US20120123722A1 - Fluorescent spectrum correcting method and fluorescent spectrum measuring device - Google Patents
Fluorescent spectrum correcting method and fluorescent spectrum measuring device Download PDFInfo
- Publication number
- US20120123722A1 US20120123722A1 US13/287,459 US201113287459A US2012123722A1 US 20120123722 A1 US20120123722 A1 US 20120123722A1 US 201113287459 A US201113287459 A US 201113287459A US 2012123722 A1 US2012123722 A1 US 2012123722A1
- Authority
- US
- United States
- Prior art keywords
- fluorescent
- spectrum
- fluorescent spectrum
- micro
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 165
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000000049 pigment Substances 0.000 claims abstract description 66
- 239000011859 microparticle Substances 0.000 claims abstract description 46
- 238000004458 analytical method Methods 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 31
- 238000012937 correction Methods 0.000 description 25
- 239000011324 bead Substances 0.000 description 22
- 239000000523 sample Substances 0.000 description 22
- 239000004793 Polystyrene Substances 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 9
- 229920002223 polystyrene Polymers 0.000 description 9
- 238000000684 flow cytometry Methods 0.000 description 6
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 5
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 5
- 239000011664 nicotinic acid Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- QKFJKGMPGYROCL-UHFFFAOYSA-N phenyl isothiocyanate Chemical compound S=C=NC1=CC=CC=C1 QKFJKGMPGYROCL-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- UYRDHEJRPVSJFM-VSWVFQEASA-N [(1s,3r)-3-hydroxy-4-[(3e,5e,7e,9e,11z)-11-[4-[(e)-2-[(1r,3s,6s)-3-hydroxy-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-6-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaenylidene]-3,5,5-trimethylcyclohexyl] acetate Chemical compound C[C@@]1(O)C[C@@H](OC(=O)C)CC(C)(C)C1=C=C\C(C)=C\C=C\C=C\C=C(/C)\C=C/1C=C(\C=C\[C@]23[C@@](O2)(C)C[C@@H](O)CC3(C)C)C(=O)O\1 UYRDHEJRPVSJFM-VSWVFQEASA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000003219 hemolytic agent Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- UTIQDNPUHSAVDN-UHFFFAOYSA-N peridinin Natural products CC(=O)OC1CC(C)(C)C(=C=CC(=CC=CC=CC=C2/OC(=O)C(=C2)C=CC34OC3(C)CC(O)CC4(C)C)C)C(C)(O)C1 UTIQDNPUHSAVDN-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
Definitions
- the present disclosure relates to a fluorescent spectrum correcting method and a fluorescent spectrum measuring device. More particularly, the present disclosure relates to a technique for separating the fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments, for each pigment.
- flow cytometry flow cytometer
- the flow cytometry is a method of irradiating micro-particles flowing in a flow path in one row with laser light (excitement light) of a specific wavelength and detecting fluorescent light or diffused light emitted by the micro-particles to analyze the plurality of micro-particles one by one.
- the light detected by an optical detector is converted into an electrical signal to be a value and statistical analysis is performed to determine types, sizes, structures, and the like of individual micro-particles.
- a spectral deconvolution method of previously registering the light emission spectrum of used fluorescent labels in advance in a computer, separating the light emission spectrum of a measurement target into the light emission spectrum of the fluorescent label using the data, and determining an existence ratio of the fluorescent labels is proposed (see Japanese Unexamined Patent Application Publication No. 2005-181276).
- spectrum absorption light measurement such as an infrared spectrum method
- correction or analysis of the measured spectrum is performed on the basis of a standard spectrum or reference spectrum (e.g., see Japanese Unexamined Patent Application Publication Nos. 2005-195586 and 2009-162667).
- the stray fluorescent light detected by detectors other than the desired detector is a big problem, as well as it being necessary to prepare high-sensitivity detectors corresponding to the number of desired fluorescent pigments.
- the fluorescent correction is not performed due to stray fluorescent light.
- each of the fluorescent pigments has a special spectrum, and the spectrum information represents the characteristics of the fluorescent pigment itself to be important data.
- the spectrum information represents the characteristics of the fluorescent pigment itself to be important data.
- data of a single stain sample is necessary.
- the number of operations of fluorescent correction is in proportion to substantially the square of the number of fluorescent pigments used, and it is troublesome to the observer.
- the volume of a test target object such as collectible blood is finite, and thus there is a case where it is difficult to produce the single stain sample for each fluorescent pigment.
- a fluorescent spectrum correcting method including: comparing the fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments with a reference spectrum to separate the fluorescent spectrum into a fluorescent spectrum for each pigment, wherein previously measured spectrum data is used as the reference spectrum.
- spectrum data in which an error from a single stain sample is equal to or less than 8% may be used as the reference spectrum.
- the measurement date, the potential of a detector, the type of coupled antibody, and any spectrum data of a different type of cell when the micro-particles are cells are used as the reference spectrum.
- fluorescent spectrum data measured using cells may be used as the reference spectrum.
- a fluorescent spectrum measuring device including: a detection unit that simultaneously detects fluorescent light emitted from micro-particles in an arbitrary wavelength region; an analysis unit that separates the data detected by the detection unit into a fluorescent spectrum for each pigment; and a memory unit that stores the fluorescent spectrum data separated by the analysis unit, wherein the analysis unit uses the previously measured fluorescent spectrum data stored in the memory unit as the reference spectrum to perform separation of a fluorescent spectrum.
- the detection unit may be provided with a multi-channel photo-multiplier tube.
- the single stain sample is not necessary, the overlap between each spectrum can be dissolved with high precision, and further the single stain sample is not necessary.
- FIG. 1 is a block diagram illustrating a configuration of a fluorescent spectrum measuring device according to a first embodiment of the present disclosure.
- FIG. 2A is a graph illustrating a relationship between a measurement date and fluorescent spectrum in which a horizontal axis is a channel number of a detector and a vertical axis is a fluorescent intensity
- FIG. 2B is a graph illustrating an error in each wavelength (FITC:CD 14 ).
- FIG. 3A is a graph illustrating a relationship between a measurement date and a fluorescent spectrum in which the horizontal axis is a channel number of a detector and the vertical axis is a fluorescent intensity
- FIG. 3B is a graph illustrating an error in each wavelength (PE:CD 3 ).
- FIG. 4A is a graph illustrating a relationship between a measurement date and a fluorescent spectrum in which the horizontal axis is a channel number of a detector and the vertical axis is a fluorescent intensity
- FIG. 4B is a graph illustrating an error in each wavelength (spectrum corresponding to FITC of BD 7-Color Setup Beads).
- FIG. 5A is a graph illustrating a relationship between a measurement date and a fluorescent spectrum in which the horizontal axis is a channel number of a detector and the vertical axis is a fluorescent intensity
- FIG. 5B is a graph illustrating an error in each wavelength (spectrum corresponding to PE of BD 7-Color Setup Beads).
- FIG. 6A is a graph illustrating a relationship between potential of a detector and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity
- FIG. 6B is a graph illustrating an error in each wavelength.
- FIG. 7A is a graph illustrating a relationship between a coupled antibody and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity
- FIG. 7B is a graph illustrating an error in each wavelength (FITC:CD 45 vs FITC:CD 45 RA).
- FIG. 8A is a graph illustrating a relationship between a coupled antibody and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity
- FIG. 8B is a graph illustrating an error in each wavelength (PE:CD 8 vs PE:CD 3 ).
- FIG. 9 is a density plot of blood cells for managing precision in which the horizontal axis is data of an antibody CD 45 of a fluorescent pigment FITC and the vertical axis is data of an antibody CD 8 of a fluorescent pigment PE.
- FIG. 10 is an analysis result in which the horizontal axis is data of an antibody CD 45 RA of a fluorescent pigment FITC and the vertical axis is data of an antibody CD 3 of a fluorescent pigment PE.
- FIG. 11A is a graph illustrating a relationship between a type of micro-particle and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity
- FIG. 11B is a graph illustrating an error in each wavelength.
- FIG. 12A is a graph illustrating a relationship between a type of micro-particle and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity
- FIG. 12B is a graph illustrating an error in each wavelength.
- FIG. 13 is an analysis result in which the horizontal axis is data of polystyrene beads containing a fluorescent pigment FITC of BD 7-Color Setup Beads and the vertical axis is data of polystyrene beads containing a fluorescent pigment PE of BD 7-Color Setup Beads.
- a fluorescent spectrum correcting method (hereinafter, merely referred to as a correction method) according to a first embodiment of the present disclosure will be described.
- previously measured fluorescent spectrum is used as reference spectrum when fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments is separated for each pigment.
- the “micro-particles” widely include bionic micro-particles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
- the bionic micro-particles include chromosomes constituting various cells, liposomes, mitochondria, organelles (cell organelles), and the like.
- the cells include vegetable cells, animal cells, blood corpuscle cells, and the like.
- the microorganisms include bacilli such as colon bacilli, viruses such as tobacco mosaic viruses, germs such as yeast, and the like.
- the bionic micro-particles may include bionic polymers such as hexane, protein, and complexes thereof.
- the industrial particles may be formed of, for example, organic polymer materials, inorganic materials, or metal materials.
- Polystyrene, styrene divinyl benzene, polymethyl methacrylate, and the like may be used as the organic polymer materials.
- Glass, silica, magnetic materials, and the like may be used as the inorganic materials.
- gold colloid, aluminum, and the like may be used as the metal materials.
- the shape of the micro-particles is generally spherical, but may be non-spherical, and the size, mass, and the like are not particularly limited.
- an error from spectrum of a single stain sample of measurement target micro-particles is preferably 8% or less, and more preferably 3% or less. Accordingly, a matching error from the measurement data is small, and it is possible to perform fluorescent correction with high precision.
- the reference spectrum of each pigment for example, the measurement date, the potential of the detector, the output of laser, the flux of micro-particles, the type of coupled antibodies, or data (fluorescent spectrum) of a different type of cells when the micro-particles are cells may be used. Since such conditions do not have a great influence on the fluorescent spectrum, it is possible to dissolve the overlap with high precision even when such spectrum data is used in the reference spectrum to perform correction.
- the results obtained from the measurement using beads are not used as the reference spectrum, for example, even when they are labeled with the same fluorescent pigment, and the opposite case is the same.
- the reference spectrum even when there is a difference in type between cells, they may be used as the reference spectrum.
- the reference spectrum even when there is a difference in type between beads, they may be used as the reference spectrum.
- the spectrum data in which the error from the single stain sample of the previously measured measurement target micro-particles is 8% or less is used as the reference spectrum, it is not necessary to prepare the single stain sample at the stage of measurement. Accordingly, the burden on the worker is reduced, and thus work efficiency is also improved. Even when the amount of a test target object is small like a small animal such as a rat, it is possible to perform analysis without decreasing accuracy.
- the fluorescent spectrum correcting method of the embodiment is applicable irrespective of processes before and after it when the method is a method having a process of separating the fluorescent spectrum obtained from the micro-particles labeled with the plurality of fluorescent pigments for each pigment using the reference spectrum.
- FIG. 1 is a block diagram illustrating a configuration of the fluorescent spectrum measuring device of the embodiment.
- the fluorescent spectrum measuring device 1 of the embodiment includes at least a detection unit 2 , a memory unit 3 , and an analysis unit 4 , and performs the correction method of the first embodiment.
- the fluorescent spectrum measuring device 1 shown in FIG. 1 may further include a liquid transmitting unit.
- the detection unit 2 may have a configuration in which fluorescent light emitted from the analysis target micro-particles can be simultaneously detected in an arbitrary wavelength region.
- a plurality of independent sensors capable of detecting the wavelength region for each wavelength region are disposed, or one or more detectors capable of simultaneously detecting a plurality of light such as a multi-channel photo-multiplier tube (PMT) may be provided.
- the number of wavelength regions detected by the detector 2 that is, the number of channels or sensors provided in the detector 2 is preferably equal to or more than the number of used pigments.
- the fluorescent spectrum measuring device 1 of the embodiment may have a configuration in which the detector 2 is provided with a spectroscope, and the fluorescent light emitted from the micro-particles is dispersed by the spectroscope and then enters a detector such as the multi-channel PMT.
- the detection unit 2 may be provided with an object lens, a condensing lens, a pinhole, a band cutoff filter, a dichroic mirror, and the like, as necessary.
- the light of each wavelength region detected by the detection unit 2 is quantified to acquire total fluorescent light quantity (intensity) using an electronic calculator or the like. Fluorescent spectrum correction using the reference spectrum is performed as necessary. The result (fluorescent spectrum data) is stored in the memory unit 4 .
- the memory unit 4 stores the fluorescent spectrum data processed by the analysis unit 3 .
- the fluorescent spectrum data of the single stain sample may be stored in the memory unit 4 , as well as the previously measured fluorescent spectrum data.
- the micro-particles analyzed by the fluorescent spectrum measuring device 1 of the embodiment are not particularly limited, but may be, for example, cells or micro-beads.
- the type or number of fluorescent pigments modifying the micro-particles is not particularly limited, but existing pigments such as FITC (fluorescein isothiocynate: C 21 H 11 NO 5 S), PE (phycoerythrin), PerCP (peridinin chlorophyll protein), and PE-Cy5, and PE-Cy7 may be appropriately selected and used as necessary.
- the micro-particles may be modified by the plurality of fluorescent pigments.
- the micro-particles are optically analyzed using the fluorescent spectrum measuring device 1 of the embodiment, first, excitement light is output from a light source and the micro-particles flowing in a flow path are irradiated with the excitement light. Then, the fluorescent light output from the micro-particles is detected by the detection unit 2 . Specifically, only light (desired fluorescent light) of a specific wavelength is separated from the light output from the micro-particles using a dichroic mirror, a band pass filter, or the like, and the light is detected by a detector such as a 32-channel PMT. In this case, the fluorescent light is dispersed using, for example, a spectroscope, and light of different wavelengths is detected in each channel of the detector. Accordingly, it is possible to obtain the spectrum information of the detection light (fluorescent light).
- the information of several detectors acquired in the detection unit 2 are converted into digital signals in, for example, a conversion unit (not shown), and is further quantified in the analysis unit 3 .
- the fluorescent correction is performed using the previously measured fluorescent spectrum data stored in the memory unit 4 as the reference spectrum.
- fluorescent spectrum data in which an error from the spectrum of the single stain sample of the micro-particles is 8% or less is used, for example, measurement date, potential of the detector, type of coupled antibody, or different type of cells when the micro-particles are cells.
- the fluorescent spectrum data after correction is stored in the memory unit 4 .
- the fluorescent spectrum measuring device of the present disclosure since the spectrum data in which the error from the spectrum of the single stain sample of the measurement target micro-particles is 8% or less is used as the reference spectrum, it is possible to perform the correction with high precision even when the single stain sample is not used.
- the fluorescent spectrum data that is the reference spectrum is sequentially accumulated in the memory unit 4 , and thus it is possible to construct a database suitable for a real use situation.
- the measurement data, the potential of the detector, the type of coupled antibody, and the type of micro-particles were changed, the fluorescent spectrum was compared, and the difference thereof was examined.
- an Immuno-TROL made by Beckman Coulter, Co., Ltd.
- a Multi-Check made by Becton Dickinson, Co., Ltd.
- They are positive process controls for flow cytometry (whole blood control examination target object), and represent diffused light, distribution of cell groups, fluorescent intensity, and antigen density since a positive rate of a particular surface antigen and an absolute number are calibrated in a monocyte.
- a product available on the market (made by made by Beckman Coulter, Co., Ltd. or Becton Dickinson, Co., Ltd.) was used as an antibody labeled with a fluorescent pigment.
- Dyeing of the sample was performed according to a titration method. Specifically, the temperature of the sample was kept at room temperature, then the antibody labeled with the desired fluorescent pigment was dropped into a dedicated plastic tube, blood of 50 ⁇ L was dropped therein to be smoothly infiltrated, and the antibody and the cell were made to react. It was left for 20 minutes at a dark place at room temperature. Then, a hemolytic agent (FACS Lyse solution: ammonium chloride solution, Beckman Coulter, Co., Ltd.) of 1 ml was dropped into it. Accordingly, red blood corpuscles were hemolyzed, granulocyte, monocyte, and lymphocyte remain. It was centrifuged and washed by an appropriate solution, and thus a high purity sample solution was obtained.
- FACS Lyse solution ammonium chloride solution, Beckman Coulter, Co., Ltd.
- the cell solution (sample solution) adjusted by the method described above was introduced into a special measurement cell for cell analysis formed of plastic, 3-dimensional focus was performed by a sheath solution for flow cytometer, and then it was irradiated with the excitement light.
- Laser beams with wavelengths of 488 nm and 640 nm were used as an excitement source.
- the fluorescent light emitted from each cell was dispersed by a prism spectroscope or the like, and then was detected by the 32ch PMT.
- the 32ch PMT was used as the detector, but two laser beams were used as the excitement light. Accordingly, the spectrum data of 64 channels as the amount of information were transmitted to the analysis unit and the memory unit.
- FIG. 2A , FIG. 3A , FIG. 4A , and FIG. 5A are graphs in which the horizontal axis is a channel number (wavelength dependent number) of the detector and the vertical axis is fluorescent intensity
- FIG. 2B , FIG. 3B , FIG. 4B , and FIG. 5B are graphs illustrating an error in each wavelength.
- the florescent spectrum shown in FIG. 2A and FIG. 2B is data measured using FITC as the florescent pigment and CD 14 as the antibody
- the florescent spectrum shown in FIG. 3A and FIG. 3B is data measured using PE as the florescent pigment and CD 3 as the antibody. The same lot was used at any date.
- FIG. 4A and FIG. 4B are fluorescent spectrum of polystyrene beads containing the florescent pigment FITC of BD 7-Color Setup Beads.
- FIG. 5A and FIG. 5B are fluorescent spectrum of polystyrene beads containing the fluorescent pigment PE of BD 7-Color Setup Beads.
- the PMT was used as all the detectors, and application voltage was 630 V.
- FIG. 6A is a graph illustrating a relationship between the potential of the detector and the florescent spectrum in which the horizontal axis is the channel number (wavelength dependent number) of the detector and the vertical axis is the fluorescent intensity
- FIG. 6B is a graph illustrating an error in each wavelength.
- the fluorescent spectrum shown in FIG. 6A and FIG. 6B is data measured using the PE as the fluorescent pigment, the CD 3 as the antibody, and the PMT as the detector.
- PMTV150 is 525V
- PMTV160 is 560V
- PMTV170 is 595V
- PMTV180 is 630V
- PMTV190 665V
- PMTV200 is 700V.
- the error of the spectrum was 3% or less even when the potential of the detector was changed. Accordingly, it was confirmed that the fluorescent spectrum data with the different potential of the detection was usable as the reference spectrum.
- FIG. 7A and FIG. 8A are graphs illustrating a relationship between the coupled antibody and the fluorescent spectrum in which the horizontal axis is the channel number (wavelength dependent number) of the detector and the vertical axis is the fluorescent intensity
- FIG. 7B and FIG. 8B are graphs illustrating an error in each wavelength.
- the fluorescent spectrum shown in FIG. 7A and FIG. 7B is data measured using A: the FITC as the fluorescent pigment and the CD 45 as the antibody and B: the FITC as the fluorescent pigment and the CD 45 RA as the antibody.
- the fluorescent spectrum shown in FIG. 8A and FIG. 8B is data measured using A: the PE as the fluorescent pigment and the CD 8 as the antibody and B: the FE as the fluorescent pigment and the CD 3 as the antibody.
- the PMT was used as the detector, and all the application voltages were 525 V.
- FIG. 9 is a density plot illustrating a result thereof. As shown in FIG. 9 , the analysis was performed using the reference spectrum generated by the single stain, and it could be divided into three cell groups. Each group indicates that the fluorescent correction is satisfactorily performed at an orthogonal position. The number of existence in a region throughout a gate was FITC+PE+:278 and PICT+PE ⁇ :750, and a ratio thereof was 0.37:1.
- FIG. 10 is a density plot illustrating a result thereof. As shown in FIG. 10 , in the 2-dimensionally developed plot based on the FITC and PE as the fluorescent pigment, three cell groups are clearly classified, and each of them was positioned at the orthogonal position. Comparing distribution throughout the gate, the number of was FITV+PE+:280 and PITC+PE ⁇ :750, and the ratio thereof was 0.37:1 and was equal to the existence ratio of the data shown in FIG. 9 .
- FIG. 11A and FIG. 12A are graphs illustrating a relationship between the type of the micro-particles and the fluorescent spectrum in which the horizontal axis is the channel number (wavelength dependent number) and the vertical axis is the fluorescent intensity
- FIG. 11B and FIG. 12B are graphs illustrating an error in each wavelength.
- FIG. 11A and FIG. 11B are A: fluorescent spectrum when the FITC was used as the pigment and the CD 45 was used as the antibody
- B fluorescent spectrum when polystyrene beads containing the fluorescent pigment FITC of BD 7-Color Setup Beads were used.
- A fluorescent spectrum when the PE was used as the pigment and the CD 8 was used as the antibody
- B fluorescent spectrum when polystyrene beads containing the fluorescent pigment PE of BD 7-Color Setup Beads were used. All the application voltages were 630 V.
- FIG. 13 is a density plot illustrating the result thereof. As shown in FIG. 13 , the cell groups are classified into three, and each of them was positioned at the orthogonal position. Comparing distribution throughout the gate, the number of was FITV+PE+:272 and PITC+PE ⁇ :213, and the ratio thereof was 1.28:1 and was not equal to the existence ratio of the data shown in FIG. 9 and FIG. 10 .
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Signal Processing (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
A fluorescent spectrum correcting method includes comparing fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments with reference spectrum to separating the fluorescent spectrum into fluorescent spectrum for each pigment, and previously measured spectrum data is used as the reference spectrum.
Description
- The present application claims priority to Japanese Patent Application No. 2010-252863 filed on Nov. 11, 2010, the disclosure of which is incorporated herein by reference.
- The present disclosure relates to a fluorescent spectrum correcting method and a fluorescent spectrum measuring device. More particularly, the present disclosure relates to a technique for separating the fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments, for each pigment.
- Generally, when micro-particles such as cells, microorganisms, and liposomes are analyzed, flow cytometry (flow cytometer) is used (e.g., see Hiromitsu Nakauchi Edition, “Cell Engineering Additional Volume Experiment Protocol Series Flow Cytometry Freely”, Second Edition, Shujunsha Co., Ltd., Published Aug. 31, 2006). The flow cytometry is a method of irradiating micro-particles flowing in a flow path in one row with laser light (excitement light) of a specific wavelength and detecting fluorescent light or diffused light emitted by the micro-particles to analyze the plurality of micro-particles one by one. In the flow cytometry, the light detected by an optical detector is converted into an electrical signal to be a value and statistical analysis is performed to determine types, sizes, structures, and the like of individual micro-particles.
- Recently, in basic medical science and the clinical field, to advance comprehensive analysis, there are many cases of simultaneously using a number of molecular probes. Accordingly, biological knowledge is rapidly accumulated, and understanding of the phenomenon of life is advanced. For this reason, even in the flow cytometry, multi-color analysis using a plurality of fluorescent pigments has come into wide use (e.g., see Japanese Unexamined Patent Application Publication No. 2006-230333 and PCT Japanese Translation Patent Publication No. 2008-500558).
- Meanwhile, when a plurality of fluorescent pigments are used in one measurement in the same manner as multi-color analysis, high-sensitivity detectors corresponding to the number of fluorescent pigments are necessary. The light from undesired fluorescent pigments of the detectors is confused, and thus analytical quality control decreases. In the flow cytometer of the related art, since only the desired optical information is taken from the desired fluorescent pigments, mathematical correction, that is, fluorescent correction is performed when the light detected by the optical detector is converted into the electrical signal to be a value.
- However, in quite a few fluorescent corrections, since the light detected by the undesired detector is discriminated by eyes of an observer, human error may occur, and thus it may be incorrect. For this reason, the observer has to understand the device and has to be trained to use the device while having knowledge of cells, fluorescent pigments, antibodies, and the like. Therefore, observers have to have highly specialized knowledge.
- In the related art, a spectral deconvolution method of previously registering the light emission spectrum of used fluorescent labels in advance in a computer, separating the light emission spectrum of a measurement target into the light emission spectrum of the fluorescent label using the data, and determining an existence ratio of the fluorescent labels is proposed (see Japanese Unexamined Patent Application Publication No. 2005-181276). In spectrum absorption light measurement such as an infrared spectrum method, in the related art, correction or analysis of the measured spectrum is performed on the basis of a standard spectrum or reference spectrum (e.g., see Japanese Unexamined Patent Application Publication Nos. 2005-195586 and 2009-162667).
- However, in the micro-particle analyzing device provided with the plurality of high-sensitivity detectors of the related art, the stray fluorescent light detected by detectors other than the desired detector is a big problem, as well as it being necessary to prepare high-sensitivity detectors corresponding to the number of desired fluorescent pigments. Particularly, in the case of the fluorescent pigments to which the spectrum is close, the fluorescent correction is not performed due to stray fluorescent light.
- For this reason, even when a plurality of high-sensitivity detectors are disposed, there is a limit to the number of simultaneously detectable fluorescent pigments in the micro-particle analyzing device of the related art. For example, similarly to the spectrum type flow cytometer, which does not have a plurality of high-sensitivity detectors, a next generation flow cytometer usable under a condition where stray fluorescent light exists is necessary.
- As described above, each of the fluorescent pigments has a special spectrum, and the spectrum information represents the characteristics of the fluorescent pigment itself to be important data. However, to accurately estimate the overlap between each spectrum and to perform fluorescent correction with high precision, data of a single stain sample is necessary.
- For this reason, a worker has to prepare the single stain sample for each fluorescent pigment, and the work increases according to the increase in the number of pigments used. Accordingly, the burden on the worker increases and work efficiency decreases. The number of operations of fluorescent correction is in proportion to substantially the square of the number of fluorescent pigments used, and it is troublesome to the observer. As a practical problem, the volume of a test target object such as collectible blood is finite, and thus there is a case where it is difficult to produce the single stain sample for each fluorescent pigment.
- In the present disclosure, it is desirable to provide a fluorescent spectrum correcting method and a fluorescent spectrum measuring device capable of dissolving the overlap between each spectrum with high precision even when the single stain sample is not prepared for each fluorescent pigment.
- According to an embodiment of the present disclosure, there is provided a fluorescent spectrum correcting method including: comparing the fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments with a reference spectrum to separate the fluorescent spectrum into a fluorescent spectrum for each pigment, wherein previously measured spectrum data is used as the reference spectrum.
- In the correction method, spectrum data in which an error from a single stain sample is equal to or less than 8% may be used as the reference spectrum.
- In the correction method, the measurement date, the potential of a detector, the type of coupled antibody, and any spectrum data of a different type of cell when the micro-particles are cells are used as the reference spectrum.
- In the correction method, when the micro-particles are cells, fluorescent spectrum data measured using cells may be used as the reference spectrum.
- According to another embodiment of the present disclosure, there is provided a fluorescent spectrum measuring device including: a detection unit that simultaneously detects fluorescent light emitted from micro-particles in an arbitrary wavelength region; an analysis unit that separates the data detected by the detection unit into a fluorescent spectrum for each pigment; and a memory unit that stores the fluorescent spectrum data separated by the analysis unit, wherein the analysis unit uses the previously measured fluorescent spectrum data stored in the memory unit as the reference spectrum to perform separation of a fluorescent spectrum.
- In the device, the detection unit may be provided with a multi-channel photo-multiplier tube.
- According to the embodiments of the present disclosure, since the previously measured fluorescent spectrum data is used, the single stain sample is not necessary, the overlap between each spectrum can be dissolved with high precision, and further the single stain sample is not necessary.
- Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.
-
FIG. 1 is a block diagram illustrating a configuration of a fluorescent spectrum measuring device according to a first embodiment of the present disclosure. -
FIG. 2A is a graph illustrating a relationship between a measurement date and fluorescent spectrum in which a horizontal axis is a channel number of a detector and a vertical axis is a fluorescent intensity, andFIG. 2B is a graph illustrating an error in each wavelength (FITC:CD14). -
FIG. 3A is a graph illustrating a relationship between a measurement date and a fluorescent spectrum in which the horizontal axis is a channel number of a detector and the vertical axis is a fluorescent intensity, andFIG. 3B is a graph illustrating an error in each wavelength (PE:CD3). -
FIG. 4A is a graph illustrating a relationship between a measurement date and a fluorescent spectrum in which the horizontal axis is a channel number of a detector and the vertical axis is a fluorescent intensity, andFIG. 4B is a graph illustrating an error in each wavelength (spectrum corresponding to FITC of BD 7-Color Setup Beads). -
FIG. 5A is a graph illustrating a relationship between a measurement date and a fluorescent spectrum in which the horizontal axis is a channel number of a detector and the vertical axis is a fluorescent intensity, andFIG. 5B is a graph illustrating an error in each wavelength (spectrum corresponding to PE of BD 7-Color Setup Beads). -
FIG. 6A is a graph illustrating a relationship between potential of a detector and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity, andFIG. 6B is a graph illustrating an error in each wavelength. -
FIG. 7A is a graph illustrating a relationship between a coupled antibody and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity, andFIG. 7B is a graph illustrating an error in each wavelength (FITC:CD45 vs FITC:CD45RA). -
FIG. 8A is a graph illustrating a relationship between a coupled antibody and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity, andFIG. 8B is a graph illustrating an error in each wavelength (PE:CD8 vs PE:CD3). -
FIG. 9 is a density plot of blood cells for managing precision in which the horizontal axis is data of an antibody CD45 of a fluorescent pigment FITC and the vertical axis is data of an antibody CD8 of a fluorescent pigment PE. -
FIG. 10 is an analysis result in which the horizontal axis is data of an antibody CD45RA of a fluorescent pigment FITC and the vertical axis is data of an antibody CD3 of a fluorescent pigment PE. -
FIG. 11A is a graph illustrating a relationship between a type of micro-particle and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity, andFIG. 11B is a graph illustrating an error in each wavelength. -
FIG. 12A is a graph illustrating a relationship between a type of micro-particle and a fluorescent spectrum in which the horizontal axis is a channel number (wavelength dependent number) of a detector and the vertical axis is a fluorescent intensity, andFIG. 12B is a graph illustrating an error in each wavelength. -
FIG. 13 is an analysis result in which the horizontal axis is data of polystyrene beads containing a fluorescent pigment FITC of BD 7-Color Setup Beads and the vertical axis is data of polystyrene beads containing a fluorescent pigment PE of BD 7-Color Setup Beads. - Embodiments of the present application will be described below in detail with reference to the drawings.
- 1. First Embodiment
- Example of Method of Correcting Fluorescent Spectrum without Using Single Stain Sample
- 2. Second Embodiment
- Example of Fluorescent Spectrum Measuring Device without Using Single Stain Sample
- Correction Method
- First, a fluorescent spectrum correcting method (hereinafter, merely referred to as a correction method) according to a first embodiment of the present disclosure will be described. In the correction method of the embodiment, previously measured fluorescent spectrum is used as reference spectrum when fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments is separated for each pigment.
- Herein, the “micro-particles” widely include bionic micro-particles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles. The bionic micro-particles include chromosomes constituting various cells, liposomes, mitochondria, organelles (cell organelles), and the like. The cells include vegetable cells, animal cells, blood corpuscle cells, and the like. The microorganisms include bacilli such as colon bacilli, viruses such as tobacco mosaic viruses, germs such as yeast, and the like. The bionic micro-particles may include bionic polymers such as hexane, protein, and complexes thereof.
- The industrial particles may be formed of, for example, organic polymer materials, inorganic materials, or metal materials. Polystyrene, styrene divinyl benzene, polymethyl methacrylate, and the like may be used as the organic polymer materials. Glass, silica, magnetic materials, and the like may be used as the inorganic materials. For example, gold colloid, aluminum, and the like may be used as the metal materials. The shape of the micro-particles is generally spherical, but may be non-spherical, and the size, mass, and the like are not particularly limited.
- In the correction method of the embodiment, in the spectrum data used as the reference spectrum, an error from spectrum of a single stain sample of measurement target micro-particles is preferably 8% or less, and more preferably 3% or less. Accordingly, a matching error from the measurement data is small, and it is possible to perform fluorescent correction with high precision.
- Specifically, in the reference spectrum of each pigment, for example, the measurement date, the potential of the detector, the output of laser, the flux of micro-particles, the type of coupled antibodies, or data (fluorescent spectrum) of a different type of cells when the micro-particles are cells may be used. Since such conditions do not have a great influence on the fluorescent spectrum, it is possible to dissolve the overlap with high precision even when such spectrum data is used in the reference spectrum to perform correction.
- However, when the micro-particles are cells, the results obtained from the measurement using beads are not used as the reference spectrum, for example, even when they are labeled with the same fluorescent pigment, and the opposite case is the same. As described above, even when there is a difference in type between cells, they may be used as the reference spectrum. Of course, even when there is a difference in type between beads, they may be used as the reference spectrum.
- In the correction method of the embodiment, since the spectrum data in which the error from the single stain sample of the previously measured measurement target micro-particles is 8% or less is used as the reference spectrum, it is not necessary to prepare the single stain sample at the stage of measurement. Accordingly, the burden on the worker is reduced, and thus work efficiency is also improved. Even when the amount of a test target object is small like a small animal such as a rat, it is possible to perform analysis without decreasing accuracy.
- The fluorescent spectrum correcting method of the embodiment is applicable irrespective of processes before and after it when the method is a method having a process of separating the fluorescent spectrum obtained from the micro-particles labeled with the plurality of fluorescent pigments for each pigment using the reference spectrum.
- Overall Configuration of Device
- Next, a fluorescent spectrum measuring device according to a second embodiment of the present disclosure will be described.
FIG. 1 is a block diagram illustrating a configuration of the fluorescent spectrum measuring device of the embodiment. As shown inFIG. 1 , the fluorescentspectrum measuring device 1 of the embodiment includes at least adetection unit 2, amemory unit 3, and ananalysis unit 4, and performs the correction method of the first embodiment. The fluorescentspectrum measuring device 1 shown inFIG. 1 may further include a liquid transmitting unit. - Configuration of
Detection Unit 2 - The
detection unit 2 may have a configuration in which fluorescent light emitted from the analysis target micro-particles can be simultaneously detected in an arbitrary wavelength region. Specifically, a plurality of independent sensors capable of detecting the wavelength region for each wavelength region are disposed, or one or more detectors capable of simultaneously detecting a plurality of light such as a multi-channel photo-multiplier tube (PMT) may be provided. The number of wavelength regions detected by thedetector 2, that is, the number of channels or sensors provided in thedetector 2 is preferably equal to or more than the number of used pigments. - The fluorescent
spectrum measuring device 1 of the embodiment may have a configuration in which thedetector 2 is provided with a spectroscope, and the fluorescent light emitted from the micro-particles is dispersed by the spectroscope and then enters a detector such as the multi-channel PMT. Thedetection unit 2 may be provided with an object lens, a condensing lens, a pinhole, a band cutoff filter, a dichroic mirror, and the like, as necessary. - Configuration of
Analysis Unit 3 - In the
analysis unit 3, the light of each wavelength region detected by thedetection unit 2 is quantified to acquire total fluorescent light quantity (intensity) using an electronic calculator or the like. Fluorescent spectrum correction using the reference spectrum is performed as necessary. The result (fluorescent spectrum data) is stored in thememory unit 4. - Configuration of
Memory Unit 4 - The
memory unit 4 stores the fluorescent spectrum data processed by theanalysis unit 3. For example, the fluorescent spectrum data of the single stain sample may be stored in thememory unit 4, as well as the previously measured fluorescent spectrum data. - Operation of Fluorescent
Spectrum Measuring Device 1 - Next, an operation of the fluorescent
spectrum measuring device 1 of the embodiment will be described. The micro-particles analyzed by the fluorescentspectrum measuring device 1 of the embodiment are not particularly limited, but may be, for example, cells or micro-beads. The type or number of fluorescent pigments modifying the micro-particles is not particularly limited, but existing pigments such as FITC (fluorescein isothiocynate: C21H11NO5S), PE (phycoerythrin), PerCP (peridinin chlorophyll protein), and PE-Cy5, and PE-Cy7 may be appropriately selected and used as necessary. The micro-particles may be modified by the plurality of fluorescent pigments. - When the micro-particles are optically analyzed using the fluorescent
spectrum measuring device 1 of the embodiment, first, excitement light is output from a light source and the micro-particles flowing in a flow path are irradiated with the excitement light. Then, the fluorescent light output from the micro-particles is detected by thedetection unit 2. Specifically, only light (desired fluorescent light) of a specific wavelength is separated from the light output from the micro-particles using a dichroic mirror, a band pass filter, or the like, and the light is detected by a detector such as a 32-channel PMT. In this case, the fluorescent light is dispersed using, for example, a spectroscope, and light of different wavelengths is detected in each channel of the detector. Accordingly, it is possible to obtain the spectrum information of the detection light (fluorescent light). - Thereafter, the information of several detectors acquired in the
detection unit 2 are converted into digital signals in, for example, a conversion unit (not shown), and is further quantified in theanalysis unit 3. At that time, the fluorescent correction is performed using the previously measured fluorescent spectrum data stored in thememory unit 4 as the reference spectrum. Specifically, in the reference spectrum of each pigment, fluorescent spectrum data in which an error from the spectrum of the single stain sample of the micro-particles is 8% or less is used, for example, measurement date, potential of the detector, type of coupled antibody, or different type of cells when the micro-particles are cells. The fluorescent spectrum data after correction is stored in thememory unit 4. - In the fluorescent spectrum measuring device of the present disclosure, since the spectrum data in which the error from the spectrum of the single stain sample of the measurement target micro-particles is 8% or less is used as the reference spectrum, it is possible to perform the correction with high precision even when the single stain sample is not used. The fluorescent spectrum data that is the reference spectrum is sequentially accumulated in the
memory unit 4, and thus it is possible to construct a database suitable for a real use situation. - Particularly, when a cell is used as a sample, there is a case where it is difficult to avoid the change of the potential of the detector and the laser output. In such a case, in the device of the related art, it is necessary to perform the correction again to take the consistency of the fluorescent correction. However, in the fluorescent spectrum device of the embodiment, it is not necessary to do.
- Hereinafter, advantages of the present disclosure will be described in detail with reference to an example of the present disclosure. In the example, the measurement data, the potential of the detector, the type of coupled antibody, and the type of micro-particles were changed, the fluorescent spectrum was compared, and the difference thereof was examined.
- In the Example, an Immuno-TROL (made by Beckman Coulter, Co., Ltd.) or a Multi-Check (made by Becton Dickinson, Co., Ltd.) available on the market as a precision managing cell was used as a sample. They are positive process controls for flow cytometry (whole blood control examination target object), and represent diffused light, distribution of cell groups, fluorescent intensity, and antigen density since a positive rate of a particular surface antigen and an absolute number are calibrated in a monocyte. A product available on the market (made by made by Beckman Coulter, Co., Ltd. or Becton Dickinson, Co., Ltd.) was used as an antibody labeled with a fluorescent pigment.
- Dyeing of the sample was performed according to a titration method. Specifically, the temperature of the sample was kept at room temperature, then the antibody labeled with the desired fluorescent pigment was dropped into a dedicated plastic tube, blood of 50 μL was dropped therein to be smoothly infiltrated, and the antibody and the cell were made to react. It was left for 20 minutes at a dark place at room temperature. Then, a hemolytic agent (FACS Lyse solution: ammonium chloride solution, Beckman Coulter, Co., Ltd.) of 1 ml was dropped into it. Accordingly, red blood corpuscles were hemolyzed, granulocyte, monocyte, and lymphocyte remain. It was centrifuged and washed by an appropriate solution, and thus a high purity sample solution was obtained.
- In the measurement, the cell solution (sample solution) adjusted by the method described above was introduced into a special measurement cell for cell analysis formed of plastic, 3-dimensional focus was performed by a sheath solution for flow cytometer, and then it was irradiated with the excitement light. Laser beams with wavelengths of 488 nm and 640 nm were used as an excitement source. The fluorescent light emitted from each cell was dispersed by a prism spectroscope or the like, and then was detected by the 32ch PMT. In the example, the 32ch PMT was used as the detector, but two laser beams were used as the excitement light. Accordingly, the spectrum data of 64 channels as the amount of information were transmitted to the analysis unit and the memory unit.
- Daily Difference
-
FIG. 2A ,FIG. 3A ,FIG. 4A , andFIG. 5A are graphs in which the horizontal axis is a channel number (wavelength dependent number) of the detector and the vertical axis is fluorescent intensity, andFIG. 2B ,FIG. 3B ,FIG. 4B , andFIG. 5B are graphs illustrating an error in each wavelength. The florescent spectrum shown inFIG. 2A andFIG. 2B is data measured using FITC as the florescent pigment and CD14 as the antibody, the florescent spectrum shown inFIG. 3A andFIG. 3B is data measured using PE as the florescent pigment and CD3 as the antibody. The same lot was used at any date. -
FIG. 4A andFIG. 4B are fluorescent spectrum of polystyrene beads containing the florescent pigment FITC of BD 7-Color Setup Beads.FIG. 5A andFIG. 5B are fluorescent spectrum of polystyrene beads containing the fluorescent pigment PE of BD 7-Color Setup Beads. The PMT was used as all the detectors, and application voltage was 630 V. - As shown in
FIG. 2A toFIG. 5B , in spectrum A of the cell samples or beads measured by adjustment to the other date, an error from spectrum B is 8% or less, and it was confirmed that the spectrum with different measurement date was usable as the reference spectrum. - Potential of Detector
-
FIG. 6A is a graph illustrating a relationship between the potential of the detector and the florescent spectrum in which the horizontal axis is the channel number (wavelength dependent number) of the detector and the vertical axis is the fluorescent intensity, andFIG. 6B is a graph illustrating an error in each wavelength. The fluorescent spectrum shown inFIG. 6A andFIG. 6B is data measured using the PE as the fluorescent pigment, the CD3 as the antibody, and the PMT as the detector. In the application voltage, PMTV150 is 525V, PMTV160 is 560V, PMTV170 is 595V, PMTV180 is 630V, PMTV190 is 665V, and PMTV200 is 700V. - As shown in
FIG. 6A andFIG. 6B , the error of the spectrum was 3% or less even when the potential of the detector was changed. Accordingly, it was confirmed that the fluorescent spectrum data with the different potential of the detection was usable as the reference spectrum. - Type of Coupled Antibody
-
FIG. 7A andFIG. 8A are graphs illustrating a relationship between the coupled antibody and the fluorescent spectrum in which the horizontal axis is the channel number (wavelength dependent number) of the detector and the vertical axis is the fluorescent intensity, andFIG. 7B andFIG. 8B are graphs illustrating an error in each wavelength. The fluorescent spectrum shown inFIG. 7A andFIG. 7B is data measured using A: the FITC as the fluorescent pigment and the CD45 as the antibody and B: the FITC as the fluorescent pigment and the CD45RA as the antibody. The fluorescent spectrum shown inFIG. 8A andFIG. 8B is data measured using A: the PE as the fluorescent pigment and the CD8 as the antibody and B: the FE as the fluorescent pigment and the CD3 as the antibody. The PMT was used as the detector, and all the application voltages were 525 V. - The data when the FITC was used as the fluorescent pigment and the CD45 was used as the antibody, and the data when the PE was used as the fluorescent pigment and the CD8 was used as the antibody were analyzed using the reference spectrum obtained from the other set of single stain.
FIG. 9 is a density plot illustrating a result thereof. As shown inFIG. 9 , the analysis was performed using the reference spectrum generated by the single stain, and it could be divided into three cell groups. Each group indicates that the fluorescent correction is satisfactorily performed at an orthogonal position. The number of existence in a region throughout a gate was FITC+PE+:278 and PICT+PE−:750, and a ratio thereof was 0.37:1. - Then, the same analysis was performed with the data when the FITC was used as the fluorescent pigment and the CD45RA was used as the antibody, and the data when the PE was used as the fluorescent pigment and the CD3 was used as the antibody.
FIG. 10 is a density plot illustrating a result thereof. As shown inFIG. 10 , in the 2-dimensionally developed plot based on the FITC and PE as the fluorescent pigment, three cell groups are clearly classified, and each of them was positioned at the orthogonal position. Comparing distribution throughout the gate, the number of was FITV+PE+:280 and PITC+PE−:750, and the ratio thereof was 0.37:1 and was equal to the existence ratio of the data shown inFIG. 9 . - From the result described above, in the independent fluorescent correcting method using the reference spectrum, as shown in
FIG. 7A toFIG. 8B , the difference of the fluorescent spectrum is 8% or less even in the different type of coupled antibody, and it was confirmed that the spectrum was usable as the reference spectrum. - Type of Micro-Particles
-
FIG. 11A andFIG. 12A are graphs illustrating a relationship between the type of the micro-particles and the fluorescent spectrum in which the horizontal axis is the channel number (wavelength dependent number) and the vertical axis is the fluorescent intensity, andFIG. 11B andFIG. 12B are graphs illustrating an error in each wavelength.FIG. 11A andFIG. 11B are A: fluorescent spectrum when the FITC was used as the pigment and the CD45 was used as the antibody, and B: fluorescent spectrum when polystyrene beads containing the fluorescent pigment FITC of BD 7-Color Setup Beads were used.FIG. 12A andFIG. 12B are A: fluorescent spectrum when the PE was used as the pigment and the CD8 was used as the antibody, and B: fluorescent spectrum when polystyrene beads containing the fluorescent pigment PE of BD 7-Color Setup Beads were used. All the application voltages were 630 V. - The data when the polystyrene beads containing the fluorescent pigment FITC of the BD 7-Color Setup Beads were used, and the data when the polystyrene beads containing the fluorescent pigment PE of the BD 7-Color Setup Beads were used were analyzed using the reference spectrum obtained from the other set of single stain.
FIG. 13 is a density plot illustrating the result thereof. As shown inFIG. 13 , the cell groups are classified into three, and each of them was positioned at the orthogonal position. Comparing distribution throughout the gate, the number of was FITV+PE+:272 and PITC+PE−:213, and the ratio thereof was 1.28:1 and was not equal to the existence ratio of the data shown inFIG. 9 andFIG. 10 . - From the result described above, in the independent fluorescent correcting method using the reference spectrum, as shown in
FIG. 13 , the difference of the fluorescent spectrum was over 10% even when the same pigment was used between the cells and the beads, and it was confirmed that the spectrum was usable as the reference spectrum. - As described above, according to the present disclosure, even when the single stain sample was not prepared for each probe, it was confirmed that it was possible to dissolve the overlap of each spectrum with high precision.
- It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Claims (6)
1. A fluorescent spectrum correcting method comprising:
comparing a fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments with a reference spectrum to separate the fluorescent spectrum into a fluorescent spectrum for each pigment,
wherein previously measured spectrum data is used as the reference spectrum.
2. The fluorescent spectrum correcting method according to claim 1 , wherein in the reference spectrum, an error from a single stain sample is equal to or less than 8%.
3. The fluorescent spectrum correcting method according to claim 2 , wherein a measurement date, potential of a detector, a type of coupled antibody, and any spectrum data of different types of cells when the micro-particles are cells are used as the reference spectrum.
4. The fluorescent spectrum correcting method according to claim 3 , wherein when the micro-particles are cells, the fluorescent spectrum data measured using cells is used as the reference spectrum.
5. A fluorescent spectrum measuring device comprising:
a detection unit that simultaneously detects fluorescent light emitted from micro-particles in an arbitrary wavelength region;
an analysis unit that separates the data detected by the detection unit into a fluorescent spectrum for each pigment; and
a memory unit that stores the fluorescent spectrum data separated by the analysis unit,
wherein the analysis unit uses the previously measured fluorescent spectrum data stored in the memory unit as a reference spectrum to perform separation of the fluorescent spectrum.
6. The fluorescent spectrum measuring device according to claim 5 , wherein the detection unit is provided with a multi-channel photo-multiplier tube.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/100,884 US10908075B2 (en) | 2010-11-11 | 2018-08-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US17/142,632 US11454588B2 (en) | 2010-11-11 | 2021-01-06 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US17/897,916 US11726031B2 (en) | 2010-11-11 | 2022-08-29 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US18/349,234 US20230349819A1 (en) | 2010-11-11 | 2023-07-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-252863 | 2010-11-11 | ||
JP2010252863A JP5937780B2 (en) | 2010-11-11 | 2010-11-11 | Fluorescence spectrum correction method and fluorescence spectrum measuring apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/100,884 Continuation US10908075B2 (en) | 2010-11-11 | 2018-08-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120123722A1 true US20120123722A1 (en) | 2012-05-17 |
Family
ID=46048572
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/287,459 Abandoned US20120123722A1 (en) | 2010-11-11 | 2011-11-02 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US16/100,884 Active US10908075B2 (en) | 2010-11-11 | 2018-08-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US17/142,632 Active US11454588B2 (en) | 2010-11-11 | 2021-01-06 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US17/897,916 Active US11726031B2 (en) | 2010-11-11 | 2022-08-29 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US18/349,234 Pending US20230349819A1 (en) | 2010-11-11 | 2023-07-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/100,884 Active US10908075B2 (en) | 2010-11-11 | 2018-08-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US17/142,632 Active US11454588B2 (en) | 2010-11-11 | 2021-01-06 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US17/897,916 Active US11726031B2 (en) | 2010-11-11 | 2022-08-29 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
US18/349,234 Pending US20230349819A1 (en) | 2010-11-11 | 2023-07-10 | Fluorescent spectrum correcting method and fluorescent spectrum measuring device |
Country Status (3)
Country | Link |
---|---|
US (5) | US20120123722A1 (en) |
JP (1) | JP5937780B2 (en) |
CN (1) | CN102539397B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140158913A1 (en) * | 2012-12-06 | 2014-06-12 | Sony Corporation | Microparticle analysis apparatus and microparticle analysis method |
US20150160133A1 (en) * | 2013-12-06 | 2015-06-11 | Azbil Corporation | Particle detecting device and particle detecting method |
US20170045436A1 (en) * | 2015-08-12 | 2017-02-16 | Bio-Rad Laboratories, Inc. | Multi-spectral filter profiling and quality control for flow cytometry |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063628A (en) * | 2012-12-13 | 2013-04-24 | 公安部第一研究所 | Excitation method for multiple fluorescent dyes |
JP7022670B2 (en) * | 2018-09-10 | 2022-02-18 | 株式会社日立ハイテク | Spectrum calibration device and spectrum calibration method |
AU2019416121A1 (en) | 2018-12-28 | 2021-05-20 | Becton, Dickinson And Company | Methods for spectrally resolving fluorophores of a sample and systems for same |
CN110081975B (en) * | 2019-04-04 | 2021-06-04 | 深圳和而泰数据资源与云技术有限公司 | Spectrometer calibration jig and system |
CN110208251B (en) * | 2019-06-20 | 2022-01-21 | 安徽创谱仪器科技有限公司 | Plasma emission spectrum interference correction method |
US20230089176A1 (en) * | 2020-01-31 | 2023-03-23 | Sony Group Corporation | Information processing apparatus, particle analysis apparatus, information processing method, and program |
WO2021159479A1 (en) * | 2020-02-14 | 2021-08-19 | 深圳华大智造科技股份有限公司 | Method for analyzing droplets on basis of image, computer device and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201241B1 (en) * | 1996-09-17 | 2001-03-13 | Kabushiki Kaisha Topcon | Organic substance analyzer |
US20020125136A1 (en) * | 1998-09-16 | 2002-09-12 | Sharaf Muhammad A. | Spectral calibration of fluorescent polynucleotide separation apparatus |
US20050046835A1 (en) * | 2003-08-27 | 2005-03-03 | Leica Microsystems Heidelberg Gmbh | Method for setting a fluorescence spectrum measurement system for microscopy |
US20110153226A1 (en) * | 2009-12-18 | 2011-06-23 | General Electric Company | Spectral searching method for substance identification |
US8649008B2 (en) * | 2010-02-04 | 2014-02-11 | University Of Southern California | Combined spectral and polarimetry imaging and diagnostics |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001013120A1 (en) * | 1999-08-17 | 2001-02-22 | Luminex Corporation | Microparticles with multiple fluorescent signals and methods of using same |
WO2002059584A2 (en) * | 2000-12-29 | 2002-08-01 | Chromagen, Inc. | Scanning spectrophotometer for high throughput fluorescence detection |
US6539323B2 (en) * | 2001-05-04 | 2003-03-25 | Electronics For Imaging, Inc. | Methods and apparatus for correcting spectral color measurements |
US7122384B2 (en) * | 2002-11-06 | 2006-10-17 | E. I. Du Pont De Nemours And Company | Resonant light scattering microparticle methods |
EP1677097A4 (en) * | 2003-10-10 | 2010-09-01 | Hamamatsu Photonics Kk | Method and system for measuring the concentrations of fluorescent dyes |
JP4021414B2 (en) | 2003-11-26 | 2007-12-12 | オリンパス株式会社 | Spectral deconvolution method and Spectral blind deconvolution method |
JP4313166B2 (en) | 2003-12-02 | 2009-08-12 | セントラル硝子株式会社 | Process for producing optically active β-trifluoromethyl-β-hydroxycarbonyl compound |
JP2005181726A (en) | 2003-12-19 | 2005-07-07 | Seiko Precision Inc | Projector apparatus and method for adjusting projected image |
EP1550855A2 (en) | 2003-12-30 | 2005-07-06 | Rohm And Haas Company | Method for detecting contaminants |
US7625712B2 (en) | 2004-05-21 | 2009-12-01 | Beckman Coulter, Inc. | Method for a fully automated monoclonal antibody-based extended differential |
EP1855102B8 (en) * | 2005-02-15 | 2012-03-14 | Mitsui Engineering and Shipbuilding Co, Ltd. | Fluorescence detecting device and fluorescence detecting method |
JP4649231B2 (en) | 2005-02-28 | 2011-03-09 | 株式会社カネカ | Flow cytometer, cell analysis method, cell analysis program, sensitivity setting method of fluorescence detector, and reference gate setting method in positive rate determination method |
JP4537231B2 (en) * | 2005-03-07 | 2010-09-01 | 独立行政法人理化学研究所 | Method for estimating fluorescent dye concentration from multiple fluorescence and method for estimating fluorescence intensity from multiple fluorescence |
CA2617678A1 (en) * | 2005-08-02 | 2007-02-08 | Luminex Corporation | Methods, data structures, and systems for classifying microparticles |
US20070098594A1 (en) * | 2005-11-03 | 2007-05-03 | Roche Molecular Systems, Inc. | Analytical multi-spectral optical detection system |
US8360574B2 (en) * | 2006-03-20 | 2013-01-29 | High Performance Optics, Inc. | High performance selective light wavelength filtering providing improved contrast sensitivity |
US8244021B2 (en) * | 2006-12-20 | 2012-08-14 | Ventana Medical Systems, Inc. | Quantitative, multispectral image analysis of tissue specimens stained with quantum dots |
JP4389991B2 (en) * | 2007-10-26 | 2009-12-24 | ソニー株式会社 | Method and apparatus for optical measurement of fine particles |
JP4509163B2 (en) * | 2007-10-26 | 2010-07-21 | ソニー株式会社 | Measuring method of fine particles |
JP5378228B2 (en) * | 2007-10-29 | 2013-12-25 | シスメックス株式会社 | Cell analysis apparatus and cell analysis method |
JP2009115672A (en) | 2007-11-08 | 2009-05-28 | Sony Corp | Optical measurement method and dispensing method for fine particle, and passage used for this optical measurement method and preparative method, and optical measurement device and flow cytometer |
JP5345785B2 (en) | 2008-01-08 | 2013-11-20 | Sumco Techxiv株式会社 | Spectral absorption measurement method and spectral absorption measurement apparatus |
JP5148387B2 (en) * | 2008-06-30 | 2013-02-20 | 浜松ホトニクス株式会社 | Spectrometer, spectroscopic method, and spectroscopic program |
US20100050737A1 (en) * | 2008-09-01 | 2010-03-04 | Andrew Mark Wolters | Separation technology method and identification of error |
ES2763537T3 (en) * | 2008-09-16 | 2020-05-29 | Beckman Coulter Inc | Interactive tree diagram for flow cytometric data |
CA2647953A1 (en) * | 2008-12-29 | 2010-06-29 | Sqi Diagnostics Systems Inc. | Multiplex analyte detection |
DE102009018141A1 (en) * | 2009-04-08 | 2010-10-21 | Karl Storz Gmbh & Co. Kg | Device for fluorescence diagnosis |
FR2956207B1 (en) * | 2010-02-10 | 2012-05-04 | Horiba Abx Sas | DEVICE AND METHOD FOR MULTIPARAMETRIC MEASUREMENTS OF MICROPARTICLES IN A FLUID |
JP5841315B2 (en) * | 2010-04-28 | 2016-01-13 | ソニー株式会社 | Fine particle analyzer |
-
2010
- 2010-11-11 JP JP2010252863A patent/JP5937780B2/en active Active
-
2011
- 2011-11-02 US US13/287,459 patent/US20120123722A1/en not_active Abandoned
- 2011-11-09 CN CN201110353124.4A patent/CN102539397B/en active Active
-
2018
- 2018-08-10 US US16/100,884 patent/US10908075B2/en active Active
-
2021
- 2021-01-06 US US17/142,632 patent/US11454588B2/en active Active
-
2022
- 2022-08-29 US US17/897,916 patent/US11726031B2/en active Active
-
2023
- 2023-07-10 US US18/349,234 patent/US20230349819A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201241B1 (en) * | 1996-09-17 | 2001-03-13 | Kabushiki Kaisha Topcon | Organic substance analyzer |
US20020125136A1 (en) * | 1998-09-16 | 2002-09-12 | Sharaf Muhammad A. | Spectral calibration of fluorescent polynucleotide separation apparatus |
US20050046835A1 (en) * | 2003-08-27 | 2005-03-03 | Leica Microsystems Heidelberg Gmbh | Method for setting a fluorescence spectrum measurement system for microscopy |
US20110153226A1 (en) * | 2009-12-18 | 2011-06-23 | General Electric Company | Spectral searching method for substance identification |
US8649008B2 (en) * | 2010-02-04 | 2014-02-11 | University Of Southern California | Combined spectral and polarimetry imaging and diagnostics |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140158913A1 (en) * | 2012-12-06 | 2014-06-12 | Sony Corporation | Microparticle analysis apparatus and microparticle analysis method |
US20150160133A1 (en) * | 2013-12-06 | 2015-06-11 | Azbil Corporation | Particle detecting device and particle detecting method |
US20170045436A1 (en) * | 2015-08-12 | 2017-02-16 | Bio-Rad Laboratories, Inc. | Multi-spectral filter profiling and quality control for flow cytometry |
US10180385B2 (en) * | 2015-08-12 | 2019-01-15 | Bio-Rad Laboratories, Inc. | Multi-spectral filter profiling and quality control for flow cytometry |
US10429291B2 (en) * | 2015-08-12 | 2019-10-01 | Bio-Rad Laboratories, Inc. | Multi-spectral filter profiling and quality control for flow cytometry |
Also Published As
Publication number | Publication date |
---|---|
US20200217784A9 (en) | 2020-07-09 |
US20210123859A1 (en) | 2021-04-29 |
US11454588B2 (en) | 2022-09-27 |
CN102539397A (en) | 2012-07-04 |
CN102539397B (en) | 2016-04-06 |
US10908075B2 (en) | 2021-02-02 |
US20230349819A1 (en) | 2023-11-02 |
JP2012103159A (en) | 2012-05-31 |
JP5937780B2 (en) | 2016-06-22 |
US20220412881A1 (en) | 2022-12-29 |
US11726031B2 (en) | 2023-08-15 |
US20180348120A1 (en) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11726031B2 (en) | Fluorescent spectrum correcting method and fluorescent spectrum measuring device | |
Welsh et al. | FCMPASS software aids extracellular vesicle light scatter standardization | |
US20200150023A1 (en) | Instrument and Method for Optical Particle Sensing | |
Wang et al. | Standardization, calibration, and control in flow cytometry | |
US20220082488A1 (en) | Methods of forming multi-color fluorescence-based flow cytometry panel | |
EP2630492B1 (en) | Internal focus reference beads for imaging cytometry | |
US8349256B2 (en) | Blood cell analyzer, blood cell analyzing method, and computer program product | |
JPWO2017126170A1 (en) | Microparticle measuring apparatus, information processing apparatus and information processing method | |
FR2873813A1 (en) | METHOD AND DEVICE FOR CHARACTERIZING CELLULAR COMPONENTS OF A BIOLOGICAL LIQUID | |
EP3978902B1 (en) | Maturity classification of stained reticulocytes using optical microscopy | |
Pierzchalski et al. | Introduction A: Recent advances in cytometry instrumentation, probes, and methods | |
US20240027457A1 (en) | High parameter reagent panel and reagent kit for effective detection of aberrant cells in acute myeloid leukemia | |
Siddiqui et al. | Principles of Advanced Flow Cytometry: a practical guide | |
Wang et al. | Flow cytometer performance characterization, standardization, and control | |
US20240210397A1 (en) | High parameter flow cytometric assay to identify human myeloid derived suppressive cells | |
EP4083606B1 (en) | Information processing device, particle measurement system, and information processing method | |
US8716026B2 (en) | Methods and systems for determining composition and completion of an experiment | |
US20240027447A1 (en) | Methods and aparatus for a mouse surface and intracellular flow cytometry immunophenotyping kit | |
US20240027448A1 (en) | B cell monitoring reagent panel and reagent kit for analyzing b cell subsets in anti-cd20 treated autoimmune patients | |
US20240337581A1 (en) | Methods and aparatus for a twenty-five-color fluorescence-based assay and flow cytometry panel | |
WO2023171463A1 (en) | Information processing device and information processing system | |
Ortolani | Standards, Setup, Calibration, and Control Techniques | |
Pink et al. | Antibody titrations are critical for microflow cytometric analysis of extracellular vesicles | |
WO2023240165A2 (en) | Methods and apparatus for a twenty-five-color fluorescence-based assay and flow cytometry panel | |
CN105334191A (en) | Hemoglobin concentration and volume correction method and apparatus for individual erythrocyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAKUTA, MASAYA;FUTAMURA, KOJI;SAKAI, YOSHITSUGU;AND OTHERS;SIGNING DATES FROM 20110922 TO 20110928;REEL/FRAME:027599/0532 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |