US20120132431A1 - Emergency Disconnect Sequence Video Capture and Playback - Google Patents

Emergency Disconnect Sequence Video Capture and Playback Download PDF

Info

Publication number
US20120132431A1
US20120132431A1 US12/957,037 US95703710A US2012132431A1 US 20120132431 A1 US20120132431 A1 US 20120132431A1 US 95703710 A US95703710 A US 95703710A US 2012132431 A1 US2012132431 A1 US 2012132431A1
Authority
US
United States
Prior art keywords
emergency disconnect
disconnect sequence
evidence
eds
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/957,037
Inventor
Joseph Prem EBENEZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydril USA Distribution LLC
Original Assignee
Hydril USA Manufacturing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydril USA Manufacturing LLC filed Critical Hydril USA Manufacturing LLC
Priority to US12/957,037 priority Critical patent/US20120132431A1/en
Assigned to HYDRIL USA MANUFACTURING LLC reassignment HYDRIL USA MANUFACTURING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Ebenezer, Joseph Prem
Priority to SG2011086014A priority patent/SG181256A1/en
Priority to AU2011253544A priority patent/AU2011253544A1/en
Priority to EP11190151A priority patent/EP2458142A2/en
Priority to BRPI1104991-0A priority patent/BRPI1104991A2/en
Priority to CN2011104035557A priority patent/CN102561981A/en
Publication of US20120132431A1 publication Critical patent/US20120132431A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/0355Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • E21B33/076Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection

Definitions

  • Embodiments of the subject matter disclosed herein generally relate to methods and systems and, more particularly, to mechanisms and techniques for capturing video evidence of the initiation and/or progress of an emergency disconnect sequence.
  • a blowout preventer stack (“BOP stack”) 11 may be rigidly attached to a wellhead 12 upon the sea floor 14
  • a Lower Marine Riser Package (“LMRP”) 16 may be retrievably disposed upon a distal end of a marine riser 18 , extending from a drill ship 20 or any other type of surface drilling platform or vessel.
  • the LMRP 16 may include a stinger 22 at its distal end configured to engage a receptacle 24 located on a proximal end of the BOP stack 11 .
  • the BOP stack 11 may be rigidly affixed atop the subsea wellhead 12 and may include (among other devices) a plurality of ram-type blowout preventers 26 useful in controlling the well as it is drilled and completed.
  • the LMRP 16 may be disposed upon a distal end of a long flexible riser 18 that provides a conduit through which drilling tools and fluids may be deployed to and retrieved from the subsea wellbore.
  • the LMRP 16 may include (among other things) one or more ram-type blowout preventers 28 at its distal end, an annular blowout preventer 30 at its upper end, and multiplex (MUX) pods 32 .
  • a MUX pod system 40 is shown in FIG. 2 and may provide between 50 and 100 different functions to the BOP stack and/or the LMRP and these functions may be initiated and/or controlled from or via the MUX BOP Control System.
  • the MUX pod 40 may be fixedly attached to a frame (not shown) of the LMRP and may include hydraulically activated valves 50 (called in the art sub plate mounted (“SPM”) valves) and solenoid valves 52 that are fluidly connected to the hydraulically activated valves 50 .
  • the solenoid valves 52 are provided in an electronic section 54 and are designed to be actuated by sending an electrical signal from an electronic control board (not shown). Each solenoid valve 52 may be configured to activate a corresponding hydraulically activated valve 50 .
  • the MUX pod 40 may include pressure sensors 56 also mounted in the electronic section 54 .
  • the hydraulically activated valves 50 are provided in a hydraulic section 58 and may be fixedly attached to the MUX pod 40 .
  • a bridge between the LMRP 16 and the BOP stack 11 is formed that matches the multiple functions from the LMRP 16 to the BOP stack 11 , e.g., fluidly connects the SPM valves 50 from the MUX pod provided on the LMRP to dedicated components on the BOP stack or the LMRP.
  • the MUX pod system is used in addition to choke and kill line connections (not shown) or lines that ensure pressure supply for the shearing function of the BOPs.
  • the bridge is shown in FIG. 3 and may include a pod wedge 42 configured to engage a receiver 44 on the BOP stack.
  • the pod wedge 42 has plural holes (not shown), depending on the number of functions provided, that provides hydraulic fluids from the LMRP 16 to the BOP stack 11 .
  • multiplex (“MUX”) cables electrical
  • lines hydroaulic
  • transport control signals via the MUX pod and the pod wedge
  • MUX pod and the pod wedge transport control signals
  • LMRP 16 and BOP stack 11 devices so the specified tasks may be controlled from the surface.
  • subsea control valves are actuated and (in most cases) high-pressure hydraulic lines are directed to perform the specified tasks.
  • a multiplexed electrical or hydraulic signal may operate a plurality of “low pressure” valves to actuate larger valves to communicate the high-pressure hydraulic lines with the various operating devices of the wellhead stack.
  • Examples of communication lines bridged between LMRPs and BOP stacks through feed-thru components include, but are not limited to, hydraulic choke lines, hydraulic kill lines, hydraulic multiplex control lines, electrical multiplex control lines, electrical power lines, hydraulic power lines, mechanical power lines, mechanical control lines, electrical control lines, and sensor lines.
  • subsea wellhead stack feed-thru components include at least one MUX “pod” connection whereby a plurality of hydraulic control signals are grouped together and transmitted between the LMRP 16 and the BOP stack 11 in a single mono-block feed-thru component as shown, for example, in FIG. 3 .
  • ram-type blowout preventers of the LMRP 16 and the BOP stack 11 may be closed and the LMRP 16 may be detached from the BOP stack 11 and retrieved to the surface, leaving the BOP stack 11 atop the wellhead.
  • ram-type blowout preventers of the LMRP 16 and the BOP stack 11 may be closed and the LMRP 16 may be detached from the BOP stack 11 and retrieved to the surface, leaving the BOP stack 11 atop the wellhead.
  • An EDS may include a number of different functions that are to be performed by the LMRP 16 and the BOP stack. The functions of the EDS may be carried out by the LMRP 16 and/or the BOP stack as set forth above via the MUX pod 40 and/or the bridge.
  • a particular EDS may include a predetermined number of functions. For example, one particular EDS may include eighteen (18) functions while another EDS may include twenty-five (25) functions.
  • a particular EDS may take a predetermined period of time to complete. For example, one particular EDS may take 20 (twenty) seconds to complete while another EDS may take 25 (twenty-five) seconds to complete.
  • An EDS may be initiated using an EDS system 50 as shown in FIG. 4 .
  • An EDS may be initiated or fired by pressing an EDS button 52 located on a stack controller 54 located on the drill ship 20 . Once the EDS is fired, the functions included in that EDS may be performed until all of the functions are complete.
  • Verification that an operator initiated an EDS and/or of the progression of the EDS may be desired.
  • verification may be provided via a manual log 56 .
  • the log 56 may be updated to reflect the initiation of the EDS.
  • this conventional approach is problematic. For example, the accuracy of such a log may itself be in question and may need verification. Further, beyond the log, conventional systems may not include any additional tool to verify that the operator initiated the EDS.
  • the emergency disconnect sequence video capture system includes a stack screen on a drilling platform, the stack screen including an emergency disconnect sequence button to initiate an emergency disconnect sequence signal to be sent to a multiplex pod resulting in an emergency disconnect sequence including a plurality of functions being performed by devices in one or both of a lower marine riser package and a blowout preventer stack, and an emergency disconnect sequence function status indicator, either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, or a video card to capture video captures of one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, and a storage connected to either the video capture device or the video card and configured to store said emergency disconnect sequence evidence.
  • an emergency disconnect sequence system there is an emergency disconnect sequence system.
  • the system includes a blowout preventer stack, a lower marine riser package releasably connectable to the blowout preventer stack, a multiplex pod connected to the lower marine riser package, the multiplex pods to receive an emergency disconnect sequence signal and to transport electric and/or hydraulic control signals to devices in one or both of the lower marine riser package and the blowout preventer stack in response to the emergency disconnect sequence signal, a marine riser connected to the LMRP, a drilling platform connected to the marine riser, and a stack screen on the drilling platform, the stack screen including an emergency disconnect sequence button to initiate the emergency disconnect sequence signal sent to the multiplex pods resulting in an emergency disconnect sequence including a plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack, and an emergency disconnect sequence function status indicator, either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and
  • the method includes receiving, into a computing device, a video image from either a video capture device aimed at a stack screen interface or from a video card, the video image including one or both of an initiation of an emergency disconnect sequence by an operator touching an emergency disconnect sequence button on the stack screen interface, and a progress of the emergency disconnect sequence indicated by an emergency disconnect sequence function status indicator, and storing, in a storage in communication with the computing device, the video image from the video capture device or the video card as the emergency disconnect sequence evidence.
  • FIG. 1 is a schematic diagram of a conventional offshore rig
  • FIG. 2 is a schematic diagram of a MUX pod
  • FIG. 3 is a schematic diagram of a feed-thru connection of a MUX pod attached to a subsea structure
  • FIG. 4 is a schematic diagram of a conventional EDS system
  • FIG. 5 is a schematic diagram of an EDS system according to an exemplary embodiment
  • FIGS. 6 and 7 are schematic diagrams of EDS evidence according to an exemplary embodiment.
  • FIG. 8 is a flow chart of a method according to an exemplary embodiment.
  • EDS emergency disconnect sequence
  • a video capture device may be aimed at a stack screen to automatically capture an initiation of an EDS signal by an EDS button and/or a progress of the EDS indicated by an EDS function status indicator as EDS evidence.
  • the EDS evidence may be stored with a timestamp and subsequently replayed. In this way, that an operator initiated a particular EDS and/or the progression of the EDS may be verified. This may supplement or replace manual log verification.
  • an EDS system 500 may include a BOP stack 502 , a LMRP 504 , MUX pods 506 , a marine riser 508 , a drilling platform 510 , a stack screen 512 , a video capture device 516 , and a computing device 522 .
  • the LMRP 504 may be releasably connectable to the BOP stack 502 .
  • the MUX pods 506 may be connected to the LMRP 504 .
  • the marine riser 508 may be connected to the LMRP 504 .
  • the drilling platform 510 may be connected to the marine riser 508 .
  • the stack screen 512 , video capture device 516 , and the computing device 522 may be located on the drilling platform 510 .
  • the MUX pods 506 may receive an EDS signal and may transport electric and/or hydraulic control signals to devices in the LMRP 504 and/or the BOP stack 502 in response to the EDS signal.
  • the stack screen 512 may include a number of different controls and displays including an EDS button 514 and an EDS function status indicator 515 .
  • the EDS button 514 may initiate the EDS signal sent to the MUX pod and may result in an EDS including a plurality of functions being performed by the devices in the LMRP 504 and/or the BOP stack 502 .
  • the EDS may include a predetermined number of functions as the plurality of functions and may last for a predetermined period of time. Each function may last a corresponding amount of time.
  • the EDS function status indicator 515 may indicate a status (e.g., complete) of a function of the plurality of functions.
  • the EDS button 514 and the EDS function status indicator 515 are two separate elements on the stack screen 512 .
  • the EDS button 514 and the EDS function status indicator 515 may be the same element.
  • the stack screen 512 may be a touch-screen.
  • the stack screen 512 may include the EDS button 514 and the EDS function status indicator 515 as touch-screen displays.
  • the stack screen may be a computer display.
  • the stack screen may include the EDS button as a selectable control on the computer display and the EDS function status indicator as a display on the computer display.
  • the stack screen may be a physical control panel.
  • the stack screen may include the EDS button as a physical button and the EDS function status indicator as a display.
  • the video capture device 516 may be aimed at the stack screen 512 to capture the initiation of the EDS signal by the EDS button and/or a progress of the EDS as indicated by the EDS function status indicator as EDS evidence.
  • the computing device 522 may include a storage 520 .
  • the storage 520 may store the EDS evidence.
  • the computing device 522 may be in communication with a remote storage.
  • the video capture device 516 may be a digital video capture device.
  • the computing device 522 may include software including video capture and playback capabilities, such as the QNX operating system by QNX Software Systems Co.
  • the computing device 522 may be in communication with and drive the video capture device 516 .
  • the video capture device 516 may include a video capture device lens 518 .
  • the video capture device lens 518 may be aimed at the stack screen 512 .
  • the video capture device 516 may capture the initiation of the EDS signal by the EDS button and/or the progress of the EDS as indicated by the EDS function status indicator as an EDS video.
  • the storage 520 may store the EDS video as a digital video file.
  • EDS evidence 600 may be captured by the video capture device 516 as an EDS video.
  • the EDS video may include a timestamp 602 indicating the time and date of the EDS video.
  • the time stamp may be as accurate as desired, e.g., to the second.
  • the EDS video shows an operator's finger initiating an EDS by touching the EDS button 514 .
  • the EDS video shows a progress of the EDS as indicated by the EDS function status indicator 515 .
  • the EDS function status indicator 515 may indicate the status of a function by changing color. In another exemplary embodiment, the EDS function status indicator 515 may indicate the status of a function using other function status indicators. Thus, this system may be able to record each function that is being activated by the operator and also the time progression of each function. In one embodiment, any action of the operator on the stack screen may be recorded with the associated timestamp.
  • FIG. 8 is a flow chart of a method 800 according to an exemplary embodiment.
  • the method may begin. Before initiation of an EDS, the video capture device 516 may be initiated.
  • the software including video capture and playback capabilities of the computing device 522 may initialize the video capture device 516 .
  • the video capture device lens 518 may be aimed at the stack screen 512 .
  • the video capture device 516 may then capture a video image of an initiation of an EDS by an operator touching the EDS button 514 ( FIG. 6 ). Additionally and/or alternatively, the video capture device may capture a progress of the EDS as indicated by the EDS function status indicator 515 ( FIG. 7 ).
  • the computing device 522 may receive the video image of the initiation of the EDS by the operator touching the EDS button 514 and/or the progress of the EDS as indicated by the EDS function indicator 515 (i.e., the EDS evidence).
  • the computing device 522 may store the EDS evidence in the storage 520 .
  • the computing device 522 provides the timestamp 602 that is added to the video image.
  • the video capture device 516 provides the timestamp 602 that is part of the video image.
  • the computing device plays back the EDS evidence.
  • a time-stamped video of the entire EDS as it is happening on the stack screen 512 may be obtained.
  • the video may serve as a time-stamped record of the initiation of an EDS and/or which functions were fired and when they were fired at any particular time instant.
  • the video capture feature may be employed to capture videos of functions to be fired during different types of well control situations that may not require the emergency disconnect sequence. This may be effectively used as a training tool for field service engineers and rig personnel.
  • the video capture feature can be employed to capture videos of sequences in other devices like Diverter systems for Diverter Packer Close sequences, adjusting regulators, setting up the MUX BOP Control System for normal drilling operations etc.
  • the video capture device may be replaced by and/or include a microphone positioned near the stack screen.
  • the microphone may capture the initiation of the EDS signal by the EDS button and/or the progress of the EDS as indicated by the EDS function status indicator as EDS audio.
  • the EDS button may be configured to cause an audible sound upon selection by an operator. Audible sounds may indicate progress points of the EDS.
  • the video capture device may be replaced by and/or include a logging system in communication with the EDS button and/or the EDS function status indicator.
  • the logging system in communication with the EDS button and/or EDS function status indicator may include computer executable instructions causing the computing device to monitor operator interactions with the stack screen 512 .
  • the logging system may capture, in a logging file constituting the EDS evidence, an operator interaction of selecting the EDS button and/or the progress of the EDS as indicated by the EDS function status indicator.
  • the EDS evidence (and any other evidence that may be recorded or logged by the system) may be then transmitted wireless or wired to a storage system located on ground. In this way, in the eventuality of the total failure of the rig, e.g., fire or flooding, the EDS evidence may not be destroyed together with the rig.
  • the processor handling the recording of the EDS evidence may be programmed to recognized when the EDS evidence is recorded and to transmit in real time the recorded data to a satellite or other station as the evidence. In one exemplary embodiment, when the operator starts the EDS sequence, the processor may be configured to connect to a satellite or a station for transmitting the information being recorded for safety.
  • the computing device 522 may include or may be connected to corresponding electronic circuitry, like a transmitter, receiver, amplifier, antenna, or the like for communicating with a satellite or an earth based station.
  • the disclosed exemplary embodiments provide EDS systems and a method for capturing video evidence of the initiation and/or progress of an emergency disconnect sequence. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.

Abstract

Emergency disconnect sequence (EDS) video capture systems and method. The EDS video capture system includes a stack screen on a drilling platform, the stack screen including an EDS button to initiate an EDS signal to be sent to multiplex pods resulting in an EDS including a plurality of functions being performed by devices in one or both of a lower marine riser package and a blowout preventer stack, and an EDS function status indicator. The indicator is either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of EDS signal by the EDS button and a progress of the EDS indicated by the EDS function status indicator as EDS evidence or a video card to capture one or more of the initiation of the EDS signal by the EDS button and a progress of the EDS indicated by the EDS function status indicator as EDS evidence, and a storage to store the EDS evidence.

Description

    BACKGROUND
  • 1. Technical Field
  • Embodiments of the subject matter disclosed herein generally relate to methods and systems and, more particularly, to mechanisms and techniques for capturing video evidence of the initiation and/or progress of an emergency disconnect sequence.
  • 2. Discussion of the Background
  • During the past years, with the increase in price of fossil fuels, the interest in developing new production fields has increased dramatically. However, the availability of land-based production fields is limited. Thus, the industry has now extended drilling to offshore locations, which appear to hold a vast amount of fossil fuel.
  • The existing technologies for extracting the fossil fuel from offshore fields may use a system 10 as shown in FIG. 1. More specifically, a blowout preventer stack (“BOP stack”) 11 may be rigidly attached to a wellhead 12 upon the sea floor 14, while a Lower Marine Riser Package (“LMRP”) 16 may be retrievably disposed upon a distal end of a marine riser 18, extending from a drill ship 20 or any other type of surface drilling platform or vessel. As such, the LMRP 16 may include a stinger 22 at its distal end configured to engage a receptacle 24 located on a proximal end of the BOP stack 11.
  • In typical configurations, the BOP stack 11 may be rigidly affixed atop the subsea wellhead 12 and may include (among other devices) a plurality of ram-type blowout preventers 26 useful in controlling the well as it is drilled and completed. Similarly, the LMRP 16 may be disposed upon a distal end of a long flexible riser 18 that provides a conduit through which drilling tools and fluids may be deployed to and retrieved from the subsea wellbore. Ordinarily, the LMRP 16 may include (among other things) one or more ram-type blowout preventers 28 at its distal end, an annular blowout preventer 30 at its upper end, and multiplex (MUX) pods 32.
  • A MUX pod system 40, is shown in FIG. 2 and may provide between 50 and 100 different functions to the BOP stack and/or the LMRP and these functions may be initiated and/or controlled from or via the MUX BOP Control System.
  • The MUX pod 40 may be fixedly attached to a frame (not shown) of the LMRP and may include hydraulically activated valves 50 (called in the art sub plate mounted (“SPM”) valves) and solenoid valves 52 that are fluidly connected to the hydraulically activated valves 50. The solenoid valves 52 are provided in an electronic section 54 and are designed to be actuated by sending an electrical signal from an electronic control board (not shown). Each solenoid valve 52 may be configured to activate a corresponding hydraulically activated valve 50. The MUX pod 40 may include pressure sensors 56 also mounted in the electronic section 54. The hydraulically activated valves 50 are provided in a hydraulic section 58 and may be fixedly attached to the MUX pod 40.
  • A bridge between the LMRP 16 and the BOP stack 11 is formed that matches the multiple functions from the LMRP 16 to the BOP stack 11, e.g., fluidly connects the SPM valves 50 from the MUX pod provided on the LMRP to dedicated components on the BOP stack or the LMRP. The MUX pod system is used in addition to choke and kill line connections (not shown) or lines that ensure pressure supply for the shearing function of the BOPs.
  • The bridge is shown in FIG. 3 and may include a pod wedge 42 configured to engage a receiver 44 on the BOP stack. The pod wedge 42 has plural holes (not shown), depending on the number of functions provided, that provides hydraulic fluids from the LMRP 16 to the BOP stack 11.
  • In typical subsea blowout preventer installations, multiplex (“MUX”) cables (electrical) and/or lines (hydraulic) transport control signals (via the MUX pod and the pod wedge) to the LMRP 16 and BOP stack 11 devices so the specified tasks may be controlled from the surface. Once the control signals are received, subsea control valves are actuated and (in most cases) high-pressure hydraulic lines are directed to perform the specified tasks. Thus, a multiplexed electrical or hydraulic signal may operate a plurality of “low pressure” valves to actuate larger valves to communicate the high-pressure hydraulic lines with the various operating devices of the wellhead stack.
  • Examples of communication lines bridged between LMRPs and BOP stacks through feed-thru components include, but are not limited to, hydraulic choke lines, hydraulic kill lines, hydraulic multiplex control lines, electrical multiplex control lines, electrical power lines, hydraulic power lines, mechanical power lines, mechanical control lines, electrical control lines, and sensor lines. In certain embodiments, subsea wellhead stack feed-thru components include at least one MUX “pod” connection whereby a plurality of hydraulic control signals are grouped together and transmitted between the LMRP 16 and the BOP stack 11 in a single mono-block feed-thru component as shown, for example, in FIG. 3.
  • When desired, ram-type blowout preventers of the LMRP 16 and the BOP stack 11 may be closed and the LMRP 16 may be detached from the BOP stack 11 and retrieved to the surface, leaving the BOP stack 11 atop the wellhead. For example, it may be necessary to retrieve the LMRP 16 from the wellhead stack in times of inclement weather or when work on a particular wellhead is to be temporarily stopped.
  • To retrieve the LMRP 16 from the wellhead stack, an Emergency Disconnect Sequence (“EDS”) may be initiated. An EDS may include a number of different functions that are to be performed by the LMRP 16 and the BOP stack. The functions of the EDS may be carried out by the LMRP 16 and/or the BOP stack as set forth above via the MUX pod 40 and/or the bridge. A particular EDS may include a predetermined number of functions. For example, one particular EDS may include eighteen (18) functions while another EDS may include twenty-five (25) functions. A particular EDS may take a predetermined period of time to complete. For example, one particular EDS may take 20 (twenty) seconds to complete while another EDS may take 25 (twenty-five) seconds to complete. An EDS may be initiated using an EDS system 50 as shown in FIG. 4. An EDS may be initiated or fired by pressing an EDS button 52 located on a stack controller 54 located on the drill ship 20. Once the EDS is fired, the functions included in that EDS may be performed until all of the functions are complete.
  • Verification that an operator initiated an EDS and/or of the progression of the EDS may be desired. Conventionally, such verification may be provided via a manual log 56. When an operator selects or presses the EDS button 52 located on the stack controller 54, the log 56 may be updated to reflect the initiation of the EDS. However, this conventional approach is problematic. For example, the accuracy of such a log may itself be in question and may need verification. Further, beyond the log, conventional systems may not include any additional tool to verify that the operator initiated the EDS.
  • Therefore, it is desired to provide a novel approach for capturing evidence of the initiation and/or progression of an EDS.
  • SUMMARY
  • According to one exemplary embodiment, there is an emergency disconnect sequence video capture system. The emergency disconnect sequence video capture system includes a stack screen on a drilling platform, the stack screen including an emergency disconnect sequence button to initiate an emergency disconnect sequence signal to be sent to a multiplex pod resulting in an emergency disconnect sequence including a plurality of functions being performed by devices in one or both of a lower marine riser package and a blowout preventer stack, and an emergency disconnect sequence function status indicator, either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, or a video card to capture video captures of one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, and a storage connected to either the video capture device or the video card and configured to store said emergency disconnect sequence evidence.
  • According to another exemplary embodiment, there is an emergency disconnect sequence system. The system includes a blowout preventer stack, a lower marine riser package releasably connectable to the blowout preventer stack, a multiplex pod connected to the lower marine riser package, the multiplex pods to receive an emergency disconnect sequence signal and to transport electric and/or hydraulic control signals to devices in one or both of the lower marine riser package and the blowout preventer stack in response to the emergency disconnect sequence signal, a marine riser connected to the LMRP, a drilling platform connected to the marine riser, and a stack screen on the drilling platform, the stack screen including an emergency disconnect sequence button to initiate the emergency disconnect sequence signal sent to the multiplex pods resulting in an emergency disconnect sequence including a plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack, and an emergency disconnect sequence function status indicator, either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, or a video card to capture videos of one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, and and a storage to store said emergency disconnect sequence evidence.
  • According to another exemplary embodiment, there is a method to capture emergency disconnect sequence evidence. The method includes receiving, into a computing device, a video image from either a video capture device aimed at a stack screen interface or from a video card, the video image including one or both of an initiation of an emergency disconnect sequence by an operator touching an emergency disconnect sequence button on the stack screen interface, and a progress of the emergency disconnect sequence indicated by an emergency disconnect sequence function status indicator, and storing, in a storage in communication with the computing device, the video image from the video capture device or the video card as the emergency disconnect sequence evidence.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
  • FIG. 1 is a schematic diagram of a conventional offshore rig;
  • FIG. 2 is a schematic diagram of a MUX pod;
  • FIG. 3 is a schematic diagram of a feed-thru connection of a MUX pod attached to a subsea structure;
  • FIG. 4 is a schematic diagram of a conventional EDS system;
  • FIG. 5 is a schematic diagram of an EDS system according to an exemplary embodiment;
  • FIGS. 6 and 7 are schematic diagrams of EDS evidence according to an exemplary embodiment.
  • FIG. 8 is a flow chart of a method according to an exemplary embodiment.
  • DETAILED DESCRIPTION
  • The following description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of an emergency disconnect sequence (“EDS”) system provided with a stack screen for initiating an EDS and/or monitoring the status of that EDS. However, the embodiments to be discussed next are not limited to these systems, but may be applied to other systems (e.g., diverter systems) that may include other interfaces (e.g., alarms screen, diverter screen, events screen, utility screen) for initiating and/or monitoring the status of other sequences (e.g., alarms, diverter sequences, events).
  • Reference throughout the specification to “an exemplary embodiment” or “another exemplary embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in an exemplary embodiment” or “in another exemplary embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • According to an exemplary embodiment, a video capture device may be aimed at a stack screen to automatically capture an initiation of an EDS signal by an EDS button and/or a progress of the EDS indicated by an EDS function status indicator as EDS evidence. The EDS evidence may be stored with a timestamp and subsequently replayed. In this way, that an operator initiated a particular EDS and/or the progression of the EDS may be verified. This may supplement or replace manual log verification.
  • According to an exemplary embodiment shown in FIG. 5, an EDS system 500 may include a BOP stack 502, a LMRP 504, MUX pods 506, a marine riser 508, a drilling platform 510, a stack screen 512, a video capture device 516, and a computing device 522. The LMRP 504 may be releasably connectable to the BOP stack 502. The MUX pods 506 may be connected to the LMRP 504. The marine riser 508 may be connected to the LMRP 504. The drilling platform 510 may be connected to the marine riser 508. The stack screen 512, video capture device 516, and the computing device 522 may be located on the drilling platform 510.
  • The MUX pods 506 may receive an EDS signal and may transport electric and/or hydraulic control signals to devices in the LMRP 504 and/or the BOP stack 502 in response to the EDS signal.
  • The stack screen 512 may include a number of different controls and displays including an EDS button 514 and an EDS function status indicator 515. The EDS button 514 may initiate the EDS signal sent to the MUX pod and may result in an EDS including a plurality of functions being performed by the devices in the LMRP 504 and/or the BOP stack 502. The EDS may include a predetermined number of functions as the plurality of functions and may last for a predetermined period of time. Each function may last a corresponding amount of time. The EDS function status indicator 515 may indicate a status (e.g., complete) of a function of the plurality of functions. In an exemplary embodiment, the EDS button 514 and the EDS function status indicator 515 are two separate elements on the stack screen 512. In another exemplary embodiment, the EDS button 514 and the EDS function status indicator 515 may be the same element.
  • In an exemplary embodiment, the stack screen 512 may be a touch-screen. The stack screen 512 may include the EDS button 514 and the EDS function status indicator 515 as touch-screen displays. In another exemplary embodiment, the stack screen may be a computer display. The stack screen may include the EDS button as a selectable control on the computer display and the EDS function status indicator as a display on the computer display. In another exemplary embodiment, the stack screen may be a physical control panel. The stack screen may include the EDS button as a physical button and the EDS function status indicator as a display.
  • The video capture device 516 may be aimed at the stack screen 512 to capture the initiation of the EDS signal by the EDS button and/or a progress of the EDS as indicated by the EDS function status indicator as EDS evidence. The computing device 522 may include a storage 520. The storage 520 may store the EDS evidence. In another exemplary embodiment, the computing device 522 may be in communication with a remote storage.
  • The video capture device 516 may be a digital video capture device. The computing device 522 may include software including video capture and playback capabilities, such as the QNX operating system by QNX Software Systems Co. The computing device 522 may be in communication with and drive the video capture device 516. The video capture device 516 may include a video capture device lens 518. The video capture device lens 518 may be aimed at the stack screen 512. As such, the video capture device 516 may capture the initiation of the EDS signal by the EDS button and/or the progress of the EDS as indicated by the EDS function status indicator as an EDS video. The storage 520 may store the EDS video as a digital video file.
  • According to an exemplary embodiment shown in FIGS. 6 and 7, EDS evidence 600 may be captured by the video capture device 516 as an EDS video. The EDS video may include a timestamp 602 indicating the time and date of the EDS video. In one application, the time stamp may be as accurate as desired, e.g., to the second. In FIG. 6, the EDS video shows an operator's finger initiating an EDS by touching the EDS button 514. Thus, the time when the operator has initiated the EDS sequence may be recorded. Other actions of the operator may also be recorded. In FIG. 7, the EDS video shows a progress of the EDS as indicated by the EDS function status indicator 515. In an exemplary embodiment, the EDS function status indicator 515 may indicate the status of a function by changing color. In another exemplary embodiment, the EDS function status indicator 515 may indicate the status of a function using other function status indicators. Thus, this system may be able to record each function that is being activated by the operator and also the time progression of each function. In one embodiment, any action of the operator on the stack screen may be recorded with the associated timestamp.
  • The operation of the EDS system 500 of FIGS. 5-7 is now described with reference to FIG. 8, which is a flow chart of a method 800 according to an exemplary embodiment.
  • In operation 802, the method may begin. Before initiation of an EDS, the video capture device 516 may be initiated. In an exemplary embodiment, the software including video capture and playback capabilities of the computing device 522 may initialize the video capture device 516. The video capture device lens 518 may be aimed at the stack screen 512. The video capture device 516 may then capture a video image of an initiation of an EDS by an operator touching the EDS button 514 (FIG. 6). Additionally and/or alternatively, the video capture device may capture a progress of the EDS as indicated by the EDS function status indicator 515 (FIG. 7). In operation 804, the computing device 522 may receive the video image of the initiation of the EDS by the operator touching the EDS button 514 and/or the progress of the EDS as indicated by the EDS function indicator 515 (i.e., the EDS evidence). In operation 806, the computing device 522 may store the EDS evidence in the storage 520. In an exemplary embodiment, the computing device 522 provides the timestamp 602 that is added to the video image. In another exemplary embodiment, the video capture device 516 provides the timestamp 602 that is part of the video image. In operation 808, the computing device plays back the EDS evidence. In operation 810, the operation ends. In this way, a time-stamped video of the entire EDS as it is happening on the stack screen 512 may be obtained. The video may serve as a time-stamped record of the initiation of an EDS and/or which functions were fired and when they were fired at any particular time instant.
  • In another exemplary embodiment, the video capture feature may be employed to capture videos of functions to be fired during different types of well control situations that may not require the emergency disconnect sequence. This may be effectively used as a training tool for field service engineers and rig personnel.
  • In another exemplary embodiment, the video capture feature can be employed to capture videos of sequences in other devices like Diverter systems for Diverter Packer Close sequences, adjusting regulators, setting up the MUX BOP Control System for normal drilling operations etc.
  • In another exemplary embodiment, the video capture device may be replaced by and/or include a microphone positioned near the stack screen. The microphone may capture the initiation of the EDS signal by the EDS button and/or the progress of the EDS as indicated by the EDS function status indicator as EDS audio. For example, the EDS button may be configured to cause an audible sound upon selection by an operator. Audible sounds may indicate progress points of the EDS.
  • In another exemplary embodiment, the video capture device may be replaced by and/or include a logging system in communication with the EDS button and/or the EDS function status indicator. The logging system in communication with the EDS button and/or EDS function status indicator may include computer executable instructions causing the computing device to monitor operator interactions with the stack screen 512. The logging system may capture, in a logging file constituting the EDS evidence, an operator interaction of selecting the EDS button and/or the progress of the EDS as indicated by the EDS function status indicator.
  • The EDS evidence (and any other evidence that may be recorded or logged by the system) may be then transmitted wireless or wired to a storage system located on ground. In this way, in the eventuality of the total failure of the rig, e.g., fire or flooding, the EDS evidence may not be destroyed together with the rig. The processor handling the recording of the EDS evidence may be programmed to recognized when the EDS evidence is recorded and to transmit in real time the recorded data to a satellite or other station as the evidence. In one exemplary embodiment, when the operator starts the EDS sequence, the processor may be configured to connect to a satellite or a station for transmitting the information being recorded for safety. Thus, the computing device 522 may include or may be connected to corresponding electronic circuitry, like a transmitter, receiver, amplifier, antenna, or the like for communicating with a satellite or an earth based station.
  • The disclosed exemplary embodiments provide EDS systems and a method for capturing video evidence of the initiation and/or progress of an emergency disconnect sequence. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
  • Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
  • This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.

Claims (22)

1. An emergency disconnect sequence video capture system comprising:
a stack screen on a drilling platform, the stack screen including an emergency disconnect sequence button to initiate an emergency disconnect sequence signal to be sent to multiplex pods resulting in an emergency disconnect sequence including a plurality of functions being performed by devices in one or both of a lower marine riser package and a blowout preventer stack, and an emergency disconnect sequence function status indicator;
either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, or a video card to capture video captures of one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence; and
a storage connected to either the video capture device or the video card and configured to store said emergency disconnect sequence evidence.
2. The emergency disconnect sequence video capture system of claim 1, wherein the emergency disconnect sequence evidence further includes a timestamp.
3. The emergency disconnect sequence video capture system of claim 1, wherein the video capture device comprises a digital video capture device to capture the one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and the progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as an emergency disconnect sequence digital video file.
4. The emergency disconnect sequence video capture system of claim 1, further comprising an evidence playback device to playback the emergency disconnect sequence evidence.
5. The emergency disconnect sequence video capture system of claim 1, wherein the stack screen is a touch-screen including the emergency disconnect sequence button and the emergency disconnect sequence function status indicator as touch-screen displays.
6. The emergency disconnect sequence video capture system of claim 1, wherein the stack screen is a computer display including the emergency disconnect sequence button as selectable control and the emergency disconnect sequence function status indicator as a display on the computer display.
7. The emergency disconnect sequence video capture system of claim 1, wherein the stack screen is a physical control panel including the emergency disconnect sequence button as a physical button and the emergency disconnect sequence function status indicator as a display.
8. An emergency disconnect sequence system, the system comprising:
a blowout preventer stack;
a lower marine riser package releasably connectable to the lower blowout preventer stack;
a multiplex pod connected to the lower marine riser package, the multiplex pods to receive an emergency disconnect sequence signal and to transport electric and/or hydraulic control signals to devices in one or both of the lower marine riser package and the lower blowout preventer stack in response to the emergency disconnect sequence signal;
a marine riser connected to the LMRP;
a drilling platform connected to the marine riser; and
a stack screen on the drilling platform, the stack screen including an emergency disconnect sequence button to initiate the emergency disconnect sequence signal sent to the multiplex pod resulting in an emergency disconnect sequence including a plurality of functions being performed by the devices in the one or both of the lower marine riser package and the blowout preventer stack, and an emergency disconnect sequence function status indicator;
either a video capture device aimed at the stack screen to automatically capture one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence, or a video card to capture videos of one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and a progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as emergency disconnect sequence evidence; and
a storage connected to either the video capture device or the video card and configured to store said emergency disconnect sequence evidence.
9. The emergency disconnect sequence system of claim 8, wherein the emergency disconnect sequence evidence further includes a timestamp.
10. The emergency disconnect sequence system of claim 8, wherein the video capture device comprises a digital video capture device to capture the one or more of the initiation of the emergency disconnect sequence signal by the emergency disconnect sequence button and the progress of the emergency disconnect sequence indicated by the emergency disconnect sequence function status indicator as an emergency disconnect sequence digital video file.
11. The emergency disconnect sequence system of claim 8, further comprising an evidence playback device to playback the emergency disconnect sequence evidence.
12. The emergency disconnect sequence system of claim 8, wherein the stack screen is a touch-screen including the emergency disconnect sequence button and the emergency disconnect sequence function status indicator as touch-screen displays.
13. The emergency disconnect sequence system of claim 8, wherein the stack screen is a computer display including the emergency disconnect sequence button as selectable control and the emergency disconnect sequence function status indicator as a display on the computer display.
14. The emergency disconnect sequence system of claim 8, wherein the stack screen is a physical control panel including the emergency disconnect sequence button as a physical button and the emergency disconnect sequence function status indicator as a display.
15. A method to capture emergency disconnect sequence evidence, comprising:
receiving, into a computing device, a video image from either a video capture device aimed at a stack screen interface or from a video card, the video image including one or both of an initiation of an emergency disconnect sequence by an operator touching an emergency disconnect sequence button on the stack screen interface, and a progress of the emergency disconnect sequence indicated by an emergency disconnect sequence function status indicator; and
storing, in a storage in communication with the computing device, the video image from the video capture device or the video card as the emergency disconnect sequence evidence.
16. The method to capture emergency disconnect sequence evidence of claim 15, further comprising playing back the emergency disconnect sequence evidence.
17. The method to capture emergency disconnect sequence evidence of claim 15, wherein the storing operation comprises storing the emergency disconnect sequence evidence in the storage in the computing device.
18. The method to capture emergency disconnect sequence evidence of claim 15, wherein the storing operation further comprises storing a timestamp as part of the emergency disconnect sequence evidence.
19. The method to capture emergency disconnect sequence evidence of claim 15, wherein the receiving operation comprises receiving the video image from a digital video capture device, and wherein the storing operation comprises storing the emergency disconnect sequence evidence as a digital video file.
20. The method to capture emergency disconnect sequence evidence of claim 15, wherein the receiving operation comprises receiving the video image from the video capture device aimed at a touch-screen stack screen interface including the emergency disconnect sequence button and the emergency disconnect sequence function status indicator as touch-screen displays.
21. The method to capture emergency disconnect sequence evidence of claim 15, wherein the receiving operation comprises receiving the video image from the video card in the computing device.
22. The method to capture emergency disconnect sequence evidence of claim 21, wherein the received video image file is stored in a video frame buffer of the video card.
US12/957,037 2010-11-30 2010-11-30 Emergency Disconnect Sequence Video Capture and Playback Abandoned US20120132431A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/957,037 US20120132431A1 (en) 2010-11-30 2010-11-30 Emergency Disconnect Sequence Video Capture and Playback
SG2011086014A SG181256A1 (en) 2010-11-30 2011-11-21 Emergency disconnect sequence video capture and playback
AU2011253544A AU2011253544A1 (en) 2010-11-30 2011-11-21 Emergency disconnect sequence video capture and playback
EP11190151A EP2458142A2 (en) 2010-11-30 2011-11-22 Emergency disconnect sequence video capture and playback
BRPI1104991-0A BRPI1104991A2 (en) 2010-11-30 2011-11-30 Emergency Disconnect Sequence Video Capture System, Emergency Disconnect Sequence System and Method for Capturing Emergency Disconnect Sequence Evidence
CN2011104035557A CN102561981A (en) 2010-11-30 2011-11-30 Emergency disconnect sequence video capture and playback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/957,037 US20120132431A1 (en) 2010-11-30 2010-11-30 Emergency Disconnect Sequence Video Capture and Playback

Publications (1)

Publication Number Publication Date
US20120132431A1 true US20120132431A1 (en) 2012-05-31

Family

ID=45062989

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/957,037 Abandoned US20120132431A1 (en) 2010-11-30 2010-11-30 Emergency Disconnect Sequence Video Capture and Playback

Country Status (6)

Country Link
US (1) US20120132431A1 (en)
EP (1) EP2458142A2 (en)
CN (1) CN102561981A (en)
AU (1) AU2011253544A1 (en)
BR (1) BRPI1104991A2 (en)
SG (1) SG181256A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164411A (en) * 2014-01-02 2016-11-23 海德里尔美国配送有限责任公司 It is used for manifesting seabed and controls the healthy system and method with preventive maintenance needs of assembly of subsystem components
US10787877B2 (en) 2015-07-06 2020-09-29 Maersk Drilling A/S Blowout preventer control system and methods for controlling a blowout preventer
US11156056B2 (en) * 2019-04-26 2021-10-26 Transocean Sedco Forex Ventures Limited Station keeping and emergency disconnecting capability for a vessel connected to a subsea wellhead in shallow water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050480A1 (en) * 2011-08-30 2013-02-28 Hydril Usa Manufacturing Llc Emergency disconnect sequence video sharing
US10067491B2 (en) 2013-10-10 2018-09-04 Schlumberger Technology Corporation Automated drilling controller including safety logic
US10487641B2 (en) * 2017-09-11 2019-11-26 Schlumberger Technology Corporation Wireless emergency stop
US10767433B2 (en) * 2018-02-26 2020-09-08 Onesubsea Ip Uk Limited Integrated controls for subsea landing string, blow out preventer, lower marine riser package
US10890060B2 (en) 2018-12-07 2021-01-12 Schlumberger Technology Corporation Zone management system and equipment interlocks
US10907466B2 (en) 2018-12-07 2021-02-02 Schlumberger Technology Corporation Zone management system and equipment interlocks

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636934A (en) * 1984-05-21 1987-01-13 Otis Engineering Corporation Well valve control system
US6484816B1 (en) * 2001-01-26 2002-11-26 Martin-Decker Totco, Inc. Method and system for controlling well bore pressure
US20030158615A1 (en) * 1998-06-26 2003-08-21 Patrick Weber Control system and method therefor
US6725924B2 (en) * 2001-06-15 2004-04-27 Schlumberger Technology Corporation System and technique for monitoring and managing the deployment of subsea equipment
US6755261B2 (en) * 2002-03-07 2004-06-29 Varco I/P, Inc. Method and system for controlling well fluid circulation rate
US6820702B2 (en) * 2002-08-27 2004-11-23 Noble Drilling Services Inc. Automated method and system for recognizing well control events
US6834723B2 (en) * 2000-04-27 2004-12-28 Cooper Cameron Corporation System and method for riser recoil control
US6892812B2 (en) * 2002-05-21 2005-05-17 Noble Drilling Services Inc. Automated method and system for determining the state of well operations and performing process evaluation
US20060171453A1 (en) * 2005-01-04 2006-08-03 Rohlfing Thomas R Video surveillance system
US20080314597A1 (en) * 2007-06-19 2008-12-25 Andrea Sbordone Apparatus for Subsea Intervention
US7938178B2 (en) * 2004-03-02 2011-05-10 Halliburton Energy Services Inc. Distributed temperature sensing in deep water subsea tree completions
US20110209876A1 (en) * 2010-02-18 2011-09-01 Chevron U.S.A. Inc. Apparatus, System and Method For Releasing Fluids From A Subsea Riser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8127852B2 (en) * 2008-12-23 2012-03-06 Hydril Usa Manufacturing Llc Interchangeable subsea wellhead devices and methods

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636934A (en) * 1984-05-21 1987-01-13 Otis Engineering Corporation Well valve control system
US20030158615A1 (en) * 1998-06-26 2003-08-21 Patrick Weber Control system and method therefor
US6834723B2 (en) * 2000-04-27 2004-12-28 Cooper Cameron Corporation System and method for riser recoil control
US6484816B1 (en) * 2001-01-26 2002-11-26 Martin-Decker Totco, Inc. Method and system for controlling well bore pressure
US6725924B2 (en) * 2001-06-15 2004-04-27 Schlumberger Technology Corporation System and technique for monitoring and managing the deployment of subsea equipment
US6755261B2 (en) * 2002-03-07 2004-06-29 Varco I/P, Inc. Method and system for controlling well fluid circulation rate
US6892812B2 (en) * 2002-05-21 2005-05-17 Noble Drilling Services Inc. Automated method and system for determining the state of well operations and performing process evaluation
US6820702B2 (en) * 2002-08-27 2004-11-23 Noble Drilling Services Inc. Automated method and system for recognizing well control events
US7938178B2 (en) * 2004-03-02 2011-05-10 Halliburton Energy Services Inc. Distributed temperature sensing in deep water subsea tree completions
US20060171453A1 (en) * 2005-01-04 2006-08-03 Rohlfing Thomas R Video surveillance system
US20080314597A1 (en) * 2007-06-19 2008-12-25 Andrea Sbordone Apparatus for Subsea Intervention
US20110209876A1 (en) * 2010-02-18 2011-09-01 Chevron U.S.A. Inc. Apparatus, System and Method For Releasing Fluids From A Subsea Riser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164411A (en) * 2014-01-02 2016-11-23 海德里尔美国配送有限责任公司 It is used for manifesting seabed and controls the healthy system and method with preventive maintenance needs of assembly of subsystem components
US10018007B2 (en) 2014-01-02 2018-07-10 Hydril USA Distribution LLC Systems and methods to visualize component health and preventive maintenance needs for subsea control subsystem components
US10787877B2 (en) 2015-07-06 2020-09-29 Maersk Drilling A/S Blowout preventer control system and methods for controlling a blowout preventer
US11180967B2 (en) 2015-07-06 2021-11-23 Maersk Drilling A/S Blowout preventer control system and methods for controlling a blowout preventer
US11156056B2 (en) * 2019-04-26 2021-10-26 Transocean Sedco Forex Ventures Limited Station keeping and emergency disconnecting capability for a vessel connected to a subsea wellhead in shallow water
US11802460B2 (en) 2019-04-26 2023-10-31 Transocean Sedco Forex Ventures Limited Station keeping and emergency disconnecting capability for a vessel connected to a subsea wellhead in shallow water

Also Published As

Publication number Publication date
BRPI1104991A2 (en) 2013-03-12
CN102561981A (en) 2012-07-11
SG181256A1 (en) 2012-06-28
EP2458142A2 (en) 2012-05-30
AU2011253544A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
US20120132431A1 (en) Emergency Disconnect Sequence Video Capture and Playback
US8555976B2 (en) Emergency disconnect sequence timer display and method
US9772608B2 (en) Oil well improvement system—well monitor and control subsystem
EP2917460B1 (en) Blowout preventer system with three control pods
US9970287B2 (en) Subsea electronic data system
US9085948B2 (en) Method and system for testing a multiplexed BOP control system
US8651190B2 (en) Shear boost triggering and bottle reducing system and method
US9103204B2 (en) Remote communication with subsea running tools via blowout preventer
CA2707923A1 (en) Remote-controlled gravel pack crossover tool utilizing wired drillpipe communication and telemetry
US20150021038A1 (en) Pre-positioned capping device on high pressure wells
CA2814934C (en) Hardened data recording system for drilling rigs and other drilling equipment
US7273105B2 (en) Monitoring of a reservoir
US20130050480A1 (en) Emergency disconnect sequence video sharing
US20220011930A1 (en) Blowout preventer system with data playback
Nilsen et al. Comprehensive instrumentation of two offshore rigs for wellhead fatigue monitoring
Drægebø Reliability analysis of blowout preventer systems: A comparative study of electro-hydraulic vs. all-electric BOP technology
Bavidge Cutting the Umbilical: NASCoM Technology, the Latest Developments In Acoustic Subsea Control
US20140100819A1 (en) Oil field system data recorder for failure reconstruction
CN114464036A (en) Interactive deepwater well shut-in well control scene drilling system and method
Freudenreich Diverless installation of the skuld modular subsea station
Craig et al. The Balmoral Subsea Control System

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYDRIL USA MANUFACTURING LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EBENEZER, JOSEPH PREM;REEL/FRAME:025468/0617

Effective date: 20101203

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION