated) alcohols (e.g., BASF Poly-Tergent® SLF18B series of nonionics, as described, for example, in U.S. Pat. No. 5,576,281).
- Preferred low cloud point surfactants are the ether-capped poly(oxyalkylated) suds suppresser having the formula:
- R I is a linear, alkyl hydrocarbon having an average of from about 7 to about 12 carbon atoms
- R 2 is a linear, alkyl hydrocarbon of about 1 to about 4 carbon atoms
- R 3 is a linear, alkyl hydrocarbon of about 1 to about 4 carbon atoms
- x is an integer of about 1 to about 6
- y is an integer of about 4 to about 15
- z is an integer of about 4 to about 25.
- low cloud point nonionic surfactants are the ether-capped poly(oxyalkylated) having the formula:
- R 1 is selected from the group consisting of linear or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic hydrocarbon radicals having from about 7 to about 12 carbon atoms;
- R II may be the same or different, and is independently selected from the group consisting of branched or linear C 2 to alkylene in any given molecule;
- n is a number from 1 to about 30; and
- R III is selected from the group consisting of:
- suitable components herein include organic polymers having dispersant, anti-redeposition, soil release or other detergency properties invention in levels of from about 0.1% to about 30%, preferably from about 0.5% to about 15%, most preferably from about 1% to about 10% by weight of composition.
- Preferred anti-redeposition polymers herein include acrylic acid containing polymers such as Sokalan PA30, PA20, PAIS, PA10 and Sokalan CP10 (BASF GmbH), Acusol 45N, 480N, 460N (Rohm and Haas), acrylic acid/maleic acid copolymers such as Sokalan CP5 and acrylic/methacrylic copolymers.
- Preferred soil release polymers herein include alkyl and hydroxyalkyl celluloses (U.S. Pat. No. 4,000,093), polyoxyethylenes, polyoxypropylenes and copolymers thereof, and nonionic and anionic polymers based on terephthalate esters of ethylene glycol, propylene glycol and mixture
- Heavy metal sequestrants and crystal growth inhibitors are suitable for use herein in levels generally from about 0.005% to about 20%, preferably from about 0.1% to about 10%, more preferably from about 0.25% to about 7.5% and most preferably from about 0.5% to about 5% by weight of composition, for example diethylenetriamine penta (methylene phosphonate), ethylenediamine tetra(methylene phosphonate) hexamethylenediamine tetra(methylene phosphonate), ethylene diphosphonate, hydroxy-ethylene-1,1-diphosphonate, nitrilotriacetate, ethylenediaminotetracetate, ethylenediamine-N,N′-disuccinate in their salt and free acid forms.
- diethylenetriamine penta methylene phosphonate
- ethylene diphosphonate hydroxy-ethylene-1,1
- compositions herein can contain a corrosion inhibitor such as organic silver coating agents in levels of from about 0.05% to about 10%, preferably from about 0.1% to about 5% by weight of composition (especially paraffins such as Winog 70 sold by Wintershall, Salzbergen, Germany), nitrogen-containing corrosion inhibitor compounds (for example benzotriazole and benzimadazole—see GB-A-1137741) and Mn(11) compounds, particularly Mn(II) salts of organic ligands in levels of from about 0.005% to about 5%, preferably from about 0.01% to about 1%, more preferably from about 0.02% to about 0.4% by weight of the composition.
- a corrosion inhibitor such as organic silver coating agents in levels of from about 0.05% to about 10%, preferably from about 0.1% to about 5% by weight of composition (especially paraffins such as Winog 70 sold by Wintershall, Salzbergen, Germany), nitrogen-containing corrosion inhibitor compounds (for example benzotriazole and benzimadazole—see GB-A-1137741)
- Suitable components herein include colorants, water-soluble bismuth compounds such as bismuth acetate and bismuth citrate at levels of from about 0.01% to about 5%, enzyme stabilizers such as calcium ion, boric acid, propylene glycol and chlorine bleach scavengers at levels of from about 0.01% to about 6%, lime soap dispersants (see WO-A-93/08877), suds suppressors (see WO-93/08876 and EP-A-0705324), polymeric dye transfer inhibiting agents, optical brighteners, perfumes, fillers and clay.
- enzyme stabilizers such as calcium ion, boric acid, propylene glycol and chlorine bleach scavengers at levels of from about 0.01% to about 6%
- lime soap dispersants see WO-A-93/08877
- suds suppressors see WO-93/08876 and EP-A-0705324
- polymeric dye transfer inhibiting agents such as optical brighteners, perfumes, fillers
- Liquid detergent compositions can contain low quantities of low molecular weight primary or secondary alcohols such as methanol, ethanol, propanol and isopropanol.
- suitable carrier solvents suitable herein include glycerol, propylene glycol, ethylene glycol, 1,2-propanediol, sorbitol and mixtures thereof.
- acetic anhydride 0.35 g was dissolved in 1 g of ethanol and added drop-wise to the reaction whilst stirring vigorously. After one hour a solution comprising chitosan having a molecular weight of about 178,000 Da and a degree of acetylation of 48% was obtained. The temperature of the reaction mixture prior to and during the addition was 23° C.
- a solution obtained as described in example 1 is used to make a chitosan film by casting the film on an A4 glass sheet to the required thickness, for example between 0.03 and 0.06 inches. The film is left to dry at room temperature overnight.
- a solution obtained as described in example 1 is used to make a PVA/chitosan film as follows:
- the films obtained as described in examples 2 and 3 can be used to make dual compartment film as follows: placing PVA film into a mould, introducing a first cleaning composition, placing a second film obtained according to examples 2 or 3, introducing a second cleaning composition, placing a third film obtained according to examples 2 or 3 and sealing by means of heat or solvent sealing.
- composition of example 1 can be used to coat inserts, that can be placed in pouches or tablets.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Detergent Compositions (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
A process for making modified N-acetylated chitosan comprising the steps of:
- a) forming an aqueous solution of chitosan in aqueous acid;
- b) mixing the resulting solution of step a) with an acetylating agent in a chitosan:acetylating agent sub-stoichiometric amount; and
- c) allowing the chitosan and acetylating agent to react for a length of time sufficient for substantial completion of the acetylation reaction.
Description
- This application is a continuation application of U.S. application Ser. No. 12/357,451 filed Jan. 22, 2009 which claimed the benefit of U.S. Provisional Application No. Ser. No. 61/063,077 filed Jan. 31, 2008.
- The present invention relates to a process for acetylating chitosan, especially for N-acetylating chitosan. The invention also relates to detergent products comprising chitosan obtainable according to the process.
- Chitin is the main constituent in the shells of crustaceans and is the most abundant naturally occurring biopolymer other than cellulose. Chitosan is derived from chitin and can be formed by deacetylation of chitin. Chitosan is commercially available in a wide variety of molecular weights (e.g., 10-1,000 kDa) and deacetylation degrees. Chitosan is used for a wide variety of purposes including plant care, cosmetics additives, cleaning products, food and nutrition supplements and medical care.
- The properties and applications of chitosan are strongly linked to its morphology, structure and size and these are directly related to the process used for obtaining chitosan. For reasons of clarity, the chitosan obtained as the initial product from chitin will be referred to herein as primary chitosan and the chitosan obtained from the subsequent treatment of this primary chitosan will be referred as modified chitosan.
- Traditional primary and modified chitosan have a limited solubility. Chitosan is usually only soluble in acidic medium, typically in a pH range from 1 to 5; this limits its applications. The literature recognises that the solubility of chitosan can be improved by acetylation or chemical modification (“Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acetylated or N-alkylated partially deacetylated chitins” H. Sashiwa and Y. Shigemasa, Carbohydrate Polymers 39 (1999) 127-138).
- The paper “A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents” N. Kubota et al. Carbohydrate Research 324 (2000) 268-274, also acknowledges an increase in chitin and chitosan solubility by controlling the degree of substitution. In this paper half-N acetylated chitosan was prepared by degrading chitosan by treatment with NaBO3 and then N-acetylating with acetic anhydride in aqueous acetic acid. The reaction took place in excess of acetic anhydride and was stopped with NaOH. The reaction mixture was dialyzed and the acetylated chitosan was then treated with methanolic KOH for 5 hours and repeatedly washed with MeOH using a centrifuge. Finally, it was dissolved in water.
- In H. Sashiwa and Y. Shigemasa's paper chitosan is also acetylated by using an excess of acetyl chloride and stopping the reaction with ice, followed by dialysis and neutralization with NaHCO3.
- The acetylation methods proposed in the literature require a large amount of reactants and separation steps which are too cumbersome for use in commercial processes. The purpose of this invention is to provide a simplified method for acetylating chitosan which can be readily implemented at industrial scale.
- The present invention provides a process for acetylating chitosan. The term chitosan as used herein not only includes the natural polysaccharide β-1,4-poly-D-glucosamine obtained by deacetylation of chitin or by direct isolation from fungi but also includes synthetically produced β-1,4-poly-D-glucosamines and derivatives thereof of equivalent structure to chitosan. By “process for acetylating chitosan” (sometimes also referred herein as “acetylation of chitosan”) is understood a process resulting in an increase of the number of acetyl groups in the chitosan N-groups with respect to the initial chitosan. A molecule of chitosan has two kinds of acetylatable groups, the N-groups and O-groups. The present invention relates to acetylation of the N-groups, i.e, N-acetylation, although it would be understood that a certain amount of the O-acetylation, may occur. O-acetylation in the process of the invention is considered negligible or minor in comparison with N-acetylation.
- The first step in the process of the invention is the addition of chitosan to an aqueous acid to form an aqueous chitosan solution or dispersion (referred to herein generally as the “chitosan solution”). An acetylating agent is then added to the aqueous acidic chitosan solution, preferably the acetylating agent being added once the chitosan is well dispersed. The acetylating agent is added to the chitosan solution in a sub-stoichiometric molar amount with respect to the chitosan N-groups to achieve the desired degree of acetylation, ie the chitosan is present in molar excess of the acetylating agent. The amount of acetylating agent required can be theoretically calculated knowing the molecular weight and the N-acetylation degree of the starting chitosan and the desired acetylation degree of the final modified chitosan.
- The molecular weight and N-acetylation degree of the starting chitosan can be known either from manufacturer specifications or can be determined by analytical techniques. The molecular weight can be determined by size exclusion chromatography with multiple angle laser light scattering using pullulan as standards and the acetylation degree using the method published in the “Chitin Handbook” (Muzzarelli et. al, ISBN 88-86889-01-1), pages 109-114. This method uses first derivative ultraviolet spectrophotometry to quantify the acetylation degree versus a calibration curve of N-acetyl-D-glucosamine. Details of the method are given herein below.
- The theoretical number of moles of acetylating agent (MAct) required to achieve a certain degree of acetylation (DAfinal) is calculated by:
-
- 1) determining the initial degree of N-acetylation (DAinitial) of the chitosan and the total number of N groups in the given weight of chitosan (MN);
- 2) calculating the amount of available amine groups (AvN=MAct) as the difference of the initial degree of N-acetylation minus the required final degree of acetylation multiplied by the number of amine groups to be acetylated: AvN=(DAfinal−DAinitial)×MN; and
- 3) the number of moles can be converted into grams of acetylating agent by multiplying by the molecular weight.
- Alternatively, a calibration curve can be constructed which correlates the amount of acetylating agent to the acetylation degree of the chitosan, under given reaction conditions. This curve permits easily to determine the amount of acetylating agent required to achieve a determined degree of acetylation.
- The amount of acetylating agent required can be determined indirectly by means of the solubility of chitosan. For a chitosan of given molecular weight the solubility at a determined pH is governed by the degree of acetylation. The higher the acetylation degree the higher the pH at which the chitosan dissolves. A calibration curve can be constructed correlating the acetylation degree with solubility at certain pH.
- A great advantage associated to the process of the invention is that the resulting chitosan is in an aqueous solution which can be directly used or processed as such or if a more concentrated solution is required some of the water can be evaporated avoiding the need of complex separation processes and the handling of large volume of dangerous solvents. This makes the present process ideal for use at commercial scale.
- The acid used to prepare the chitosan solution is preferably selected from acetic, maleic, citric, lactic, salicylic, hydrochloric acid and mixtures thereof. Preferred for use herein is acetic acid for its buffer capacity that avoids a great drop in pH. The concentration of chitosan in the dilute acidic solution is preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 3% by weight, these values being preferred from the process viewpoint, in order to provide a solution with an easily processable rheology. The pH is preferably in the range from about 1 to about 5. The reactants are allowed to react until there is substantially no acetylating agent left, ie, at least about 90%, preferably at least about 95% of the acetylating agent has been consumed in acetylating the chitosan (referred to herein as substantial completion of the acetylation reaction).
- The acetylation reaction takes place in aqueous medium. This simplifies the process from the safety and environmental point of view, ie, there is no need to deal with hazardous solvents, which reduces the costs considerably.
- In preferred embodiments the acetylating agent is acetic anhydride. Other acetylating agents suitable for use herein include acetyl halides, in particular acetyl chloride.
- Some acetylating agents, in particular acetic anhydride, tend to be unstable in aqueous environment due to hydrolysis thereby reducing the number of acetyl groups available for acetylating chitosan. It has now been found that this can be ameliorated by adding a hydrolysis reducing agent to the chitosan solution, preferably before addition of the acetylating agent. This helps to drive the acetylation reaction versus the hydrolysis reaction. It has also been found that the addition of the hydrolysis reducing agent improves the reproducibility of the reaction in terms of the final degree of acetylation of the chitosan produced.
- In preferred embodiments the hydrolysis reducing agent is an alcohol, more preferably a low molecular alcohol (ie C1-C6), including methanol, ethanol, propanol, butanol, pentanol, hexanol and mixtures thereof.
- In preferred embodiments the chitosan has a molecular weight of from about 50,000 to about 500,000 Da, preferably from about 100,000 to about 300,000 Da. In preferred embodiments the degree of acetylation of the initial chitosan is from about 0 to about 30%, preferably from about 10% to about 25%.
- In preferred embodiments the degree of acetylation of the final chitosan is from about 30% to about 80%, more preferably from about 40 to about 70% and even more preferably from about 42 to about 52%.
- The process of the invention can produce a range of chitosan products that are soluble at different pHs, broadening the number of potential applications of chitosan. The chitosan products are particularly valuable in the manufacture of pH-triggered water-soluble films, coatings and polymeric substrates, for applications in a variety of products. “pH-triggered” means that the films or substrates are soluble in aqueous media only under certain pH conditions and are otherwise insoluble in the aqueous media. One of these applications includes the use of chitosan for detergent applications, in particular for the manufacture of detergent products in unit dose form. The products can be designed for dissolving at determined pH during the cleaning process.
- According to a product aspect, there is provided a unit dose detergent product comprising an enveloping material and a cleaning composition contained therein, wherein the enveloping material comprises acetylated chitosan obtainable or obtained according to the process of the invention. In a preferred embodiment, the unit dose product comprises two or more compartments and at least one of them is prepared from enveloping material comprising chitosan obtainable according to the process of the invention. This permits the dissolution of different compartments at different pHs. For example, if the product is used for automatic dishwashing, one compartment can dissolve during the main wash cycle and the other compartment during the rinse.
- Preferred enveloping material for use in at least one of the compartments of a product comprising two or more compartments is chitosan having a degree of acetylation of from about 42 to about 52%. This chitosan is soluble at a pH of from about 8.5 to about 9.5, thereby delaying the dissolution of the enveloping material during the main wash and allowing dissolution during the rinse.
- The unit dose detergent product can be in the form of a tablet, pouch, sachet, capsule or the like. Pouches are preferred herein and in particular multi-compartments, especially dual-compartment pouches. Preferred uses of the unit dose detergent product of the invention are laundry and automatic dishwashing, in particular automatic dishwashing.
- According to another aspect of the invention, there is provided the use of the acetylated chitosan obtainable or obtained according to the invention as a controlled release agent in detergent products. As explained above the degree of N-acetylation of chitosan determines the pH at which the chitosan is soluble in aqueous solution. Chitosan having a determined degree of acetylation can be used to coat, encapsulate or mix with detergent components or detergents in order to release those components or detergents at the desired pH and to inhibit or prevent release at other pHs.
- The present invention envisages a process for acetylating, in particular for N-acetylating, chitosan. The required degree of acetylation is determined a priori and the amount of acetylating agent required to achieve this degree of acetylation is added accordingly. Unit dose detergent packages comprising chitosan obtainable or obtained according to the process of the invention and the use of the acetylated chitosan as a controlled release agent for detergent products are also envisaged by this invention. The pH at which the product dissolves is determined by the degree of acetylation of the chitosan.
- The starting chitosan material can be any commercially available chitosan. Suitable chitosan sources may be those derived from shellfish, insects or may be fungally derived. Preferred for use herein are chitosan materials having a molecular weight from about 10,000 to about 500,000 Da.
- The first step of the process of the invention is the introduction of chitosan into an aqueous acidic solution. Once the chitosan is added, usually in powder form, the solution should be stirred or otherwise mixed in order to disperse the chitosan into the solution and achieve good wetting of the powder. Solubilisation of the powder is not essential, good dispersion of the powder is usually enough at this stage.
- The acid used in this first step is preferably selected from acetic, maleic, citric, lactic, salicylic, hydrochloric acid and mixtures thereof. Preferred for use herein is acetic acid. The concentration of chitosan in the dilute acidic solution is preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 2% by weight, these values being preferred from the process viewpoint, in order to provide a solution with the right consistency and easy to process. The pH is preferably in the range from about 1 to about 5. Crystallization inhibitors, as for example diethylene triamine penta(methylene phosphonic) acid, can be added to the solution to avoid premature seed formation which can become crystal growth centres. The resulting acidic chitosan solution can be optionally filtered to remove insoluble impurities.
- The reaction, i.e, steps a), b) and c) can take place in a single reactor or step a) can take place in a first reactor and step b) and c) in a second reactor. Any stirred reactor can be used for the purpose of this invention. The process can be carried out in continuous or batch manner. The process is preferably carried out at ambient temperature (ie, about 23° C.) and atmospheric pressure. The temperature and/or pressure of reaction can be increased in order to reduce the residence time.
- Three solutions of acetic acid about 0.01, 0.02 and 0.003 M are prepared and the first derivative spectra from 240 to 190 nm, against water, are recorded. The superposition of the three spectra shows the zero crossing point for the acid.
- Four or five reference solutions of N-acetylglucosamine in the range 0.5-3.5 mg in 100 ml of 0.01 M acetic acid are prepared and the spectra are recorded as before.
- All spectra recorded are superposed and the height H (mm), for each reference concentration above the zero crossing point, is measured. A calibration curve (H versus concentration of N-acetylglucosamine) is drawn. The curve equation H=f(C) is determined.
- 500 mg of dry chitosan (i.e. previously freeze dried) are dissolved in 50 ml of 0.1 M acetic acid and then diluted to 500 ml with water. In case the degree of acetylation is high, a further 10-fold dilution is necessary.
- The solution is transferred to a Far-UV cuvette with 10 mm path length.
- Different spectrophotometers can be used: for instance the Beckman DU 640, the Kontron Uvikov 810 and the Perkin Elmer 550 SE. The derived spectra are obtained at a light with of 1 nm, a scanning speed of 30 nm/min and a time constant of 4 sec, chart speed 10 cm/min.
- For degree of acetylation lower than 0.11 the final result should be corrected with a coefficient deduced from the correction curve.
- The enveloping material may further comprise additional polymeric materials. Preferred polymers, copolymers or derivatives thereof suitable for use as polymeric material are selected from polyvinyl alcohols (PVA), polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum. More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof.
- Mixtures of polymers can be beneficial to further control the mechanical and/or dissolution properties of the enveloping material, depending on the application thereof and the required needs. Suitable mixtures include for example mixtures wherein one polymer has a higher water-solubility than another polymer, and/or one polymer has a higher mechanical strength than another polymer. Also suitable are mixtures of polymers having different average weight molecular weights.
- Most preferred polymeric material is PVA having an average weight molecular weight, preferably from 1,000 Da to 1,000,000 Da, more preferably from 10,000 Da to 300,000 Da, and most preferably from 20,000 Da to 150,000 Da, such as those known under the trade reference Monosol M8630, as sold by Chris-Craft Industrial Products of Gary, Ind., US.
- When such polymeric materials, in particular PVA, are further comprised in the enveloping material together with the acetylated chitosan, it is preferred that the weight ratio of the chitosan to the additional polymeric material be from 0.1:100 to 50:100, preferably from 1:100 to 10:100.
- The enveloping material herein can also comprise one or more additive ingredients. For example, it can be beneficial to add plasticisers, for example glycerol, ethylene glycol, diethyleneglycol, propylene glycol, sorbitol and mixtures thereof. Other additives include functional detergent additives to be delivered to the wash water, for example organic polymeric dispersants, etc.
- The enveloping material could be in the form of a film, coating, injection moulding substrate or the like. Preferably, the enveloping material is used to coat solid bodies, such as detergent tablets or other inserts used in detergents, such as balls, noodles, discs, etc. The inserts can be used on their own or as part of detergent products.
- The enveloping material can be sprayed on detergent, in powder or compacted form (i.e., tablets and other solid bodies).
- A process for making a cleaning composition comprising the N-acetylated chitosan obtained according to the process of the invention comprises the steps of:
-
- (a) preparing a cleaning composition;
- (b) enveloping a quantity of the cleaning composition for example by coating, spraying, encapsulation, pouch formation, injection moulding, etc with a film or composition comprising the N-acetylated chitosan.
- A cleaning composition may be coated using conventional procedures such as those known for tablet coatings. The N-acetylated chitosan of the present invention can be sprayed onto the composition from a melt or from a solution or dispersion. In this case, the composition to be coated is situated on a fluid bed or in a tablet coating pan. The composition to be coated may also be dispersed in molten N-acetylated chitosan in order then to be processed to form granulated material by spraying. For this purpose known spray-cooling, spray freezing or rotating disc procedures can be used. The N-acetylated chitosan layer can be applied from an aqueous solvent or another solvent with the aid of spray-coating. The composition to be coated is contained in this case in a tablet coating pan or on a fluid bed. It is also possible to disperse the cleaning composition to be coated in the solution with amino-acetylated polysaccharide and then to spray-dry the dispersion. Alternatively, the N-acetylated chitosan may be applied by coacervation technique.
- Preferably, the unit dose detergent products according to the invention are in the form of a pouch. The pouch can be made according to the processes described in WO 02/42408.
- The cleaning compositions herein can comprise traditional detergency components and can also comprise organic solvents having a cleaning function and organic solvents having a carrier or diluent function or some other specialised function. The compositions will generally be built and comprise one or more detergent active components which may be selected from bleaching agents, surfactants, alkalinity sources, enzymes, thickeners (in the case of liquid, paste, cream or gel compositions), anti-corrosion agents (e.g. sodium silicate) and disrupting and binding agents (in the case of powder, granules or tablets). Highly preferred detergent components include a builder compound, an alkalinity source, a surfactant, an enzyme and a bleaching agent.
- In the detergent product of the present invention the detergent surfactant is preferably low foaming by itself or in combination with other components (i.e. suds suppressers). Surfactants suitable herein include anionic surfactants such as alkyl sulfates, alkyl ether sulfates, alkyl benzene sulfonates, alkyl glyceryl sulfonates, alkyl and alkenyl sulphonates, alkyl ethoxy carboxylates, N-acyl sarcosinates, N-acyl taurates and alkyl succinates and sulfosuccinates, wherein the alkyl, alkenyl or acyl moiety is C5-C20, preferably C10-C18 linear or branched; cationic surfactants such as chlorine esters (U.S. Pat. No. 4,228,042, U.S. Pat. No. 4,239,660 and U.S. Pat. No. 4,260,529) and mono C6-C16 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups; low and high cloud point nonionic surfactants and mixtures thereof including nonionic alkoxylated surfactants (especially ethoxylates derived from C6-C18 primary alcohols), ethoxylated-propoxylated alcohols (e.g., BASF Poly-Tergent® SLF18), epoxy-capped poly(oxyalkylated) alcohols (e.g., BASF Poly-Tergent® SLF18B—see WO-A-94/22800), ether-capped poly(oxyalkylated) alcohol surfactants, and block polyoxyethylene-polyoxypropylene polymeric compounds such as PLURONIC®, REVERSED PLURONIC®, and TETRONIC® by the BASF-Wyandotte Corp., Wyandotte, Mich.; amphoteric surfactants such as the C12-C20 alkyl amine oxides (preferred amine oxides for use herein include C12 lauryldimethyl amine oxide, C14 and C16 hexadecyl dimethyl amine oxide), and alkyl amphocarboxylic surfactants such as Miranol™ C2M; and zwitterionic surfactants such as the betaines and sultaines; and mixtures thereof. Surfactants suitable herein are disclosed, for example, in U.S. Pat. No. 3,929,678, U.S. Pat. No. 4,259,217, EP-A-0414 549, WO-A-93/08876 and WO-A-93/08874. Surfactants are typically present at a level of from about 0.2% 15 to about 30% by weight, more preferably from about 0.5% to about 10% by weight, most preferably from about 1% to about 5% by weight of composition. Preferred surfactant for use herein are low foaming and include low cloud point nonionic surfactants and mixtures of higher foaming surfactants with low cloud point nonionic surfactants which act as suds suppresser therefor.
- Builders suitable for use in cleaning compositions herein include water-soluble builders such as citrates, carbonates and polyphosphates e.g. sodium tripolyphosphate and sodium tripolyphosphate hexahydrate, potassium tripolyphosphate and mixed sodium and potassium tripolyphosphate salts; and partially water-soluble or insoluble builders such as crystalline layered silicates (EP-A-0164514 and EP-A-0293640) and aluminosilicates inclusive of Zeolites A, B, P, X, HS and MAP. The builder is typically present at a level of from about 1% to about 80% by weight, preferably from about 10% to about 70% by weight, most preferably from about 20% to about 60% by weight of composition.
- Amorphous sodium silicates having an SiO2:Na2O ratio of from 1.8 to 3.0, preferably from 1.8 to 2.4, most preferably 2.0 can also be used herein although highly preferred from the viewpoint of long term storage stability are compositions containing less than about 22%, preferably less than about 15% total (amorphous and crystalline) silicate.
- Enzymes suitable herein include bacterial and fungal cellulases such as Carezyme and Celluzyme (Novo Nordisk A/S); peroxidases; lipases such as Amano-P (Amano Pharmaceutical Co.), M1 LipaseR and LipomaxR (Gist-Brocades) and LipolaseR and Lipolase UltraR (Novo); cutinases; proteases such as EsperaseR, AlcalaseR, DurazymR and SavinaseR (Novo) and MaxataseR, MaxacalR, ProperaseR and MaxapemR (Gist-Brocades); α and β amylases such as Purafect Ox AmR (Genencor) and TermamylR, BanR, FungamylR, DuramylR, and NatalaseR (Novo); pectinases; and mixtures thereof. Enzymes are preferably added herein as prills, granulates, or cogranulates at levels typically in the range from about 0.0001% to about 2% pure enzyme by weight of composition.
- Bleaching agents suitable herein include chlorine and oxygen bleaches, especially inorganic perhydrate salts such as sodium perborate mono-and tetrahydrates and sodium percarbonate optionally coated to provide controlled rate of release (see, for example, GB-A-1466799 on sulfate/carbonate coatings), preformed organic peroxyacids and mixtures thereof with organic peroxyacid bleach precursors and/or transition metal-containing bleach catalysts (especially manganese or cobalt). Inorganic perhydrate salts are typically incorporated at levels in the range from about 1% to about 40% by weight, preferably from about 2% to about 30% by weight and more preferably from abut 5% to about 25% by weight of composition. Peroxyacid bleach precursors preferred for use herein include precursors of perbenzoic acid and substituted perbenzoic acid; cationic peroxyacid precursors; peracetic acid precursors such as TAED, sodium acetoxybenzene sulfonate and pentaacetylglucose; pernonanoic acid precursors such as sodium 3,5,5-trimethylhexanoyloxybenzene sulfonate (iso-NOBS) and sodium nonanoyloxybenzene sulfonate (NOBS); amide substituted alkyl peroxyacid precursors (EP-A-0170386); and benzoxazin peroxyacid precursors (EP-A-0332294 and EP-A-0482807). Bleach precursors are typically incorporated at levels in the range from about 0.5% to about 25%, preferably from about 1% to about 10% by weight of composition while the preformed organic peroxyacids themselves are typically incorporated at levels in the range from 0.5% to 25% by weight, more preferably from 1% to 10% by weight of composition. Bleach catalysts preferred for use herein include the manganese triazacyclononane and related complexes (U.S. Pat. No. 4,246,612, U.S. Pat. No. 5,227,084); Co, Cu, Mn and Fe bispyridylamine and related complexes (U.S. Pat. No. 5,114,611); and pentamine acetate cobalt(III) and related complexes (U.S. Pat. No. 4,810,410).
- The suds suppressers suitable for use herein include nonionic surfactants having a low cloud point. “Cloud point”, as used herein, is a well known property of nonionic surfactants which is the result of the surfactant becoming less soluble with increasing temperature, the temperature at which the appearance of a second phase is observable is referred to as the “cloud point” (See Kirk Othmer, pp. 360-362). As used herein, a “low cloud point” nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of less than 30° C., preferably less than about 20° C., and even more preferably less than about 10° C., and most preferably less than about 7.5° C. Typical low cloud point nonionic surfactants include nonionic alkoxylated surfactants, especially ethoxylates derived from primary alcohol, and polyoxypropylene/polyoxyethylene/polyoxypropylene (PO/BO/PO) reverse block polymers. Also, such low cloud point nonionic surfactants include, for example, ethoxylated-propoxylated alcohol (e.g., BASF Poly-Tergent® SLF18) and epoxy-capped poly(oxyalkylated) alcohols (e.g., BASF Poly-Tergent® SLF18B series of nonionics, as described, for example, in U.S. Pat. No. 5,576,281).
- Preferred low cloud point surfactants are the ether-capped poly(oxyalkylated) suds suppresser having the formula:
- wherein RI is a linear, alkyl hydrocarbon having an average of from about 7 to about 12 carbon atoms, R2 is a linear, alkyl hydrocarbon of about 1 to about 4 carbon atoms, R3 is a linear, alkyl hydrocarbon of about 1 to about 4 carbon atoms, x is an integer of about 1 to about 6, y is an integer of about 4 to about 15, and z is an integer of about 4 to about 25.
- Other low cloud point nonionic surfactants are the ether-capped poly(oxyalkylated) having the formula:
-
RIO(RIIO)nCH(CH3)ORIII - wherein, R1 is selected from the group consisting of linear or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic hydrocarbon radicals having from about 7 to about 12 carbon atoms; RII may be the same or different, and is independently selected from the group consisting of branched or linear C2 to alkylene in any given molecule; n is a number from 1 to about 30; and RIII is selected from the group consisting of:
-
- (i) a 4 to 8 membered substituted, or unsubstituted heterocyclic ring containing from 1 to 3 hetero atoms; and
- (ii) linear or branched, saturated or unsaturated, substituted or unsubstituted, cyclic or acyclic, aliphatic or aromatic hydrocarbon radicals having from about 1 to about 30 carbon atoms;
- (b) provided that when R2 is (ii) then either: (A) at least one of R1 is other than C2 to C3 alkylene; or (B) R2 has from 6 to 30 carbon atoms, and with the further proviso that when R2 has from 8 to 18 carbon atoms, R is other than C1 to C5 alkyl.
- Other suitable components herein include organic polymers having dispersant, anti-redeposition, soil release or other detergency properties invention in levels of from about 0.1% to about 30%, preferably from about 0.5% to about 15%, most preferably from about 1% to about 10% by weight of composition. Preferred anti-redeposition polymers herein include acrylic acid containing polymers such as Sokalan PA30, PA20, PAIS, PA10 and Sokalan CP10 (BASF GmbH), Acusol 45N, 480N, 460N (Rohm and Haas), acrylic acid/maleic acid copolymers such as Sokalan CP5 and acrylic/methacrylic copolymers. Preferred soil release polymers herein include alkyl and hydroxyalkyl celluloses (U.S. Pat. No. 4,000,093), polyoxyethylenes, polyoxypropylenes and copolymers thereof, and nonionic and anionic polymers based on terephthalate esters of ethylene glycol, propylene glycol and mixtures thereof.
- Heavy metal sequestrants and crystal growth inhibitors are suitable for use herein in levels generally from about 0.005% to about 20%, preferably from about 0.1% to about 10%, more preferably from about 0.25% to about 7.5% and most preferably from about 0.5% to about 5% by weight of composition, for example diethylenetriamine penta (methylene phosphonate), ethylenediamine tetra(methylene phosphonate) hexamethylenediamine tetra(methylene phosphonate), ethylene diphosphonate, hydroxy-ethylene-1,1-diphosphonate, nitrilotriacetate, ethylenediaminotetracetate, ethylenediamine-N,N′-disuccinate in their salt and free acid forms.
- The compositions herein can contain a corrosion inhibitor such as organic silver coating agents in levels of from about 0.05% to about 10%, preferably from about 0.1% to about 5% by weight of composition (especially paraffins such as Winog 70 sold by Wintershall, Salzbergen, Germany), nitrogen-containing corrosion inhibitor compounds (for example benzotriazole and benzimadazole—see GB-A-1137741) and Mn(11) compounds, particularly Mn(II) salts of organic ligands in levels of from about 0.005% to about 5%, preferably from about 0.01% to about 1%, more preferably from about 0.02% to about 0.4% by weight of the composition.
- Other suitable components herein include colorants, water-soluble bismuth compounds such as bismuth acetate and bismuth citrate at levels of from about 0.01% to about 5%, enzyme stabilizers such as calcium ion, boric acid, propylene glycol and chlorine bleach scavengers at levels of from about 0.01% to about 6%, lime soap dispersants (see WO-A-93/08877), suds suppressors (see WO-93/08876 and EP-A-0705324), polymeric dye transfer inhibiting agents, optical brighteners, perfumes, fillers and clay.
- Liquid detergent compositions can contain low quantities of low molecular weight primary or secondary alcohols such as methanol, ethanol, propanol and isopropanol. Other suitable carrier solvents suitable herein include glycerol, propylene glycol, ethylene glycol, 1,2-propanediol, sorbitol and mixtures thereof.
- 2 g of chitosan, Chitoclear ex Primex having an approximate molecular weight of 135,300 DA and an acetylation degree of approximately 17%, was transferred to a 250 ml 3-necked round bottom flask, containing a stirrer bead. 90 ml of deionized water was added to the flask with stirring. 0.53 g of acetic acid was dissolved in 5 g of deionized water and added in one portion to the reaction mixture, whilst stirring vigorously. The stirring continued for about 15 hours. Thereafter, 4 g of ethanol was added to the reaction and the mixture stirred for about 2 hours.
- 0.35 g of acetic anhydride was dissolved in 1 g of ethanol and added drop-wise to the reaction whilst stirring vigorously. After one hour a solution comprising chitosan having a molecular weight of about 178,000 Da and a degree of acetylation of 48% was obtained. The temperature of the reaction mixture prior to and during the addition was 23° C.
- A solution obtained as described in example 1 is used to make a chitosan film by casting the film on an A4 glass sheet to the required thickness, for example between 0.03 and 0.06 inches. The film is left to dry at room temperature overnight.
- A solution obtained as described in example 1 is used to make a PVA/chitosan film as follows:
- 1) Dissolve 20 g of PVA in 100 g of deionised water, and then mix in 100 g of Chitosan solution (2%).
- 2) Cast the solution on glass or A4 plastic sheet to the required thickness. Film cast at 0.03 to 0.06 inches.
- 3) Allow the film to dry at room temperature overnight.
- The films obtained as described in examples 2 and 3, can be used to make dual compartment film as follows: placing PVA film into a mould, introducing a first cleaning composition, placing a second film obtained according to examples 2 or 3, introducing a second cleaning composition, placing a third film obtained according to examples 2 or 3 and sealing by means of heat or solvent sealing.
- The composition of example 1 can be used to coat inserts, that can be placed in pouches or tablets.
Claims (14)
1. A process for making modified N-acetylated chitosan comprising the steps of:
a) adding chitosan and water to acid to form an aqueous chitosan solution;
b) mixing the aqueous chitosan solution with a hydrolysis reducing agent to form a hydrolysis reducing agent: aqueous chitosan solution mixture;
c) mixing the hydrolysis reducing agent: aqueous chitosan solution mixture with an acetylating agent in a chitosan:acetylating agent substoichiometric amount to form the modified N-acetylated chitosan; and
d) adding the modified N-acetylated chitosan to a polymer comprising polyvinyl alcohol.
2. A process according to claim 1 wherein the acid is selected from acetic, maleic, citric, lactic, salicylic, hydrochloric acid and mixtures thereof.
3. A process according to claim 1 wherein the concentration of chitosan in the aqueous chitosan solution is from about 0.1% to about 5% by weight of the chitosan and has a pH from about 1 to about 5.
4. A process according to claim 1 wherein the acetylating agent is acetic anhydride.
5. A process according to claim 1 wherein step c) takes place in the presence of about 0.1 to 10% by weight of the hydrolyzed aqueous chitosan solution of a hydrolysis reducing agent.
6. A process according to claim 5 wherein the hydrolysis reducing agent is an alcohol.
7. A process according to claim 1 wherein the chitosan has a molecular weight of from about 50,000 to about 500,000 Da.
8. A process according to claim 1 wherein the chitosan added in step a) has a degree of acetylation from about 0 to about 30%.
9. A process according to claim 1 wherein the modified N-acetylated chitosan has a degree of acetylation from about 40% to about 80%.
10. A unit dose detergent product comprising an enveloping material and a cleaning composition contained therein, wherein the enveloping material comprises modified N-acetylated chitosan obtainable according to any of the preceding claims.
11. A unit dose detergent according to claim 10 wherein the package comprises two or more compartments, at least one compartment being prepared from enveloping material comprising chitosan obtainable according to claim 1 .
12. A unit dose detergent according to claim 10 wherein the degree of acetylation of the chitosan is from about 40 to about 80.
13. A pH-triggered water-soluble film or polymeric substrate comprising a modified N-acetylated chitosan obtainable according to the process of claim 1 .
14. The method of claim 1 , further comprising adding the modified N-acetylated chitosan to a polymer comprising polyvinyl alcohol to form a film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/361,298 US20120135911A1 (en) | 2008-01-31 | 2012-01-30 | Acetylation of Chitosan |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6307708P | 2008-01-31 | 2008-01-31 | |
US12/357,451 US20090197789A1 (en) | 2008-01-31 | 2009-01-22 | Acetylation of chitosan |
US13/361,298 US20120135911A1 (en) | 2008-01-31 | 2012-01-30 | Acetylation of Chitosan |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/357,451 Continuation US20090197789A1 (en) | 2008-01-31 | 2009-01-22 | Acetylation of chitosan |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120135911A1 true US20120135911A1 (en) | 2012-05-31 |
Family
ID=40564905
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/357,451 Abandoned US20090197789A1 (en) | 2008-01-31 | 2009-01-22 | Acetylation of chitosan |
US13/361,298 Abandoned US20120135911A1 (en) | 2008-01-31 | 2012-01-30 | Acetylation of Chitosan |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/357,451 Abandoned US20090197789A1 (en) | 2008-01-31 | 2009-01-22 | Acetylation of chitosan |
Country Status (4)
Country | Link |
---|---|
US (2) | US20090197789A1 (en) |
EP (1) | EP2238174A1 (en) |
JP (1) | JP2011511123A (en) |
WO (1) | WO2009095816A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3365978B2 (en) * | 1999-07-15 | 2003-01-14 | 株式会社神戸製鋼所 | Al alloy thin film for semiconductor device electrode and sputtering target for forming Al alloy thin film for semiconductor device electrode |
WO2013059650A1 (en) * | 2011-10-21 | 2013-04-25 | Ndsu Research Foundation | Hydrophobically modified low molecular weight chitosan and methods of use |
US10808210B2 (en) | 2013-03-15 | 2020-10-20 | Monosol, Llc | Water-soluble film for delayed release |
MX346270B (en) * | 2013-03-15 | 2017-03-13 | Monosol Llc | Water-soluble film for delayed release. |
FR3016882A1 (en) | 2014-01-30 | 2015-07-31 | Sofradim Production | PROCESS FOR THE PREPARATION OF HIGH-DEGREE ACETYLATION CHITOSAN |
WO2019191119A1 (en) * | 2018-03-28 | 2019-10-03 | Herbalife International Of America, Inc. | Acetylation of polysaccharides |
EP4205829A4 (en) * | 2020-08-25 | 2024-10-02 | Korea Research Institute of Chemical Technology | ALIPHATIC POLYESTER FIBER WEB FILM FILTER FOR AIR PURIFICATION AND METHOD FOR MANUFACTURING THE SAME |
CN112778818B (en) * | 2021-01-22 | 2022-01-14 | 常州凯泽环保科技有限公司 | Anti-shrinkage-hole electrophoretic coating film-coated automobile sheet metal part |
CN115403682A (en) * | 2022-10-13 | 2022-11-29 | 浙江工业职业技术学院 | Preparation method of chitin |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040259749A1 (en) * | 2003-05-23 | 2004-12-23 | The Procter & Gamble Company | Cleaning composition for use in a laundry or dishwashing machine |
US7098194B2 (en) * | 2001-11-15 | 2006-08-29 | Biosyntech Canada, Inc. | Composition and method to homogeneously modify or cross-link chitosan under neutral conditions |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4105827A (en) * | 1973-04-20 | 1978-08-08 | Interox | Particulate peroxygen compounds coated with sodium sesquicarbonate or Na2 SO4 mNa2 CO3 |
US3929678A (en) * | 1974-08-01 | 1975-12-30 | Procter & Gamble | Detergent composition having enhanced particulate soil removal performance |
US4000093A (en) * | 1975-04-02 | 1976-12-28 | The Procter & Gamble Company | Alkyl sulfate detergent compositions |
US4259217A (en) * | 1978-03-07 | 1981-03-31 | The Procter & Gamble Company | Laundry detergent compositions having enhanced greasy and oily soil removal performance |
US4260529A (en) * | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
US4228042A (en) * | 1978-06-26 | 1980-10-14 | The Procter & Gamble Company | Biodegradable cationic surface-active agents containing ester or amide and polyalkoxy group |
US4239660A (en) * | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
JPS56804A (en) * | 1979-06-15 | 1981-01-07 | Kureha Chem Ind Co Ltd | Chitin molding material |
GB2048606B (en) * | 1979-02-28 | 1983-03-16 | Barr & Stroud Ltd | Optical scanning system |
DE3413571A1 (en) * | 1984-04-11 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | USE OF CRYSTALLINE LAYERED SODIUM SILICATES FOR WATER SOFTENING AND METHOD FOR WATER SOFTENING |
DE3621536A1 (en) * | 1986-06-27 | 1988-01-07 | Henkel Kgaa | LIQUID DETERGENT AND METHOD FOR THE PRODUCTION THEREOF |
GB8629837D0 (en) * | 1986-12-13 | 1987-01-21 | Interox Chemicals Ltd | Bleach activation |
US4857403A (en) * | 1986-12-16 | 1989-08-15 | E. I. Du Pont De Nemours And Company | High strength fibers from chitin derivatives |
US5021207A (en) * | 1986-12-16 | 1991-06-04 | E. I. Du Pont De Nemours And Company | High strength fibers from chitin derivatives |
US5211930A (en) * | 1987-06-01 | 1993-05-18 | Hoechst Aktiengesellschaft | Process for the preparation of crystalline sodium silicates having a sheet structure |
GB8803114D0 (en) * | 1988-02-11 | 1988-03-09 | Bp Chem Int Ltd | Bleach activators in detergent compositions |
GB8908416D0 (en) * | 1989-04-13 | 1989-06-01 | Unilever Plc | Bleach activation |
GB9108136D0 (en) * | 1991-04-17 | 1991-06-05 | Unilever Plc | Concentrated detergent powder compositions |
US5576281A (en) * | 1993-04-05 | 1996-11-19 | Olin Corporation | Biogradable low foaming surfactants as a rinse aid for autodish applications |
JP3118423B2 (en) * | 1996-08-30 | 2000-12-18 | ツヤック株式会社 | Method for producing water-soluble partially acetylated chitosan solution |
KR100451399B1 (en) * | 2001-11-02 | 2004-10-06 | 주식회사 건풍바이오 | The acetylation method of chitosan |
EP1378564A1 (en) * | 2002-07-05 | 2004-01-07 | Cognis Iberia, S.L. | Unit-dose liquid detergent compositions |
CA2560432C (en) * | 2004-03-22 | 2012-10-09 | Universite De Geneve | Pseudo-thermosetting neutralized chitosan composition forming a hydrogel and a process for producing the same |
US8414925B2 (en) * | 2005-10-12 | 2013-04-09 | Thomas Freier | Processing of acylchitosan hydrogels |
US7892553B2 (en) * | 2006-04-28 | 2011-02-22 | University Of South Florida | Materials and methods to reduce low density lipoprotein cholesterol |
US20080176985A1 (en) * | 2006-11-13 | 2008-07-24 | Verrall Andrew P | Water-soluble film |
-
2009
- 2009-01-21 JP JP2010544821A patent/JP2011511123A/en active Pending
- 2009-01-21 WO PCT/IB2009/050220 patent/WO2009095816A1/en active Application Filing
- 2009-01-21 EP EP09705111A patent/EP2238174A1/en not_active Withdrawn
- 2009-01-22 US US12/357,451 patent/US20090197789A1/en not_active Abandoned
-
2012
- 2012-01-30 US US13/361,298 patent/US20120135911A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7098194B2 (en) * | 2001-11-15 | 2006-08-29 | Biosyntech Canada, Inc. | Composition and method to homogeneously modify or cross-link chitosan under neutral conditions |
US20040259749A1 (en) * | 2003-05-23 | 2004-12-23 | The Procter & Gamble Company | Cleaning composition for use in a laundry or dishwashing machine |
Non-Patent Citations (1)
Title |
---|
Lu et al. Journal of Applied Polymer Science, Vol. 91, 3497-3503 (2004). * |
Also Published As
Publication number | Publication date |
---|---|
WO2009095816A1 (en) | 2009-08-06 |
JP2011511123A (en) | 2011-04-07 |
US20090197789A1 (en) | 2009-08-06 |
EP2238174A1 (en) | 2010-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120135911A1 (en) | Acetylation of Chitosan | |
EP1337620B1 (en) | Dishwashing method | |
EP1444318B1 (en) | Automatic dishwashing composition in unit dose form comprising an anti-scaling polymer | |
EP1516918B2 (en) | Detergent package | |
CA2669397A1 (en) | Water-soluble film | |
US20020142931A1 (en) | Gel form automatic dishwashing compositions, methods of preparation and use thereof | |
EP1378563B1 (en) | Detergent Composition | |
CA2415304A1 (en) | Gel form automatic dishwashing compositions, methods of preparation and use thereof | |
EP2025741B1 (en) | Process for making a detergent composition | |
EP2028261B1 (en) | Process For Making A Detergent Composition | |
ES2278877T3 (en) | DETERGENT COMPOSITION. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |