US20120108829A1 - Process for the production of furfural from pentoses - Google Patents

Process for the production of furfural from pentoses Download PDF

Info

Publication number
US20120108829A1
US20120108829A1 US12/944,403 US94440310A US2012108829A1 US 20120108829 A1 US20120108829 A1 US 20120108829A1 US 94440310 A US94440310 A US 94440310A US 2012108829 A1 US2012108829 A1 US 2012108829A1
Authority
US
United States
Prior art keywords
furfural
process according
column
pentoses
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/944,403
Inventor
Wiebren de Jong
Gianluca Marcotullio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universiteit Delft
Original Assignee
Technische Universiteit Delft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universiteit Delft filed Critical Technische Universiteit Delft
Assigned to TECHNISCHE UNIVERSITEIT DELFT reassignment TECHNISCHE UNIVERSITEIT DELFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DE JONG, WIEBREN, MARCOTULLIO, GIANLUCA
Priority to US13/327,123 priority Critical patent/US9006471B2/en
Publication of US20120108829A1 publication Critical patent/US20120108829A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/284Special features relating to the compressed vapour
    • B01D1/2856The compressed vapour is used for heating a reboiler or a heat exchanger outside an evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention is directed to a process for the production of furfural (or 2-furancarboxaldehyde) from pentoses.
  • Furfural is a chemical intermediate readily available from lignocellulosic biomass, and it is industrially produced since 1921 mainly from residues of agriculture. Furfural offers alternative ways for producing numerous materials as well as new generation biofuels. Potential and upcoming markets for furan resins cover a wide spectrum with massive potential utilization, from wood preservatives to construction materials. In the past furfural has been already used as starting material for the production of important chemical intermediates like THF. Favourable balances between oil prices and furfural availability, as well as green oriented policies, are likely to drive a switch back to the furfural based routes.
  • the present invention is based on the development of a far more energy efficient way of producing furfural from pentoses, or soluble pentosans.
  • the invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, which process comprises converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution containing furfural obtained in the first step to the top of a distillation column to produce an aqueous, liquid downflow, which column is heated at the bottom to produce an upflow water vapour flow, recovering a gaseous water and furfural containing product stream from the top of the said column, compressing the said vapour flow and condensing it on the hot side of a reboiler at the bottom of the said column.
  • FIG. 1 is a schematic flow chart/diagram in accordance with the processes of the invention.
  • the two steps are carried out simultaneously, i.e. feeding an aqueous solution of one or more pentoses or water soluble pentosans to the top of a reactive distillation column to produce an aqueous, liquid downflow where the reaction partly or totally takes place, which column is heated at the bottom to produce an upflow gaseous water vapour flow, recovering a water and furfural containing product stream from the top of the said column.
  • the resulting product stream can be subjected to a subsequent distillation, using conventional methods, or, preferably, a method using the same principles of recompression and heat recovery.
  • the two steps are carried out consecutively, namely a first prereaction step, wherein an aqueous furfural containing feed stream is produced, for example by heating an aqueous solution of pentoses and/or water soluble pentosans, following which the resulting feed stream is distilled as defined in the present invention.
  • a first prereaction step wherein an aqueous furfural containing feed stream is produced, for example by heating an aqueous solution of pentoses and/or water soluble pentosans, following which the resulting feed stream is distilled as defined in the present invention.
  • Intermediate solutions are also possible where the reaction is partly carried out before and partly inside the distillation column.
  • the present invention is based thereon that by using conventional heat recovery systems, the major part of the energy consumption in the process resides in the recompression of the top product of the column. Because of the system vapour-liquid equilibrium, the top and bottom temperatures of the column differ by only few Kelvin. For this reason the energy consumption due to the vapour recompression can be minimal, and such to ensure an appropriate temperature difference between the hot and cold sides of the heat exchanger.
  • the work for compression will be thus inversely proportional to the heat exchange surface area at the reboiler (at the bottom of the column).
  • the present invention accordingly resides therein that with the use of an, as such conventional, distillation column, the thermodynamic properties of the system allow for a very efficient and economic production and separation process of furfural from pentoses.
  • Pentoses and/or soluble pentosans used for this process are preferably obtained from biomass or the residues of biomass conversion. Soluble oligomers of pentoses (pentosans) are sometimes present together with pentoses in liquors containing pentoses. The pentosans are generally depolymerised rapidly under the conditions required for the production of furfural from pentoses.
  • distillation column or columns to be used herein may be of conventional design, taking into account the requirements of the process. This design can easily be done by a person skilled in the art of distillation. Such a column provides for a sufficient gas/liquid contact. This may be done by the use of packing material, trays (with or without downcomers) and the like.
  • the process can be performed with or without the use of an acidic catalyst. It is preferred that an acidic catalyst system is present. This may be a mineral or organic acid, dissolved in the aqueous liquid downflow. Suitable acids are sulphuric acid, hydrochloric acid or phosphoric acid. However, it is also possible that the interior of the column contains an acidic material on the surface thereof. This material may then be applied to the trays, walls or packing material. Suitable acidic materials to be used herein are acidic zeolites, silica-alumina, super acids, acidic ion exchange resins and the like.
  • the acidic components are preferably recycled with the bottom product to the column.
  • the aqueous phase additionally contains a dissolved salt, such as an alkali, earth alkali or ammonium halide.
  • This embodiment may be combined with the use of dissolved acidic material or solid acidic materials anchored to the column or packing material.
  • the recycle stream optionally contains the catalyst and it might contain some electrolyte (salt) in order to optimize the catalytic conversion of pentoses into furfural besides enhancing the separation of furfural.
  • the pentoses are converted to furfural which at least partly transfers to the gas phase.
  • the gas phase obtained at the top of the column is recompressed and condensed, preferably by heat exchange with the product in the bottom of the column, for example in the reboiler system of the column.
  • the furfural containing condensate can then be used as such in further processes, as concentrated furfural solution, or the furfural may be recovered from it, preferably by further distillation using a column equipped with recompression and condensation of the vapour product.
  • This column may be of comparable construction as the column used for the initial production of furfural.
  • the pentoses containing feed stream is preferably biomass or biomass derived, for example as secondary product from the paper industry, cellulosic ethanol refineries, sugar factories or anywhere it may become available in suitable amounts. It may also be produced in dedicated facilities where the pentosans are separated from raw biomass material, such as woody biomass, agricultural residues or similar, using different existing technologies.
  • the temperature and pressure conditions of the process may vary between relatively wide limits, and depending on the optimization of economic factors. It is preferred to carry out the reaction at temperatures between 100 and 300° C., preferably between 150 and 250° C.
  • the reaction pressures depend on the temperature of choice for the reaction, and will be very similar that of pure saturated water at the same temperature.
  • the concentration of pentoses in the feed stream is not critical, but it should be such to result in a pentoses concentration inside the reactor(s) preferably below 10 wt. % in water solution, more in particular between 1 and 4 wt. %.
  • concentration can easily be maintained at this level by the selection of the amount of recycle or simply by dilution.
  • the invention is now elucidated on the basis of the flow chart in FIG. 1 .
  • FIG. 1 a process flow diagram has been given.
  • ReactCol 103
  • ReactCol 103
  • stream 5 a furfural-water stream
  • stream 1 a pentosan sugars containing liquor
  • Scheme II a distillation system is depicted for the production of concentrated furfural (95 wt %), stream 18 , from a more diluted ( ⁇ 8 wt %) furfural containing water stream (stream 11 ).
  • a feed stream ( 1 ) containing an aqueous solution of pentoses and/or soluble pentosans is mixed with a recycle stream, adjusted to the desired temperature in a heater, PreHeat ( 101 ) and thus conveyed to the main reactive distillation column, ReactCol ( 103 ).
  • PreHeat 101
  • ReactCol 103
  • the reactive liquid solution (stream 2 ) enters the reactive column (ReactCol ( 103 )) from a top stage and it is held-up inside the column for a residence time sufficiently long to reach the desired conversion of pentoses.
  • the sump fraction of the reboiler ReB ( 105 ), stream ( 8 ), can contain the by-products of the reaction, unreacted sugars and smaller amounts of furfural.
  • stream 8 may contain dissolved acids, metal halides or other soluble material used as catalysts for the reaction. Amounts of such stream ( 8 ) can be recycled, or leave the process (stream 9 ).
  • a stream of pure water or an acid/salt solution of appropriate concentration (stream 10 ) can be used to replenish the system so to avoid the accumulation of impurities within the process.
  • Stream 10 can preferably be produced from stream 9 after its purification from organic compounds and other impurities thereof.
  • a dilute aqueous furfural stream of the kind of stream 5 can be concentrated using a traditional furfural-water distillation process, or preferably using a distillation column energized by the recompression and condensation of the vapour products, as depicted in FIG. 1 , scheme II.
  • a furfural-water stream ( 11 ) is fed to a distillation column Strip Col ( 201 ) to an appropriate stage, and flowing downward is deprived of its furfural content.
  • the column is equipped with a reboiler, Reb ( 203 ), to produce appropriate amounts of upflow stream ( 14 ).
  • the furfural-rich top product of such column (stream 12 ) is compressed and fed to the hot side of the same reboiler ReB ( 203 ) condensing therein to liquid state.
  • the stream 16 so produced is cooled and collected in a decanter, Dec ( 205 ), where liquid-liquid separation takes place due to the partial miscibility of furfural with water.
  • the heavier phase (stream 18 ) containing concentrated furfural (95 wt % ca.) is collected whereas the lighter fraction from the decanter (Dec ( 205 )), containing furfural to appreciable extents, is heated up in a recovery heat exchanger, Hrec ( 204 ), and fed again to the distillation column StripCol ( 201 ).
  • the reaction temperature for this example is 200° C.
  • a liquid aqueous stream of 100 kg/h containing 5 wt. % of dissolved pentoses, derived from the hydrolysis of lignocellulosic biomass, is fed to the process (stream 1 ), and mixed with a recycle stream of 150 kg/h, at 200° C., containing an amount of unreacted pentoses, small amounts of furfural and some other by-products.
  • the resulting aqueous mixture stream of 250 kg/h containing 2.03 wt. % of pentoses is adjusted to the reaction temperature (200° C.) in the pre-heater (PreHeat ( 101 )), and fed to an adiabatic pre-reactor (PreReac ( 102 )). Downstream, the pre-reactor (PreReac ( 102 )) stream 2 containing 0.71 wt. % of xylose and 0.87.wt % of furfural is fed to the column (ReacCol ( 103 )) at 200° C.
  • stream 4 temperature results 226° C., whereas its dew point temperature is 209° C. In this way an appropriate temperature difference between the two sides of the reboiler is ensured.
  • the power required to drive the compressor is 1.3 kW, whereas the heat duty at the reboiler is 53.2 kW, resulting in a coefficient of performance of 40.9.
  • the molar yield of furfural in the stream 5 is 84.5% on the basis of the initial pentoses content of stream 1 , and the mechanical energy required to the process is 481 kWh per ton of furfural.
  • the product stream. 5 with a flow of 100 kg/h and containing 2.7 wt % of furfural, is subjected to distillation at atmospheric pressure according to FIG. 1 , scheme II.
  • stream 11 which equals stream 5
  • stripCol( 201 ) is fed to the stripping column (StripCol( 201 )) at an intermediate stage.
  • the top product of the column, stream 12 consists of a vapour aqueous stream of 30 kg/h at 97.9° C. and atmospheric pressure, containing 16.2 wt. % furfural.
  • Such stream 12 is compressed (Comp( 202 )) to 1.35 bar, resulting in a temperature of 131° C.
  • the dew point temperature of stream 13 is 108° C., so to allow for a sufficient temperature difference at the reboiler (Reb( 203 )), which operates at the cold side at about 100° C.
  • the top product from the decanter Dec( 205 ) is a stream of 27.2 kg/h containing 8.1 wt. % furfural which is fed to the top of the stripping column after heating (stream 17 ).
  • the bottom product of the decanter Dec( 205 ), stream 18 represents the main product stream, having a flow of 2.8 kg/h and containing 95.2 wt. % furfural. Nearly 99% of the furfural fed to the system through stream 11 is recovered in stream 18 .
  • the power required to drive the compressor (Comp( 202 )) is 0.48 kW, whereas the heat duty at the reboiler (Reb( 203 )) is 16.5 kW, resulting in a coefficient of performance of 34.5.
  • the mechanical energy required to the distillation process is 180 kWh per ton of furfural in stream 18 .

Abstract

The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution containing furfural obtained in the first step to the top of a distillation column to produce an aqueous, liquid downflow, which column is heated at the bottom to produce an upflow water vapour flow, recovering a gaseous water and furfural containing product stream from the top of the said column, compressing the said vapour flow and condensing it on the hot side of a reboiler at the bottom of the said column.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of Dutch Patent Application No. 2005588 filed Oct. 27, 2010, the contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention is directed to a process for the production of furfural (or 2-furancarboxaldehyde) from pentoses.
  • BACKGROUND OF THE INVENTION
  • Furfural is a chemical intermediate readily available from lignocellulosic biomass, and it is industrially produced since 1921 mainly from residues of agriculture. Furfural offers alternative ways for producing numerous materials as well as new generation biofuels. Potential and upcoming markets for furan resins cover a wide spectrum with massive potential utilization, from wood preservatives to construction materials. In the past furfural has been already used as starting material for the production of important chemical intermediates like THF. Favourable balances between oil prices and furfural availability, as well as green oriented policies, are likely to drive a switch back to the furfural based routes.
  • As far as the energy sector is concerned, direct hydrogenation derivatives of furfural also have a high potential as alternative liquid fuels and fuel extenders. 2-Methyltetrahydrofuran (MTHF) has been proven to show superior characteristics as fuel extender in regular gasoline, as well as in alternative fuels formulations based on ethanol (P-series fuels). Besides, 2-methylfuran and tetrahydrofurfurylalcohol (THFA) could also be potential candidates as biomass derived octane enhancer, and as diesel fuel additive.
  • Current furfural production processes are energy intensive and costly. Moreover, they exhibit relatively low yields, 50-60% of the theoretical, and they are poorly integrated with processes aimed at valorising the entire biomass feedstock. This makes furfural less suitable for the fuel industry at the moment, and not always cost competitive with oil derivatives in the chemical industry. The development of novel production processes is needed in order to unlock the potential of this biomass derived platform chemical.
  • Traditional processes employ a large share of their primary energy input to produce high pressure steam to strip out the furfural from the reacting system, and for the subsequent distillation. The total energy consumption in such processes ranges from 15 to 50 ton of steam per ton of furfural produced. The direct reduction of steam usage usually is detrimental for the furfural yield from biomass.
  • SUMMARY OF THE INVENTION
  • Accordingly it is an object of the present invention to provide a process for the production of furfural from pentoses, requiring far less energy.
  • The present invention is based on the development of a far more energy efficient way of producing furfural from pentoses, or soluble pentosans.
  • The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, which process comprises converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution containing furfural obtained in the first step to the top of a distillation column to produce an aqueous, liquid downflow, which column is heated at the bottom to produce an upflow water vapour flow, recovering a gaseous water and furfural containing product stream from the top of the said column, compressing the said vapour flow and condensing it on the hot side of a reboiler at the bottom of the said column.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic flow chart/diagram in accordance with the processes of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • There are various ways of carrying out the process of the invention. In a first embodiment, the two steps are carried out simultaneously, i.e. feeding an aqueous solution of one or more pentoses or water soluble pentosans to the top of a reactive distillation column to produce an aqueous, liquid downflow where the reaction partly or totally takes place, which column is heated at the bottom to produce an upflow gaseous water vapour flow, recovering a water and furfural containing product stream from the top of the said column. The resulting product stream can be subjected to a subsequent distillation, using conventional methods, or, preferably, a method using the same principles of recompression and heat recovery.
  • In another embodiment, the two steps are carried out consecutively, namely a first prereaction step, wherein an aqueous furfural containing feed stream is produced, for example by heating an aqueous solution of pentoses and/or water soluble pentosans, following which the resulting feed stream is distilled as defined in the present invention. Intermediate solutions are also possible where the reaction is partly carried out before and partly inside the distillation column.
  • The present invention is based thereon that by using conventional heat recovery systems, the major part of the energy consumption in the process resides in the recompression of the top product of the column. Because of the system vapour-liquid equilibrium, the top and bottom temperatures of the column differ by only few Kelvin. For this reason the energy consumption due to the vapour recompression can be minimal, and such to ensure an appropriate temperature difference between the hot and cold sides of the heat exchanger. The work for compression will be thus inversely proportional to the heat exchange surface area at the reboiler (at the bottom of the column).
  • The present invention accordingly resides therein that with the use of an, as such conventional, distillation column, the thermodynamic properties of the system allow for a very efficient and economic production and separation process of furfural from pentoses.
  • Pentoses and/or soluble pentosans used for this process are preferably obtained from biomass or the residues of biomass conversion. Soluble oligomers of pentoses (pentosans) are sometimes present together with pentoses in liquors containing pentoses. The pentosans are generally depolymerised rapidly under the conditions required for the production of furfural from pentoses.
  • As indicated above, current processes for the production of furfural from biomass are very energy intensive, with the consequence that furfural produced in that way, cannot compete with oil based products.
  • The distillation column or columns to be used herein may be of conventional design, taking into account the requirements of the process. This design can easily be done by a person skilled in the art of distillation. Such a column provides for a sufficient gas/liquid contact. This may be done by the use of packing material, trays (with or without downcomers) and the like.
  • The process can be performed with or without the use of an acidic catalyst. It is preferred that an acidic catalyst system is present. This may be a mineral or organic acid, dissolved in the aqueous liquid downflow. Suitable acids are sulphuric acid, hydrochloric acid or phosphoric acid. However, it is also possible that the interior of the column contains an acidic material on the surface thereof. This material may then be applied to the trays, walls or packing material. Suitable acidic materials to be used herein are acidic zeolites, silica-alumina, super acids, acidic ion exchange resins and the like.
  • In case of the use of an acidic material dissolved in the aqueous liquid downflow, the acidic components are preferably recycled with the bottom product to the column.
  • According to a further preferred embodiment, the aqueous phase additionally contains a dissolved salt, such as an alkali, earth alkali or ammonium halide.
  • This embodiment may be combined with the use of dissolved acidic material or solid acidic materials anchored to the column or packing material.
  • Thus, the recycle stream optionally contains the catalyst and it might contain some electrolyte (salt) in order to optimize the catalytic conversion of pentoses into furfural besides enhancing the separation of furfural.
  • During the gas liquid contact, the pentoses are converted to furfural which at least partly transfers to the gas phase. The gas phase obtained at the top of the column is recompressed and condensed, preferably by heat exchange with the product in the bottom of the column, for example in the reboiler system of the column. The furfural containing condensate can then be used as such in further processes, as concentrated furfural solution, or the furfural may be recovered from it, preferably by further distillation using a column equipped with recompression and condensation of the vapour product. This column may be of comparable construction as the column used for the initial production of furfural.
  • As indicated above, the pentoses containing feed stream is preferably biomass or biomass derived, for example as secondary product from the paper industry, cellulosic ethanol refineries, sugar factories or anywhere it may become available in suitable amounts. It may also be produced in dedicated facilities where the pentosans are separated from raw biomass material, such as woody biomass, agricultural residues or similar, using different existing technologies.
  • The temperature and pressure conditions of the process may vary between relatively wide limits, and depending on the optimization of economic factors. It is preferred to carry out the reaction at temperatures between 100 and 300° C., preferably between 150 and 250° C. The reaction pressures depend on the temperature of choice for the reaction, and will be very similar that of pure saturated water at the same temperature.
  • The concentration of pentoses in the feed stream is not critical, but it should be such to result in a pentoses concentration inside the reactor(s) preferably below 10 wt. % in water solution, more in particular between 1 and 4 wt. %. The concentration can easily be maintained at this level by the selection of the amount of recycle or simply by dilution.
  • The invention is now elucidated on the basis of the flow chart in FIG. 1.
  • In FIG. 1 a process flow diagram has been given. In Scheme I the main reactor column, ReactCol (103), is depicted, together with the main pieces of equipment in a typical configuration for the production of a furfural-water stream (stream 5) from a pentosan sugars containing liquor (stream 1). In Scheme II a distillation system is depicted for the production of concentrated furfural (95 wt %), stream 18, from a more diluted (<8 wt %) furfural containing water stream (stream 11).
  • On the basis of a process as described in FIG. 1, a feed stream (1) containing an aqueous solution of pentoses and/or soluble pentosans is mixed with a recycle stream, adjusted to the desired temperature in a heater, PreHeat (101) and thus conveyed to the main reactive distillation column, ReactCol (103). To variable extents the reaction can be performed also in a pre-reactor, PreReac (102). The reactive liquid solution (stream 2) enters the reactive column (ReactCol (103)) from a top stage and it is held-up inside the column for a residence time sufficiently long to reach the desired conversion of pentoses. The bottom product of such column (stream 7) enters a boiler, ReB (105) where it is partly vaporized to produce the upflow vapour stream (6). Such stream (6) flowing upward it is enriched in furfural to the expenses of the down-flowing reactive solution, which leaves the column (stream 8) largely deprived of its furfural content. The column gaseous product stream (3) is thus compressed (Comp (104)) and sent (stream 4) to the hot side of the boiler (Reb (105)) where it condenses. The condensed product of Reb (105), stream (5), contains the produced furfural in the form of a dilute aqueous solution. The sump fraction of the reboiler ReB (105), stream (8), can contain the by-products of the reaction, unreacted sugars and smaller amounts of furfural. In case homogeneous catalysis is opted for, stream 8 may contain dissolved acids, metal halides or other soluble material used as catalysts for the reaction. Amounts of such stream (8) can be recycled, or leave the process (stream 9). A stream of pure water or an acid/salt solution of appropriate concentration (stream 10) can be used to replenish the system so to avoid the accumulation of impurities within the process. Stream 10 can preferably be produced from stream 9 after its purification from organic compounds and other impurities thereof.
  • A dilute aqueous furfural stream of the kind of stream 5, can be concentrated using a traditional furfural-water distillation process, or preferably using a distillation column energized by the recompression and condensation of the vapour products, as depicted in FIG. 1, scheme II. In such scheme a furfural-water stream (11) is fed to a distillation column Strip Col (201) to an appropriate stage, and flowing downward is deprived of its furfural content. At its bottom the column is equipped with a reboiler, Reb (203), to produce appropriate amounts of upflow stream (14). The furfural-rich top product of such column (stream 12) is compressed and fed to the hot side of the same reboiler ReB (203) condensing therein to liquid state. The stream 16 so produced is cooled and collected in a decanter, Dec (205), where liquid-liquid separation takes place due to the partial miscibility of furfural with water. According to the common furfural-water separation techniques the heavier phase (stream 18) containing concentrated furfural (95 wt % ca.) is collected whereas the lighter fraction from the decanter (Dec (205)), containing furfural to appreciable extents, is heated up in a recovery heat exchanger, Hrec (204), and fed again to the distillation column StripCol (201).
  • Example 1
  • The reaction temperature for this example is 200° C. A liquid aqueous stream of 100 kg/h containing 5 wt. % of dissolved pentoses, derived from the hydrolysis of lignocellulosic biomass, is fed to the process (stream 1), and mixed with a recycle stream of 150 kg/h, at 200° C., containing an amount of unreacted pentoses, small amounts of furfural and some other by-products.
  • The resulting aqueous mixture stream of 250 kg/h containing 2.03 wt. % of pentoses is adjusted to the reaction temperature (200° C.) in the pre-heater (PreHeat (101)), and fed to an adiabatic pre-reactor (PreReac (102)). Downstream, the pre-reactor (PreReac (102)) stream 2 containing 0.71 wt. % of xylose and 0.87.wt % of furfural is fed to the column (ReacCol (103)) at 200° C.
  • A liquid bottom product stream (8) of 150 kg/h, containing 0.087 wt. % furfural and 0.05 wt. % pentoses, leaves the column at 200° C. A top vapour product, stream (3), of 100 kg/h leaves the column at 199.8° C. This stream (3), containing 2.70 wt. % of furfural, is compressed (Comp (104)) from 15.6 to 18.7 bar (abs) (pressure ratio 1.2) resulting in stream (4), which is sent to the hot side of the reboiler (ReB 105) where it is condensed.
  • With the isentropic efficiency of the compressor (Comp (104)) being 0.8, stream 4 temperature results 226° C., whereas its dew point temperature is 209° C. In this way an appropriate temperature difference between the two sides of the reboiler is ensured. Under these conditions, the power required to drive the compressor is 1.3 kW, whereas the heat duty at the reboiler is 53.2 kW, resulting in a coefficient of performance of 40.9. The molar yield of furfural in the stream 5 is 84.5% on the basis of the initial pentoses content of stream 1, and the mechanical energy required to the process is 481 kWh per ton of furfural.
  • The product stream. 5, with a flow of 100 kg/h and containing 2.7 wt % of furfural, is subjected to distillation at atmospheric pressure according to FIG. 1, scheme II. Thus stream 11, which equals stream 5, is fed to the stripping column (StripCol(201)) at an intermediate stage. The top product of the column, stream 12, consists of a vapour aqueous stream of 30 kg/h at 97.9° C. and atmospheric pressure, containing 16.2 wt. % furfural. Such stream 12 is compressed (Comp(202)) to 1.35 bar, resulting in a temperature of 131° C. The dew point temperature of stream 13 is 108° C., so to allow for a sufficient temperature difference at the reboiler (Reb(203)), which operates at the cold side at about 100° C. The top product from the decanter Dec(205) is a stream of 27.2 kg/h containing 8.1 wt. % furfural which is fed to the top of the stripping column after heating (stream 17). The bottom product of the decanter Dec(205), stream 18, represents the main product stream, having a flow of 2.8 kg/h and containing 95.2 wt. % furfural. Nearly 99% of the furfural fed to the system through stream 11 is recovered in stream 18. Under these conditions, the power required to drive the compressor (Comp(202)) is 0.48 kW, whereas the heat duty at the reboiler (Reb(203)) is 16.5 kW, resulting in a coefficient of performance of 34.5. The mechanical energy required to the distillation process is 180 kWh per ton of furfural in stream 18.

Claims (17)

1. Process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution containing furfural obtained in the first step to the top of a distillation column to produce an aqueous, liquid downflow, which column is heated at the bottom to produce an upflow water vapour flow, recovering a gaseous water and furfural containing product stream from the top of the said column, compressing the said vapour flow and condensing it on the hot side of a reboiler at the bottom of the said column.
2. Process according to claim 1, which process comprises feeding an aqueous solution of one or more pentoses or soluble pentosans to the top of a distillation column to produce an aqueous, liquid downflow, which column is heated at the bottom to produce an upflow water vapour flow, recovering a gaseous water and furfural containing product stream from the top of the said column after recompression and condensation.
3. Process according to claim 1, wherein the first step and the second step are carried out consecutively.
4. Process according to claim 3, wherein the reaction is partly carried out before and partly inside the distillation column.
5. Process according to claim 1, wherein the said gaseous product stream is recompressed and led through a heat exchanger which is in contact with the contents of the said column, preferably at a location near the bottom thereof.
6. Process according to claim 1, wherein the said aqueous solution of pentoses is obtained from biomass, more in particular from a biomass residue.
7. Process according to claim 1, wherein the said product stream is condensed to produce a concentrated aqueous furfural product stream.
8. Process according to claim 7, wherein furfural is recovered from the said concentrated aqueous furfural product stream by distillation with vapour recompression.
9. Process according to claim 1, wherein the pressure in the said distillation column is between 1 and 50 bar(abs).
10. Process according to claim 1, wherein the temperature in the said distillation column is between 100 and 300° C., or between 150 and 250° C.
11. Process according to claim 1, wherein the concentration of pentoses during the reactive steps is lower than 10 wt. %, or between 1 and 4 wt %.
12. Process according to claim 1, wherein the production of furfural occurs under acidic conditions.
13. Process according to claim 12, wherein at least one acidic material is present in the said liquid downflow.
14. Process according to claim 13 wherein the acidic material is sulphuric acid, phosphoric acid or hydrochloric acid.
15. Process according to claim 12, wherein the distillation column contains a solid acid, optionally on packing material, or trays in the distillation column.
16. Process according to claim 12, wherein the liquid additionally contains at least one salt.
17. Process according to claim 16, wherein the salt is an alkali, earth alkaline or ammonium halide.
US12/944,403 2010-10-27 2010-11-11 Process for the production of furfural from pentoses Abandoned US20120108829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/327,123 US9006471B2 (en) 2010-10-27 2011-12-15 Process for the production of furfural from pentoses and/or water soluble pentosans

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2005588 2010-10-27
NL2005588A NL2005588C2 (en) 2010-10-27 2010-10-27 Process for the production of furfural from pentoses.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/327,123 Continuation-In-Part US9006471B2 (en) 2010-10-27 2011-12-15 Process for the production of furfural from pentoses and/or water soluble pentosans

Publications (1)

Publication Number Publication Date
US20120108829A1 true US20120108829A1 (en) 2012-05-03

Family

ID=43502826

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/944,403 Abandoned US20120108829A1 (en) 2010-10-27 2010-11-11 Process for the production of furfural from pentoses
US13/327,123 Expired - Fee Related US9006471B2 (en) 2010-10-27 2011-12-15 Process for the production of furfural from pentoses and/or water soluble pentosans

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/327,123 Expired - Fee Related US9006471B2 (en) 2010-10-27 2011-12-15 Process for the production of furfural from pentoses and/or water soluble pentosans

Country Status (7)

Country Link
US (2) US20120108829A1 (en)
EP (1) EP2632911B1 (en)
AU (1) AU2011321090B2 (en)
BR (1) BR112013010375A2 (en)
ES (1) ES2565491T3 (en)
NL (1) NL2005588C2 (en)
WO (1) WO2012057625A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172581A1 (en) * 2011-12-28 2013-07-04 E I Du Pont De Nemours And Company Process for the production of furfural
US20130172583A1 (en) * 2011-12-28 2013-07-04 E I Du Pont De Nemours And Company Process for the production of furfural
US9024047B2 (en) 2010-12-21 2015-05-05 E I Du Pont De Nemours And Company Methods for furfural production from branched non-fermentable sugars in stillage or syrup
US9181211B2 (en) 2011-12-28 2015-11-10 E I Du Pont De Nemours And Company Process for the production of furfural
US9181210B2 (en) 2011-12-28 2015-11-10 E I Du Pont De Nemours And Company Processes for making furfurals

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201395B (en) 2010-06-26 2016-03-02 威尔迪亚有限公司 Sugar mixture and production thereof and using method
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
GB2505148B8 (en) 2011-04-07 2016-12-07 Virdia Ltd Lignocellulose conversion processes and products
WO2015034964A1 (en) 2013-09-03 2015-03-12 Virdia, Inc. Methods for extracting and converting hemicellulose sugars
NL2012819B1 (en) 2014-05-15 2016-03-02 Univ Delft Tech Method and Apparatus for Furfural Production.
FI129405B (en) * 2016-12-30 2022-01-31 Upm Kymmene Corp A method and an apparatus for separating furfural
PL3733655T3 (en) 2017-12-06 2023-03-06 Eco Biomass Technology Company Limited System and method for continuously preparing furfural using lignocellulosic raw material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE740602C (en) * 1941-02-25 1943-11-01 Chem Fab Loewenberg Dr Warth & Process for the production of furfural from pentoses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2462433A1 (en) * 1979-08-03 1981-02-13 Bertin & Cie IMPROVEMENTS IN PROCESSES AND EQUIPMENT FOR OBTAINING FURFURAL FROM PLANT MATERIALS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE740602C (en) * 1941-02-25 1943-11-01 Chem Fab Loewenberg Dr Warth & Process for the production of furfural from pentoses

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024047B2 (en) 2010-12-21 2015-05-05 E I Du Pont De Nemours And Company Methods for furfural production from branched non-fermentable sugars in stillage or syrup
US20130172581A1 (en) * 2011-12-28 2013-07-04 E I Du Pont De Nemours And Company Process for the production of furfural
US20130172583A1 (en) * 2011-12-28 2013-07-04 E I Du Pont De Nemours And Company Process for the production of furfural
US9012664B2 (en) * 2011-12-28 2015-04-21 E I Du Pont De Nemours And Company Process for the production of furfural
US20150152074A1 (en) * 2011-12-28 2015-06-04 E I Du Pont De Nemours And Company Process for the production of furfural
US9181209B2 (en) * 2011-12-28 2015-11-10 E I Du Pont De Nemours And Company Process for the production of furfural
US9181211B2 (en) 2011-12-28 2015-11-10 E I Du Pont De Nemours And Company Process for the production of furfural
US9181210B2 (en) 2011-12-28 2015-11-10 E I Du Pont De Nemours And Company Processes for making furfurals

Also Published As

Publication number Publication date
EP2632911A2 (en) 2013-09-04
NL2005588C2 (en) 2012-05-01
BR112013010375A2 (en) 2016-07-05
US20120149924A1 (en) 2012-06-14
AU2011321090B2 (en) 2016-05-05
WO2012057625A3 (en) 2012-12-27
EP2632911B1 (en) 2015-12-30
ES2565491T3 (en) 2016-04-05
AU2011321090A1 (en) 2013-05-23
WO2012057625A2 (en) 2012-05-03
US9006471B2 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
US20120108829A1 (en) Process for the production of furfural from pentoses
Torres et al. Continuous production of 5-hydroxymethylfurfural from fructose: a design case study
NO309522B1 (en) Methods for the preparation of dimethyl ether, as well as recovery from methanol
KR880002797A (en) Process for preparing dialkyl maleate
KR101217137B1 (en) Method for manufacturing 5-hydroxymethyl-2-furfural from corn syrup containing fructose
US4372822A (en) Production of anhydrous ethanol
CN109467542A (en) A kind of method that fiber biomass direct liquefaction prepares levulic acid and furfural
CN107074677B (en) Process for producing 1, 3-butadiene from 1, 3-butanediol
Byun et al. Catalytic production of biofuels (butene oligomers) and biochemicals (tetrahydrofurfuryl alcohol) from corn stover
Kiss et al. Revamping dimethyl ether separation to a single‐step process
CN100395226C (en) Method for mass producing butyl acetate by reactive distillation method and using sulfuric acid as catalyst
JPH04507411A (en) process
CN108083966A (en) A kind of method of azeotropic distillation separating cyclohexene and 1,3- cyclohexadiene
CN101357880B (en) Technique and system for preparing dichloropropanol by autocatalysis reaction of glycerine and hydrogen chloride
CN108689798B (en) Method for improving quality of methyl chloride recovered by synthesizing organic silicon monomer
US8884074B2 (en) Method and device for producing dimethyl ether from methanol
KR101340777B1 (en) Process for preparing dimethyl ether
NL2012819B1 (en) Method and Apparatus for Furfural Production.
CN105392794A (en) Process for producing a fructoside-containing product
DK2895453T3 (en) PROCEDURE FOR MANUFACTURING DIMETYLETS AND SUITABLE FITTINGS
GB2548936A (en) Process
CN102040479B (en) System for preparing dichloropropanol by autocatalytic reaction of glycerol and hydrogen chloride
Miranda et al. Simulation and feasibility evaluation of a typical levulinic acid (LA) plant using biomass as substrate
CN111574336A (en) Synthetic reaction process of ethylene glycol mono-tert-butyl ether
Ukawa-Sato et al. Design of Minimal Waste Process for Levulinic and Formic Acids Production from Glucose by Using Choline Chloride Added Aluminum Chloride Catalyst System

Legal Events

Date Code Title Description
AS Assignment

Owner name: TECHNISCHE UNIVERSITEIT DELFT, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE JONG, WIEBREN;MARCOTULLIO, GIANLUCA;SIGNING DATES FROM 20101203 TO 20101206;REEL/FRAME:025562/0385

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION