US20120114001A1 - Hybrid ridge waveguide - Google Patents

Hybrid ridge waveguide Download PDF

Info

Publication number
US20120114001A1
US20120114001A1 US12/943,743 US94374310A US2012114001A1 US 20120114001 A1 US20120114001 A1 US 20120114001A1 US 94374310 A US94374310 A US 94374310A US 2012114001 A1 US2012114001 A1 US 2012114001A1
Authority
US
United States
Prior art keywords
type
layer
semiconductor slab
coupled
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/943,743
Inventor
Alexander W. Fang
Gregory A. Fish
Steven C. Nicholes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Openlight Photonics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/943,743 priority Critical patent/US20120114001A1/en
Assigned to AURRION, LLC reassignment AURRION, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FANG, ALEXANDER W., FISH, GREGORY A., NICHOLES, STEVEN C.
Priority to US13/450,328 priority patent/US8380033B1/en
Publication of US20120114001A1 publication Critical patent/US20120114001A1/en
Priority to US13/745,320 priority patent/US8781283B1/en
Assigned to Aurrion, Inc. reassignment Aurrion, Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AURRION, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0218Substrates comprising semiconducting materials from different groups of the periodic system than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Definitions

  • Embodiments of the invention generally pertain to photonic circuits, and more particularly to optical waveguides for hybrid photonic devices comprising silicon and III-V semiconductor material.
  • FIG. 1 illustrates a cross-sectional view of prior art semiconductor laser 100 .
  • a positive electrode is connected to p-type electrical contact 106 and negative electrodes are connected to n-type electrical contacts 112 , and a voltage is applied, laser 100 becomes forward biased.
  • Electrical current i.e., holes and electrons
  • active layer 109 Holes in p-type region 108 move in a direction away from p-type electrical contact 106 toward n-type electrical contacts 112 .
  • Electrons in n-type layer 110 move in a direction away from n-type contacts 112 toward p-type electrical contact 106 .
  • the active structure of laser 100 includes optical mode 113 and the portion of active layer 109 included in optical mode 113 . As the holes and electrons meet at the active structure, the holes and electrons combine to emit light.
  • Regions 107 are implanted in order to inhibit electrical conduction and force the electrical current to flow from p-type electrical contact 106 through region 111 and into the portion of active layer 109 that overlaps optical mode 113 .
  • Implant regions 107 present reliability issues for device 100 , as proton implanted regions cannot be too close to the active region of the device due to concerns about implant damage causing current to spread and leak outside of the confined area
  • the prior art laser of FIG. 1 further includes silicon waveguide 104 formed on a silicon on insulator substrate that includes silicon top layer 101 , silicon dioxide layer 102 and silicon substrate 103 .
  • Silicon waveguide 104 is formed by etched regions 105 included in silicon top layer 101 .
  • Etched regions 105 cause several detrimental effects for laser 100 . Creating said regions results in voids in the structure that reduce the mechanical strength of the device. These waveguide confinement structures further result in the device having poor thermal performance due to material loss where the material was etched away to form regions 105 . The areas that heat may dissipate away from the laser's active region are also restricted due to regions 105 and layer 102 . Prior art solutions to improve thermal performance have included creating thermal shunts in a lasing device, but this solution requires additional processing steps.
  • FIG. 1 is a block diagram of a prior art semiconductor laser.
  • FIG. 2 is a block diagram of an optical device according to an embodiment of the invention.
  • FIG. 3 is a block diagram of an optical device according to an embodiment of the invention.
  • FIG. 4 is a block diagram of an optical device including an alternative waveguide confinement structure according to an embodiment of the invention.
  • FIG. 5 is a block diagram of an optical device including an alternative waveguide confinement structure according to an embodiment of the invention.
  • FIG. 6 is a block diagram of a simplified optical system utilizing embodiments of the invention.
  • Embodiments of the present invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material, wherein a waveguide of the device is formed in part by a ridge in the second region.
  • An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region.
  • a ridge to function as a lateral waveguide confinement in the III-V region of an electro-optic device allows for greater contact area between the III-V and silicon regions, thereby leading to better thermal conductivity and heat extraction out of the device.
  • the ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing.
  • the lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.
  • FIG. 2 is a block diagram of an embodiment of the invention. It is to be understood that there exist various processing techniques that may be used to form the device as shown. Accordingly, the inventive structures illustrated in this and the other figures described below may be formed using any acceptable process sequence that yields the various device elements, element positions and associated doping levels required for acceptable operation.
  • electro-optic device 200 includes a silicon semiconductor slab including silicon top layer 201 , vertical confinement layer 202 and silicon substrate 203 .
  • substrate layer 203 may be a diamond substrate, a glass substrate, or any functional equivalent.
  • Vertical confinement layer 202 may be formed of any dielectric material suitable for confining an optical mode (e.g., layer 201 may be a silicon dioxide layer, a silicon nitride layer, or any functionally equivalent insulating layer with a refractive index lower than silicon top layer 201 ).
  • Device 200 further includes a III-V semiconductor slab including p-type layer 208 , active layer 209 and n-type layer 210 (thereby forming a P-I-N diode).
  • p-type layer describes a layer comprising a material that has more positive carriers (i.e., holes) than negative carriers (i.e., electrons).
  • n-type layer describes a layer comprising a material that has more negative carriers than positive carriers.
  • layer 208 may be an n-type layer
  • layer 210 may be a p-type layer
  • layers 208 and 210 may be n-type layers
  • active region 209 may include a tunnel junction to convert n-type majority carriers to p-type majority carriers. This alternative embodiment avoids the associated optical and microwave loss of p-type materials due to the use of p-dopants.
  • III-V semiconductor materials have elements that are found in group III and group V of the periodic table (e.g., Indium Gallium Arsenide Phosphide (InGaAsP), Gallium Indium Arsenide Nitride (GaInAsN)).
  • the carrier dispersion effects of III-V based materials may be significantly higher than in silicon based materials for bandgaps closer to the wavelength of the light being transmitted or modulated, as electron speed in III-V semiconductors is much faster than that in silicon.
  • III-V materials have a direct bandgap which is required for the most efficient creation of light from electrical pumping.
  • III-V semiconductor materials enable photonic operations with an increased efficiency over silicon for both generating light and modulating the refractive index of light.
  • Active layer 209 is of a III-V semiconductor with high electro-optic efficiency—i.e., the absorption coefficient (i.e., the imaginary portion of the complex refractive index) and the refractive index (i.e., the real portion of the complex refractive index) of active layer 209 is easily affected by either the Franz Kheldysh effect if active layer 209 comprises bulk material (e.g., intrinsic Indium Gallium Arsenide Phosphide (i-InGaAsP) or Indium Aluminum Gallium Arsenide (InAlGaAs)) or the Quantum Confined Stark Effect (QCSE) if active layer 209 comprises multiple quantum wells (MQW).
  • i-InGaAsP intrinsic Indium Gallium Arsenide Phosphide
  • InAlGaAs Indium Aluminum Gallium Arsenide
  • QCSE Quantum Confined Stark Effect
  • Optical waveguide 250 is formed by ridge 260 (which is “bolded” or “thicker” in the figure for illustrative purposes only), including ridge sides 261 and 262 . It is clear that in this embodiment, waveguide 250 is formed by features in the III-V region of device 200 as opposed to being formed by features in the silicon region of the device, as can be seen in FIG. 1 , wherein waveguide 104 is formed by voids 105 included in silicon top region 101 . Thus, the silicon and III-V regions of device 200 have a greater contact area than devices in the prior art (e.g., in this embodiment, layer 210 is continuously coupled to layer 201 ).
  • Overclad regions 207 may be formed on the device to improve mechanical stability, and may be of any material used to form vertical confinement layer 202 or any material with a lower refractive index than layer 208 . Overclad regions 207 further provide vertical optical confinement and passivation as described below. It is understood that the areas adjacent to ridge sides 261 and 262 provide optical confinement if left as voids (i.e., areas comprising air), but that forming overclad regions 207 provides for mechanical stability in addition to optical confinement.
  • optical mode 213 is vertically confined by vertical confinement layer 202 , ridge 260 and overclad regions 207 while being laterally confined by ridge sides 261 and 262 .
  • Said ridge sides also confine injection current from electrode 206 towards the portion of active layer 209 that overlaps optical mode 213 .
  • Embodiments of the invention thus eliminate the need for the etched regions (e.g., etched regions 105 of FIG. 1 ) and implanted regions (e.g., implant regions 107 of FIG. 1 ) of the prior art and reduce the associated reliability problems known in the art.
  • the optical device of FIG. 2 may be used to amplify, modulate or detect light transmitted through the optical waveguide of the device by applying an electrical difference to complimentary electrodes 206 and 212 to either forward bias (i.e., for amplification) or reverse bias (i.e., for modulation or detection) the structure.
  • the complex refractive index (i.e., at least one of the real and the imaginary refractive index) of at least the portion of active layer 209 included in optical mode 213 changes based on an electrical difference (e.g., electrical voltage, electrical field) applied to electrodes 206 and 212 . These changes to the refractive index (or indexes) are proportional to the strength of the electrical difference applied to electrodes 206 and 212 .
  • electrodes 212 are coupled to n-type layer 210 .
  • resistance is high as it determined by thin layer 210 ; however, there are less processing steps needed to create device 200 and no conductive bond is required to couple the silicon region with the III-V region (i.e., no conductive bond is required to couple layers 210 and 201 ).
  • FIG. 3 is a block diagram of an embodiment of the invention.
  • electro-optic device 300 includes a silicon semiconductor slab including silicon top layer 301 , vertical confinement layer 302 and silicon substrate layer 303 .
  • silicon substrate layer 303 may be a diamond substrate, a glass substrate, or any functional equivalent.
  • Device 300 further includes a III-V semiconductor slab including p-type layer 308 , active layer 309 and n-type layer 310 .
  • layer 308 may be an n-type layer
  • layer 310 may be a p-type layer
  • layers 308 and 310 may be n-type layers
  • active region 309 may include a tunnel junction to convert n-type majority carriers to p-type majority carriers.
  • Ridge 360 including sides 361 and 362 forms optical waveguide 350 and provides lateral confinement for optical mode 313 (vertical confinement layer 302 , ridge 360 and overclad regions 307 provide vertical confinement of said optical mode).
  • Overclad regions 307 may be formed on the device to improve mechanical stability, and may be of any material used to form vertical confinement layer 302 .
  • electrodes 312 are coupled to silicon top layer 301 (as opposed to the example embodiment illustrated in FIG. 2 , wherein electrodes 212 are coupled to III-V n-type layer 210 ).
  • electrical conduction occurs through both n-type layer 310 and silicon top layer 301 when an electrical difference is applied to electrodes 306 and 312 .
  • this example arrangement allows for less resistance through layer 301 as it is thicker than n-type layer 210 of the embodiment illustrated in FIG. 2 .
  • the silicon top layer 301 will suffer less optical loss if it is doped for conduction and if a conductive bond is used to couple layers 301 and 310 .
  • FIGS. 2 and 3 The ridges illustrated in FIGS. 2 and 3 are shown to be included only in the top layers of the III-V semiconductor regions of their respective devices (i.e., ridges 260 and 360 are included only in p-type layers 208 and 308 respectively). It is to be understood that these ridges are to be viewed as examples only, and are not to limit the structure of ridges in alternative embodiments of the invention.
  • FIGS. 4 and 5 illustrate alternative waveguide confinement structures according to embodiments of the invention.
  • Device 400 of FIG. 4 is similar to device 200 of FIG.
  • optical waveguide 450 extend through both p-type layer 408 and active layer 409 (as described above, in other embodiments the layer “above” active layer 409 may be an n-type layer).
  • optical mode 413 is laterally confined by ridge sides 461 and 462 and vertical confined by layer 202 , and ridge sides 461 and 462 further confine the area in which active layer 409 receives current injected from electrode 206 .
  • Overclad regions 407 may further provide mechanical stability for device 400 .
  • Device 500 of FIG. 5 is similar to device 300 of FIG. 3 as described above, except ridge sides 561 and 562 of ridge 560 forming optical waveguide 550 extend through the layers of the III-V region of the device—i.e., in this example p-type layer 508 , active layer 509 and n-type layer 510 (the configuration of the layers of the III-V region of the device may differ in other embodiments as previously described).
  • optical mode 513 is laterally confined by ridge sides 561 and 562 and vertical confined by layer 202 , and ridge sides 561 and 562 further confine the area in which the III-V semiconductor region of device 500 (i.e., the areas that n-type layer 510 and active layer 509 may receive current from electrodes 312 flowing through silicon top layer 301 is reduced).
  • Overclad regions 507 may further provide mechanical stability for device 500 .
  • FIG. 6 is a block diagram of a simplified optical system utilizing an embodiment of the invention.
  • System 600 includes transmitter 601 and receiver 602 .
  • Transmitter 601 includes light source 610 and light source controller 620 .
  • light source 620 is a laser utilizing a hybrid active gain structure, wherein the structure comprises any embodiment of the invention described above.
  • Light source controller 620 may control the hybrid active gain structure of light source 610 (i.e., light source controller 620 may create an electrical difference at electrical contacts of light source 610 ).
  • light source controller 620 comprises silicon circuitry while light source 610 comprises III-V and silicon semiconductor material.
  • Light source 610 may transmit optical signals to modulator 630 via any transmission medium known in the art.
  • modulator 630 may comprise any embodiment of the invention described above.
  • Modulator 630 may perform either amplitude or phase modulation of the light received from light source 610 .
  • optical waveguides of modulator 630 are controlled by modulator controller 640 (i.e., modulator controller 640 may create an electrical difference at electrical contacts of modulator 630 ).
  • modulator controller 640 may create an electrical difference at electrical contacts of modulator 630 .
  • the modulated output of modulator 630 may be transmitted to receiver 602 via any transmission medium known in the art.
  • Receiver 602 may include an optical device wherein the structure of said device comprises any embodiment of the invention described above.
  • system 600 is included in a single device or chip, wherein silicon components of system 600 are included on a silicon portion of the chip, and III-V semiconductor components of system 600 are included on a III-V portion of the chip. These portions may be fabricated independently and subsequently bonded via any bonding process known in the art.

Abstract

Embodiments of the invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material. A waveguide of the optical device is formed in part by a ridge in the second region. An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region. The ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing. The lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.

Description

    FIELD
  • Embodiments of the invention generally pertain to photonic circuits, and more particularly to optical waveguides for hybrid photonic devices comprising silicon and III-V semiconductor material.
  • BACKGROUND
  • Semiconductor photonic devices, such as lasers, have an active structure in which electrons and holes are converted into photons to produce optical emissions. FIG. 1 illustrates a cross-sectional view of prior art semiconductor laser 100. When a positive electrode is connected to p-type electrical contact 106 and negative electrodes are connected to n-type electrical contacts 112, and a voltage is applied, laser 100 becomes forward biased. Electrical current (i.e., holes and electrons) is injected towards active layer 109. Holes in p-type region 108 move in a direction away from p-type electrical contact 106 toward n-type electrical contacts 112. Electrons in n-type layer 110 move in a direction away from n-type contacts 112 toward p-type electrical contact 106. The active structure of laser 100 includes optical mode 113 and the portion of active layer 109 included in optical mode 113. As the holes and electrons meet at the active structure, the holes and electrons combine to emit light.
  • Regions 107 are implanted in order to inhibit electrical conduction and force the electrical current to flow from p-type electrical contact 106 through region 111 and into the portion of active layer 109 that overlaps optical mode 113. Implant regions 107 present reliability issues for device 100, as proton implanted regions cannot be too close to the active region of the device due to concerns about implant damage causing current to spread and leak outside of the confined area
  • The prior art laser of FIG. 1 further includes silicon waveguide 104 formed on a silicon on insulator substrate that includes silicon top layer 101, silicon dioxide layer 102 and silicon substrate 103. Silicon waveguide 104 is formed by etched regions 105 included in silicon top layer 101.
  • Etched regions 105 cause several detrimental effects for laser 100. Creating said regions results in voids in the structure that reduce the mechanical strength of the device. These waveguide confinement structures further result in the device having poor thermal performance due to material loss where the material was etched away to form regions 105. The areas that heat may dissipate away from the laser's active region are also restricted due to regions 105 and layer 102. Prior art solutions to improve thermal performance have included creating thermal shunts in a lasing device, but this solution requires additional processing steps.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more “embodiments” are to be understood as describing a particular feature, structure, or characteristic included in at least one implementation of the invention. Thus, phrases such as “in one embodiment” or “in an alternate embodiment” appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.
  • FIG. 1 is a block diagram of a prior art semiconductor laser.
  • FIG. 2 is a block diagram of an optical device according to an embodiment of the invention.
  • FIG. 3 is a block diagram of an optical device according to an embodiment of the invention.
  • FIG. 4 is a block diagram of an optical device including an alternative waveguide confinement structure according to an embodiment of the invention.
  • FIG. 5 is a block diagram of an optical device including an alternative waveguide confinement structure according to an embodiment of the invention.
  • FIG. 6 is a block diagram of a simplified optical system utilizing embodiments of the invention.
  • Descriptions of certain details and implementations follow, including a description of the figures, which may depict some or all of the embodiments described below, as well as discussing other potential embodiments or implementations of the inventive concepts presented herein. An overview of embodiments of the invention is provided below, followed by a more detailed description with reference to the drawings.
  • DETAILED DESCRIPTION
  • Embodiments of the present invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material, wherein a waveguide of the device is formed in part by a ridge in the second region. An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region.
  • It will be understood in view of the example embodiments below that including a ridge to function as a lateral waveguide confinement in the III-V region of an electro-optic device, rather than creating voids in the silicon region of the device, allows for greater contact area between the III-V and silicon regions, thereby leading to better thermal conductivity and heat extraction out of the device. The ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing. The lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.
  • FIG. 2 is a block diagram of an embodiment of the invention. It is to be understood that there exist various processing techniques that may be used to form the device as shown. Accordingly, the inventive structures illustrated in this and the other figures described below may be formed using any acceptable process sequence that yields the various device elements, element positions and associated doping levels required for acceptable operation.
  • In this embodiment, electro-optic device 200 includes a silicon semiconductor slab including silicon top layer 201, vertical confinement layer 202 and silicon substrate 203. It is to be understood that in alternative embodiments, substrate layer 203 may be a diamond substrate, a glass substrate, or any functional equivalent. Vertical confinement layer 202 may be formed of any dielectric material suitable for confining an optical mode (e.g., layer 201 may be a silicon dioxide layer, a silicon nitride layer, or any functionally equivalent insulating layer with a refractive index lower than silicon top layer 201).
  • Device 200 further includes a III-V semiconductor slab including p-type layer 208, active layer 209 and n-type layer 210 (thereby forming a P-I-N diode). The term “p-type layer,” as used herein, describes a layer comprising a material that has more positive carriers (i.e., holes) than negative carriers (i.e., electrons). The term “n-type layer,” as used herein, describes a layer comprising a material that has more negative carriers than positive carriers.
  • In an alternative embodiment, layer 208 may be an n-type layer, and layer 210 may be a p-type layer. In another alternative embodiment, layers 208 and 210 may be n-type layers, while active region 209 may include a tunnel junction to convert n-type majority carriers to p-type majority carriers. This alternative embodiment avoids the associated optical and microwave loss of p-type materials due to the use of p-dopants.
  • III-V semiconductor materials have elements that are found in group III and group V of the periodic table (e.g., Indium Gallium Arsenide Phosphide (InGaAsP), Gallium Indium Arsenide Nitride (GaInAsN)). The carrier dispersion effects of III-V based materials may be significantly higher than in silicon based materials for bandgaps closer to the wavelength of the light being transmitted or modulated, as electron speed in III-V semiconductors is much faster than that in silicon. In addition, III-V materials have a direct bandgap which is required for the most efficient creation of light from electrical pumping. Thus, III-V semiconductor materials enable photonic operations with an increased efficiency over silicon for both generating light and modulating the refractive index of light.
  • Active layer 209 is of a III-V semiconductor with high electro-optic efficiency—i.e., the absorption coefficient (i.e., the imaginary portion of the complex refractive index) and the refractive index (i.e., the real portion of the complex refractive index) of active layer 209 is easily affected by either the Franz Kheldysh effect if active layer 209 comprises bulk material (e.g., intrinsic Indium Gallium Arsenide Phosphide (i-InGaAsP) or Indium Aluminum Gallium Arsenide (InAlGaAs)) or the Quantum Confined Stark Effect (QCSE) if active layer 209 comprises multiple quantum wells (MQW).
  • Optical waveguide 250 is formed by ridge 260 (which is “bolded” or “thicker” in the figure for illustrative purposes only), including ridge sides 261 and 262. It is clear that in this embodiment, waveguide 250 is formed by features in the III-V region of device 200 as opposed to being formed by features in the silicon region of the device, as can be seen in FIG. 1, wherein waveguide 104 is formed by voids 105 included in silicon top region 101. Thus, the silicon and III-V regions of device 200 have a greater contact area than devices in the prior art (e.g., in this embodiment, layer 210 is continuously coupled to layer 201).
  • Overclad regions 207 may be formed on the device to improve mechanical stability, and may be of any material used to form vertical confinement layer 202 or any material with a lower refractive index than layer 208. Overclad regions 207 further provide vertical optical confinement and passivation as described below. It is understood that the areas adjacent to ridge sides 261 and 262 provide optical confinement if left as voids (i.e., areas comprising air), but that forming overclad regions 207 provides for mechanical stability in addition to optical confinement.
  • Thus, optical mode 213 is vertically confined by vertical confinement layer 202, ridge 260 and overclad regions 207 while being laterally confined by ridge sides 261 and 262. Said ridge sides also confine injection current from electrode 206 towards the portion of active layer 209 that overlaps optical mode 213. Embodiments of the invention thus eliminate the need for the etched regions (e.g., etched regions 105 of FIG. 1) and implanted regions (e.g., implant regions 107 of FIG. 1) of the prior art and reduce the associated reliability problems known in the art.
  • It will be understood that the optical device of FIG. 2 may be used to amplify, modulate or detect light transmitted through the optical waveguide of the device by applying an electrical difference to complimentary electrodes 206 and 212 to either forward bias (i.e., for amplification) or reverse bias (i.e., for modulation or detection) the structure. The complex refractive index (i.e., at least one of the real and the imaginary refractive index) of at least the portion of active layer 209 included in optical mode 213 changes based on an electrical difference (e.g., electrical voltage, electrical field) applied to electrodes 206 and 212. These changes to the refractive index (or indexes) are proportional to the strength of the electrical difference applied to electrodes 206 and 212.
  • In this embodiment, electrodes 212 are coupled to n-type layer 210. Thus, it is to be understood that there is no electrical conduction through silicon top layer 201. In this embodiment, as opposed to embodiments where electrical conduction does occur through the silicon top layer of a device (see below), resistance is high as it determined by thin layer 210; however, there are less processing steps needed to create device 200 and no conductive bond is required to couple the silicon region with the III-V region (i.e., no conductive bond is required to couple layers 210 and 201).
  • FIG. 3 is a block diagram of an embodiment of the invention. In this embodiment, electro-optic device 300 includes a silicon semiconductor slab including silicon top layer 301, vertical confinement layer 302 and silicon substrate layer 303. It is to be understood that in alternative embodiments, silicon substrate layer 303 may be a diamond substrate, a glass substrate, or any functional equivalent. Device 300 further includes a III-V semiconductor slab including p-type layer 308, active layer 309 and n-type layer 310.
  • In an alternative embodiment, layer 308 may be an n-type layer, and layer 310 may be a p-type layer. In another alternative embodiment, layers 308 and 310 may be n-type layers, while active region 309 may include a tunnel junction to convert n-type majority carriers to p-type majority carriers.
  • Ridge 360 including sides 361 and 362 forms optical waveguide 350 and provides lateral confinement for optical mode 313 (vertical confinement layer 302, ridge 360 and overclad regions 307 provide vertical confinement of said optical mode). Overclad regions 307 may be formed on the device to improve mechanical stability, and may be of any material used to form vertical confinement layer 302.
  • In this example embodiment, electrodes 312 are coupled to silicon top layer 301 (as opposed to the example embodiment illustrated in FIG. 2, wherein electrodes 212 are coupled to III-V n-type layer 210). Thus, it is to be understood that electrical conduction occurs through both n-type layer 310 and silicon top layer 301 when an electrical difference is applied to electrodes 306 and 312. It is to be understood that this example arrangement allows for less resistance through layer 301 as it is thicker than n-type layer 210 of the embodiment illustrated in FIG. 2. It is to be further understood the silicon top layer 301 will suffer less optical loss if it is doped for conduction and if a conductive bond is used to couple layers 301 and 310.
  • The ridges illustrated in FIGS. 2 and 3 are shown to be included only in the top layers of the III-V semiconductor regions of their respective devices (i.e., ridges 260 and 360 are included only in p- type layers 208 and 308 respectively). It is to be understood that these ridges are to be viewed as examples only, and are not to limit the structure of ridges in alternative embodiments of the invention. FIGS. 4 and 5 illustrate alternative waveguide confinement structures according to embodiments of the invention. Device 400 of FIG. 4 is similar to device 200 of FIG. 2 as described above, except sides 461 and 462 of ridge 460 forming optical waveguide 450 extend through both p-type layer 408 and active layer 409 (as described above, in other embodiments the layer “above” active layer 409 may be an n-type layer). Thus optical mode 413 is laterally confined by ridge sides 461 and 462 and vertical confined by layer 202, and ridge sides 461 and 462 further confine the area in which active layer 409 receives current injected from electrode 206. Overclad regions 407 may further provide mechanical stability for device 400.
  • Device 500 of FIG. 5 is similar to device 300 of FIG. 3 as described above, except ridge sides 561 and 562 of ridge 560 forming optical waveguide 550 extend through the layers of the III-V region of the device—i.e., in this example p-type layer 508, active layer 509 and n-type layer 510 (the configuration of the layers of the III-V region of the device may differ in other embodiments as previously described). Thus optical mode 513 is laterally confined by ridge sides 561 and 562 and vertical confined by layer 202, and ridge sides 561 and 562 further confine the area in which the III-V semiconductor region of device 500 (i.e., the areas that n-type layer 510 and active layer 509 may receive current from electrodes 312 flowing through silicon top layer 301 is reduced). Overclad regions 507 may further provide mechanical stability for device 500.
  • FIG. 6 is a block diagram of a simplified optical system utilizing an embodiment of the invention. System 600 includes transmitter 601 and receiver 602. Transmitter 601 includes light source 610 and light source controller 620. In the illustrated embodiment, light source 620 is a laser utilizing a hybrid active gain structure, wherein the structure comprises any embodiment of the invention described above. Light source controller 620 may control the hybrid active gain structure of light source 610 (i.e., light source controller 620 may create an electrical difference at electrical contacts of light source 610). In one embodiment, light source controller 620 comprises silicon circuitry while light source 610 comprises III-V and silicon semiconductor material. Light source 610 may transmit optical signals to modulator 630 via any transmission medium known in the art.
  • The structure of modulator 630 may comprise any embodiment of the invention described above. Modulator 630 may perform either amplitude or phase modulation of the light received from light source 610. In one embodiment, optical waveguides of modulator 630 are controlled by modulator controller 640 (i.e., modulator controller 640 may create an electrical difference at electrical contacts of modulator 630). The modulated output of modulator 630 may be transmitted to receiver 602 via any transmission medium known in the art. Receiver 602 may include an optical device wherein the structure of said device comprises any embodiment of the invention described above.
  • In one embodiment, system 600 is included in a single device or chip, wherein silicon components of system 600 are included on a silicon portion of the chip, and III-V semiconductor components of system 600 are included on a III-V portion of the chip. These portions may be fabricated independently and subsequently bonded via any bonding process known in the art.
  • Reference throughout the foregoing specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In addition, it is appreciated that the figures provided are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale. It is to be understood that the various regions, layers and structures of figures may vary in size and dimensions.
  • In the foregoing detailed description, the method and apparatus of the present invention have been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present invention. The present specification and figures are accordingly to be regarded as illustrative rather than restrictive.

Claims (18)

1. An apparatus comprising:
a first semiconductor slab comprising a silicon material and including a first vertical boundary;
a second semiconductor slab above the first semiconductor slab comprising a III-V material and including a ridge;
at least one overclad region coupled to the ridge of the second semiconductor slab; and
an optical waveguide included in the first and second semiconductor slab and formed, at least in part, by the ridge, the first vertical boundary and the overclad region(s) to vertically confine an optical mode of the optical waveguide, the ridge to laterally confine the optical mode.
2. The apparatus of claim 1, further comprising
an n-type electrical contact coupled to the second semiconductor slab; and
a p-type electrical contact coupled to the second semiconductor slab;
wherein the second semiconductor slab further comprises:
a p-type layer including the ridge and coupled to the p-type electrical contact;
an n-type layer coupled to the first semiconductor slab and the n-type electrical contact; and
an active layer disposed between the n-type layer and the p-type layer.
3. The apparatus of claim 1, further comprising
an n-type electrical contact coupled to the second semiconductor slab; and
a p-type electrical contact coupled to the second semiconductor slab;
wherein the second semiconductor slab further comprises:
an n-type layer including the ridge and coupled to the n-type electrical contact;
a p-type layer coupled to the first semiconductor slab and the p-type electrical contact; and
an active layer disposed between the p-type layer and the n-type layer.
4. The apparatus of claim 1, wherein the second semiconductor slab further comprises:
a first n-type layer including the ridge;
a second n-type layer coupled to the first semiconductor slab; and
an active layer disposed between the first and second n-type layers, the active layer including a tunnel junction to convert n-type majority carriers of one of the n-type layers to p-type majority carriers.
5. The apparatus of claim 1, further comprising
an n-type electrical contact coupled to the first semiconductor slab; and
a p-type electrical contact coupled to the second semiconductor slab;
wherein the first and second semiconductor slabs are coupled via a conductive bonding layer, and the second semiconductor slab further comprises:
a p-type layer including the ridge and coupled to the p-type electrical contact;
an n-type layer coupled to the conductive bonding layer, and
an active layer disposed between the n-type layer and the p-type layer.
6. The apparatus of claim 1, further comprising a silicon substrate layer below the first semiconductor slab, wherein the first vertical boundary comprises a first vertical confinement layer disposed between the first semiconductor slab and the silicon substrate layer.
7. The apparatus of claim 6, wherein the first vertical confinement layer comprises a material with a lower refractive index than silicon.
8. The apparatus of claim 2, the ridge further included in the active layer and to extend to the n-type layer.
9. The apparatus of claim 5, the ridge further included in the active layer and the n-type layer and to extend to the conductive bonding layer.
10. A system comprising:
a light source;
a modulator to receive light from the light source; and
a transmission medium to operatively couple the light source and the modulator; wherein at least one of the light source and the modulator includes an optical device comprising
a first semiconductor slab comprising a silicon material and including a first vertical boundary,
a second semiconductor slab above the first semiconductor slab comprising a III-V material and including a ridge, and
an optical waveguide included in the first and second semiconductor slab and formed, at least in part, by the ridge, the first vertical boundary to vertically confine an optical mode of the optical waveguide, the ridge to laterally confine the optical mode.
11. The system of claim 10, the optical device further comprising
an n-type electrical contact coupled to the second semiconductor slab; and
a p-type electrical contact coupled to the second semiconductor slab;
wherein the second semiconductor slab further comprises:
a p-type layer including the ridge and coupled to the p-type electrical contact;
an n-type layer coupled to the first semiconductor slab and the n-type electrical contact; and
an active layer disposed between the n-type layer and the p-type layer.
12. The system of claim 10, the optical device further comprising
an n-type electrical contact coupled to the second semiconductor slab; and
a p-type electrical contact coupled to the second semiconductor slab;
wherein the second semiconductor slab further comprises:
an n-type layer including the ridge and coupled to the n-type electrical contact;
a p-type layer coupled to the first semiconductor slab and the p-type electrical contact; and
an active layer disposed between the p-type layer and the n-type layer.
13. The system of claim 10, wherein the second semiconductor slab of the optical device further comprises:
a first n-type layer including the ridge;
a second n-type layer coupled to the first semiconductor slab; and
an active layer disposed between the first and second n-type layers, the active layer including a tunnel junction to convert n-type majority carriers of one of the n-type layers to p-type majority carriers.
14. The system of claim 10, the optical device further comprising
an n-type electrical contact coupled to the first semiconductor slab; and
a p-type electrical contact coupled to the second semiconductor slab;
wherein the first and second semiconductor slabs are coupled via a conductive bonding layer, and the second semiconductor slab further comprises:
a p-type layer including the ridge and coupled to the p-type electrical contact;
an n-type layer coupled to the conductive bonding layer, and
an active layer disposed between the n-type layer and the p-type layer.
15. The system of claim 10, the optical device further comprising a silicon substrate layer below the first semiconductor slab, wherein the first vertical boundary comprises a first vertical confinement layer disposed between the first semiconductor slab and the silicon substrate layer.
16. The system of claim 15, wherein the first vertical confinement layer comprises a material with a lower refractive index than silicon.
17. The system of claim 12, the ridge of the optical device further included in the active layer and to extend to the n-type layer.
18. The system of claim 14, the ridge of the optical device further included in the active layer and the n-type layer and to extend to the conductive bonding layer.
US12/943,743 2010-11-10 2010-11-10 Hybrid ridge waveguide Abandoned US20120114001A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/943,743 US20120114001A1 (en) 2010-11-10 2010-11-10 Hybrid ridge waveguide
US13/450,328 US8380033B1 (en) 2010-11-10 2012-04-18 Hybrid ridge waveguide
US13/745,320 US8781283B1 (en) 2010-11-10 2013-01-18 Hybrid ridge waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/943,743 US20120114001A1 (en) 2010-11-10 2010-11-10 Hybrid ridge waveguide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/450,328 Continuation US8380033B1 (en) 2010-11-10 2012-04-18 Hybrid ridge waveguide

Publications (1)

Publication Number Publication Date
US20120114001A1 true US20120114001A1 (en) 2012-05-10

Family

ID=46019594

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/943,743 Abandoned US20120114001A1 (en) 2010-11-10 2010-11-10 Hybrid ridge waveguide
US13/450,328 Active US8380033B1 (en) 2010-11-10 2012-04-18 Hybrid ridge waveguide
US13/745,320 Active US8781283B1 (en) 2010-11-10 2013-01-18 Hybrid ridge waveguide

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/450,328 Active US8380033B1 (en) 2010-11-10 2012-04-18 Hybrid ridge waveguide
US13/745,320 Active US8781283B1 (en) 2010-11-10 2013-01-18 Hybrid ridge waveguide

Country Status (1)

Country Link
US (3) US20120114001A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195137A1 (en) * 2006-06-30 2013-08-01 John E. Bowers Method for electrically pumped semiconductor evanescent laser
US8774582B1 (en) * 2012-05-01 2014-07-08 Aurrion, Inc. Etch-selective bonding layer for hybrid photonic devices
US8891913B1 (en) * 2012-07-11 2014-11-18 Aurrion, Inc. Heterogeneous semiconductor photonic integrated circuit with multiple offset heights
CN104283093A (en) * 2013-07-01 2015-01-14 Imec公司 Hybrid waveguide laser and method for manufacturing hybrid waveguide laser
WO2015017152A3 (en) * 2013-07-30 2015-03-26 President And Fellows Of Harvard College Device support structures from bulk substrates
EP2866316A1 (en) * 2013-10-23 2015-04-29 Alcatel Lucent Thermal management of a ridge-type hybrid laser, device, and method
CN108054182A (en) * 2017-12-19 2018-05-18 苏州矩阵光电有限公司 A kind of compound semiconductor silicon substrate hybrid device and preparation method thereof
EP3407440A1 (en) * 2017-05-22 2018-11-28 Lasertel Inc. Improved thermal contact for semiconductors and related methods
CN109478764A (en) * 2016-06-03 2019-03-15 佛罗里达中央大学研究基金会 Integrated photon device, methods and applications based on heterojunction structure
US11056854B2 (en) 2018-08-14 2021-07-06 Leonardo Electronics Us Inc. Laser assembly and related methods
US20220082875A1 (en) * 2014-01-24 2022-03-17 Cisco Technology, Inc. Electro-optical modulator using waveguides with overlapping ridges
US11296481B2 (en) 2019-01-09 2022-04-05 Leonardo Electronics Us Inc. Divergence reshaping array
US11406004B2 (en) 2018-08-13 2022-08-02 Leonardo Electronics Us Inc. Use of metal-core printed circuit board (PCB) for generation of ultra-narrow, high-current pulse driver
US11705690B2 (en) 2016-11-29 2023-07-18 Leonardo Electronics Us Inc. Dual junction fiber-coupled laser diode and related methods
US11752571B1 (en) 2019-06-07 2023-09-12 Leonardo Electronics Us Inc. Coherent beam coupler

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114001A1 (en) * 2010-11-10 2012-05-10 Fang Alexander W Hybrid ridge waveguide
US9225422B1 (en) 2013-07-11 2015-12-29 Inphi Corporation Integrated control module for communication system on a chip for silicon photonics
US10036904B1 (en) 2014-03-26 2018-07-31 Inphi Corporation Method and system for integrated differential electro-absorption modulator device
US9329337B2 (en) 2014-04-25 2016-05-03 Inphi Corporation Silicon photonics device and communication system therefor
US9804475B1 (en) 2015-04-16 2017-10-31 Aurrion, Inc. Radio-frequency loss reduction in photonic circuits
US9786641B2 (en) 2015-08-13 2017-10-10 International Business Machines Corporation Packaging optoelectronic components and CMOS circuitry using silicon-on-insulator substrates for photonics applications
US10254477B2 (en) * 2015-12-09 2019-04-09 Finisar Corporation Polarization independent multiplexer / demultiplexer
US11631967B2 (en) 2020-01-15 2023-04-18 Quintessent Inc. System comprising an integrated waveguide-coupled optically active device and method of formation
US11150406B2 (en) 2020-01-15 2021-10-19 Quintessent Inc. Optically active waveguide and method of formation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633401B1 (en) * 1988-06-24 1990-10-05 Labo Electronique Physique SEMICONDUCTOR DEVICE COMPRISING AN INTEGRATED LIGHT GUIDE WHICH HAS AT LEAST ONE RECLINED AND ONE CURVED PART
US5138626A (en) * 1990-09-12 1992-08-11 Hughes Aircraft Company Ridge-waveguide buried-heterostructure laser and method of fabrication
US5745630A (en) * 1996-02-22 1998-04-28 Sandia Corporation Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits
GB2323450A (en) * 1997-03-20 1998-09-23 Secr Defence Optical modulator
US6229947B1 (en) * 1997-10-06 2001-05-08 Sandia Corporation Tapered rib fiber coupler for semiconductor optical devices
US6768855B1 (en) * 2001-07-05 2004-07-27 Sandia Corporation Vertically-tapered optical waveguide and optical spot transformer formed therefrom
US6990257B2 (en) * 2001-09-10 2006-01-24 California Institute Of Technology Electronically biased strip loaded waveguide
US6845198B2 (en) 2003-03-25 2005-01-18 Sioptical, Inc. High-speed silicon-based electro-optic modulator
US7035487B2 (en) * 2004-06-21 2006-04-25 Intel Corporation Phase shifting optical device with dopant barrier
US7408693B2 (en) 2004-07-27 2008-08-05 Jds Uniphase Corporation Electro-optic device
US7280712B2 (en) * 2005-08-04 2007-10-09 Intel Corporation Method and apparatus for phase shifiting an optical beam in an optical device
US8110823B2 (en) 2006-01-20 2012-02-07 The Regents Of The University Of California III-V photonic integration on silicon
US20080002929A1 (en) 2006-06-30 2008-01-03 Bowers John E Electrically pumped semiconductor evanescent laser
WO2008009147A1 (en) 2006-07-18 2008-01-24 Weidmann Plastics Technology Ag Determination of a surface temperature of a cooling body
US7796656B2 (en) * 2007-11-05 2010-09-14 Onechip Photonics Inc. Enhanced efficiency laterally-coupled distributed feedback laser
KR100937589B1 (en) * 2007-11-07 2010-01-20 한국전자통신연구원 Hybrid LASER Diode
US20100020837A1 (en) 2008-07-22 2010-01-28 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Semiconductor light emission device having an improved current confinement structure, and method for confining current in a semiconductor light emission device
US9134553B2 (en) * 2010-03-15 2015-09-15 Agency For Science, Technology And Research Optical modulator and method for manufacturing the same
US20120114001A1 (en) * 2010-11-10 2012-05-10 Fang Alexander W Hybrid ridge waveguide

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195137A1 (en) * 2006-06-30 2013-08-01 John E. Bowers Method for electrically pumped semiconductor evanescent laser
US8767792B2 (en) * 2006-06-30 2014-07-01 Intel Corporation Method for electrically pumped semiconductor evanescent laser
US8774582B1 (en) * 2012-05-01 2014-07-08 Aurrion, Inc. Etch-selective bonding layer for hybrid photonic devices
US8891913B1 (en) * 2012-07-11 2014-11-18 Aurrion, Inc. Heterogeneous semiconductor photonic integrated circuit with multiple offset heights
US9274279B1 (en) 2012-07-11 2016-03-01 Aurrion, Inc. Heterogeneous semiconductor photonic integrated circuit with multiple offset heights
CN104283093A (en) * 2013-07-01 2015-01-14 Imec公司 Hybrid waveguide laser and method for manufacturing hybrid waveguide laser
EP2866317A1 (en) * 2013-07-01 2015-04-29 Imec Hybrid waveguide lasers and methods for fabricating hybrid waveguide lasers
WO2015017152A3 (en) * 2013-07-30 2015-03-26 President And Fellows Of Harvard College Device support structures from bulk substrates
US10281648B2 (en) 2013-07-30 2019-05-07 President And Fellows Of Harvard College Device support structures from bulk substrates
EP2866316A1 (en) * 2013-10-23 2015-04-29 Alcatel Lucent Thermal management of a ridge-type hybrid laser, device, and method
US11886056B2 (en) * 2014-01-24 2024-01-30 Cisco Technology, Inc. Electro-optical modulator using waveguides with overlapping ridges
US20220082875A1 (en) * 2014-01-24 2022-03-17 Cisco Technology, Inc. Electro-optical modulator using waveguides with overlapping ridges
CN109478764A (en) * 2016-06-03 2019-03-15 佛罗里达中央大学研究基金会 Integrated photon device, methods and applications based on heterojunction structure
US20190207370A1 (en) * 2016-06-03 2019-07-04 University Of Central Florida Research Foundation, Inc. Hetero-structure-based integrated photonic devices, methods and applications
US11705690B2 (en) 2016-11-29 2023-07-18 Leonardo Electronics Us Inc. Dual junction fiber-coupled laser diode and related methods
EP3407440A1 (en) * 2017-05-22 2018-11-28 Lasertel Inc. Improved thermal contact for semiconductors and related methods
US10454250B2 (en) 2017-05-22 2019-10-22 Lasertel Inc. Thermal contact for semiconductors and related methods
CN108054182A (en) * 2017-12-19 2018-05-18 苏州矩阵光电有限公司 A kind of compound semiconductor silicon substrate hybrid device and preparation method thereof
US11406004B2 (en) 2018-08-13 2022-08-02 Leonardo Electronics Us Inc. Use of metal-core printed circuit board (PCB) for generation of ultra-narrow, high-current pulse driver
US11056854B2 (en) 2018-08-14 2021-07-06 Leonardo Electronics Us Inc. Laser assembly and related methods
US11296481B2 (en) 2019-01-09 2022-04-05 Leonardo Electronics Us Inc. Divergence reshaping array
US11752571B1 (en) 2019-06-07 2023-09-12 Leonardo Electronics Us Inc. Coherent beam coupler

Also Published As

Publication number Publication date
US8380033B1 (en) 2013-02-19
US8781283B1 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
US8380033B1 (en) Hybrid ridge waveguide
US6936486B2 (en) Low voltage multi-junction vertical cavity surface emitting laser
US8538206B1 (en) Hybrid silicon electro-optic modulator
US7199441B2 (en) Optical module device driven by a single power supply
TWI497852B (en) Direct modulated laser
US8401344B2 (en) Semiconductor optical modulator and optical modulating apparatus
US7430229B2 (en) Opto-electronic device comprising an integrated laser and an integrated modulator and associated method of production
US20070223543A1 (en) Laterally Implanted Electroabsorption Modulated Laser
JPS6384186A (en) Transverse junction stripe laser
JPH0281494A (en) Diode laser equipped with improved means which electrically modulates emission beam intensity inclusive of turn-on and turn-off and electrically controls the position of emitted laser beam spot
US8538221B1 (en) Asymmetric hybrid photonic devices
US10305251B2 (en) Laser diodes with layer of graphene
US8948606B2 (en) Semiconductor optical amplifier
US8358897B1 (en) High index bonding layer for hybrid photonic devices
Cheung et al. Theory and design optimization of energy-efficient hydrophobic wafer-bonded III–V/Si hybrid semiconductor optical amplifiers
CN102969652B (en) Three end vertical cavity surface emitting lasers (VCSEL) and the method for operating three end VCSEL
EP3416252A1 (en) One step sibh for integrated circuits
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
US8774582B1 (en) Etch-selective bonding layer for hybrid photonic devices
US20240006844A1 (en) Semiconductor Optical Device
JP2004146693A (en) Optical semiconductor element
JPH0614574B2 (en) Semiconductor laser
Knodl et al. Integrated 1.3-µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure
Chen et al. Two stacks of MQW for fabricating high-speed electro-absorption modulator integrated DFB laser
JP2890644B2 (en) Manufacturing method of integrated optical modulator

Legal Events

Date Code Title Description
AS Assignment

Owner name: AURRION, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FANG, ALEXANDER W.;FISH, GREGORY A.;NICHOLES, STEVEN C.;REEL/FRAME:025352/0463

Effective date: 20101110

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: AURRION, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:AURRION, LLC;REEL/FRAME:030706/0040

Effective date: 20101217