US20120135156A1 - Electromagnetic processing line - Google Patents

Electromagnetic processing line Download PDF

Info

Publication number
US20120135156A1
US20120135156A1 US13/384,026 US201013384026A US2012135156A1 US 20120135156 A1 US20120135156 A1 US 20120135156A1 US 201013384026 A US201013384026 A US 201013384026A US 2012135156 A1 US2012135156 A1 US 2012135156A1
Authority
US
United States
Prior art keywords
film
cast
cast film
component
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/384,026
Inventor
Mukerrem Cakmak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Akron
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/384,026 priority Critical patent/US20120135156A1/en
Assigned to THE UNIVERSITY OF AKRON reassignment THE UNIVERSITY OF AKRON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAKMAK, MUKERREM
Publication of US20120135156A1 publication Critical patent/US20120135156A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0072After-treatment of articles without altering their shape; Apparatus therefor for changing orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2827/00Use of polyvinylhalogenides or derivatives thereof as mould material
    • B29K2827/12Use of polyvinylhalogenides or derivatives thereof as mould material containing fluorine
    • B29K2827/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/08Transition metals
    • B29K2905/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Definitions

  • a method for manufacturing a film comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • Cast films and methods for their manufacture are known. There remains a need in the art for cast-film manufacturing methods.
  • a method for manufacturing a film comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • a method for manufacturing a film comprising the steps: first, creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; second, shearing the cast film; third, aligning a cast-film component by applying an electric field, a magnetic field, or both to the cast film; fourth, curing or polymerizing a cast-film component; fifth, annealing the cast film; and sixth, evaporating solvent from the cast film.
  • a method for manufacturing a film comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film annealing the cast film; and evaporating solvent from the cast film.
  • a method for manufacturing a film comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • a processing advantage of using a curable matrix material is that the use of solvent is eliminated, which ameliorate the problem of handling volatile organic compounds (VOC) and the difficulty in completely removing residual solvent from the final cast film.
  • VOC volatile organic compounds
  • FIG. 1 is a conceptual drawing showing an embodiment of treatment zones of the system
  • FIG. 2 shows useful magnet dimensions
  • FIG. 3 is a table illustrating an embodiment of the relationship between Awps, Tesla, and gap.
  • FIG. 4 is a schematic of the electromagnetic process (EMP) line in electric field mode.
  • EMP electromagnetic process
  • a method for manufacturing a film comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • Embodiments generally provide a method for manufacturing a cast film, wherein the method includes a plurality of treatment zones.
  • embodiments provide a method for manufacturing a cast film, the method having a plurality of cast-film treatment zones that include: film-casting zone 10 , shearing zone 20 , electric-field zone 30 , magnetic-field zone 40 , ultraviolet-radiation zone 50 , annealing zone 60 , solvent-evaporation zone 70 , and combinations thereof.
  • Embodiments provide for the continuous production of various types of cast-film products.
  • Processing embodiments include i) electrical force with or without the combination of steady or oscillatory shear, ii) magnetic field, and iii) thermal annealing under thermal gradients to promote defect-free or substantially defect-free nanostructured products.
  • Embodiments provide for any combination of cast-film treatment zones to be included in a roll-to-roll process.
  • a “roll-to-roll” process means a series of method steps that are performed in a single pass through a processing apparatus.
  • Non-limiting examples of useful film products that can be manufactured using one or more of the subject processing embodiments include:
  • Thin films with magnetically aligned functional fillers in the thickness direction of the film useful for wide range of applications including photovoltaic roll-to-roll manufacturing, separation membranes including fuel cell membranes.
  • embodiments provide that cast-film solutions are cast on a carrier substrate (e.g. Mylar, aluminum, and etc.), and the carrier substrate is supported on a stainless-steel belt.
  • a carrier substrate e.g. Mylar, aluminum, and etc.
  • embodiments also provide for casting films directly onto the stainless-steel belt.
  • solution casting may be accomplished with a dual reservoir doctor blade and a supporting substrate that is ultra precision granite.
  • the granite section is long enough to accommodate 2 foot long multi layer doctor blades as well as a three manifold flex lip slot die assembly with solution delivery system run by gear pumps.
  • the film is cast at an initial thickness ranging from 0.0002 inches (4 micrometers) to 0.100 inches (2540 micrometers).
  • the viscosity of the solution that is cast into a film may be in the range of 5 cP to 50000 cP.
  • Embodiments provide for the system to include an electrical and mechanical automation system that drives separate gear pumps, piping, metering, valves, sensors and supply to enable the films to be cast in useful layer thicknesses.
  • Solutions that are useful for film casting may include various concentrations and combinations of the following components: solvent component, polymer component, monomer component, nanoparticle component, and magnetic-filler component.
  • Useful concentrations of the solvent component range from 0 weight percent to about 70 weight percent, from about 2.5 weight percent to about 67.5 weight percent, from about 5 weight percent to about 65 weight percent, from about 7.5 weight percent to about 60 weight percent, from about 10 weight percent to about 55 weight percent, from about 12.5 weight percent to about 50 weight percent, from about 15 weight percent to about 45 weight percent, from about 17.5 weight percent to about 40 weight percent, from about 20 weight percent to about 35 weight percent, from about 22.5 weight percent to about 30 weight percent, or even from about 25 weight percent to about 27.5 weight percent.
  • individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges.
  • Non-limiting examples of useful solvents include, but are not limited to, N-methyl pyrrolidone (NMP), dimethylformamide (DMF), dimethylsulfide (DMS), dimethylsulfoxide (DMSO), dimethyl acetamide (DMAC), cyclohexane, pentane, cyclohexanone, acetone, methylene chloride, carbon tetrachloride, ethylene dichloride, chloroform, ethanol, isopropyl alcohol (IPA), butanols, THF, MEK, MIBK, toluene, heptane, hexane, 1-pentanol, water, or suitable mixtures of two or more thereof.
  • NMP N-methyl pyrrolidone
  • DMF dimethylformamide
  • DMS dimethylsulfide
  • DMSO dimethylsulfoxide
  • DMAC dimethyl acetamide
  • cyclohexane pentane
  • Useful concentrations of polymer component range from about 5 weight percent to about 50 weight percent, from about 7.5 weight percent to about 47.5 weight percent, from about 10 weight percent to about 45 weight percent, from about 12.5 weight percent to about 42.5 weight percent, from about 15 weight percent to about 40 weight percent, from about 17.5 weight percent to about 37.5 weight percent, from about 20 weight percent to about 35 weight percent, from about 22.5 weight percent to about 32.5 weight percent, or even from about 25 weight percent to about 30 weight percent.
  • individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges.
  • Non-limiting examples of useful polymers include: polyimides and their copolymers, ionomers, polymer blends that also contain functional additives, wide range of block copolymers. Polymers having magnetic properties, otherwise known as “magnetic polymers” to persons of ordinary skill in the art, are also useful.
  • Useful concentrations of monomer component range from 0 weight percent to 100 weight percent. Depending on the monomer content at intermediate concentrations, the remainder of the content could include another polymer and solvent mixture.
  • useful monomers include: photo-functional monomers and monomers with useful reactive properties.
  • Useful concentrations of nanoparticle component range from about 0.01 weight percent to about 30 weight percent, from about 0.1 weight percent to about 27.5 weight percent, from about 0.5 weight percent to about 25 weight percent, from about 1 weight percent to about 22.5 weight percent, from about 2.5 weight percent to about 20 weight percent, from about 5 weight percent to about 17.5 weight percent, from about 7.5 weight percent to about 15 weight percent, or even from about 10 weight percent to about 12.5 weight percent.
  • individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges.
  • a useful concentration of nanoparticle component ranges from about 1 weight percent to about 8 weight percent.
  • Non-limiting examples of useful nanoparticles include: magnetic nanoparticles with or without ligand modifications, organically modified clays, carbon based nanoparticles, carbon black, carbon nanotubes (single as well as multi-walled) as well as other inorganic and organic synthetic or natural nanoparticles.
  • Useful concentrations of magnetic-filler component range from about 0.01 weight percent to about 15 weight percent, from about 0.1 weight percent to about 12.5 weight percent, from about 0.5 weight percent to about 10 weight percent, from about 1 weight percent to about 7.5 weight percent, from about 1.25 weight percent to about 5 weight percent, from about 1.5 weight percent to about 4 weight percent, from about 1.75 weight percent to about 3.5 weight percent, from about 2 weight percent to about 3 weight percent.
  • individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges.
  • Non-limiting examples of useful magnetic-fillers include: Co, Ni, CoPt, FePt, FeCo, Fe 3 O 4 , Fe 2 O 3 , CoFe 2 O 4 .
  • Persons of skill in the art will be able to create and determine useful cast-film solutions without having to exercise undo experimentation.
  • Embodiments provide for the stainless-steel belt being manufactured from a non-magnetized austenitic molybdenum alloyed stainless steel with corrosion resistance.
  • the stainless steel belt may be surface finished and processed for thickness uniformity.
  • Embodiments provide for both the stainless steel belt and the carrier belt (the carrier belt also referred to herein as a carrier substrate) having independent drive controls.
  • Overall speed range capability may range from 0.2 in/min to 840 in/min. In the range of 0.2 to 400 in/min (0.5 cm/min to 1010 cm/min), a control precision within 0.01 percent is within the scope of an embodiment.
  • Programmable speed control for the stainless-steel belt as well as the carrier belt is within the scope of an embodiment.
  • Embodiments include linear as well as move-stop-move type of modes where move distance at specified speed, stop and dwell time can be user input.
  • Both the carrier substrate and the stainless steel belt may have automatic belt tracking throughout the process.
  • the drums for the stainless steel belt may be non-corrosive.
  • the carrier belt substrate may have adjustable web tension ranging from 0.05 to 3 PLI.
  • Embodiments that have shearing zone 20 comprise a secondary belt or shearing belt (e.g., 6 foot long) moving above the stainless-steel belt, wherein the distance between the shearing belt and the stainless-steel belt is adjustable.
  • the distance between: (i) the stainless-steel belt or carrier substrate; and (ii) the sheering belt can range from about 10 to about 2000 micrometers.
  • the function of this secondary or shearing belt is to shear the cast film while it is moving on either the carrier substrate or the stainless-steel belt.
  • Embodiments provide for shear belt movement to be automated, and recipe selectable, with three modes of operation:
  • Thermal expansion issues of the shearing belt and also sagging of the shearing belt with time is taken into account.
  • An embodiment provides for the top shearing belt having constant speed (0.2 to 400 in/min) as well as oscillation capability with adjustable frequency (reversal /min) and amplitude (distance) range.
  • the distance ranging from 0 to 2 foot is adjustable with an adjustable reversal/min frequency ranging from 0 to 60 reversal/min.
  • Other useful shearing-belt distances and reversal/min frequencies are within the scope of this invention and may be arrived at by persons of ordinary skill in the art without having to exercise undo experimentation.
  • a polytetrafluoroethylene (PTFE) based film may be a carrier substrate or layer between the stainless-steel belt and the cast film.
  • PTFE polytetrafluoroethylene
  • Embodiments provide for a carrier control drive capability being used in combination with the shearing top belt.
  • a separation blade or scraping knife may be used to detach the cast film from the top shearing belt after it comes out of the shearing zone.
  • Embodiments that have electric-filed zone 30 application of an electric field to the cast film may be automated.
  • Embodiments provide for the electric field to be voltage applied to the cast film.
  • the electric field may be applied to the cast film while the cast film is in the shear zone. Any range of voltage may be applied to the cast film, and in an embodiment the applied voltage ranges from 0 volts to 25 KV/cm (in the micro-amps range).
  • the magnetic-field zone may be used to align magnetic fillers dispersed in the cast film.
  • Embodiments provide that the system for applying a magnetic field within the magnetic-field zone is automated and recipe driven.
  • magnetic system may be on a two axis automated (10 foot horizontal run, and a 6 inch gap setting).
  • the horizontal magnetic travel is to be recipe settable such that multiple passes can be achieved by sweeping the magnetic field back and forward along the horizontal while the subject cast film slowly passes under it or through it.
  • a non-limiting example of a magnet useful for generating a magnetic field is GMW Model 3474 FG-140 Electromagnet.
  • the electromagnet is mounted to a linear stage which has the ability to automatically move the electromagnet in the material direction.
  • the magnet has motorized translation capability on a 10 foot track.
  • the electromagnet location shall be recipe selected.
  • a secondary lift-off magnet, and space in the line may be set aside for this item.
  • 1.75 Tesla (17.5 kilo gauss) is produced over a 10 inch wide field region within a 1 inch gap between the two poles of the magnet.
  • Embodiments provide for automatic or manual adjustment.
  • At 140 amps (max current) using a GMW Model 3474 FG-140 Electromagnet about 1 Tesla can be induced over 4.7 inch gap.
  • Embodiments provide that no electrical components are within 40 to 80 inches from the pole cap.
  • the magnet may be cooled by water circulating from a chiller.
  • power supply is be water cooled suitable for producing 1 Tesla (10 kilo gauss) over a 10 inch wide field region with a one-inch gap for 100% duty cycle.
  • Embodiments Due to the effect of magnetic field, a lift off secondary magnet with much less power may be necessary at the end of the line in order to neutralize the remnant field. Embodiments provide for this secondary magnet being stationary.
  • Embodiments that have ultraviolet-radiation zone 50 provide for an ultraviolet-radiation zone that cures or polymerizes monomers or polymerizable functional groups within the cast film. The position of UV-radiation source relative to the substrate is adjustable and in some embodiments the ultraviolet-radiation zone is removable or not used.
  • the system may be automated and recipe driven.
  • UV-movement is on a two axis system, e.g., 10 foot horizontal run, and 1 foot from belt setting.
  • Embodiments provide for the UV-radiation unit traveling along the path of the processing cast film.
  • movement of the UV-radiation unit is to be recipe settable such that UV radiation is near the shear zone, near the annealing zone, and/or tracks with the cast film as it passes through the UV radiation zone.
  • Embodiments provide for the following elements/characteristics to be used alone or in combination:
  • annealing zone 60 or coarsening zone 60 embodiments provide for the cast film moving at a constant velocity in between a thermal region having an oscillating thermal gradient.
  • the annealing-zone temperature gradient can be established using successive water cooled cold blocks placed on each side of a temperature controlled radiant rod heaters surrounded by mirror reflector that allows the thermal energy to be focused on the film to create spatially oscillating thermal gradients.
  • each block is laterally separated from each other by a 1 mm air gap spanning a length of 2.5 foot.
  • Cold blocks may be 1 inch long and 8 inch wide while the hot blocks are 0.5 inch long and 8 inch wide ( FIG. 1 ).
  • An embodiment has a total of 20 cold and 20 hot blocks.
  • Each block may have an individual temperature control capability and an embodiment provides min 50° C. and max 250° C. on the sample for the hot block and min 5° C. and max 40° C. on the sample for the cold block.
  • Embodiments provide for low-speed capability in this zone that is about 1 cm/min.
  • the temperature profile at a given point along the film in this annealing zone may be recorded using an appropriate thermal scanner with 0.5 inch precision to determine real time temperature profile.
  • embodiments provide for laminar air flow as well as infrared underbed heaters being used.
  • the heaters achieve and sustain process temps of 250° C. in the material being manufactured.
  • Heating system embodiments include the following either alone or in combination:
  • Additional useful methods include known methods for evaporating solvent from a film.
  • a method for embodiment is illustrated in FIG. 4 , demonstrating an electrical-field alignment mode.
  • the desired mixture of polymer solution is delivered by a steel carrier web through a precision slot die set at the desired thickness.
  • This embodiment of film-casting zone 10 is capable of making films from 3 to 10 inches wide.
  • the cast solution subsequently enters into electrical-field zone 30 , which can provide a tunable AC electrical field of 0 to 25 kV/cm across the electrodes.
  • the air gap can be accurately controlled by a precision alignment system designed into the upper electrode.
  • the length of the electrical field zone can be changed to alter the exposure time by varying the conductive plates.
  • electric-field zone 30 is also designed to apply a DC-bias superposed with an oscillating AC field whose frequency and amplitude and shape (square, sine, sawtooth, etc.) are adjustable. During the passage of the cast solution through this zone the solvent concentration and/or temperature will be adjusted to keep the viscosity relatively low to effect the alignment polymer phase of choice.
  • Radiant heaters mounted below the steel carrier at the end of the electric field zone are available to rapidly increase temperature and freeze-in the desired membrane morphology.
  • the polymer mixture ratio, applied voltage and thermal finishing parameters can be varied in real-time to determine the optimal “composition-alignment-processing window” for a high-throughput.
  • FIG. 4 also shows ultraviolet-radiation zone 50 having a UV lamp built into the EMP line immediately following the electric field zone that can be used for UV-curable matrices.

Abstract

A method for manufacturing a film, the method having the steps creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.

Description

    RELATED APPLICATION DATA
  • This patent application claims priority to U.S. Provisional Patent Application No. 61/225,403, filed on Jul. 14, 2009, titled “Electromagnetic Processing Line,” the entirety of which is hereby incorporated by reference herein.
  • FIELD OF THE INVENTION
  • A method for manufacturing a film, the method comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • BACKGROUND OF THE INVENTION
  • Cast films and methods for their manufacture are known. There remains a need in the art for cast-film manufacturing methods.
  • SUMMARY OF THE INVENTION
  • A method for manufacturing a film, the method comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • A method for manufacturing a film, the method comprising the steps: first, creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; second, shearing the cast film; third, aligning a cast-film component by applying an electric field, a magnetic field, or both to the cast film; fourth, curing or polymerizing a cast-film component; fifth, annealing the cast film; and sixth, evaporating solvent from the cast film.
  • A method for manufacturing a film, the method comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film annealing the cast film; and evaporating solvent from the cast film.
  • A method for manufacturing a film, the method comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • A processing advantage of using a curable matrix material is that the use of solvent is eliminated, which ameliorate the problem of handling volatile organic compounds (VOC) and the difficulty in completely removing residual solvent from the final cast film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a conceptual drawing showing an embodiment of treatment zones of the system;
  • FIG. 2 shows useful magnet dimensions;
  • FIG. 3 is a table illustrating an embodiment of the relationship between Awps, Tesla, and gap; and
  • FIG. 4 is a schematic of the electromagnetic process (EMP) line in electric field mode.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A method for manufacturing a film, the method comprising the steps: creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof; shearing the cast film; aligning a cast-film component by applying an electric field to the cast film; aligning a cast-film component by applying a magnetic field to the cast film; curing or polymerizing a cast-film component; annealing the cast film; and evaporating solvent from the cast film.
  • Embodiments generally provide a method for manufacturing a cast film, wherein the method includes a plurality of treatment zones. With reference to the Figures, embodiments provide a method for manufacturing a cast film, the method having a plurality of cast-film treatment zones that include: film-casting zone 10, shearing zone 20, electric-field zone 30, magnetic-field zone 40, ultraviolet-radiation zone 50, annealing zone 60, solvent-evaporation zone 70, and combinations thereof.
  • Embodiments provide for the continuous production of various types of cast-film products. Processing embodiments include i) electrical force with or without the combination of steady or oscillatory shear, ii) magnetic field, and iii) thermal annealing under thermal gradients to promote defect-free or substantially defect-free nanostructured products. Embodiments provide for any combination of cast-film treatment zones to be included in a roll-to-roll process. In some embodiments, a “roll-to-roll” process means a series of method steps that are performed in a single pass through a processing apparatus. Non-limiting examples of useful film products that can be manufactured using one or more of the subject processing embodiments include:
  • a) Block copolymer films through phase separation into desired phase—for example cylindrical phase—to create large periodic nanomorphologies for next generation microelectronics and data storage;
  • b) Thin films with magnetically aligned functional fillers in the thickness direction of the film useful for wide range of applications including photovoltaic roll-to-roll manufacturing, separation membranes including fuel cell membranes.
  • In order to create a cast film at the film-casting zone 10, embodiments provide that cast-film solutions are cast on a carrier substrate (e.g. Mylar, aluminum, and etc.), and the carrier substrate is supported on a stainless-steel belt. In addition to casting films onto the carrier substrate, embodiments also provide for casting films directly onto the stainless-steel belt. An embodiment provides that solution casting may be accomplished with a dual reservoir doctor blade and a supporting substrate that is ultra precision granite. In an embodiment, the granite section is long enough to accommodate 2 foot long multi layer doctor blades as well as a three manifold flex lip slot die assembly with solution delivery system run by gear pumps. In an embodiment, the film is cast at an initial thickness ranging from 0.0002 inches (4 micrometers) to 0.100 inches (2540 micrometers). In an embodiment, the viscosity of the solution that is cast into a film may be in the range of 5 cP to 50000 cP. Embodiments provide for the system to include an electrical and mechanical automation system that drives separate gear pumps, piping, metering, valves, sensors and supply to enable the films to be cast in useful layer thicknesses.
  • Any known method for casting films onto a substrate may be used in film-casting zone 10. Solutions that are useful for film casting may include various concentrations and combinations of the following components: solvent component, polymer component, monomer component, nanoparticle component, and magnetic-filler component.
  • Useful concentrations of the solvent component range from 0 weight percent to about 70 weight percent, from about 2.5 weight percent to about 67.5 weight percent, from about 5 weight percent to about 65 weight percent, from about 7.5 weight percent to about 60 weight percent, from about 10 weight percent to about 55 weight percent, from about 12.5 weight percent to about 50 weight percent, from about 15 weight percent to about 45 weight percent, from about 17.5 weight percent to about 40 weight percent, from about 20 weight percent to about 35 weight percent, from about 22.5 weight percent to about 30 weight percent, or even from about 25 weight percent to about 27.5 weight percent. Here, as well as elsewhere in the specification and claims, individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges. Non-limiting examples of useful solvents include, but are not limited to, N-methyl pyrrolidone (NMP), dimethylformamide (DMF), dimethylsulfide (DMS), dimethylsulfoxide (DMSO), dimethyl acetamide (DMAC), cyclohexane, pentane, cyclohexanone, acetone, methylene chloride, carbon tetrachloride, ethylene dichloride, chloroform, ethanol, isopropyl alcohol (IPA), butanols, THF, MEK, MIBK, toluene, heptane, hexane, 1-pentanol, water, or suitable mixtures of two or more thereof.
  • Density Density @
    Boiling 25° C. 25° C.
    Solvents Point (° C.) (g/cc) (lb/gallons)
    N-Methyl Pyrrolidone (NMP) 202  1.032 8.6227
    Dimethylformamide (DMF) 153-155 0.948 7.9209
    Dimethylsulfide(DMS) 0.846 7.068668
    Dimethylsulfoxide (DMSO) 189  1.1 9.19094
    Dimethyl Acetamide (DMAC) 165-167 0.94 7.854076
    Cyclohexane 80 0.94 7.854076
    Pentane 35 0.63 5.263902
    MEK 80 0.804 6.717742
    MIBK 118  0.80 6.68432
    Cyclohexanone 155  0.945 7.895853
    Acetone 56 0.786 6.567344
    Methylene Chloride 40 1.32 11.02913
    Carbon Tetrachloride 76 1.59 13.28509
    Ethylene Dichloride 83 1.25 10.44425
    Chloroform 61 1.5 12.5331
    Ethanol 78 0.789 6.592411
    Isopropyl Alcohol (IPA) 82 0.804 6.717742
    Butanols 116-118 0.8108 6.774558
    THF 65-67 0.88 7.352752
    Toluene 110  0.86 7.185644
    Heptane 98 0.68 5.681672
    Hexane 69 0.66 5.514564
    1-pentanol 136-138 0.815 6.809651
    water 100  1.00 8.3554
  • Useful concentrations of polymer component range from about 5 weight percent to about 50 weight percent, from about 7.5 weight percent to about 47.5 weight percent, from about 10 weight percent to about 45 weight percent, from about 12.5 weight percent to about 42.5 weight percent, from about 15 weight percent to about 40 weight percent, from about 17.5 weight percent to about 37.5 weight percent, from about 20 weight percent to about 35 weight percent, from about 22.5 weight percent to about 32.5 weight percent, or even from about 25 weight percent to about 30 weight percent. Here, as well as elsewhere in the specification and claims, individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges. Non-limiting examples of useful polymers include: polyimides and their copolymers, ionomers, polymer blends that also contain functional additives, wide range of block copolymers. Polymers having magnetic properties, otherwise known as “magnetic polymers” to persons of ordinary skill in the art, are also useful.
  • Useful concentrations of monomer component range from 0 weight percent to 100 weight percent. Depending on the monomer content at intermediate concentrations, the remainder of the content could include another polymer and solvent mixture. Non-limiting examples of useful monomers include: photo-functional monomers and monomers with useful reactive properties.
  • Useful concentrations of nanoparticle component range from about 0.01 weight percent to about 30 weight percent, from about 0.1 weight percent to about 27.5 weight percent, from about 0.5 weight percent to about 25 weight percent, from about 1 weight percent to about 22.5 weight percent, from about 2.5 weight percent to about 20 weight percent, from about 5 weight percent to about 17.5 weight percent, from about 7.5 weight percent to about 15 weight percent, or even from about 10 weight percent to about 12.5 weight percent. Here, as well as elsewhere in the specification and claims, individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges. In another embodiment, a useful concentration of nanoparticle component ranges from about 1 weight percent to about 8 weight percent. Non-limiting examples of useful nanoparticles include: magnetic nanoparticles with or without ligand modifications, organically modified clays, carbon based nanoparticles, carbon black, carbon nanotubes (single as well as multi-walled) as well as other inorganic and organic synthetic or natural nanoparticles.
  • Useful concentrations of magnetic-filler component range from about 0.01 weight percent to about 15 weight percent, from about 0.1 weight percent to about 12.5 weight percent, from about 0.5 weight percent to about 10 weight percent, from about 1 weight percent to about 7.5 weight percent, from about 1.25 weight percent to about 5 weight percent, from about 1.5 weight percent to about 4 weight percent, from about 1.75 weight percent to about 3.5 weight percent, from about 2 weight percent to about 3 weight percent. Here, as well as elsewhere in the specification and claims, individual range values and/or limits can be combined to form additional non-disclosed, or new, ranges, or even open ended ranges. Non-limiting examples of useful magnetic-fillers include: Co, Ni, CoPt, FePt, FeCo, Fe3O4, Fe2O3, CoFe2O4. Persons of skill in the art will be able to create and determine useful cast-film solutions without having to exercise undo experimentation.
  • Embodiments provide for the stainless-steel belt being manufactured from a non-magnetized austenitic molybdenum alloyed stainless steel with corrosion resistance. The stainless steel belt may be surface finished and processed for thickness uniformity.
  • Embodiments provide for both the stainless steel belt and the carrier belt (the carrier belt also referred to herein as a carrier substrate) having independent drive controls. Overall speed range capability may range from 0.2 in/min to 840 in/min. In the range of 0.2 to 400 in/min (0.5 cm/min to 1010 cm/min), a control precision within 0.01 percent is within the scope of an embodiment. Programmable speed control for the stainless-steel belt as well as the carrier belt is within the scope of an embodiment. Embodiments include linear as well as move-stop-move type of modes where move distance at specified speed, stop and dwell time can be user input.
  • Both the carrier substrate and the stainless steel belt may have automatic belt tracking throughout the process. The drums for the stainless steel belt may be non-corrosive. The carrier belt substrate may have adjustable web tension ranging from 0.05 to 3 PLI.
  • Embodiments that have shearing zone 20 comprise a secondary belt or shearing belt (e.g., 6 foot long) moving above the stainless-steel belt, wherein the distance between the shearing belt and the stainless-steel belt is adjustable. The distance between: (i) the stainless-steel belt or carrier substrate; and (ii) the sheering belt can range from about 10 to about 2000 micrometers. The function of this secondary or shearing belt is to shear the cast film while it is moving on either the carrier substrate or the stainless-steel belt.
  • Embodiments provide for shear belt movement to be automated, and recipe selectable, with three modes of operation:
      • (1) Forward (clockwise drive) (with flow of material);
      • (2) Reverse (counter clockwise) (against flow of material); and
      • (3) Oscillation (Back and forth movement: the amplitude which is the distance of oscillation (0 to 2 foot) should be adjustable with a frequency that is 0 to 60 reversal/min).
        Embodiments provide for speed requirements that range from 4 to 400 inches/min. Embodiments also provide for using any combination of the above shear-belt modes of operation.
  • Thermal expansion issues of the shearing belt and also sagging of the shearing belt with time is taken into account. There may be a continuously monitoring means of the distance with laser sensors or equivalent sensors between: (i) the stainless-steel belt or carrier substrate; and (ii) the sheering belt to maintain the distance with precision and control of the distance by tensioning or other methods known in the art.
  • An embodiment provides for the top shearing belt having constant speed (0.2 to 400 in/min) as well as oscillation capability with adjustable frequency (reversal /min) and amplitude (distance) range. In an embodiment, the distance ranging from 0 to 2 foot is adjustable with an adjustable reversal/min frequency ranging from 0 to 60 reversal/min. Other useful shearing-belt distances and reversal/min frequencies are within the scope of this invention and may be arrived at by persons of ordinary skill in the art without having to exercise undo experimentation.
  • In order to prevent sticking of the cast film to the stainless-steel belt, a polytetrafluoroethylene (PTFE) based film may be a carrier substrate or layer between the stainless-steel belt and the cast film. Embodiments provide for a carrier control drive capability being used in combination with the shearing top belt. A separation blade or scraping knife may be used to detach the cast film from the top shearing belt after it comes out of the shearing zone.
  • Embodiments that have electric-filed zone 30, application of an electric field to the cast film may be automated. Embodiments provide for the electric field to be voltage applied to the cast film. The electric field may be applied to the cast film while the cast film is in the shear zone. Any range of voltage may be applied to the cast film, and in an embodiment the applied voltage ranges from 0 volts to 25 KV/cm (in the micro-amps range). In embodiments that have magnetic-field zone 40, the magnetic-field zone may be used to align magnetic fillers dispersed in the cast film.
  • Embodiments provide that the system for applying a magnetic field within the magnetic-field zone is automated and recipe driven. In an embodiment, magnetic system may be on a two axis automated (10 foot horizontal run, and a 6 inch gap setting). The horizontal magnetic travel is to be recipe settable such that multiple passes can be achieved by sweeping the magnetic field back and forward along the horizontal while the subject cast film slowly passes under it or through it. A non-limiting example of a magnet useful for generating a magnetic field is GMW Model 3474 FG-140 Electromagnet.
  • In an embodiment, the electromagnet is mounted to a linear stage which has the ability to automatically move the electromagnet in the material direction. In an embodiment, the magnet has motorized translation capability on a 10 foot track. In an embodiment, the electromagnet location shall be recipe selected. In an embodiment, a secondary lift-off magnet, and space in the line may be set aside for this item.
  • As a non-limiting example, 1.75 Tesla (17.5 kilo gauss) is produced over a 10 inch wide field region within a 1 inch gap between the two poles of the magnet. Embodiments provide for automatic or manual adjustment. At 140 amps (max current) using a GMW Model 3474 FG-140 Electromagnet, about 1 Tesla can be induced over 4.7 inch gap. There may be fringe field of about 0.5 milli-Tesla (5G) at 1 m (approximately 40 inches) from the center of the magnet when fully energized to 140 A. Embodiments provide that no electrical components are within 40 to 80 inches from the pole cap.
  • The magnet may be cooled by water circulating from a chiller. In embodiments, power supply is be water cooled suitable for producing 1 Tesla (10 kilo gauss) over a 10 inch wide field region with a one-inch gap for 100% duty cycle.
  • Due to the effect of magnetic field, a lift off secondary magnet with much less power may be necessary at the end of the line in order to neutralize the remnant field. Embodiments provide for this secondary magnet being stationary. Embodiments that have ultraviolet-radiation zone 50 provide for an ultraviolet-radiation zone that cures or polymerizes monomers or polymerizable functional groups within the cast film. The position of UV-radiation source relative to the substrate is adjustable and in some embodiments the ultraviolet-radiation zone is removable or not used.
  • The system may be automated and recipe driven. In embodiments, UV-movement is on a two axis system, e.g., 10 foot horizontal run, and 1 foot from belt setting. Embodiments provide for the UV-radiation unit traveling along the path of the processing cast film. In some embodiments, movement of the UV-radiation unit is to be recipe settable such that UV radiation is near the shear zone, near the annealing zone, and/or tracks with the cast film as it passes through the UV radiation zone.
  • Embodiments provide for the following elements/characteristics to be used alone or in combination:
      • UV-LED system;
      • a selectable UV unit that allows for LED wavelength and intensity adjustment;
      • the UV unit mounted to an X-Z stage that will give the ability to move in the vertical and material directions;
      • the UV unit having motorized translation capability on a 10 ft track; and
      • the UV unit location capable of being recipe selected.
  • In annealing zone 60 or coarsening zone 60, embodiments provide for the cast film moving at a constant velocity in between a thermal region having an oscillating thermal gradient. The annealing-zone temperature gradient can be established using successive water cooled cold blocks placed on each side of a temperature controlled radiant rod heaters surrounded by mirror reflector that allows the thermal energy to be focused on the film to create spatially oscillating thermal gradients. In the embodiments, each block is laterally separated from each other by a 1 mm air gap spanning a length of 2.5 foot. Cold blocks may be 1 inch long and 8 inch wide while the hot blocks are 0.5 inch long and 8 inch wide (FIG. 1). An embodiment has a total of 20 cold and 20 hot blocks. Each block may have an individual temperature control capability and an embodiment provides min 50° C. and max 250° C. on the sample for the hot block and min 5° C. and max 40° C. on the sample for the cold block. Embodiments provide for low-speed capability in this zone that is about 1 cm/min. The temperature profile at a given point along the film in this annealing zone may be recorded using an appropriate thermal scanner with 0.5 inch precision to determine real time temperature profile.
  • In solvent evaporation zone 70, embodiments provide for laminar air flow as well as infrared underbed heaters being used. In embodiments, the heaters achieve and sustain process temps of 250° C. in the material being manufactured. Heating system embodiments include the following either alone or in combination:
      • (A) Air flow with HEPA Filters; and
      • (B) Utilization of “I.R.” heaters.
  • Additional useful methods include known methods for evaporating solvent from a film. A method for embodiment is illustrated in FIG. 4, demonstrating an electrical-field alignment mode. On the left of the machine, the desired mixture of polymer solution is delivered by a steel carrier web through a precision slot die set at the desired thickness. This embodiment of film-casting zone 10 is capable of making films from 3 to 10 inches wide. The cast solution subsequently enters into electrical-field zone 30, which can provide a tunable AC electrical field of 0 to 25 kV/cm across the electrodes. The air gap can be accurately controlled by a precision alignment system designed into the upper electrode. The length of the electrical field zone can be changed to alter the exposure time by varying the conductive plates. In another embodiment, electric-field zone 30 is also designed to apply a DC-bias superposed with an oscillating AC field whose frequency and amplitude and shape (square, sine, sawtooth, etc.) are adjustable. During the passage of the cast solution through this zone the solvent concentration and/or temperature will be adjusted to keep the viscosity relatively low to effect the alignment polymer phase of choice. Radiant heaters mounted below the steel carrier at the end of the electric field zone are available to rapidly increase temperature and freeze-in the desired membrane morphology. The polymer mixture ratio, applied voltage and thermal finishing parameters can be varied in real-time to determine the optimal “composition-alignment-processing window” for a high-throughput. FIG. 4 also shows ultraviolet-radiation zone 50 having a UV lamp built into the EMP line immediately following the electric field zone that can be used for UV-curable matrices.
  • Although the invention has been described in detail with particular reference to certain embodiments detailed herein, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art, and the present invention is intended to cover in the appended claims all such modifications and equivalents.

Claims (24)

1. The method of claim 15, further comprising the step of
shearing the cast film.
2. The method of claim 1, wherein the cast film is created by casting a solution having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof onto a substrate, the cast film is sheared by contacting a surface of the cast film with a surface of a shearing belt, the cast film components are cured or polymerized by applying ultraviolet radiation to the cast film, the cast film is annealed by applying oscillating thermal radiation to the cast film; and, the solvent is evaporated from the cast film by applying thermal radiation, air flow, or a combination thereof to the cast film.
3. The method of claim 2, wherein the concentration of the magnetic-filler component in the solution ranges from about 0.01 weight percent to about 20 weight percent.
4. The method of claim 2, wherein the concentration of the monomer component in the solution ranges from about 1 weight percent to about 100 weight percent.
5. The method of claim 2, wherein the solution viscosity ranges from about 5 cP to about 50,000 cP.
6. The method of claim 2, wherein the substrate is Mylar, aluminum, or stainless steel.
7. The method of claim 2, wherein the solution is cast onto the substrate in a thickness ranging from about 4 microns to about 2540 microns.
8. The method of claim 1, wherein the cast film is sheared to a thickness ranging from about 1 micron to about 500 microns.
9. The method of claim 1, wherein the electric field is applied to the cast film in an amount ranging from about 1 t KV/cm o about 25 KV/cm.
10. The method of claim 1, wherein the magnetic field is applied to the cast film at an intensity of at least about 1 Tesla.
11. The method of claim 1, wherein a cast-film component is cured or polymerized by applying ultraviolet radiation to the cast film.
12. The method of claim 11, wherein the ultraviolet radiation is applied to the cast film at a wavelength ranging from about 150 nanometers to about 400 nanometers.
13. The method of claim 2, wherein the relatively highest temperatures of the oscillating thermal radiation range from about 50° C. to about 250° C. and the lowest temperatures of the oscillating thermal gradient range from about 5° C. to about 40° C.
14. The method of claim 1, wherein the method steps are performed in a single pass through an apparatus.
15. A method for manufacturing a film, the method comprising the following steps:
(1) creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof;
(2) aligning the cast-film component by a step selected from the group consisting of (a) applying an electric field to the cast film, (b) applying a magnetic field to the cast film, and both applying an electric field and applying a magnetic field to the cast film;
(3) curing or polymerizing a cast-film component;
(4) annealing the cast film; and
(5) evaporating solvent from the cast film.
16. The method of claim 15, wherein the method steps are performed in a single pass through an apparatus.
17. A method for manufacturing a film, the method comprising the steps:
(i) creating a cast film having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof;
(ii) shearing the cast film;
(iii) annealing the cast film; and
(iv) evaporating solvent from the cast film.
18. The method of claim 17, further comprising the step:
aligning a cast-film component by applying an electric field to the cast film.
19. The method of claim 17, further comprising the step:
aligning a cast-film component by applying a magnetic field to the cast film.
20. The method of claim 17, further comprising the step:
curing or polymerizing a cast-film component.
21. The method of claim 17, wherein the cast film is created by casting a solution having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof onto a substrate, the cast film is sheared by contacting a surface of the cast film with a belt substrate, the cast film is annealed by applying oscillating thermal radiation to the cast film; and the solvent is evaporated from the cast film by applying thermal radiation, air flow, or a combination thereof to the cast film.
22. The method of claim 20, wherein the cast film is created by casting a solution having a polymer component, a monomer component, a nanoparticle component, a magnetic-filler component, or a combination thereof onto a substrate, the cast film is sheared by contacting a surface of the cast film with a belt substrate, the cast-film components are cured or polymerized by applying ultraviolet radiation to the cast film, the cast film is annealed by applying oscillating thermal radiation to the cast film; and the solvent is evaporated from the cast film by applying thermal radiation, air flow, or a combination thereof to the cast film.
23. The method of claim 15, wherein said step of aligning the cast-film component includes both
aligning the cast-film component by applying an electric field to the cast film and
aligning the cast-film component by applying a magnetic field to the cast film.
24-35. (canceled)
US13/384,026 2009-07-14 2010-07-14 Electromagnetic processing line Abandoned US20120135156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/384,026 US20120135156A1 (en) 2009-07-14 2010-07-14 Electromagnetic processing line

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22540309P 2009-07-14 2009-07-14
US13/384,026 US20120135156A1 (en) 2009-07-14 2010-07-14 Electromagnetic processing line
PCT/US2010/041992 WO2011008870A1 (en) 2009-07-14 2010-07-14 Electromagnetic processing line

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/041992 A-371-Of-International WO2011008870A1 (en) 2009-07-14 2010-07-14 Electromagnetic processing line

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/134,929 Continuation US10005247B2 (en) 2009-07-14 2016-04-21 Electromagnetic processing line

Publications (1)

Publication Number Publication Date
US20120135156A1 true US20120135156A1 (en) 2012-05-31

Family

ID=43449765

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/384,026 Abandoned US20120135156A1 (en) 2009-07-14 2010-07-14 Electromagnetic processing line
US15/134,929 Active 2030-10-27 US10005247B2 (en) 2009-07-14 2016-04-21 Electromagnetic processing line

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/134,929 Active 2030-10-27 US10005247B2 (en) 2009-07-14 2016-04-21 Electromagnetic processing line

Country Status (7)

Country Link
US (2) US20120135156A1 (en)
EP (1) EP2454615B1 (en)
JP (1) JP5711737B2 (en)
CN (1) CN102472828B (en)
CA (1) CA2768174C (en)
IN (1) IN2012DN00409A (en)
WO (1) WO2011008870A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194206A1 (en) * 2013-05-30 2014-12-04 The University Of Akron A continuous roll-to-roll process design for vertical alignment of particles using electric field
US20150238645A1 (en) * 2014-02-25 2015-08-27 Sensor Electronic Technology, Inc. Ultraviolet Illuminator
WO2016086089A1 (en) * 2014-11-26 2016-06-02 The University, Of Akron Electric field alignment in polymer solutions
US11732382B2 (en) * 2016-10-26 2023-08-22 Purdue Research Foundation Roll-to-roll manufacturing machines and methods for producing nanostructure-containing polymer films

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771274B (en) * 2021-11-10 2022-03-08 成都佳驰电子科技股份有限公司 Low-cost magnetic wave-absorbing waterproof gasket preparation device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772210A (en) * 1972-02-14 1973-11-13 Eastman Kodak Co Liquid crystal compositions
US5231525A (en) * 1989-06-02 1993-07-27 Idemitsu Kosan Co., Ltd. Apparatus for orienting a liquid crystal material using a shear force and electric field
US5472575A (en) * 1994-02-14 1995-12-05 Maustat Corporation Vacuum and infra-red radiation solvent evaporation
US5510187A (en) * 1993-04-27 1996-04-23 Minnesota Mining And Manufacturing Company Magnetic recording medium whose magnetic layer incorporates nonhalogenated vinyl copolymer and specified polyurethane polymer
US8158450B1 (en) * 2006-05-05 2012-04-17 Nanosolar, Inc. Barrier films and high throughput manufacturing processes for photovoltaic devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6741019B1 (en) * 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
US6517744B1 (en) * 1999-11-16 2003-02-11 Jsr Corporation Curing composition for forming a heat-conductive sheet, heat-conductive sheet, production thereof and heat sink structure
JP2004527905A (en) * 2001-03-14 2004-09-09 ユニバーシティー オブ マサチューセッツ Nano manufacturing
JP4714371B2 (en) * 2001-06-06 2011-06-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
DE10325610A1 (en) * 2003-06-05 2004-12-30 Consortium für elektrochemische Industrie GmbH Polymer film with a helical molecular structure
US7744802B2 (en) * 2004-06-25 2010-06-29 Intel Corporation Dielectric film with low coefficient of thermal expansion (CTE) using liquid crystalline resin
JP3826145B2 (en) * 2004-07-16 2006-09-27 株式会社クラレ Condensing film, liquid crystal panel and backlight, and method for producing condensing film
KR101165653B1 (en) * 2004-09-10 2012-07-17 우베 고산 가부시키가이샤 Modified polyimide resin and curable resin composition
US7964209B2 (en) * 2004-12-07 2011-06-21 Boston Scientific Scimed, Inc. Orienting polymer domains for controlled drug delivery
JP2007149616A (en) * 2005-11-30 2007-06-14 Toray Ind Inc Field emission element and its manufacturing method
CN1899795A (en) * 2006-07-19 2007-01-24 北京航空航天大学 Device for preparing ordered micro structure resin base composite material film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772210A (en) * 1972-02-14 1973-11-13 Eastman Kodak Co Liquid crystal compositions
US5231525A (en) * 1989-06-02 1993-07-27 Idemitsu Kosan Co., Ltd. Apparatus for orienting a liquid crystal material using a shear force and electric field
US5510187A (en) * 1993-04-27 1996-04-23 Minnesota Mining And Manufacturing Company Magnetic recording medium whose magnetic layer incorporates nonhalogenated vinyl copolymer and specified polyurethane polymer
US5472575A (en) * 1994-02-14 1995-12-05 Maustat Corporation Vacuum and infra-red radiation solvent evaporation
US8158450B1 (en) * 2006-05-05 2012-04-17 Nanosolar, Inc. Barrier films and high throughput manufacturing processes for photovoltaic devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Fine-Tuning Viscoelasticity of EB-Cured Adhesives to Optimize Performance" ASI Adhesives & Sealants (2002). *
Berry et al. "Orientational Order in Block Copolymer Films Zone Annealed below the Order-Disorder Transition Temperature" Nano Letters 2007 Vol. 7, No. 9, 2789-2794. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194206A1 (en) * 2013-05-30 2014-12-04 The University Of Akron A continuous roll-to-roll process design for vertical alignment of particles using electric field
US20160089842A1 (en) * 2013-05-30 2016-03-31 Mukerrem Cakmak Continuous roll-to-roll process design for vertical alignment of particles using electric field
US11077631B2 (en) 2013-05-30 2021-08-03 The University Of Akron Continuous roll-to-roll process design for vertical alignment of particles using electric field
US20150238645A1 (en) * 2014-02-25 2015-08-27 Sensor Electronic Technology, Inc. Ultraviolet Illuminator
US9833526B2 (en) * 2014-02-25 2017-12-05 Sensor Electronic Technology, Inc. Ultraviolet illuminator
US10124081B2 (en) 2014-02-25 2018-11-13 Sensor Electronic Technology, Inc. Ultraviolet illuminator
WO2016086089A1 (en) * 2014-11-26 2016-06-02 The University, Of Akron Electric field alignment in polymer solutions
EP3223964A4 (en) * 2014-11-26 2018-08-08 The University of Akron Electric field alignment in polymer solutions
US10710281B2 (en) 2014-11-26 2020-07-14 The University Of Akron Electric field “Z” direction alignment of nanoparticles in polymer solutions
US11732382B2 (en) * 2016-10-26 2023-08-22 Purdue Research Foundation Roll-to-roll manufacturing machines and methods for producing nanostructure-containing polymer films

Also Published As

Publication number Publication date
JP5711737B2 (en) 2015-05-07
JP2012533451A (en) 2012-12-27
CN102472828A (en) 2012-05-23
EP2454615A1 (en) 2012-05-23
EP2454615A4 (en) 2015-08-12
US10005247B2 (en) 2018-06-26
WO2011008870A1 (en) 2011-01-20
CA2768174A1 (en) 2011-01-20
CN102472828B (en) 2016-05-18
EP2454615B1 (en) 2018-08-29
CA2768174C (en) 2017-09-12
IN2012DN00409A (en) 2015-08-21
US20160229131A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US10005247B2 (en) Electromagnetic processing line
Shida et al. Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: Fabrication of gradient and patterned polymer brushes
Odom et al. Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites
Cakmak et al. Field assisted self‐assembly for preferential through thickness (“z‐direction”) alignment of particles and phases by electric, magnetic, and thermal fields using a novel roll‐to‐roll processing line
US11077631B2 (en) Continuous roll-to-roll process design for vertical alignment of particles using electric field
KR20150009923A (en) Continuously producing digital micro-scale patterns on a thin polymer film
KR20150009924A (en) Continuously producing digital micro-scale patterns on a thin polymer film
CN105643931A (en) Method for preparing organic separating membrane through three-dimensional molding technology
Ejima et al. Morphology-retaining carbonization of honeycomb-patterned hyperbranched poly (phenylene vinylene) film
Liu et al. Controlled assembly of regular composite nanowire arrays and their multilayers using electropolymerized polymers as templates
Chae et al. Laser-induced orientation transformation of a conjugated polymer thin film with enhanced vertical charge transport
Miyoshi et al. Nano-and micro-fabrication of perfluorinated polymers using quantum beam technology
Liu et al. Controlled electrospinning to produce polymer nanofibers with specified diameters
Liu et al. A preparation of polyethylene coatings by pulse laser-assisted electron beam deposition
DE3210351A1 (en) Process and device for producing magnetic recording films
CN102205634B (en) The manufacture method of synchronous double-shaft stretching
US8354459B2 (en) Method for producing polymer material
US10710281B2 (en) Electric field “Z” direction alignment of nanoparticles in polymer solutions
KR101775920B1 (en) Nanofiber filter including hydrophilic polymer nanofiber with epoxy resin-curing agent adhension layer and its manufacturing method
CN110452407A (en) A method of azobenzene polymer compound system wrinkle pattern is regulated and controled by polarised light
Basutkar Directed Self-Assembly of Nanostructured Block Copolymer Thin Films via Dynamic Thermal Annealing
Jin Relative Alignment of CZA (Cold Zone Anneal) Polymer In Nano Imprinted Films
Chen et al. Influences of Process Conditions on Stretching Characteristics of Crystalline Polymer Film
Goetz et al. Thermotropic, side-chain ordered polymeric coatings: gas permeability switching via a thermal stimulus
Wohlfart Nanopatterning of poly (ethylene terephthalate) by plasma etching

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE UNIVERSITY OF AKRON, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAKMAK, MUKERREM;REEL/FRAME:027723/0366

Effective date: 20120112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION