US20120087928A1 - Therapeutics for age-related macular degeneration - Google Patents
Therapeutics for age-related macular degeneration Download PDFInfo
- Publication number
- US20120087928A1 US20120087928A1 US13/283,739 US201113283739A US2012087928A1 US 20120087928 A1 US20120087928 A1 US 20120087928A1 US 201113283739 A US201113283739 A US 201113283739A US 2012087928 A1 US2012087928 A1 US 2012087928A1
- Authority
- US
- United States
- Prior art keywords
- amd
- eotaxin
- subject
- test sample
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010064930 age-related macular degeneration Diseases 0.000 title claims abstract description 288
- 208000002780 macular degeneration Diseases 0.000 title claims abstract description 276
- 239000003814 drug Substances 0.000 title description 12
- 238000000034 method Methods 0.000 claims abstract description 84
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 238000011161 development Methods 0.000 claims abstract description 15
- 102100023688 Eotaxin Human genes 0.000 claims description 158
- 101710139422 Eotaxin Proteins 0.000 claims description 142
- 230000000694 effects Effects 0.000 claims description 51
- 238000012360 testing method Methods 0.000 claims description 50
- 102000004127 Cytokines Human genes 0.000 claims description 41
- 108090000695 Cytokines Proteins 0.000 claims description 41
- 210000002966 serum Anatomy 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 28
- -1 T0906487 Chemical compound 0.000 claims description 19
- 108010061300 CXCR3 Receptors Proteins 0.000 claims description 18
- 102000011963 CXCR3 Receptors Human genes 0.000 claims description 18
- 208000000208 Wet Macular Degeneration Diseases 0.000 claims description 17
- 102000005962 receptors Human genes 0.000 claims description 16
- 108020003175 receptors Proteins 0.000 claims description 16
- 239000003112 inhibitor Substances 0.000 claims description 14
- 208000011325 dry age related macular degeneration Diseases 0.000 claims description 13
- 229940044551 receptor antagonist Drugs 0.000 claims description 13
- 239000002464 receptor antagonist Substances 0.000 claims description 13
- 238000002965 ELISA Methods 0.000 claims description 7
- SPLHPRPQTCQRGZ-UHFFFAOYSA-N 5-(2-amino-6-chloropurin-9-yl)pentylboronic acid Chemical compound NC1=NC(Cl)=C2N=CN(CCCCCB(O)O)C2=N1 SPLHPRPQTCQRGZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- XMRGQUDUVGRCBS-HXUWFJFHSA-N n-[(1r)-1-[3-(4-ethoxyphenyl)-4-oxopyrido[2,3-d]pyrimidin-2-yl]ethyl]-2-[4-fluoro-3-(trifluoromethyl)phenyl]-n-(pyridin-3-ylmethyl)acetamide Chemical compound C1=CC(OCC)=CC=C1N1C(=O)C2=CC=CN=C2N=C1[C@@H](C)N(C(=O)CC=1C=C(C(F)=CC=1)C(F)(F)F)CC1=CC=CN=C1 XMRGQUDUVGRCBS-HXUWFJFHSA-N 0.000 claims description 6
- 210000002700 urine Anatomy 0.000 claims description 6
- 102000004499 CCR3 Receptors Human genes 0.000 claims description 5
- 108010017316 CCR3 Receptors Proteins 0.000 claims description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 5
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 5
- 210000001124 body fluid Anatomy 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 3
- ASRDPULQBHFPGU-WFIHMLKPSA-N 1-(3-acetylphenyl)-3-[(1r,2s)-2-[[(3s)-3-[(4-fluorophenyl)methyl]piperidin-1-yl]methyl]cyclohexyl]urea Chemical compound CC(=O)C1=CC=CC(NC(=O)N[C@H]2[C@@H](CCCC2)CN2C[C@H](CC=3C=CC(F)=CC=3)CCC2)=C1 ASRDPULQBHFPGU-WFIHMLKPSA-N 0.000 claims description 3
- QVLZVRFIGXNZMN-UHFFFAOYSA-N 4-[4-(3,4-dichlorophenoxy)piperidin-1-yl]-n-(4-methylphenyl)sulfonylpiperidine-1-carboxamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)N1CCC(N2CCC(CC2)OC=2C=C(Cl)C(Cl)=CC=2)CC1 QVLZVRFIGXNZMN-UHFFFAOYSA-N 0.000 claims description 3
- 108010074328 Interferon-gamma Proteins 0.000 claims description 3
- WQTKNBPCJKRYPA-OAQYLSRUSA-N n-[(1r)-1-[3-(4-ethoxyphenyl)-4-oxopyrido[2,3-d]pyrimidin-2-yl]ethyl]-n-(pyridin-3-ylmethyl)-2-[4-(trifluoromethoxy)phenyl]acetamide Chemical compound C1=CC(OCC)=CC=C1N1C(=O)C2=CC=CN=C2N=C1[C@@H](C)N(C(=O)CC=1C=CC(OC(F)(F)F)=CC=1)CC1=CC=CN=C1 WQTKNBPCJKRYPA-OAQYLSRUSA-N 0.000 claims description 3
- JENQYCHCYPVWHE-UHFFFAOYSA-N 4-[[4-[[4-[[5-[[5-[(4,6-disulfonaphthalen-1-yl)carbamoyl]-1-methylpyrrol-3-yl]carbamoyl]-1-methylpyrrol-3-yl]carbamoylamino]-1-methylpyrrole-2-carbonyl]amino]-1-methylpyrrole-2-carbonyl]amino]naphthalene-1,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C2C(NC(=O)C3=CC(=CN3C)NC(=O)C3=CC(NC(=O)NC4=CN(C)C(C(=O)NC5=CN(C)C(C(=O)NC=6C7=CC=C(C=C7C(=CC=6)S(O)(=O)=O)S(O)(=O)=O)=C5)=C4)=CN3C)=CC=C(S(O)(=O)=O)C2=C1 JENQYCHCYPVWHE-UHFFFAOYSA-N 0.000 claims description 2
- 102000008070 Interferon-gamma Human genes 0.000 claims description 2
- XNHZXMPLVSJQFK-UHFFFAOYSA-O dimethyl-[[4-[[3-(4-methylphenyl)-8,9-dihydro-7h-benzo[7]annulene-6-carbonyl]amino]phenyl]methyl]-(oxan-4-yl)azanium Chemical compound C1=CC(C)=CC=C1C1=CC=C(CCCC(=C2)C(=O)NC=3C=CC(C[N+](C)(C)C4CCOCC4)=CC=3)C2=C1 XNHZXMPLVSJQFK-UHFFFAOYSA-O 0.000 claims description 2
- 229960003130 interferon gamma Drugs 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims description 2
- 210000001508 eye Anatomy 0.000 description 53
- 230000014509 gene expression Effects 0.000 description 44
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 32
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 31
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 25
- 201000010099 disease Diseases 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 238000010186 staining Methods 0.000 description 21
- 102000004196 processed proteins & peptides Human genes 0.000 description 19
- 108090000765 processed proteins & peptides Proteins 0.000 description 19
- 210000002889 endothelial cell Anatomy 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 17
- 108010082548 Chemokine CCL11 Proteins 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 102000019034 Chemokines Human genes 0.000 description 14
- 108010012236 Chemokines Proteins 0.000 description 14
- 239000000090 biomarker Substances 0.000 description 14
- 210000003161 choroid Anatomy 0.000 description 13
- 210000001525 retina Anatomy 0.000 description 13
- NDZYPHLNJZSQJY-QNWVGRARSA-N 1-(5-acetyl-4-methyl-1,3-thiazol-2-yl)-3-[(1r,2s)-2-[[(3s)-3-[(4-fluorophenyl)methyl]piperidin-1-yl]methyl]cyclohexyl]urea Chemical class CC1=C(C(=O)C)SC(NC(=O)N[C@H]2[C@@H](CCCC2)CN2C[C@H](CC=3C=CC(F)=CC=3)CCC2)=N1 NDZYPHLNJZSQJY-QNWVGRARSA-N 0.000 description 12
- 108091008695 photoreceptors Proteins 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 102000009410 Chemokine receptor Human genes 0.000 description 10
- 108050000299 Chemokine receptor Proteins 0.000 description 10
- 208000008069 Geographic Atrophy Diseases 0.000 description 10
- 108010044356 IP10-Mig receptor Proteins 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 108010008978 Chemokine CXCL10 Proteins 0.000 description 9
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 9
- 239000005557 antagonist Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000009885 systemic effect Effects 0.000 description 9
- 201000004569 Blindness Diseases 0.000 description 8
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 8
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 8
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 8
- 208000003098 Ganglion Cysts Diseases 0.000 description 8
- 208000005400 Synovial Cyst Diseases 0.000 description 8
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 8
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 230000004807 localization Effects 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 150000003384 small molecules Chemical class 0.000 description 8
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 7
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 7
- 102100025279 C-X-C motif chemokine 11 Human genes 0.000 description 7
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 7
- 230000002055 immunohistochemical effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 210000004379 membrane Anatomy 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000004393 visual impairment Effects 0.000 description 7
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 6
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 6
- 101710098272 C-X-C motif chemokine 11 Proteins 0.000 description 6
- 101710085500 C-X-C motif chemokine 9 Proteins 0.000 description 6
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 6
- 238000011888 autopsy Methods 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 210000002808 connective tissue Anatomy 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 102100036849 C-C motif chemokine 24 Human genes 0.000 description 5
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 5
- 229940126692 CXCR3 antagonist Drugs 0.000 description 5
- 108010083647 Chemokine CCL24 Proteins 0.000 description 5
- 108010083698 Chemokine CCL26 Proteins 0.000 description 5
- 206010020772 Hypertension Diseases 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 239000013060 biological fluid Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 210000004126 nerve fiber Anatomy 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 108091008927 CC chemokine receptors Proteins 0.000 description 4
- 102000005674 CCR Receptors Human genes 0.000 description 4
- 108050006947 CXC Chemokine Proteins 0.000 description 4
- 102000019388 CXC chemokine Human genes 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 108010050904 Interferons Proteins 0.000 description 4
- 102000014150 Interferons Human genes 0.000 description 4
- 201000007737 Retinal degeneration Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 210000001775 bruch membrane Anatomy 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 230000009260 cross reactivity Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000013399 early diagnosis Methods 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 208000027866 inflammatory disease Diseases 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 229940079322 interferon Drugs 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 229960003876 ranibizumab Drugs 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000000241 respiratory effect Effects 0.000 description 4
- 230000004258 retinal degeneration Effects 0.000 description 4
- 230000002207 retinal effect Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 230000000391 smoking effect Effects 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 3
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 3
- 102000001902 CC Chemokines Human genes 0.000 description 3
- 108010040471 CC Chemokines Proteins 0.000 description 3
- 108091006027 G proteins Proteins 0.000 description 3
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 3
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 3
- 102000030782 GTP binding Human genes 0.000 description 3
- 108091000058 GTP-Binding Proteins 0.000 description 3
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 3
- 206010025421 Macule Diseases 0.000 description 3
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000033115 angiogenesis Effects 0.000 description 3
- 230000002491 angiogenic effect Effects 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000035605 chemotaxis Effects 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 208000037976 chronic inflammation Diseases 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 102000055771 human CXCR3 Human genes 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 238000012014 optical coherence tomography Methods 0.000 description 3
- 238000002428 photodynamic therapy Methods 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- WLCZTRVUXYALDD-IBGZPJMESA-N 7-[[(2s)-2,6-bis(2-methoxyethoxycarbonylamino)hexanoyl]amino]heptoxy-methylphosphinic acid Chemical compound COCCOC(=O)NCCCC[C@H](NC(=O)OCCOC)C(=O)NCCCCCCCOP(C)(O)=O WLCZTRVUXYALDD-IBGZPJMESA-N 0.000 description 2
- WSEMPUNMUMBGQG-UHFFFAOYSA-N 9-(2-anthracen-9-ylethynyl)anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C(C#CC=3C4=CC=CC=C4C=C4C=CC=CC4=3)=C21 WSEMPUNMUMBGQG-UHFFFAOYSA-N 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 102100031172 C-C chemokine receptor type 1 Human genes 0.000 description 2
- 101710149814 C-C chemokine receptor type 1 Proteins 0.000 description 2
- 108010074051 C-Reactive Protein Proteins 0.000 description 2
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 2
- 102100032752 C-reactive protein Human genes 0.000 description 2
- 101150011672 CCL9 gene Proteins 0.000 description 2
- 102000006579 Chemokine CXCL10 Human genes 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 208000029147 Collagen-vascular disease Diseases 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- 102000003834 Histamine H1 Receptors Human genes 0.000 description 2
- 108090000110 Histamine H1 Receptors Proteins 0.000 description 2
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 2
- 101100273566 Humulus lupulus CCL10 gene Proteins 0.000 description 2
- 208000035150 Hypercholesterolemia Diseases 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 108090001007 Interleukin-8 Proteins 0.000 description 2
- 102000004890 Interleukin-8 Human genes 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 210000000447 Th1 cell Anatomy 0.000 description 2
- 210000004241 Th2 cell Anatomy 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003399 chemotactic effect Effects 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 210000005081 epithelial layer Anatomy 0.000 description 2
- 208000030533 eye disease Diseases 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VMFGCGRAIBLAFY-IBGZPJMESA-N methyl (2s)-2-(naphthalene-1-carbonylamino)-3-(4-nitrophenyl)propanoate Chemical compound C([C@@H](C(=O)OC)NC(=O)C=1C2=CC=CC=C2C=CC=1)C1=CC=C([N+]([O-])=O)C=C1 VMFGCGRAIBLAFY-IBGZPJMESA-N 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 150000003053 piperidines Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000790 retinal pigment Substances 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 210000003786 sclera Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 230000003393 splenic effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000001138 tear Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 description 1
- FQUYSHZXSKYCSY-UHFFFAOYSA-N 1,4-diazepane Chemical class C1CNCCNC1 FQUYSHZXSKYCSY-UHFFFAOYSA-N 0.000 description 1
- CRVBQABBEKLFIN-UHFFFAOYSA-N 1-phenylethane-1,2-diamine Chemical class NCC(N)C1=CC=CC=C1 CRVBQABBEKLFIN-UHFFFAOYSA-N 0.000 description 1
- FOAFBMYSXIGAOX-LQGGPMKRSA-N 2,7-dichloro-n-[1-[[(1e)-cycloocten-1-yl]methyl]-1-ethylpiperidin-1-ium-4-yl]-9h-xanthene-9-carboxamide;iodide Chemical compound [I-].C1CC(NC(=O)C2C3=CC(Cl)=CC=C3OC3=CC=C(Cl)C=C32)CC[N+]1(CC)C\C1=C\CCCCCC1 FOAFBMYSXIGAOX-LQGGPMKRSA-N 0.000 description 1
- BTVVEKSXUOEVAY-UHFFFAOYSA-N 4,4-diphenylpiperidine Chemical class C1CNCCC1(C=1C=CC=CC=1)C1=CC=CC=C1 BTVVEKSXUOEVAY-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102000007592 Apolipoproteins Human genes 0.000 description 1
- 108010071619 Apolipoproteins Proteins 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 102100022718 Atypical chemokine receptor 2 Human genes 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100024167 C-C chemokine receptor type 3 Human genes 0.000 description 1
- 101710149862 C-C chemokine receptor type 3 Proteins 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- 102000004274 CCR5 Receptors Human genes 0.000 description 1
- 108010017088 CCR5 Receptors Proteins 0.000 description 1
- 101150004010 CXCR3 gene Proteins 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 108010058936 Cohn fraction V Proteins 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- 206010014476 Elevated cholesterol Diseases 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 102000008055 Heparan Sulfate Proteoglycans Human genes 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 101000678892 Homo sapiens Atypical chemokine receptor 2 Proteins 0.000 description 1
- 101000777558 Homo sapiens C-C chemokine receptor type 10 Proteins 0.000 description 1
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 1
- 101000858060 Homo sapiens C-X-C motif chemokine 11 Proteins 0.000 description 1
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 1
- 101000978392 Homo sapiens Eotaxin Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229940100078 IP-10 antagonist Drugs 0.000 description 1
- 230000005353 IP-10 production Effects 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 208000007135 Retinal Neovascularization Diseases 0.000 description 1
- 206010038848 Retinal detachment Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108090000054 Syndecan-2 Proteins 0.000 description 1
- 230000006043 T cell recruitment Effects 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 1
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 description 1
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 230000000964 angiostatic effect Effects 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000003510 anti-fibrotic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000002137 anti-vascular effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000004421 aryl sulphonamide group Chemical group 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 150000001539 azetidines Chemical class 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 231100001015 blood dyscrasias Toxicity 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004155 blood-retinal barrier Anatomy 0.000 description 1
- 230000004378 blood-retinal barrier Effects 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000003986 cell retinal photoreceptor Anatomy 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 229940121384 cxc chemokine receptor type 4 (cxcr4) antagonist Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- VDALIBWXVQVFGZ-UHFFFAOYSA-N dimethyl-[[4-[[3-(4-methylphenyl)-8,9-dihydro-7h-benzo[7]annulene-6-carbonyl]amino]phenyl]methyl]-(oxan-4-yl)azanium;chloride Chemical compound [Cl-].C1=CC(C)=CC=C1C1=CC=C(CCCC(=C2)C(=O)NC=3C=CC(C[N+](C)(C)C4CCOCC4)=CC=3)C2=C1 VDALIBWXVQVFGZ-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 210000003717 douglas' pouch Anatomy 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000013534 fluorescein angiography Methods 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 102000043798 human CCL11 Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 102000009634 interleukin-1 receptor antagonist activity proteins Human genes 0.000 description 1
- 108040001669 interleukin-1 receptor antagonist activity proteins Proteins 0.000 description 1
- 229940096397 interleukin-8 Drugs 0.000 description 1
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 229940076783 lucentis Drugs 0.000 description 1
- 239000001656 lutein Substances 0.000 description 1
- 235000012680 lutein Nutrition 0.000 description 1
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 1
- 229960005375 lutein Drugs 0.000 description 1
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229940092110 macugen Drugs 0.000 description 1
- 208000038015 macular disease Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 125000004312 morpholin-2-yl group Chemical group [H]N1C([H])([H])C([H])([H])OC([H])(*)C1([H])[H] 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- AINQBHMFEKHERT-AREMUKBSSA-N n-[(3r)-1-[(6-fluoronaphthalen-2-yl)methyl]pyrrolidin-3-yl]-2-[1-(3-methyl-1-oxidopyridin-1-ium-2-carbonyl)piperidin-4-ylidene]acetamide Chemical compound CC1=CC=C[N+]([O-])=C1C(=O)N(CC1)CCC1=CC(=O)N[C@H]1CN(CC=2C=C3C=CC(F)=CC3=CC=2)CC1 AINQBHMFEKHERT-AREMUKBSSA-N 0.000 description 1
- VLDUZQVYTQPZAP-RUZDIDTESA-N n-[(3r)-1-[(6-fluoronaphthalen-2-yl)methyl]pyrrolidin-3-yl]-2-[1-(5-hydroxy-3-methylpyridine-2-carbonyl)piperidin-4-ylidene]acetamide Chemical compound CC1=CC(O)=CN=C1C(=O)N(CC1)CCC1=CC(=O)N[C@H]1CN(CC=2C=C3C=CC(F)=CC3=CC=2)CC1 VLDUZQVYTQPZAP-RUZDIDTESA-N 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000003589 nefrotoxic effect Effects 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 231100000381 nephrotoxic Toxicity 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229960003407 pegaptanib Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005043 peripheral vision Effects 0.000 description 1
- 230000000649 photocoagulation Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- KCDIWATZOVCVKI-UHFFFAOYSA-N piperidin-4-ylurea Chemical class NC(=O)NC1CCNCC1 KCDIWATZOVCVKI-UHFFFAOYSA-N 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000030786 positive chemotaxis Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 150000003834 purine nucleoside derivatives Chemical class 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- VTGOHKSTWXHQJK-UHFFFAOYSA-N pyrimidin-2-ol Chemical class OC1=NC=CC=N1 VTGOHKSTWXHQJK-UHFFFAOYSA-N 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000004264 retinal detachment Effects 0.000 description 1
- 208000004644 retinal vein occlusion Diseases 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000036573 scar formation Effects 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 210000004127 vitreous body Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 1
- 235000010930 zeaxanthin Nutrition 0.000 description 1
- 239000001775 zeaxanthin Substances 0.000 description 1
- 229940043269 zeaxanthin Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/216—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/351—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4545—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
- C07K14/7158—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for chemokines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
- G01N33/6866—Interferon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4715—Cytokine-induced proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/521—Chemokines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/16—Ophthalmology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/50—Determining the risk of developing a disease
Definitions
- composition is administered topically, locally, intravitreally, orally, subcutaneously, intravenously, intraocularly, or peribulbarly. Preferably the administration is performed locally.
- the AMD is dry AMD or wet AMD.
- the invention also provides a method of preventing AMD in a subject at risk thereof comprising administering to the subject a composition that inhibits the activity of IP-10 or a composition that inhibits the activity of eotaxin.
- FIG. 4 is a series of photomicrographs depicting immunohistochemical localization of eotaxin in postmortem eyes with various stages of age-related macular degeneration (AMD) and in age-matched controls without AMD.
- Eotaxin was detected using an alkaline phosphatase reagent (Vector Red); tissue was counterstained with hematoxylin and the nuclei are shown.
- Eotaxin was expressed in the neurosensory retina in the nerve fiber layer, ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segments; there was no consistent difference in staining among the eyes without (A) or with AMD (C, E, and G).
- AMD is a chronic disease that develops over decades and may lead to severely damaged vision (Zarbin M A, 2004 Archives of ophthalmology, 122:598-614). This process is initially heralded by accumulation in the aging retinal pigment epithelial (RPE) cells of lipofuscin granules from long-term turnover and recycling of photoreceptor outer segments (Delori F C et al., 2000 Investigative Ophthalmology & Visual Science, 41:496-504) and induction of oxidative stress (Nowak J Z, 2006 Pharmacol Rep, 58:353-363; Zhou J et al., 2006 Proceedings of the National Academy of Sciences USA, 103:16182-16187; Hollyfield J G, et al., 2008 Nature medicine, 14:194-198).
- RPE retinal pigment epithelial
- Markers of systemic inflammation such as c-reactive protein (CRP), IL-6, tumor necrosis factor alpha receptor II (TNF-R2), intracellular adhesion molecule (ICAM), lipid biomarkers, e.g., apolipoprotein and lipoprotein, and homocysteine have been reported to be predictive of development and progression of AMD (US 2005/0250745 A1). Elevated levels of these markers in otherwise healthy subjects are reportedly predictive of development and progression of AMD.
- CCP c-reactive protein
- TNF-R2 tumor necrosis factor alpha receptor II
- IAM intracellular adhesion molecule
- lipid biomarkers e.g., apolipoprotein and lipoprotein, and homocysteine
- IP-10 serum levels were increased significantly ( FIG. 1 ). Histological sections of eyes with early AMD exhibited increased immunoreactivity for IP-10 in the RPE ( FIG. 3D ) and some eyes had focal staining within the basal linear/laminar deposit. The peak serum IP-10 concentration was detected at the AREDS stage 3, remained high in GA, and decreased slightly in the subjects with CNV (P ⁇ 0.03) when compared to the peak level. The immunoreactivity of IP-10 in the macular RPE of control eyes was absent or present focally and usually with a low staining intensity ( FIG. 3B , Table 4). In eyes with early AMD, GA, and CNV, there was increased expression of IP-10 in RPE cells. Eyes with GA and CNV had loss of RPE in the center of the lesions, but residual RPE cells expressed IP-10 with more intense staining than that in control eyes.
- IP-10 inhibits endothelial cell proliferation by competing with endothelial cells for the binding sites of heparan sulfate proteoglycans resulting in attenuation of new vessel formation (Luster A D et al., 1995 The Journal of Experimental Medicine, 182:219-231; Campanella G S et al., 2003 The Journal of Biological Chemistry, 278:17066-17074).
- the IP-10 observed within the CNV membrane may account for an important mechanism for dampening the effects of angiogenic and fibrotic cytokines released during development of CNV.
- Serum samples preparation and running Bio-plex for cytokine measurement Blood samples were allowed to clot for at least 30 minutes at room temperature or at 4° C. overnight, and then centrifuged 1000 ⁇ g for 10 minutes to remove cellular components. Sera were taken and stored at ⁇ 20° C. Bio-plex components including the validation kit (Bio-plex, V4), calibration kit and human 27-plex were purchased from Bio-Rad, (Hercules, Calif.). Samples (50 ⁇ l) were diluted 4-fold with human serum diluent and the final results were adjusted for the dilution factor. Each sample was run in duplicate. Serum samples were processed using a multi-cytokine Bio-Plex Suspension Array System (Bio-Rad, CA) according to the manufacturer's protocol.
- Age-matched pair analysis of IP-10 and eotaxin in subjects with AMD Subjects in the control group ranged between 59 to 85 years of age. There was a similar wide span of ages in the four groups of patients with AMD. However, mean ages were higher in the more severe AMD groups. To illustrate this, a numeric code was assigned for the stages of AMD with “0” assigned to no AMD, “1” to AREDS stage 1, “3” to AREDS stage 3, “4” to neovascular AMD, and “5” to GA ( FIG. 2 ). This strong relationship between age and level of AMD required that statistical methods be used to remove age as a factor when studying cytokine levels and AMD stage.
- Table 4 shows the distribution of IP-10 in the Macular and Subjacent Choroid.
- Table 5 shows the distribution of Eotaxin in the Macular and Subjacent Choroid.
- Tables 4 and 5 show grading scale for the expression of interferon-induced protein-10 (IP-10) and eotaxin in the macula and subjacent choroid. 0, no expression; 1, very faint expression; 2, moderate staining; 3, strong staining; Focal, focal expression.
- IP-10 interferon-induced protein-10
- FIG. 5 illustrates enhanced expression of CCR3 in the RPE of eyes with early AMD, GA, and CNV.
- CCR3 expression is detected in some retinal ganglion (RGC) cells, INL, and in endothelial cells associated with choroidal neovascular membrane (CNVM).
- RRC retinal ganglion
- CNVM choroidal neovascular membrane
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Emergency Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Endocrinology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Ophthalmology & Optometry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
Abstract
The invention provides compositions and methods of predicting a subject's risk of developing age-related macular degeneration (AMD) and methods of treating, delaying, or preventing the development and progression of AMD.
Description
- This application is a continuation-in-part of PCT application number PCT/US2010/032801, filed Apr. 28, 2010, which claims the priority of U.S. provisional application No. 61/287,248, filed Dec. 17, 2009, and U.S. provisional application No. 61/173,257, filed Apr. 28, 2009, the respective disclosures of which are incorporated by reference herein in their entirety.
- Age-related macular degeneration (AMD) affects more than 10 million Americans, and is the leading cause of blindness for those aged fifty-five and older in the United States. AMD is caused by the deterioration of the central portion of the retina, the inside surface at the back of the eye. Although AMD can lead to vision loss, AMD typically has a preclinical, asymptomatic phase in which waste material accumulates in the space between Bruch's membrane and the epithelial layer, forming yellow-white spots known as drusen. As such, there is a need to develop techniques for early diagnosis and treatment of AMD to prevent or delay vision loss associated with the disease.
- The present invention is based in part on the discovery of a relationship between certain biomarkers, e.g., IP-10 (interferon-gamma inducible protein-10; also known as C7) and Eotaxin, and the progression of age-related macular degeneration (AMD). Thus, in one aspect, the invention provides diagnostic methods that determine the levels of AMD biomarkers. This information is used to predict a subject's risk of developing AMD and/or progression to more advanced stages of AMD. The invention also provides methods of treating, preventing, and/or delaying the development or progression of AMD.
- The invention provides a method of identifying a subject at risk of developing AMD comprising providing a test sample from a subject and measuring in the test sample the levels of IP-10. Subsequently, the levels of IP-10 in the test sample are compared to a reference level of IP-10, wherein a higher level of IP-10 in the test sample compared to the reference level of IP-10 is indicative of certain risk of AMD. Preferably, the age of the subject is also determined, and the reference level of IP-10 is obtained from one or more individuals that are age-mediated, e.g., within two years of age of the subject. Elevated serum levels of IP-10 in a patient fifty-five years of age or older, e.g., 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, or 90 years of age or older indicates a high risk of developing AMD. Optionally, the medical history of the subject is also determined. The risk is assessed by analyzing the medical history of the subject, the age of the subject, and biological fluid levels, e.g., serum levels, of IP-10.
- In one aspect, the diagnosis is an “early diagnosis”, e.g., prior to the development of clinical signs or phenotype associated with AMD. Optionally, IP-10 levels are measured with an enzyme-linked immunosorbent assay (ELISA) or other immunohistochemical techniques known to those skilled in the art, e.g., multi-ELISA assays such as, but not limited to, Luminex® or Bio-plex® assays. The test sample is a biological fluid. Examples of biological fluids include whole blood, serum, plasma, spinal cord fluid, urine, tears and saliva. Preferably, the test sample is serum or urine.
- In one aspect, the method further comprises measuring in the test sample the levels of eotaxin and comparing the levels of eotaxin in the test sample to a reference level of eotaxin, wherein a higher level of eotaxin in the test sample compared to the reference level of eotaxin is indicative of AMD.
- The invention also provides a method of identifying a subject at risk of developing AMD comprising providing a test sample from a subject and measuring in the test sample the levels of eotaxin. The levels of eotaxin in the test sample are compared to a reference level of eotaxin, wherein a higher level of eotaxin in the test sample compared to the reference level of eotaxin is indicative of a certain risk of AMD. Preferably, the age of the subject is also determined, and the reference level of eotaxin is obtained from one or more individuals that are within two years of age of the subject. Elevated serum levels of eotaxin in a patient fifty-five years of age or older, e.g., 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, or 90 years of age or older indicates a high risk of developing AMD. Optionally, the medical history of the subject is also determined. The risk is assessed by analyzing the medical history of the subject, the age of the subject, and the serum levels of Eotaxin.
- In one aspect, the diagnosis is an “early diagnosis”, e.g., prior to the development of clinical signs or phenotype associated with AMD. Optionally, the eotaxin levels are measured with an enzyme-linked immunosorbent assay (ELISA) or other immunohistochemical techniques known to those skilled in the art, e.g., multi-ELISA assays such as, but not limited to, Luminex® or Bio-plex® assays. The test sample is a biological fluid. Examples of biological fluids include whole blood, serum, plasma, spinal cord fluid, urine, tears and saliva. Preferably, the test sample is serum or urine.
- Also provided are methods of treating AMD in a subject comprising administering to the subject a composition that inhibits the activity of IP-10. For example, IP-10 activity is inhibited by 10%, 20%, 50%, 75% or by 2 fold, 5 fold, or 20 fold or more. Activities of IP-10 include binding of IP-10 to its receptor, CXCR3. A reduction in the activity of IP-10 is measured by, e.g., detecting a reduction in the level of binding of IP-10 to its receptor, CXCR3. Other activities of IP-10 include chemotactic activity. A reduction in the activity of IP-10 is measured by, e.g., detecting a reduction in the level of chemotaxis. In one aspect, the AMD is dry AMD. In another aspect, the AMD is wet AMD. A method for inhibiting an activity of IP-10 is carried out by administering a composition comprising a polynucleotide, a polypeptide, an antibody, a compound, or a small molecule that inhibits the transcription, transcript stability, translation, modification, localization, secretion, or function of a polynucleotide or polypeptide encoding IP-10. In one aspect, the composition that inhibits the activity of IP-10 is a neutralizing antibody, a solubilized receptor that binds circulating IP-10 or a CXCR3 receptor antagonist. Suitable CXCR3 receptor antagonists include, but are not limited to antibodies, peptides or small molecules. In one aspect, the composition that inhibits the activity of IP-10 is a CXCRR3 receptor antagonist selected from the group consisting of NBI-74330, NSC651016, LMP420, AZD3778, T0906487, AMG487, TAK779, and NBI-74330. Optionally, the composition that inhibits the activity of IP-10 comprises a non-selective cytokine inhibitor that has cross-reactivity (cross-over inhibitor activity) against IP-10 or eotaxin receptors.
- The composition is administered topically, locally, intravitreally, orally, subcutaneously, intravenously, intraocularly, or peribulbarly. Preferably, the composition is administered locally. Optionally, the method further comprises administering to the subject a composition that inhibits the activity of eotaxin.
- Also described are methods of treating AMD in a subject comprising administering to the subject a composition that inhibits the activity of eotaxin. For example, eotaxin activity is inhibited by 10%, 20%, 50%, 75% or by 2 fold, 5 fold, or 20 fold or more. Activities of eotaxin include binding of eotaxin to a chemokine receptor, such as a G-protein-coupled receptor, e.g., a CC Chemokine receptor, e.g., CCR2, CCR3, or CCR5. A reduction in the activity of eotaxin is measured by, e.g., detecting a reduction in the level of binging of eotaxin to its receptor. Other activities of eotaxin include chemotactic activity. A reduction in the activity of eotaxin is measured by, e.g., detecting a reduction in the level of chemotaxis. In one aspect, the AMD is dry AMD. In another aspect, the AMD is wet AMD. A method for inhibiting an activity of eotaxin is carried out by administering a composition comprising a polynucleotide, a polypeptide, an antibody, a compound, or a small molecule that inhibits the transcription, transcript stability, translation, modification, localization, secretion, or function of a polynucleotide or polypeptide encoding eotaxin. Preferably, the composition that inhibits the activity of eotaxin is a neutralizing antibody, a solubilized receptor that binds circulating eotaxin, or a CC receptor antagonist. Suitable CC receptor antagonists include, but are not limited to antibodies, peptides or small molecules. In one aspect, the composition that inhibits the activity of eotaxin is a CCR3 receptor antagonist selected from the group consisting of DPC168, BMS570520, Ki19003, SB328437, GW701897, YM-344031 and GW766994. Optionally, the composition that inhibits the activity of eotaxin comprises a non-selective cytokine inhibitor that has cross-reactivity (cross-over inhibitor activity) against IP-10 or eotaxin receptors.
- The composition is administered topically, locally, intravitreally, orally, subcutaneously, intravenously, intraocularly, or peribulbarly. Preferably the administration is performed locally. The AMD is dry AMD or wet AMD.
- The invention also provides a method of preventing AMD in a subject at risk thereof comprising administering to the subject a composition that inhibits the activity of IP-10 or a composition that inhibits the activity of eotaxin.
- The composition that inhibits the activity of IP-10 or eotaxin or both IP-10 and eotaxin is administered topically, intravitreally, orally, subcutaneously, intravenously, intraocularly, or peribulbarly. Preferably the administration is performed locally. Alternatively, the composition is administered topically as eye drops, ointment, gel, paste, liquid, aerosol, mist, polymer, film, emulsion, or suspension. In one aspect, the composition is incorporated into or coated onto a contact lens, from which one or more molecules diffuse away from the lens or are released in a temporally-controlled manner. Alternatively, the composition is released to the eye by a slow-releasing device either topically or intravitreously.
- Administering the formulation to the eye can involve implantable devices, depending on the precise nature of the formulation and the desired outcome of the administration. Specifically, a composition of the invention is delivered directly to the eye, (e.g., slow release devices such as pharmaceutical drug delivery sponges implanted in the cul-de-sac or implanted adjacent to the sclera or within the eye), using techniques well known by those of ordinary skill in the art. It is further contemplated that a polypeptide as disclosed herein is formulated in intraocular inserts or implantable devices as described further below.
- The ophthalmic formulations of the invention are administered in any form suitable for ocular drug administration, e.g., dosage forms suitable for topical administration, a solution or suspension for administration as eye drops or eye washes, ointment, gel, liposomal dispersion, colloidal microparticle suspension, or the like, or in an ocular insert, e.g., in an optionally biodegradable controlled release polymeric matrix. The ocular insert is implanted in the conjunctiva, sclera, pars plana, anterior segment, or posterior segment of the eye. Implants provide for controlled release of the formulation to the ocular surface, typically sustained release over an extended time period. Additionally, in a preferred embodiment, the formulation is entirely composed of components that are naturally occurring and/or as GRAS (“Generally Regarded as Safe”) by the U.S. Food and Drug Administration.
- The isolated polypeptides are purified or synthetic. By “purified” or “substantially purified” is meant an IP-10 polypeptide, an eotaxin polypeptide, or biologically active portion thereof that is substantially free of cellular material or other contaminating macromolecules, e.g., polysaccharides, nucleic acids, or proteins, from the cell or tissue source from which the polypeptide is derived. The phrase “substantially purified” also includes an IP-10 polypeptide or an eotaxin polypeptide that is substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of an IP-10 polypeptide or an eotaxin polypeptide that are separated from cellular components of the cells from which they are isolated.
- Also provided are methods of monitoring treatment of AMD comprising providing a test sample from a subject and measuring in the test sample the levels of IP-10. A composition that inhibits the activity of IP-10 is administered to a subject. After administration, e.g., about 1 hour, about 2 hours, about 6 hours, about 12 hours, about 24 hours, about 7 days, about 1 month; about 6 months; about 12 months, or about 1 year after administration, a second test sample from a subject is provided. The levels of IP-10 in said second sample are measured. The levels of IP-10 in the second test sample are compared to the levels of IP-10 in the first test sample, wherein a higher level of IP-10 in the first test sample compared to the second sample indicates the treatment is effective.
- In one aspect, the risk for a patient to develop AMD can be read on a graphical calculating device, e.g., a nomogram. The nomogram includes a plurality of numerical relations or parameters such as, but not limited to, age, levels of eotaxin and IP-10 obtained from a bodily sample, genetic factors, and inflammatory systemic diseases, to evaluate the risk level of developing AMD as very low (<5%), low (5-25%), low moderate (25-49%), moderate (50-74%), high (75-90%) or very high (>90%).
- Also described are kits for identifying a subject at risk of developing AMD. The kits comprise a first reagent that detects IP-10; a second reagent that detects eotaxin; and directions for using the kit. Specifically, the invention provides a kit for measuring the levels of IP-10 and eotaxin in a patient to diagnose or prognosticate any form of AMD and early drusen formation. The kit is suitable for in-office testing of a bodily fluid of the patient. The kit includes a package of one or more assays for an AMD biomarker, and instructions for use in a method described herein, and optionally related materials such as marker level or range information for correlating the level of the marker as determined by the assay with a risk of development or progression of AMD.
- The invention provides a device comprising (1) a recording module that records the IP-10 and eotaxin levels of a patient as well as the age of the patient and medical history of the patient; (2) a comparison module that compares the levels of IP-10 and eotaxin of the patient to the average levels of the population at the age of the patient; (3) a reading module that provides the risk of the patient to develop AMD.
- Optionally, the predictive value of the biomarkers described herein for risk of development or progression of AMD is additive to other risk factors (e.g., smoking, obesity, body mass index, antioxidant intake, age, gender, family history of AMD, and history of systemic inflammatory diseases such as chronic infections or collagen vascular disease). Alternatively, the risk assessed with the biomarkers of the invention is independent of other risk factors.
- The invention also provides a nomogram correlating the levels of IP-10 and eotaxin in a bodily fluid to the risk of developing AMD.
- As used herein, “age-related macular degeneration” or “AMD” includes early, intermediate, and advanced AMD. “Advanced AMD” includes both dry AMD such as geographic atrophy and wet AMD.
- As used herein “subject” or “patient” is a mammal, preferably a human.
- As used herein “eotaxin” means any form of eotaxin (eotaxin-1, -2, -3 and others), but preferably “eotaxin-1”.
- The term “elevated levels” means serum levels higher than the average serum level for the population without AMD at a given age.
- “High risk” means a risk higher than the average risk of the population at a given age.
- Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, Genbank/NCBI accession numbers, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
-
FIGS. 1A and 1B are bar graphs depicting the eotaxin levels for patients of the five following groups: C: control subject—no phenotypic evidence of AMD; I—AREDS 1, minimal drusen; III—AREDS 3, confluent drusen representing intermediate (dry) age-related maculopathy; GA—geographic atrophy—localized areas of retinal degeneration representing advanced dry AMD; CNV—choroidal neovascularization—development of vascularized collagen based scar tissue within the choroid as sign of wet AMD. -
FIGS. 1C and D are bar graphs depicting the IP-10 levels for patients of the five following groups: C: control subject—no phenotypic evidence of AMD; I—Age-Related Eye Disease Study (AREDS) 1, minimal drusen; III—AREDS 3, confluent drusen representing intermediate (dry) age-related maculopathy; GA geographic atrophy—localized areas of retinal degeneration representing advanced dry AMD; CNV—choroidal neovascularization—development of vascularized collagen based scar tissue within the choroids as sign of wet AMD. -
FIG. 2 is a line graph depicting the correlation between age and AMD of stage (control subjects are stage 0). -
FIG. 3 is a series of photomicrographs depicting immunohistochemical localization of interferon gamma-inducible protein-10 (IP-10) in postmortem eyes with various stages of age-related macular degeneration (AMD) and in age-matched controls without AMD. IP-10 was detected using an alkaline phosphatase reagent; tissue was counterstained with hematoxylin and the nuclei are shown. IP-10 was expressed in the neurosensory retina in the nerve fiber layer, ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segments; there was no consistent difference in staining among the eyes without (A) or with AMD (C, E, and G). There was enhanced expression of IP-10 in the RPE of eyes with early AMD (D), GA (F), and CNV (H). IP-10 accumulated focally within the layer of basal linear/laminar deposit in GA (F) and CNV (H), and it was uniformly and strongly expressed by neovascular endothelial cells and within the connective tissue matrix associated with the CNV (H). The magnification bars=50 μm. -
FIG. 4 is a series of photomicrographs depicting immunohistochemical localization of eotaxin in postmortem eyes with various stages of age-related macular degeneration (AMD) and in age-matched controls without AMD. Eotaxin was detected using an alkaline phosphatase reagent (Vector Red); tissue was counterstained with hematoxylin and the nuclei are shown. Eotaxin was expressed in the neurosensory retina in the nerve fiber layer, ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segments; there was no consistent difference in staining among the eyes without (A) or with AMD (C, E, and G). There was enhanced expression of eotaxin in the RPE of eyes with early AMD (D), GA (F), and CNV (H). Eotaxin accumulated within the basal linear/laminar deposit in all stages of AMD, though the staining was often patchy (focal). Eotaxin was expressed by neovascular endothelial cells and it was often present within the connective tissue matrix associated with CNV (H). The magnification bars=50 μm. -
FIG. 5 is a series of photomicrographs depicting immunohistochemical localization of C-C chemokine receptor type 3 (CCR3) in postmortem human eyes with various stages of age-related macular degeneration (AMD) and in age-matched controls without AMD. Slides were deparaffinized, rehydrated and subjected to immunohistochemistry for expression of CCR3 receptor using alkaline phosphatase method and resolved with Vulcan Red stain. TOP panel: representative eye of a control subject (A and B) with no AMD shows trace expression of CCR3 within some choroidal spindle cells. Early AMD Panel (C and D): CCR3 expression is detected within RPE cells (arrow) and drusen (arrows) in eyes with dry AMD. GA Panel (E and F): Increased CCR3 expression is present in the inner nuclear layer (INL; left) as well as in the RPE and choriocapillaris (cc). CNV panel (G and H): CCR3 expression is detected in some retinal ganglion (RGC) cells, INL, and in endothelial cells associated with choroidal neovascular membrane (CNVM). -
FIGS. 6A , 6B and 6C are bar graphs depicting the percentage of CD14+ cells expressing the interferon γ-inducible chemokines IP-10 (IP-10/CXCL10), MIG (monokine induced by interferon γ or MIG/CXCL9) and TAC (interferon-inducible T-cell alpha chemoattractant or I-TAC/CXCL11), in subjects with various stages of AMD (n=2-5). Patients were classified according to the following groups: Control: control subject—no phenotypic evidence of AMD; AREDS I: AREDS stage I minimal drusen (early AMD); AREDS III:AREDS stage 3 confluent drusen (intermediate dry AMD); GA: geographic atrophy; Wet AMD: subjects with first presentation of AMD; Inactive Wet AMD: subjects who received intravitreal ranibizumab (Lucentis™) or Avastin™ (bevasizumab; humanized anti-VEGF antibody) treatment and no longer exhibited active disease based on clinical examination and non-invasive testing including optical coherence tomography. -
FIG. 7 is a bar graph depicting and correlating the expression of IP-10 in splenic specimens matched to various stages of AMD as shown. - Age-related macular degeneration (AMD) is a medical condition usually of older adults resulting in loss of vision in the center of the visual field (the macula) because of damage to the retina. AMD occurs in “dry” and “wet” forms, and is a major cause of blindness in the elderly (>50 years). In the advanced stages, AMD can make it difficult or impossible to read or recognize faces, although enough peripheral vision remains unaffected to allow other activities of daily life. The inner layer of the eye is the retina, which contains nerves that communicate sight. Behind the retina is the choroid, which contains the blood supply to the retina. There are two forms of AMD: dry and wet. The “dry” form of AMD (most common), results from atrophy of the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye. In the dry form, cellular debris called “drusen” accumulate between the retina and the choroid, leading to retinal degeneration. While no treatment is available for this condition, vitamin supplements with high doses of antioxidants, lutein and zeaxanthin, have been suggested by the National Eye Institute and others to slow the progression of dry macular degeneration and, in some patients, improve visual acuity. As such, there is a need for new therapies to treat “dry” AMD.
- In the wet (exudative) form, which is more severe, blood vessels grow outward from the choroid behind the retina, leading to retinal degeneration. Specifically, neovascular or exudative AMD, the “wet” form of advanced AMD, causes vision loss due to abnormal blood vessel growth (choroidal neovascularization) in the choriocapillaris, through Bruch's membrane, ultimately leading to blood and protein leakage below the macula. Wet AMD is typically treated with laser coagulation, photodynamic therapy, and with medications that stop and sometimes reverse the growth of blood vessels, or in combination. Bleeding, leaking, and scarring from the membrane and its blood vessels eventually cause irreversible damage to the photoreceptors and rapid vision loss if left untreated. Until recently, no effective treatments were known for wet macular degeneration. However, new drugs, called anti-angiogenics or anti-VEGF (anti-Vascular Endothelial Growth Factor) agents, can cause regression of the abnormal blood vessels and improvement of vision when injected directly into the vitreous humor of the eye. The injections can be painful and frequently have to be repeated on a monthly or bi-monthly basis. Examples of these agents include ranibizumab (trade name Lucentis®), bevacizumab (trade name Avastin®, a close chemical relative of ranibizumab) and pegaptanib (trade name Macugen®). Photodynamic therapy has also been used to treat wet AMD. While therapies for “wet” AMD are available, there is a need for better therapies such as therapies requiring fewer intraocular injections and adjuvant therapies that would inhibit retinal neovascularization using pathways other than the VEGF pathway.
- Therapeutic efforts aimed at halting the growth of the neovascular membrane in wet AMD include angiogenesis inhibitors, laser photocoagulation and photodynamic therapy. As new therapies for AMD are introduced, especially for dry AMD, early diagnosis of AMD prior to any visible phenotypic changes in the eye and identification of population that is at increased risk for developing AMD become more important.
- AMD is a chronic disease that develops over decades and may lead to severely damaged vision (Zarbin M A, 2004 Archives of ophthalmology, 122:598-614). This process is initially heralded by accumulation in the aging retinal pigment epithelial (RPE) cells of lipofuscin granules from long-term turnover and recycling of photoreceptor outer segments (Delori F C et al., 2000 Investigative Ophthalmology & Visual Science, 41:496-504) and induction of oxidative stress (Nowak J Z, 2006 Pharmacol Rep, 58:353-363; Zhou J et al., 2006 Proceedings of the National Academy of Sciences USA, 103:16182-16187; Hollyfield J G, et al., 2008 Nature medicine, 14:194-198). Early phenotypic findings in AMD include the appearance of hard and soft drusen (Anderson D H et al., 2002 American Journal of Ophthalmology, 134:411-431). Some drusen constituents identified in proteomic studies include pro-inflammatory stimuli (Zhou J et al., 2006 Proceedings of the National Academy of Sciences USA, 103:16182-16187; Russell et al., 2000 American Journal of Ophthalmology, 129:205-214; Crabb et al., 2002 Proceedings of the National Academy of Sciences USA, 99:14682-14687).
- It is currently accepted that inflammation plays an important role in the pathogenic progression of AMD (Zarbin M A, 2004 Archives of ophthalmology, 122:598-614; Hollyfield J G, et al., 2008 Nature medicine, 14:194-198; Penfold P L et al., 2001 Progress in retinal and eye research, 20:385-414). Thus, control of chronic inflammation may retard the progression to the advanced form of AMD and may limit visual loss from this disease. Chronic inflammation consists of a series of biological responses to harmful stimuli that include activation of subsets of immune cells, which are recruited to inflamed areas, angiogenesis and scar formation (Romagnani P et al., 2004 Trends in immunology, 25:201-209; Luster A D, 1998 The New England Journal of Medicine, 338:436-445). Inflammatory cells are regulated by a multitude of cytokines and inhibition of cytokine release may affect the disease outcome. Some cytokines have been implicated in AMD, including vascular endothelial growth factor (VEGF) which supports choroidal neovascularization (Ng E W and Adamis A P, 2005 Canadian Journal of Ophthalmology, 40:352-368). Interleukin 1-beta (IL-1β) and tissue necrosis factor-alpha (TNF-α) are also detected in AMD tissues (Oh H et al., 1999 Investigative Ophthalmology & Visual Science, 40:1891-1898; An E, et al., 2008 Molecular Vision, 14:2292-2303).
- Markers of systemic inflammation such as c-reactive protein (CRP), IL-6, tumor necrosis factor alpha receptor II (TNF-R2), intracellular adhesion molecule (ICAM), lipid biomarkers, e.g., apolipoprotein and lipoprotein, and homocysteine have been reported to be predictive of development and progression of AMD (US 2005/0250745 A1). Elevated levels of these markers in otherwise healthy subjects are reportedly predictive of development and progression of AMD.
- 10 kDa interferon-gamma-induced protein (IP-10) also known as Chemokine (C-X-C motif) ligand 10 (CXCL10) is a small cytokine belonging to the CXC chemokine family. IP-10 is secreted by several cell types in response to IFN-γ. These cell types include monocytes, endothelial cells and fibroblasts. IP-10 has been attributed to several roles, such as chemoattraction for monocytes/macrophages, T cells, NK cells, and dendritic cells, promotion of T cell adhesion to endothelial cells, antitumor activity, and inhibition of bone marrow colony formation and angiogenesis. The gene for IP-10 is located on human chromosome 4 in a cluster among several other CXC chemokines. The sequence of IP-10 is as follows: mnqtailicc lifltlsgiq gvplsrtvrc tcisisnqpv nprsleklei ipasqfcprv eiiatmkkkg ekrclnpesk aiknllkavs kerskrsp (SEQ ID NO: 1).
- Eotaxin-1 also known as Chemokine (C-C motif) ligand 11 (CCL11) is a small cytokine belonging to the CC chemokine family. Eotaxin-1 selectively recruits eosinophils by inducing their chemotaxis, and therefore, is implicated in allergic responses. The effects of eotaxin-1 are mediated by its binding to a G-protein-coupled receptor known as a chemokine receptor. The gene for human CCL11 (scya11) is encoded on three exons and is located on chromosome 17. The sequence of Eotaxin-1 is as follows: mkvsaallwl llvaaafspq gltgpdsvat tccftltnkk iplqrlesyr riisgkcpqk avifktklak dicadpkkkw vqdsmkyldr ksptpkp (SEQ ID NO: 2).
- Chemokine receptor CXCR3 is a G-protein-coupled receptor in the CC chemokine receptor family. Other names for CXCR3 are G protein-coupled receptor 9 (GPR9) and CD183. There are two variants of CXCR3: CXCR3-A binds to the CC chemokines CCL9 (MIG), CCL10, and CCL11 (IP-10, I-TAC) whereas CXCR3-B can also bind to CCL4 in addition to CCL9, CCL10, and CCL11. CXCR3 is expressed primarily on activated T lymphocytes and NK cells, and some epithelial cells and some endothelial cells. CXCR3 and CXCR5 are preferentially expressed on Th1 cells, whereas Th2 cells favor the expression of CXCR3 and CXCR4. CXCR3 ligands that attract Th1 cells can concomitantly block the migration of Th2 cells in response to CXCR3 ligands, thus enhancing the polarization of effector T cell recruitment.
- CXCR3 has been implicated in the following diseases, atherosclerosis, multiple sclerosis, pulmonary fibrosis,
type 1 diabetes, autoimmune myasthenia gravis, nephrotoxic nephritis, acute cardiac allograft rejection and possibly Celiac disease. - CC chemokine receptors are integral membrane proteins that specifically bind and respond to cytokines of the CC chemokine family. They represent one subfamily of chemokine receptors, a large family of G protein-linked receptors that are known as seven transmembrane (7-TM) proteins since they span the cell membrane seven times. To date, ten true members of the CC chemokine receptor subfamily have been described. These are named CCR1 to CCR10 according to the IUIS/WHO Subcommittee on Chemokine Nomenclature. The effects of eotaxin (CCL11) are mediated by its binding to a G-protein-linked receptor known as a chemokine receptor. Chemokine receptors for which CCL11 is a ligand include CCR2,CCR3 and CCR5.
- The angiogenic characteristic of eotaxin was first proposed in 2001 (Salcedo R et al., 2001 J Immunol; 166:7571-7578). Inhibitors of the CCR3 receptor, or its ligands eotaxin (CCL11), eotaxin-2 (CCL24) or eotaxin-3 (CCL-26) have been proposed to inhibit ocular angiogenesis (U.S. patent application Ser. No. 12/247,772) and CCR3 blockade is claimed to be more effective than VEGF-A blockade at reducing choroidal neovascularization in the “wet” form of AMD (Takeda A et al., 2009 Nature, 460:225-230), but have not been identified as potential treatments for the “dry” form of AMD. Eotaxin was reported to be expressed in surgically-excised choroidal neovascular tissue as was its receptor CCR3.
- As described herein, the systemic cytokine profile of subjects with AMD at different stages of the diseases were studied together with the expression of salient cytokines in postmortem eyes with AMD. The results of this study show that serum IP-10 and eotaxin are significantly elevated in subjects with AMD. It is particularly interesting that both cytokines are increased in the early stage of the disease. As described below, both IP-10 and eotaxin, alone or in combination are potential biomarkers for early detection of AMD prior to development of any significant phenotypic characteristics. As described herein, increased serum IP-10 concentrations matched its expression pattern in the eye, with respect to progression from early to intermediate stage AMD.
- As described in more detail below, in the early stage of AMD, IP-10 serum levels were increased significantly (
FIG. 1 ). Histological sections of eyes with early AMD exhibited increased immunoreactivity for IP-10 in the RPE (FIG. 3D ) and some eyes had focal staining within the basal linear/laminar deposit. The peak serum IP-10 concentration was detected at theAREDS stage 3, remained high in GA, and decreased slightly in the subjects with CNV (P<0.03) when compared to the peak level. The immunoreactivity of IP-10 in the macular RPE of control eyes was absent or present focally and usually with a low staining intensity (FIG. 3B , Table 4). In eyes with early AMD, GA, and CNV, there was increased expression of IP-10 in RPE cells. Eyes with GA and CNV had loss of RPE in the center of the lesions, but residual RPE cells expressed IP-10 with more intense staining than that in control eyes. - RPE cells play a critical role in the blood-retinal barrier and in the maintenance of the photoreceptor. As RPE cells age or are subjected to oxidative stress, their expression profile of cytokines is altered and they may upregulate pro-inflammatory or pro-angiogenic cytokines such as VEGF, basic fibroblast growth factor-2, and interleukin 8 for wound healing or other pathological functions. The ability of IP-10 to antagonize the angiogenic effect of VEGF may be particularly important for the pathogenesis of CNV. RPE-derived soluble VEGF is essential in the maintenance of the choriocapillaris (Saint-Geniez M, et al., 2009 Proceedings of the National Academy of Sciences of the USA, 106:18751-18756). In-vitro and in-vivo studies show that VEGF can induce overexpression of IP-10 in endothelial cells (Boulday G et al., 2006 J Immunol, 176:3098-3107), but whether or not this may occur within the RPE is unknown. Endothelial cells within the CNV membrane and the connective tissue matrix associated with the CNV had strong expression of IP-10 (
FIG. 3H ), which is intriguing since IP-10 is well-known for its angiostatic and anti-fibrotic activities (Angiolillo A L et al., 1995 The Journal of experimental medicine, 182:155-162; Tager A M et al., 2004 American Journal of Respiratory Cell and Molecular Biology, 31:395-404). IP-10 inhibits endothelial cell proliferation by competing with endothelial cells for the binding sites of heparan sulfate proteoglycans resulting in attenuation of new vessel formation (Luster A D et al., 1995 The Journal of Experimental Medicine, 182:219-231; Campanella G S et al., 2003 The Journal of Biological Chemistry, 278:17066-17074). As described herein, the IP-10 observed within the CNV membrane may account for an important mechanism for dampening the effects of angiogenic and fibrotic cytokines released during development of CNV. - The expression of IP-10 and Eotaxin was examined in autopsy eyes of patients with different stages of AMD. Both IP-10 and eotaxin were expressed in the neurosensory retina in the nerve fiber layer, ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segments (POS). As shown in
FIG. 3 , there was enhanced expression of IP-10 in the RPE of eyes with early AMD, GA, and CNV. IP-10 accumulated focally within the layer of basal linear/laminar deposit in GA and CNV, and it was uniformly and strongly expressed by neovascular endothelial cells and within the connective tissue matrix associated with the CNV.FIG. 4 illustrates enhanced expression of eotaxin in the RPE of eyes with early AMD, GA, and CNV. There was accumulation of eotaxin within the basal linear/laminar deposit in all stages of AMD, though the staining was patchy (focal) and less than that observed for IP-10. Similar to results for IP-10, eotaxin expression by neovascular endothelial cells was observed.FIG. 5 illustrates enhanced expression of CCR3 in the RPE of eyes with early AMD, GA, and CNV. CCR3 expression is detected in some retinal ganglion (RGC) cells, INL, and in endothelial cells associated with choroidal neovascular membrane (CNVM). - Enhanced expression of eotaxin and IP-10 in AMD patients at all stages of the disease demonstrates that both cytokines play a role in the pathogenesis of this disease. IP-10 and eotaxin are targets to treat the “dry”, as well as “wet” forms of AMD. Inhibiting the expression of IP-10 and eotaxin in the eye represents a novel therapeutic approach to treat dry and wet AMD. The identification of new targets for the treatment of “dry” AMD is particularly significant since no treatment is currently available.
- Any compound which inhibits the activity of any eotaxin (including eotaxin-1, eotaxin-2 and eotaxin-3) is used in the present invention.
- Suitable compounds to inhibit the activity of eotaxin and/or IP-10 are described in Table 6. Suitable compounds include those that do not directly inhibit IP-10 and/or eotaxin, but exhibit cross-reactivity with IP-10 and/or eotaxin.
- In one aspect, LMP-420 (2-amino-6-chloro-9 [5(dihydroxyborylpentyl]-purine); available from Scynexis, Inc.), an anti-inflammatory analogue that is a potent inhibitor of tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1), also inhibits IP-10 and/or eotaxin due to cross-reactivity. Specifically, LMP-420 is a boronic acid-containing purine nucleoside analogue that transcriptionally inhibits TNF production, but is non-toxic to TNF-producing cells (Hale L P and Cianciolo G, 2008 Journal of Inflammation, 5:4). This molecule is also described in U.S. Pat. No. 5,643,893, which is incorporated herein by reference. LMP-420 is useful to preferentially inhibit IP-10 and/or eotaxin activity to treat or prevent AMD.
- Any compound that inhibits the activity of CCR2, CCR3 or CCR5 is used in the invention. Compounds that inhibit the activity of eotaxin-1, -2 or -3 or the CCR2, CCR3, CCR5 receptors include organic small molecules such as piperidine derivatives such as those described in U.S. Pat. Nos. 6,984,651 and 6,903,115, and U.S. published applications 20050176708, 20050182094 and 20050182095; heterocyclic piperidines such as those described in U.S. Pat. No. 6,759,411; diphenyl-piperidine derivatives such as those described in U.S. Pat. No. 6,566,376; 2,5-substituted pyrimidine derivatives such as those described in U.S. Pat. No. 6,984,643; piperizinones such as those described in U.S. Pat. No. 6,974,869; bicycylic and tricyclic amines such as those described in U.S. Pat. No. 6,960,666; N-ureidoalkyl-piperidines such as those described in U.S. Pat. Nos. 6,949,546, 6,919,368, 6,906,066, 6,897,234, 6,875,776, 6,780,857, 6,627,629, 6,521,592 and 6,331,541; bicyclic diamines such as those described in U.S. Pat. No. 6,821,964; benzylcycloalkyl amines such as those described in U.S. Pat. No. 6,864,380; 2-substituted-4-nitrogen heterocycles such as those described in U.S. Pat. No. 6,706,735; ureido derivatives of poly-4-amino-2-carboxy-1-methyl pyrrole compounds; bicyclic and bridged nitrogen heterocycles such as those described in U.S. published application 20050234034; azetidine derivatives such as those described in U.S. published application 20050222118; substituted fused bicyclic amines such as those described in U.S. published application 20050197373; substituted spiro azabicyclics such as those described in U.S. published application 20050197325; piperidine-substituted indoles or heteroderivatives thereof such as those described in U.S. published application 20050153979; piperidinyl and piperazinyl compounds substituted with bicyclo-heterocyclylalkyl groups such as those described in U.S. published application 20050090504; arylsulfonamide derivatives such as those described in U.S. published application 20050070582; 1-phenyl-1,2-diaminoethane derivatives such as those described in U.S. published application 20040063779; (N-{[2S]-4-(3,4-dichlorobenzyl)morpholin-2-yl}methyl)-N′[(2-methyl-2H-tet-raazol-5-yl)methyl]urea) (see, e.g., Nakamura et al., Immunol Res., 33:213-222, 2006; N-{(3R)-1-[(6-fluoro-2-naphthyl)methyl]pyrrolidin-3-yl}-2-{1-[(3-methyl-1-oxidopyridin-2-yl)carbonyl]piperidin-4-ylidene}acetamide (see, e.g., Suzuki et al., Biochem. Biophys. Res. Commun., 339:1217-1223, 2006; N-{(3R)-1-[(6-fluoro-2-naphthyl)methyl]pyrrolidin-3-yl}-2-{1-[(5-hydroxy-3-methylpyridin-2-yl)carbonyl]piperidin-4-ylidene}acetamide hemifumarate (see, e.g., Morokata et al., J. Pharmacol. Exp. Ther., Dec. 9, 2005); bipiperidine amide antagonists of CCR3 such as those described in Ting et al., Bioorg. Med. Chem. Lett., 15:3020-3023, 2005; (S)-methyl-2-naphthoylamino-3-(4-nitrophenyl)propionate (see, e.g., Beasley et al., J. Allergy Clin. Immunol., 105: S466-S472, 2000; and the CCR3 antagonist compounds described in Fryer et al., J. Clin. Invest., 116:228-236, 2006.
- CCR2 antagonists are described in WO99/07351, WO99/40913, WO00/46195, WO00/46196, WO00/46197, WO00/46198, WO00/46199, WO00/69432 or WO00/69815 or in Bioorg. Med. Chem. Lett., 10, 1803 (2000).
- CCR3 antagonists are described in DE19837386, WO99/55324, WO99/55330, WO00/04003, WO00/27800, WO00/27835, WO00/27843, WO00/29377, WO00/31032, WO00/31033, WO00/34278, WO00/35449, WO00/35451, WO00/35452, WO00/35453, WO00/35454, WO00/35876, WO00/35877, WO00/41685, WO00/51607, WO00/51608, WO00/51609, WO00/51610, WO00/53172, WO00/53600, WO00/58305, WO00/59497, WO00/59498, WO00/59502, WO00/59503, WO00/62814, WO00/73327 or WO01/09088.
- CCR5 antagonists are described in WO99/17773, WO99/32100, WO00/06085, WO00/06146, WO00/10965, WO00/06153, WO00/21916, WO00/37455, EP1013276, WO00/38680, WO000/39125, WO00/40239, WO00/42045, WO00/53175, WO00/42852, WO00/66551, WO00/66558, WO00/66559, WO00/66141, WO00/68203, JP2000309598, WO00/51607, WO00/51608, WO00/51609, WO00/51610, WO00/56729, WO00/59497, WO00/59498, WO00/59502, WO00/59503, WO00/76933, WO98/25605 or WO99/04794, WO99/38514 or in Bioorg. Med. Chem. Lett., 10, 1803 (2000)
- The compositions of invention comprise a polynucleotide, a polypeptide, an antibody, a compound with means to inhibit the transcription, transcript stability, translation, modification, localization, secretion, or function of a polynucleotide or polypeptide encoding CCR3, CCR5 or CCR2 or eotaxin-1, -2 or -3. Antibodies of the invention can be monoclonal of polyclonal.
- Compounds that inhibit the activity of IP-10 or the CXC receptors are used in the invention.
- CXCR4 antagonists are described in WO00/66112. Small molecules, antibodies and other therapeutic agents that bind to CXCR3 receptor or modulate CXCR3 receptor activity are described in US application 20090285835 Antibodies which bind human CXCR3; 20090208486 Pharmaceutical composition comprising cxcr3 inhibitor; 20090169561 Anti-IP-10 antibodies and methods of use thereof; 20090143413 Thiazole Derivatives as CXCR3 Receptor Modulators; 20090131312 Non-natural chemokine receptor ligands and methods of use thereof; 20090030039 Piperidine Derivatives as CXCR3 Receptor Antagonists; 20090030012 Pyridine, Pyrimidine and Pyrazine Derivatives as CXCR3 Receptor Modulators; 20080312215 Substituted [1,4]-diazepanes as CXCR3 antagonists and their use in the treatment of inflammatory disorders; 20070197589 Cyclic quaternary amino derivatives as modulators of chemokine receptors; 20070172446 Synthetic chemokine receptor ligands and methods of use thereof; 20070149557 CXCR3 antagonists; 20070116669 Interferon-inducible protein-10 (IP-10 or CXCL10) chemokine analogs for the treatment of human diseases; 20070048801 CXCR3 is a gliadin receptor; 20060204498 Novel antagonists of CXCR3-binding CXC chemokines; 20060063763 Compounds and methods for modulating CXCR3 function; 20060040329 CXCL10-based diagnosis and treatment of respiratory illnesses; 20060036093 Pyrimidinone compounds; 20050272936 Imidazolium cxcr3 inhibitors; 20050113414 Piperidin-4-yl urea derivatives and related compounds as chemokine receptor inhibitors for the treatment of inflammatory diseases; 20050112688 Systems and methods for characterizing kidney diseases; 20050112119 Antibodies which bind human CXCR3; 20050070573 Aminoquinoline compounds; 20040209902 Aminoquinoline compounds; 20030158392 IP-10/Mig receptor designated CXCR3, antibodies, nucleic acids, and methods of use thereof; 20030119854 Compounds and methods for modulating CXCR3 function; 20020039578 Methods for treating disease with antibodies to CXCR3.
- Small molecules, antibodies and other therapeutic agents that bind to CXCR3 receptor or modulate CXCR3 receptor activity are further described in U.S. Pat. No. 7,622,264 Methods for screening for modulators of CXCR3 signaling; U.S. Pat. No. 7,541,435 Antagonists of CXCR3-binding CXC chemokines; U.S. Pat. No. 7,427,487 Constitutively active CXCR3 G protein-coupled chemokine receptor and modulators thereof for the treatment of inflammatory disorders; U.S. Pat. No. 7,407,655 Method of inhibiting leukocytes with human
CXC chemokine receptor 3 antibody; U.S. Pat. No. 7,405,275 Antibodies which bind human CXCR3; U.S. Pat. No. 7,378,524 Aminoquinoline compounds; U.S. Pat. No. 7,332,294 CXCL10-based diagnosis and treatment of respiratory illnesses; U.S. Pat. No. 7,244,555 Systems and methods for identifying organ transplant risk; U.S. Pat. No. 7,183,413 Aminoquinoline compounds; U.S. Pat. No. 7,138,229 Systems and methods for characterizing kidney diseases; U.S. Pat. No. 7,029,862 Method for identifying ligands, inhibitors or promoters ofCXC chemokine receptor 3; U.S. Pat. No. 6,992,084 Compounds and methods for modulating CXCR3 function; U.S. Pat. No. 6,833,439 IP-10/MIG receptor designated CXCR3, nucleic acids and methods of use therefor; U.S. Pat. No. 6,686,175 IP-10/MIG receptor designated CXCR3, nucleic acids, and methods of use therefor; U.S. Pat. No. 6,559,160 Compounds and methods for modulating cxcr3 function; U.S. Pat. No. 6,184,358 IP-10/Mig receptor designated CXCR3, antibodies, nucleic acids, and methods of use therefor; U.S. Pat. No. 6,140,064 Method of detecting or identifying ligands, inhibitors or promoters ofCXC chemokine receptor 3. - Small molecules, antibodies and other therapeutic agents that modulate the activity of IP-10 are described in US patent and patent applications 20090169561 Anti-IP-10 antibodies and methods of use thereof; 20080063646 Treatment Of Inflammatory Bowel Diseases With Anti-IP-10 Antibodies; 20070116669 Interferon-inducible protein-10 (IP-10 or CXCL10) chemokine analogs for the treatment of human diseases; 20070066523 Chemokine analogs for the treatment of human diseases; 20050191293 IP-10 antibodies and their uses; 20040197303 Design of chemokine analogs for the treatment of human disease; 20040141951 Cytokine inhibition of eosinophils; 20040096446 Methods for treating demyelinating diseases; 20040072237 Use of cytokines secreted by dendritic cells; 20040009503 Immune modulatory activity of human ribonucleases; 20030166589 Method and pharmaceutical composition for the treatment of multiple sclerosis; 20030158392 IP-10/Mig receptor designated CXCR3, antibodies, nucleic acids, and methods of use therefore; U.S. Pat. No. 7,091,310 chemokine analogs for the treatment of human disease.
- The compositions of invention comprise a polynucleotide, a polypeptide, an antibody, a compound with means to inhibit the transcription, transcript stability, translation, modification, localization, secretion, or function of a polynucleotide or polypeptide encoding IP-10 or CXCR3.
- H1 receptor antagonists have been suggested for the treatment of AMD (For example, WO 2009067317) and treatment with H1 receptor antagonists indirectly act on the expression of IP-10. By contrast, described herein is the direct inhibition of IP-10, which has the CXCR3 receptor. Thus, the pathways of inhibition are different.
- AMD patients and control subjects recruited for serum cytokine measurement. Seventy-eight subjects with phenotypic and clinical evidence of AMD were recruited into the study and classified according to the Age-Related Eye Disease Study (AREDS) into AREDS stage 1 (early AMD), AREDS stage 3 (intermediate dry AMD), geographic atrophy (defined as geographic loss of photoreceptor-RPE-choriocapillaris) and neovascular AMD. All subjects were examined by slit-lamp biomicroscopy, optical coherence tomography, fundus photography and fluorescein angiography (when indicated). Eighteen age-matched patients with no phenotype of AMD and no family history of AMD were recruited as control subjects and were examined with similar methods. All subjects were given a simple questionnaire regarding their smoking history, and whether they had or were treated for hypertension and hypercholesterolemia. Inclusion criteria included minimal age of 55, and willingness to participate in the study. Exclusion criteria were very strict. Subjects with the following systemic conditions were excluded from the study: any cancer, inflammatory conditions including collagen vascular disease, arthritis, taking non-steroidal or steroidal anti-inflammatory or immune-modulating products, diabetes mellitus, kidney or liver disease, vascular disease such as stroke, blood dyscrasia and recent surgery (<90 days). The following ocular conditions were also excluded: history of glaucoma or glaucoma suspect, using topical anti-inflammatory products, history of central or branch retinal vein occlusion, diabetic retinopathy, retinal detachment, and other chronic macular disease, recent cataract extraction (<90 days). Patients were asked to sign a detailed consent form and blood samples were withdrawn for plasma and serum collection.
- Serum samples preparation and running Bio-plex for cytokine measurement. Blood samples were allowed to clot for at least 30 minutes at room temperature or at 4° C. overnight, and then centrifuged 1000×g for 10 minutes to remove cellular components. Sera were taken and stored at −20° C. Bio-plex components including the validation kit (Bio-plex, V4), calibration kit and human 27-plex were purchased from Bio-Rad, (Hercules, Calif.). Samples (50 μl) were diluted 4-fold with human serum diluent and the final results were adjusted for the dilution factor. Each sample was run in duplicate. Serum samples were processed using a multi-cytokine Bio-Plex Suspension Array System (Bio-Rad, CA) according to the manufacturer's protocol.
- Statistical Analysis. GraphPad Prism 4 and Prism's statistics were used to plot graphs and perform statistics. Since serum samples were not distributed in a Gaussian fashion, a Mann-Whitney test was used to test the statistical difference between the AMD group and the control group. A non-parametric age-matched pair Wilcoxon signed rank sum test was also used to compare the significant differences in cytokine levels between AMD and control groups. This excluded age as a compounding factor.
- Tissue specimens. Eyes of patients who had recently expired and were undergoing planned autopsy were enucleated at autopsy. Eyes were preserved in 4% buffered formaldehyde solution, embedded in paraffin and sectioned according to the protocol established at Duke Hospital, Department of Pathology. H&E stains were prepared and read by one of us (ADP) and evaluated for subretinal lesions that would be characteristic of AMD. The medical records of the patient were also available. Ocular findings on H&E were correlated with the stage of AMD derived from the patient's medical record. Early stage AMD (AREDS 1) was characterized by presence of hard drusen between the RPE layer and the Bruch's membrane. Intermediate stage AMD showed confluent drusen with thickening and deposits within the inner Bruch's layer indicative of basal laminar/linear desposits and soft drusen. The RPE layer and choriocapillaris remained intact. Geographic atrophy was characterized by the degeneration of the photoreceptors, RPE and choriocapillaris layers and presence of a transition zone. Neovascular AMD was characterized by clear presence of new vessels on the inner side of the Bruch's membrane with associated RPE or photoreceptor degeneration. Control eyes showed normal Bruch's anatomy with absence of basal linear deposits or hard drusen within the macular area. The foveal area was also intact.
- Immunohistochemistry. Tissue slides were deparaffinized by incubating them at 60° C. for 30 minutes to 1 hour and rehydrated through a series of alcohol steps. Slides were initially subjected to antigen retrieval by heating at 100° C. in an antigen unmasking solution (Vector Laboratories, Burlingame, Calif.), blocked with 3% albumin bovine Cohn fraction V (Sigma, St. Louis, Mo.) and avidin (Vector Lab.) for 1 hour. Prior to adding the primary antibody, slides were incubated with biotin for 15 min, and incubated with anti-human IP-10 or anti-human Eotaxin antibodies (both from R&D Systems, Minneapolis, Minn.) at 1:200 dilution overnight at 4° C. Slides were washed in PBS and incubated with biotinylated anti-goat IgG (1:250) for 1 hour, stained with the Vectastain ABC.AP kit with Vector Red (Vector Labs.) and counterstained with hematoxylin (Vector Labs.).
- Analysis of serum cytokines in different stages of AMD. A total of 96 subjects were included in this study. Table 1, which is a study of serum cytokines of AMD, summarizes the clinical data of all subjects. There were between 18-20 subjects in each group. The distribution of smokers, hypertension and elevated cholesterol levels in the study group are indicated.
- Table 2 shows Serum Cytokine concentrations (pico grams) determined from different stage of AMD patients. Mean serum level pg/ml±SEM. Abbreviations: C, control subjects, without AMD; I,
AREDS stage 1, early AMD; III,AREDS stage 3, intermediate AMD; GA, geographic atrophy, CNV, neovascular AMD. - Table 3 shows age matched pair comparison of serum eotaxin and IP-10 concentrations between no AMD (AMD=0)and AMD groups (AMD>0) and no AMD vs
AREDS stage 1 AMD groups. (A) Mean concentrations of each age group for eotaxin are shown for control subjects (AMD=0), subjects with AMD (AMD>0), and the difference between the two groups. (B) Mean concentrations of each age group for eotaxin are shown for control subjects (AMD=0), subjects withstage 1 AMD (AMD=1) and the difference between the two groups. (C) Mean concentrations of each age group for IP-10 are shown for control subjects (AMD=0), subjects with AMD (AMD>0), and the difference between the two groups. (D) Mean concentrations of each age group of IP-10 are shown for control subjects (AMD=0), subjects withstage 1 AMD (AMD=1) and the difference between the two groups. - The concentrations of twenty cytokines are shown in Table 3. The concentrations of five cytokines (IL-2, IL-15, IL-17, FGF and GM-CSF) were below 0.2 pg/ml, the lowest limit of detection in the standard curve. These cytokines were regarded as undetectable. RANTES and PDGF-bb concentrations exceeded the upper limit of the standard curves and were excluded from the study. Of the twenty cytokines studied, only IP-10 and eotaxin were significantly elevated in AMD study group. These two cytokines were selected for further study and analysis.
- Serum eotaxin and IP-10 levels are significantly increased in AMD patients. The mean serum concentrations and individual distributions of Eotaxin and IP-10 are shown in
FIG. 1 . The Man-Whitney test was used to detect significant differences between the control group and each of AMD subgroups. Eotaxin was significantly increased in AREDS stages 1, 3 and GA (P<0.02, P<0.007 and P<0.005, respectively), but not in neovascular AMD (CNV; P<0.07). There were no differences in eotaxin concentrations among AMD subgroups. IP-10 was increased in AREDS stage 1 (P<0.004) and remained high in all stages of AMD. InAREDS stage 3, IP-10 levels reached the peak (P<0.002). In advanced AMD, IP-10 levels were lower in subjects with neovascular AMD than inARDS stage 3 and GA (P<0.05 and P<0.03, respectively). - Age-matched pair analysis of IP-10 and eotaxin in subjects with AMD. Subjects in the control group ranged between 59 to 85 years of age. There was a similar wide span of ages in the four groups of patients with AMD. However, mean ages were higher in the more severe AMD groups. To illustrate this, a numeric code was assigned for the stages of AMD with “0” assigned to no AMD, “1” to
AREDS stage 1, “3” toAREDS stage 3, “4” to neovascular AMD, and “5” to GA (FIG. 2 ). This strong relationship between age and level of AMD required that statistical methods be used to remove age as a factor when studying cytokine levels and AMD stage. To accomplish this, age-matched groups were formed and levels of eotaxin and IP-10 were compared only for patients with the same age (within one year). To avoid any assumptions about normality, the non-parametric matched pair Wilcoxon signed rank sum test was used. The null hypothesis was that for subjects of the same age, the level of cytokine (eotaxin or IP-10) is the same for control subjects and those with any stage of AMD. There were 12 age groups formed, each of which contained control subjects (AMD=0) and subjects with AMD (AMD>0). The average cytokine level was calculated for each age group. The difference between these two average cytokine levels was then determined according to the following equation: - Differencesame age=mean cytokine (AMD>0)−mean cytokine (AMD=0). Results are shown in Table 4.
- Table 4 shows the distribution of IP-10 in the Macular and Subjacent Choroid. Table 5 shows the distribution of Eotaxin in the Macular and Subjacent Choroid. Tables 4 and 5 show grading scale for the expression of interferon-induced protein-10 (IP-10) and eotaxin in the macula and subjacent choroid. 0, no expression; 1, very faint expression; 2, moderate staining; 3, strong staining; Focal, focal expression. Abbreviations: AMD, age-related macular degeneration; GA, geographic atrophy; CNV, choroidal neovascularization (neovascular AMD); NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; POS, photoreceptor outer segments; RPE, retinal pigment epithelium; BLD, basal linear/laminar deposits; Choroid EC, choroidal endothelial cells; Ch. stroma, choroidal stromal cells; Neovasc EC, neovascular endothelial cells; RPE-outside, RPE cells outside the area of choroidal neovascularization; RPE-neovascular, RPE cells within the area of choroidal neovascularization.
- Almost all differences were positive. The absolute values of the differences were ranked and then the ranks of the negative differences were summed. Overall, most of the differences among age-matched groups were positive (AMD>0−AMD=0), indicating that the level of the cytokine in any AMD category was higher than those in the control group. Table 4A shows the concentrations of eotaxin for control subjects (AMD=0), for subjects with any stage AMD (AMD>0), and their respective difference in an age-matched manner. The Wilcoxon statistical tables (Davis et al., 2005 Archives of Ophthalmology, 123: 1484-1498) indicate that the probability of such a distribution is p<0.005. Eotaxin levels at any stage AMD were higher than in control subjects with no AMD.
- Next, it was determined if elevated levels of eotaxin could be used as a biomarker for early onset of AMD (AREDS stage 1). This involved comparing age-matched groups of subjects with AMD=0 and AMD=1. There were 10 such groups where the age in each group was the same (within two years) (Table 4B). The difference between eotaxin levels for AREDS stage 1 (AMD=1) and control (AMD=0) was calculated according to the following formula:
-
Differencesame age=eotaxin(AMD=1)−eotaxin(AMD=0) - Table 4B shows the concentrations of eotaxin for age-matched control subjects (AMD=0), subjects with AREDS stage 1 (AMD=1) and their differences. Results indicate that differences were dominantly positive with the largest differences being always positive. The Wilcoxon table shows the probability of such a distribution occurring by chance is p<0.05. Eotaxin levels in subjects with
AREDS stage 1 AMD are significantly higher than those in control subjects with no AMD. A similar analysis was performed for IP-10 using the same age-matched groups. - Table 4C shows the concentrations for IP-10 for control subjects (AMD=0), subjects with any AMD (AMD>0) and their differences. The concentrations of IP-10 for subjects with any stage of AMD were significantly higher than those in the control group. The Wilcoxon table shows the probability of such a distribution occurring by chance is p<0.025.
- Immunohistochemical (IHC) localization of IP-10 and eotaxin in eyes with or without AMD. The expression of IP-10 and eotaxin in autopsy eyes of patients with different stages of AMD and age-matched non-AMD controls was determined using IHC staining. Staining intensity was graded on a scale of 0 to 3: 0, no expression; 1, very faint staining (visible only at high magnification); 2, moderate staining (easily visible at intermediate magnification); 3, strong staining (visible at low magnification). Results for all of the eyes are presented in Table 4 (IP-10 scores) and Table 5 (eotaxin scores). Scoring of staining intensity was done by two investigators and results are a consensus of their observations. Both IP-10 and eotaxin were expressed in the neurosensory retina in the nerve fiber layer, ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segments (PUS); staining intensity was variable between eyes within each group, and there was no consistent difference in staining among the eyes with or without AMD, as shown in Tables 4 and 5 and
FIGS. 3 and 4 . For all eyes, negative controls were performed for IP-10 and eotaxin using non-immune IgG isotype in place of the primary antibody. The negative control slides uniformly lacked stain. Despite variation in staining intensity for IP-10 among eyes within each group, there were definite differences in IP-10 expression in control eyes and those with AMD. As shown inFIG. 3 , there was enhanced expression of IP-10 in the RPE of eyes with early AMD, GA, and CNV. IP-10 accumulated focally within the layer of basal linear/laminar deposit in GA and CNV, and it was uniformly and strongly expressed by neovascular endothelial cells and within the connective tissue matrix associated with the CNV. There was also variation in staining intensity for eotaxin among eyes within each group, but again there were distinct differences in eotaxin expression in control and AMD eyes.FIG. 4 illustrates enhanced expression of eotaxin in the RPE of eyes with early AMD, GA, and CNV. There was accumulation of eotaxin within the basal linear/laminar deposit in all stages of AMD, though the staining was patchy (focal) and less than that observed for IP-10. Similar to the results for IP-10, eotaxin expression by neovascular endothelial cells was observed. There was often eotaxin within the connective tissue matrix associated with CNV, but the expression of eotaxin was more focal and the staining less intense than for IP-10 in this tissue compartment (for example, compare the staining for IP-10 inFIG. 3H with that for eotaxin inFIG. 4H ). -
FIG. 5 illustrates enhanced expression of CCR3 in the RPE of eyes with early AMD, GA, and CNV. CCR3 expression is detected in some retinal ganglion (RGC) cells, INL, and in endothelial cells associated with choroidal neovascular membrane (CNVM). Enhanced expression of the CCR3 receptor in the eyes of patients with early AMD suggests that the CCR3-eotaxin pathway is implicated in the disease and that receptors antagonists can be used for the treatment of AMD. -
TABLE I Clinical profile of study subjects. AREDS AREDS CONTROL I III GA CNV Number of subjects 18 20 19 20 19 Number of male 9 6 7 6 5 Number of female 9 14 12 14 14 Age 69 ± 2 72 ± 2 78 ± 1 83 ± 2 81 ± 1 Smoker - no 12 15 9 11 12 Smoker - former 5 4 9 5 5 Smoker - yes 1 1 1 4 2 Hypertension - no 8 9 5 10 7 Hypertension - yes 10 11 14 10 12 High 11 12 12 16 11 cholesterol - no High 7 8 7 4 8 cholesterol - yes Subjects' ages are shown as mean ± SEM. Smoking, hypertension and cholesterol histories are included. Abbreviations: Control, without AMD; AREDS 1, early AMD;AREDS 3, intermediate AMD; GA, geographic atrophy, CNV, neovascular AMD. -
TABLE 2 C I III GA CNV IL- 4.5 ± 1.4 9.0 ± 4.5 15 ± 13 5.1 ± 2.6 1.0 ± 0.2 1beta IL-1ra 209 ± 68 288 ± 86 380 ± 185 152 ± 28 197 ± 77 IL-4 1.7 ± 0.2 1.6 ± 0.2 2.0 ± 0.4 1.5 ± 0.2 1.9 ± 0.6 IL-5 0.7 ± 0.1 0.9 ± 0.1 0.4 ± 0.1 0.8 ± 0.1 0.5 ± 0.1 IL-6 22 ± 5 21 ± 9 6.1 ± 2.0 11 ± 3 6.0 ± 1.8 IL-7 5.4 ± 0.8 3.8 ± 0.5 5.1 ± 0.6 5.1 ± 0.7 4.5 ± 0.6 IL-8 510 ± 181 339 ± 223 221 ± 170 250 ± 161 151 ± 109 IL-9 101 ± 76 74 ± 50 26 ± 5 398 ± 205 265 ± 161 IL-10 7.0 ± 4.2 6.0 ± 0.9 3.3 ± 0.7 8.0 ± 2.1 2.9 ± 0.9 IL-12 3.2 ± 1.0 7.7 ± 1.5 3.4 ± 0.7 9.1 ± 2.0 10 ± 5 (p70) IP-10 466 ± 78 966 ± 167 1491 ± 473 1036 ± 193 745 ± 168 IL-13 2.6 ± 0.5 11 ± 2 6.1 ± 2.0 11 ± 3 1.8 ± 0.2 Eotaxin 71 ± 10 137 ± 27 125 ± 14 139 ± 17 102 ± 11 G-CSF 47 ± 16 32 ± 5 41 ± 8 28 ± 4 24 ± 5 INF- 59 ± 7 84 ± 10 88 ± 28 64 ± 7 40 ± 6 gamma MCP-1 44 ± 11 29 ± 6 22 ± 5 18 ± 3 27 ± 6 MIP- 39 ± 12 19 ± 6 53 ± 38 26 ± 7 16 ± 3 1alpha MIP- 335 ± 58 267 ± 50 270 ± 41 242 ± 54 190 ± 38 1beta TNF- 37 ± 8 31 ± 4 28 ± 6 28 ± 4 22 ± 3 alpha VEGF 188 ± 94 135 ± 20 143 ± 30 245 ± 73 105 ± 16 -
TABLE 3 (A) (B) Difference Difference Age Eotaxin Eotaxin AMD > 0 − Age Eotaxin Eotaxin AMD = 1 − Group AMD = 0 AMD > 0 AMD = 0 Group AMD = 0 AMD = 1 AMD = 0 58-59 13.7 93.3 79.6 58-59 13.7 93.3 79.6 60 45.8 202.4 156.5 60-62 98.9 86.6 −12.3 62 152.0 121.0 −31.0 65 95.0 129.8 34.8 65 95.0 129.8 34.8 67-69 73.4 46.0 −27.4 67 61.4 241.6 180.2 70 72.4 267.9 195.5 68-69 97.4 119.7 22.3 72 45.2 151.8 106.5 70 72.4 177.0 104.5 73-74 25.2 260.0 234.8 72 45.2 151.8 106.5 80 74.7 49.6 −25.1 74 25.2 71.2 46.0 83 92.9 34.4 −58.5 80 74.7 129.1 54.4 85 64.5 543.0 478.6 83 92.9 126.6 33.8 85 64.5 183.8 119.3 P < 0.005 P < 0.05 (C) (D) Difference Difference Age IP-10 IP-10 AMD > 0 − Age IP-10 IP-10 AMD = 1 − Group AMD = 0 AMD > 0 AMD = 0 Group AMD = 0 AMD = 1 AMD = 0 58-59 166.9 527.6 360.7 58-59 166.9 529.6 360.7 60 264.6 432.0 167.4 60-62 385.2 86.6 220 62 505.8 791.8 286.0 65 808.2 1029.4 221.2 65 808.2 1029.4 221.2 67-69 514.6 753.4 238.8 67 676.9 509.0 −167.8 70 1228.0 657.1 −570.9 68-69 190.2 717.0 526.8 72 355.6 564.7 209.1 70 1228.0 463.3 −764.7 73-74 254.3 3600.0 3345.7 72 355.6 564.7 209.1 80 404.5 1429.1 1024.6 74 254.3 4510 196.7 83 455.1 1558.0 1102.8 80 404.5 1405.4 1001.0 85 261.9 893.4 631.5 83 455.1 1007.6 552.5 85 261.9 1563.8 1301.9 P < 0.025 P < 0.025 -
TABLE 4 Distribution of IP-10 in the Macular and Subjacent Choroid Case Choroid Ch. # NFL GCL IPL INL OPL ONL POS RPE BLD EC Stroma Control 1 2 2 1 0 1 1 3 0 0 1 2 1 2 0 0 1 0 2 Focal 1 0 1 3 2 2 1 Focal 1 0 0 3 Focal 2 Focal 1 Focal 1 4 2 3 2 1 1 0 2 0 1 2 5 Focal 3 1 1 1 1 3 Focal 2-3 1 2 2-3 6 1 2 1 0 1 0 1 Focal 1-2 0 0 7 0 3 1 1, Focal 2 0 Focal 1 2 0 0 2 8 1 3 1 1 0 1 2 Focal 1-2 0 Focal 1 Early AMD 11 2 3 2 1 1 1 3 3 0 2 3 12 2 3 1 Focal 0-1 0 1 2 Focal 3 Focal 2 0 Focal 1 13 3 3 2 0 1 1 3 Focal 2 0 0 2 14 2 3 1 1 0 0 2 2 0 0 1 15 2 3 2 1 2 1 3 2 0 1-2 2 16 1 3 2 2 2 1 3 1 0 1 1 17 2 3 2 1 2 2 2 3, Focal 4 Focal 1 0 1 18 2 3 1 Focal 1-2 1 1 2 Focal 1 0 0 2 GA 21 2 2 1 0 0 0 — 1 0 0 2 22 2 3 2 1 0 — — 2 Focal 1-2 0 0 23 2 3 2 1 1 1 3 3 Focal 3 1 1 24 2 3 2 1 2 0 3 2 Focal 3 Focal 1 1 RPE RPE CNV Choroid Neovasc CNV outside area EC EC 27 1 3 2 1 2 1 3 3 Focal 2 Focal 3 1 2 1-2 28 3 3 1 2 2 Focal 1-2 2 3, Focal 4 Focal 1-2 Focal 2 1 3 2 29 3 3 1 1 1 1 3 3 Focal 1-2 Focal 3 1 3-4 2 30 2 3 1 1 1 Focal 1 1 2-3 Focal 2-3 2 1 2 2 31 1 2 1 1 1 Focal 1 2 1 Focal 3 1, Focal 3 1 3 3 32 2 3 1 1 0 Focal 1 2 1, Focal 2 1, Focal 2 Focal 3 1 2, Focal 3 1 -
TABLE 5 Distribution of Eotaxin in the Macular and Subjacent Choroid Choroid Ch. Case # NFL GCL IPL INL OPL ONL POS RPE BLD EC Stroma Control 1 3 3 1 1 2 1 1 0 1 2 2 3 3 1 1 2 1 2 0 Focal 1 2 4 0 3 1 1 1 1 3 1 2 6 0 2 0 1 0 0 2 0 2 7 0 3 1 1, 0 1 2 0 1-2 1 Focal 2 8 0 1 0 1 0 0 0 0 0 0 9 1 2 1 Focal 1 1 Focal 1 1 0 1 1 10 1 2 0 1 0 1 3 1 1 Early AMD 12 0 2 0 1 0 1 0 Focal 1 Focal 2 1 2 13 0 3 1 2 1 1 3 2 3 2 2 14 0 0 0 0 0 0 0 0 3 1 0 16 0 3 0 1 0 0 3 3 Focal 1 2 2 19 0 3 1 2 1 0 3 2 3 2 1 20 0 3 1 2 2 2 3 2 3 2 2 GA 22 2 2 0 1 1 1 3 1 Focal 2 2 2 24 0 3 0 2 0 1 3 3 Focal 3 2 2 25 0 1 0 0 0 0 0 1 Focal 2 1 1 26 0 0 0 0 0 0 0 0 1-2 0 0 RPE RPE CNV Choroid Neovasc CNV outside area EC EC 27 0 1 0 1 0 0 0 1 Focal 3 0 Focal 2 2 0 29 2 3 1 2 2 3 3 2, Focal 3 1 0 2, Focal 3 3 2 30 0 3 2 2 1 2, Focal 3 3 1, Focal 2 1, Focal 2 Focal 1 2 3 2 31 3 3 1 2 1 Focal 3 2 2 3 1, Focal 2 2-3 3 2 32 1 3 1 2 1 2, Focal 3 2 2 2, Focal 3 2, Focal 3 1, Focal 2-3 3 2 33 0 3 2 2 1 1, Focal 3 3 2 2 Focal 2 2, Focal 3 3 2 34 1 3 1 2 2 1, Focal 3 3 2 2 Focal 1 1 2, Focal 3 1 -
TABLE 6 Suitable inhibitors of IP-10 and/or eotaxin. Molecule Name Activity Reference DPC 168 CCR3 antagonist Bioorg med chem. Lett; 2992-2997 (2007) BMS570520 CCR3 antagonist Bioorg Med chem. Lett, 12, 1785 (2002) Ki 19003 CCR3 antagonist J. Pharmacol Sci 112(2), 203-13, (2010) SB 328437 CCR3 antagonist J. Biol Chem, 275, 36626 (2000) UCB 35625 CCR3 antagonist J. Biol Chem, 275, 25985 (2000) GW701897 CCR3 antagonist J Clin Invest. January 4; 116(1): 228-236, (2006) YM-344031 CCR3 antagonist Biochemical and Biophysical Research Communications. January 339(4) p1217-1223 (2006) CCR3 antagonist CCR3 antagonist Immunological Research; 33(3), 213-221 (2005) GW766994 CCR3 antagonist WO03082292 NBI-74330, T487 CXCR3 antagonist WO02083143 NSC 651016 CCR1, CCR3, CCR5, and CXCR4 Antivir. Res. 27: 335-354 (1995) LMP 420 IP-10 antagonist PLoS Med. September; 2(9): e315 (2005) AZD3778 CCR3 antagonist Respiratory Research 11: 17 (2010) T0906487 CXCR3 antagonist Cytokine 15, 113-121 (2001) AMG487 CXCR3 antagonist Bioorganic & Medicinal Chemistry Letter, 17, 12, 3339-3343 (2007) TAK 779 CCR5 and CXCR3 antagonist WO/2000/010965 NBI-74330 CXCR3 antagonist WO02083143100e; Arterioscler Thromb Vasc Biol 28; 251-257 (2008). - In addition to searching for cytokines of potential pathogenic relevance in AMD, a secondary purpose was to determine if serum cytokine levels could serve as biomarkers to predict the early onset of AMD. Elevation of serum IP-10 has been proposed as a biomarker to predict the outcome in many human diseases such as severe acute respiratory distress syndrome (Tang N L et al., 2005 Clinical chemistry, 51:2333-2340) coronary artery disease, especially in patients with restenosis (Kawamura A et al., 2003 Circ J, 67:851-854) and as a risk factor for renal allograft failure (Rotondi M, et al. 2004 Am J Transplant, 4:1466-1474).
- Serum IP-10 level has been reported to increase in aging (Miles E A, et al., 2008 Atherosclerosis, 196:298-305). As described herein, both serum IP-10 and eotaxin concentrations were significantly increased in AMD patients. As described below, aging was significantly correlated with progression of AMD as shown in
FIG. 2 . Age-matched paired-comparison studies were performed to exclude age as a factor in the elevation of IP-10 in the patients with AMD. Both IP-10 and eotaxin were significantly elevated in patients with AREDS stage 1 (early AMD) compared with the control group. Thus, serum levels of IP-10 and eotaxin serve as biomarkers for early AMD, when vision is unaffected and prior to the appearance of any significant phenotypic changes in the retina. - The increased expression of certain interferon γ-inducible chemokines (CMC chemokines) is associated with chronic inflammatory disease, including ophthalmic diseases such as chronic dry eye syndrome. These chemokines include IP-10, MIG (monokine induced by interferon γ), and TAC (interferon-inducible T-cell alpha chemoattractant). These chemokines bind to the CXCR3 receptor expressed on activated T cells and NK cells.
- Flow cytometric analysis for expression of these cytokines was performed on peripheral leukocytes freshly collected from subjects with various stages of AMD including active wet AMD, and inactive wet AMD (individuals successfully treated with intravitreal Lucentis™ (ranibizumab; anti-VEGF Fab) or Avastin™ (bevasizumab; humanized anti-VEGF antibody) and deemed to have inactive disease based on clinical and OCT findings). These chemokines were significantly expressed in circulating CD14+ cells (monocytes/macrophages), and significantly less on T and B cell populations.
FIGS. 6A , 6B and 6C show that the expression pattern of all 3 chemokines is similar and is elevated in subjects with AMD over control subjects as early as AREDS stage 1 (early AMD). It is also interesting that the levels of all 3 chemokines diminished as after anti-VEGF treatment. - IP-10 in particular is associated with chronic systemic diseases, and its association with AMD implicates a role for chronic systemic inflammation. To test this hypothesis, we examined whether there were any differences between AMD and non-AMD subjects with respect to systemic IP-10 production. Flow cytometry of the blood leukocyte fraction showed that 41.15% vs. 4.75% of circulating CD14+ monocytes expressed IP-10 in
AREDS stage 3 vs. control subjects. - Additionally, spleen and eye specimens were collected from autopsy donors and matched to their respective stage of AMD. Immunohistochemistry was used identify the number of spleen cells that expressed IP-10. Spleen samples showed increased expression of IP-10 in spleen leukocytes around the marginal zone. See
FIG. 7 where spleen specimens matched to the stage of AMD collected from autopsy donors show increased expression of IP-10 in splenic lymphocytes as early as early stage AMD (equivalent to AREDS 1). - A level of an AMD biomarker, such as IP-10 and eotaxin are obtained by any art-recognized method. Typically, the level of the marker is measured from a sample of body fluid such as, but not restricted to blood serum.
- A number of risk factors are associated with an increased risk of development of AMD. In some embodiments, the risk factor is a family history of AMD, the absence or presence of a genetic marker, increase age, smoking, and obesity. In some embodiments, a risk factor is a level of an AMD biomarker, e.g., IP-10 and eotaxin as described herein.
- In some embodiments, the methods include using a subject's serum levels of IP-10 or eotaxin to predict which subject will be most likely to respond to treatment with a therapeutic agent.
- Other embodiments are within the scope and spirit of the invention. It will be recognized by a person of ordinary skill in the art that various components of the examples described herein can be interchanged and/or substituted with various components in other examples, and that other modifications may be possible. To the extent that any of the material incorporated by reference herein conflicts with the terms of the present disclosure, the present disclosure is intended to be controlling.
- Further, while the description above refers to the invention, the description may include more than one invention.
Claims (35)
1. A method of identifying a subject at risk of developing age-related macular degeneration (AMD) comprising:
providing a test sample from a subject;
measuring in said test sample the levels of interferon-gamma-induced protein-10 (IP-10); and
comparing the levels of IP-10 in said test sample to a reference level of IP-10, wherein a higher level of IP-10 in said test sample compared to the reference level of IP-10 is indicative of AMD.
2. The method of claim 1 , wherein said reference level of IP-10 is obtained from one or more individuals that are within two years of age of said subject.
3. The method of claim 1 , wherein said identification is prior to the development of clinical signs or phenotype associated with AMD.
4. The method of claim 1 , wherein said IP-10 level is measured with an enzyme-linked immunosorbent assay (ELISA).
5. The method of claim 1 , wherein said test sample is serum or urine.
6. The method of claim 1 , wherein said method further comprises
measuring in said test sample the levels of eotaxin; and
comparing the levels of eotaxin in said test sample to a reference level of eotaxin, wherein a higher level of eotaxin in said test sample compared to the reference level of eotaxin is indicative of AMD.
7. A method of identifying a subject at risk of developing AMD comprising:
providing a test sample from a subject;
measuring in said test sample the levels of eotaxin; and
comparing the levels of eotaxin in said test sample to a reference level of eotaxin, wherein a higher level of eotaxin in said test sample compared to the reference level of eotaxin is indicative of AMD.
8. The method of claim 7 , wherein said reference level of eotaxin is obtained from one or more individuals that are within two years of age of said subject.
9. The method of claim 7 , wherein said identification is prior to the development of clinical signs or phenotype associated with AMD.
10. The method of claim 7 , wherein said eotaxin level is measured with an ELISA.
11. The method of claim 7 , wherein said test sample is serum or urine.
12. A method of treating AMD in a subject comprising administering to said subject a composition that inhibits the activity of IP-10.
13. The method of claim 12 , wherein said AMD is dry AMD.
14. The method of claim 12 , wherein said AMD is wet AMD.
15. The method of claim 12 , wherein said composition that inhibits the activity of IP-10 is a neutralizing antibody or a solubilized receptor that binds circulating IP-10, or a CXCR3 receptor antagonist.
16. The method of claim 12 , wherein said composition is administered intravenously, subcutaneously, or orally.
17. The method of claim 12 , wherein said composition is administered locally, topically, intraocularly, periburlbarly, or intravitreally.
18. The method of claim 12 , wherein said composition comprises a non-selective cytokine inhibitor that has cross-over inhibitory activity against IP-10 or eotaxin receptors.
19. The method of claim 15 , wherein said CXCR3 receptor antagonist is selected from the group consisting of NBI-74330, NSC651016, LMP420, AZD3778, T0906487, AMG487, TAK779, and NBI-74330.
20. The method of claim 12 , wherein said method further comprises administering to said subject a composition that inhibits the activity of eotaxin.
21. A method of treating AMD in a subject comprising administering to said subject a composition that inhibits the activity of eotaxin.
22. The method of claim 21 , wherein said AMD is dry AMD.
23. The method of claim 21 , wherein said AMD is wet AMD.
24. The method of claim 21 , wherein said composition that inhibits the activity of eotaxin is a neutralizing antibody or a solubilized receptor that binds circulating eotaxin, or a CC receptor antagonist.
25. The method of claim 21 , wherein said composition is administered orally, intravenously or subcutaneously.
26. The method of claim 21 , wherein said composition is administered locally, topically, intraocularly, periburlbarly, intravitreally.
27. The method of claim 21 , wherein the composition comprises a non-selective cytokine inhibitor that has cross-over inhibitory activity against IP-10 or eotaxin receptors.
28. The method of claim 21 , wherein the composition that inhibits the activity of eotaxin is a CCR3 receptor antagonist selected from the group consisting of DPC168, BMS570520, Ki19003, SB328437, GW701897, YM-344031 and GW766994.
29. The method of claim 21 , wherein the composition inhibits TNF-α and IP-10.
30. The method of claim 21 , wherein the composition that inhibits the activity of eotaxin is LMP-420.
31. A method of preventing AMD in a subject at risk thereof comprising administering to said subject a composition that inhibits the activity of IP-10.
32. A method of preventing AMD in a subject at risk thereof comprising administering to said subject a composition that inhibits the activity of eotaxin.
33. A method of monitoring treatment of AMD comprising:
(a) providing a test sample from a subject;
(b) measuring in said test sample the levels of IP-10;
(c) administering to said subject a composition that inhibits the activity of IP-10;
(d) providing a second test sample from a subject;
(e) measuring in said second test sample the levels of IP-10;
(f) comparing the levels of IP-10 in said second test sample to the levels of IP-10 in said first test sample, wherein a higher level of IP-10 in said first test sample compared to said second sample indicates said treatment is effective.
34. A kit for identifying a subject at risk of developing AMD comprising:
a first reagent that detects IP-10;
a second reagent that detects eotaxin; and
directions for using said kit.
35. A nomogram comprising a plurality of numerical relations correlating the levels of IP-10 and eotaxin in a bodily fluid to the risk of developing AMD.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/283,739 US20120087928A1 (en) | 2009-04-28 | 2011-10-28 | Therapeutics for age-related macular degeneration |
US14/134,633 US10117931B2 (en) | 2009-04-28 | 2013-12-19 | Methods for treatment of age-related macular degeneration |
US16/180,285 US20200054745A1 (en) | 2009-04-28 | 2018-11-05 | Methods for treatment of age-related macular degeneration |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17325709P | 2009-04-28 | 2009-04-28 | |
US28724809P | 2009-12-17 | 2009-12-17 | |
PCT/US2010/032801 WO2010129351A1 (en) | 2009-04-28 | 2010-04-28 | Method to identify and treat age-related macular degeneration |
US13/283,739 US20120087928A1 (en) | 2009-04-28 | 2011-10-28 | Therapeutics for age-related macular degeneration |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/032801 Continuation-In-Part WO2010129351A1 (en) | 2009-04-28 | 2010-04-28 | Method to identify and treat age-related macular degeneration |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/134,633 Division US10117931B2 (en) | 2009-04-28 | 2013-12-19 | Methods for treatment of age-related macular degeneration |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120087928A1 true US20120087928A1 (en) | 2012-04-12 |
Family
ID=42340446
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/283,739 Abandoned US20120087928A1 (en) | 2009-04-28 | 2011-10-28 | Therapeutics for age-related macular degeneration |
US14/134,633 Active 2030-05-17 US10117931B2 (en) | 2009-04-28 | 2013-12-19 | Methods for treatment of age-related macular degeneration |
US16/180,285 Abandoned US20200054745A1 (en) | 2009-04-28 | 2018-11-05 | Methods for treatment of age-related macular degeneration |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/134,633 Active 2030-05-17 US10117931B2 (en) | 2009-04-28 | 2013-12-19 | Methods for treatment of age-related macular degeneration |
US16/180,285 Abandoned US20200054745A1 (en) | 2009-04-28 | 2018-11-05 | Methods for treatment of age-related macular degeneration |
Country Status (2)
Country | Link |
---|---|
US (3) | US20120087928A1 (en) |
WO (1) | WO2010129351A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014126796A3 (en) * | 2013-02-13 | 2014-10-16 | Indiana University Research & Technology Corporation | Methods of diagnosing, treating and monitoring diabetic retinopathy |
US20160193217A1 (en) * | 2013-07-24 | 2016-07-07 | Mitsubishi Tanabe Pharma Corporation | Therapeutic agent for ophthalmic disease |
US11253540B2 (en) | 2015-05-29 | 2022-02-22 | Seikagaku Corporation | Composition including glycosaminoglycan derivative and chemokine receptor activity regulator |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9332905B1 (en) | 2015-02-10 | 2016-05-10 | Clinton Norton Sims | Diagnostic method and system for detecting early age-related macular degeneration, maculopathies and cystoid macular edema post cataract surgery |
EP4164643A4 (en) * | 2020-06-11 | 2024-07-03 | Alkahest, Inc. | METHODS TO IMPROVE RETINAL ASSOCIATED DISEASE OUTCOME WITH CCR3 INHIBITORS |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080199426A1 (en) * | 2007-01-11 | 2008-08-21 | Sukhatme Vikas P | Methods and compositions for the treatment and diagnosis of vascular inflammatory disorders or endothelial cell disorders |
Family Cites Families (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643893A (en) | 1994-06-22 | 1997-07-01 | Macronex, Inc. | N-substituted-(Dihydroxyboryl)alkyl purine, indole and pyrimidine derivatives, useful as inhibitors of inflammatory cytokines |
US6140064A (en) | 1996-09-10 | 2000-10-31 | Theodor-Kocher Institute | Method of detecting or identifying ligands, inhibitors or promoters of CXC chemokine receptor 3 |
AU5803398A (en) | 1996-12-13 | 1998-07-03 | Merck & Co., Inc. | Spiro-substituted azacycles as modulators of chemokine receptor activity |
JP2002510327A (en) | 1997-07-25 | 2002-04-02 | メルク エンド カンパニー インコーポレーテッド | Cyclic amine chemokine receptor activity modulator |
ES2156003T3 (en) | 1997-07-29 | 2001-06-01 | Medi Service S R L | CANULA FOR VAGINAL IRRIGATIONS. |
IL125658A0 (en) | 1997-08-18 | 1999-04-11 | Hoffmann La Roche | Ccr-3 receptor antagonists |
AR013669A1 (en) | 1997-10-07 | 2001-01-10 | Smithkline Beecham Corp | COMPOUNDS AND METHODS |
CN1282243A (en) | 1997-12-19 | 2001-01-31 | 武田药品工业株式会社 | Pharmaceutical composition for antagonizing CCR5 comprising anilide derivative |
WO1999038514A1 (en) | 1998-02-02 | 1999-08-05 | Merck & Co., Inc. | Cyclic amine modulators of chemokine receptor activity |
GB9803226D0 (en) | 1998-02-17 | 1998-04-08 | Zeneca Ltd | Chemical compounds |
WO1999050246A1 (en) * | 1998-03-30 | 1999-10-07 | Repligen Corporation | Protein-carbohydrate binding antagonists |
US6420424B1 (en) | 1998-04-27 | 2002-07-16 | Smithkline Beecham Corporation | CCR-3 receptor antagonists |
WO1999055324A1 (en) | 1998-04-27 | 1999-11-04 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
WO2000004003A1 (en) | 1998-07-14 | 2000-01-27 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
IL141028A0 (en) | 1998-07-28 | 2002-02-10 | Smithkline Beecham Corp | Substituted anilide compounds and methods |
JP2002521441A (en) | 1998-07-28 | 2002-07-16 | スミスクライン・ビーチャム・コーポレイション | Propenamide as a CCR5 modulator |
AU5301599A (en) | 1998-08-20 | 2000-03-14 | Takeda Chemical Industries Ltd. | Quaternary ammonium salts and their use |
WO2000021916A1 (en) | 1998-10-15 | 2000-04-20 | Takeda Chemical Industries, Ltd. | Process for the preparation of amine derivatives |
WO2000027843A1 (en) | 1998-11-09 | 2000-05-18 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
WO2000027800A1 (en) | 1998-11-09 | 2000-05-18 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
WO2000027835A1 (en) | 1998-11-09 | 2000-05-18 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
WO2000029377A1 (en) | 1998-11-17 | 2000-05-25 | F. Hoffmann-La Roche Ag | 4-aroyl-piperidin-ccr-3 receptor antagonists iii |
EP1131290B1 (en) | 1998-11-20 | 2008-02-20 | F. Hoffmann-La Roche Ag | Piperidine ccr-3 receptor antagonists |
ID29067A (en) | 1998-11-20 | 2001-07-26 | Hoffmann La Roche | PIROLIDINA-ANTAGONIS RECIPTORS DOWN CCR-3 |
EP1067130A4 (en) | 1998-12-04 | 2004-02-11 | Toray Industries | Triazolo derivatives and chemokine inhibitors containing the same as the active ingredient |
CA2347912A1 (en) | 1998-12-18 | 2000-06-22 | Soo S. Ko | Heterocyclic piperidines as modulators of chemokine receptor activity |
CA2350730A1 (en) | 1998-12-18 | 2000-06-22 | George V. Delucca | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
ATE302606T1 (en) | 1998-12-18 | 2005-09-15 | Bristol Myers Squibb Pharma Co | N-UREIDOALKYLPIPERIDINES AS MODULATORS OF CHEMOKINE RECEPTOR ACTIVITY |
US6605623B1 (en) | 1998-12-18 | 2003-08-12 | Bristol-Myers Squibb Pharma Co. | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
CA2347769A1 (en) | 1998-12-18 | 2000-06-22 | Dean A. Wacker | 2-substituted-4-nitrogen heterocycles as modulators of chemokine receptor activity |
US6331541B1 (en) | 1998-12-18 | 2001-12-18 | Soo S. Ko | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
DE69926806D1 (en) | 1998-12-18 | 2005-09-22 | Bristol Myers Squibb Pharma Co | N-UREIDOALKYLPIPERIDINES AS MODULATORS OF THE ACTIVITY OF CHEMOKIN RECEPTORS |
CA2346933A1 (en) | 1998-12-18 | 2000-06-22 | Dupont Pharmaceuticals Company | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
US6525069B1 (en) | 1998-12-18 | 2003-02-25 | Bristol-Myers Squibb Pharma Co. | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
CA2348923A1 (en) | 1998-12-18 | 2000-06-22 | Dean A. Wacker | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
CA2353635A1 (en) | 1998-12-21 | 2000-06-29 | Takeda Chemical Industries, Ltd. | Anilide derivative, production and use thereof |
PE20001420A1 (en) | 1998-12-23 | 2000-12-18 | Pfizer | CCR5 MODULATORS |
EP1013276A1 (en) | 1998-12-23 | 2000-06-28 | Pfizer Inc. | Aminoazacycloalkanes as CCR5 modulators |
US7217714B1 (en) | 1998-12-23 | 2007-05-15 | Agouron Pharmaceuticals, Inc. | CCR5 modulators |
JP2002534383A (en) | 1998-12-30 | 2002-10-15 | スミスクライン・ビーチャム・コーポレイション | Compounds and methods |
WO2000042045A2 (en) | 1999-01-13 | 2000-07-20 | Warner-Lambert Company | Functionalized heterocycles as chemokine receptor modulators |
WO2000041685A1 (en) | 1999-01-19 | 2000-07-20 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
JP2002535256A (en) | 1999-01-25 | 2002-10-22 | スミスクライン・ビーチャム・コーポレイション | Compounds and methods |
GB9902455D0 (en) | 1999-02-05 | 1999-03-24 | Zeneca Ltd | Chemical compounds |
GB9902453D0 (en) | 1999-02-05 | 1999-03-24 | Zeneca Ltd | Chemical compounds |
GB9902452D0 (en) | 1999-02-05 | 1999-03-24 | Zeneca Ltd | Chemical compounds |
GB9902459D0 (en) | 1999-02-05 | 1999-03-24 | Zeneca Ltd | Chemical compounds |
GB9902461D0 (en) | 1999-02-05 | 1999-03-24 | Zeneca Ltd | Chemical compounds |
US6303593B1 (en) | 1999-03-02 | 2001-10-16 | Merck & Co., Inc. | 3-thienyl and 3-furanyl pyrrolidine modulators of chemokine receptor activity |
AU3389300A (en) | 1999-03-02 | 2000-09-21 | Merck & Co., Inc. | Pyrrolidine modulators of chemokine receptor activity |
AU3386500A (en) | 1999-03-02 | 2000-09-21 | Merck & Co., Inc. | 3-cyclopropyl and 3-cyclobutyl pyrrolidine modulators of chemokine receptor activity |
AU3386400A (en) | 1999-03-02 | 2000-09-21 | Merck & Co., Inc. | 3-alkyl substituted pyrrolidine modulators of chemokine receptor activity |
WO2000053172A1 (en) | 1999-03-08 | 2000-09-14 | Smithkline Beecham Corporation | Ccr-3 receptor antagonists |
DE60011997T2 (en) | 1999-03-10 | 2005-07-21 | Smithkline Beecham P.L.C., Brentford | SUBSTITUTED BENZO (1,2-b: 5,4-b ') DIPYRANE-4-AMINE AS CCR5 MODULATORS |
WO2000053600A1 (en) | 1999-03-11 | 2000-09-14 | Banyu Pharmaceutical Co., Ltd. | Novel piperidine derivatives |
ES2265923T3 (en) | 1999-03-24 | 2007-03-01 | Anormed Inc. | HETEROCICLICAL COMPOUNDS THAT JOIN CHEMIOKIN RECEPTORS. |
JP2002540204A (en) | 1999-03-26 | 2002-11-26 | アストラゼネカ・アクチエボラーグ | New compound |
US6248755B1 (en) | 1999-04-06 | 2001-06-19 | Merck & Co., Inc. | Pyrrolidine modulators of chemokine receptor activity |
US6399619B1 (en) | 1999-04-06 | 2002-06-04 | Merck & Co., Inc. | Pyrrolidine modulators of chemokine receptor activity |
US6498161B1 (en) | 1999-04-06 | 2002-12-24 | Merck & Co., Inc. | Pyrrolidine modulators of chemokine receptor activity |
US6265434B1 (en) | 1999-04-06 | 2001-07-24 | Merck & Co., Inc. | Pyrrolidine modulators of chemokine receptor activity |
US6358697B2 (en) | 1999-04-21 | 2002-03-19 | Children's Hospital Medical Center | Intracellular pharmaceutical targeting |
CA2371618A1 (en) | 1999-04-28 | 2000-11-09 | Yuji Ishihara | Cyclic amide compounds, their production and use |
EP1189609A4 (en) | 1999-05-03 | 2002-10-30 | Smithkline Beecham Corp | Cxcr-4 receptor antagonists - thrombopoietin mimetics |
HK1039278B (en) | 1999-05-04 | 2005-06-30 | Schering Corporation | Pegylated interferon alfa-ccr5 antagonist combination hiv therapy |
ES2244437T3 (en) | 1999-05-04 | 2005-12-16 | Schering Corporation | USEFUL PIPERAZINE DERIVATIVES AS AN CCG5 ANTAGONISTS. |
JP3894729B2 (en) | 1999-05-04 | 2007-03-22 | シェーリング コーポレイション | Piperazine derivatives useful as CCR5 antagonists |
EP1182195A4 (en) | 1999-05-07 | 2003-03-26 | Takeda Chemical Industries Ltd | CYCLIC COMPOUNDS AND THEIR USES |
AU4796700A (en) | 1999-05-13 | 2000-12-05 | Dupont Pharmaceuticals Research Laboratories, Inc. | Ureido-substituted cyclic amine derivatives and their use as drug |
WO2000069432A1 (en) | 1999-05-18 | 2000-11-23 | Teijin Limited | Remedies or preventives for diseases in association with chemokines |
HK1046414A1 (en) | 1999-05-27 | 2003-01-10 | Celltek Biotechnologies Inc. | Chemokine receptor ccr3 antagonists |
US6165261A (en) | 1999-06-10 | 2000-12-26 | Ergon, Inc. | Water-resistant gypsum composition |
SE9902765D0 (en) | 1999-07-21 | 1999-07-21 | Astra Pharma Prod | Novel compounds |
WO2001009088A1 (en) | 1999-07-28 | 2001-02-08 | Kirin Beer Kabushiki Kaisha | Urea derivatives as inhibitors of ccr-3 receptor |
US6559160B1 (en) | 1999-08-27 | 2003-05-06 | Chemocentryx, Inc. | Compounds and methods for modulating cxcr3 function |
JP2003512349A (en) | 1999-10-15 | 2003-04-02 | デュポン ファーマシューティカルズ カンパニー | Benzylcycloalkylamines as modulators of chemokine receptor activity |
US6784200B2 (en) | 2000-10-13 | 2004-08-31 | Bristol-Myers Squibb Pharma Company | Bicyclic and tricyclic amines as modulators of chemokine receptor activity |
US6897234B2 (en) | 1999-12-17 | 2005-05-24 | Bristol-Myers Squibb Pharma Company | N-ureidoalkyl-piperidines as modulators of chemokine receptor activity |
AR033517A1 (en) | 2000-04-08 | 2003-12-26 | Astrazeneca Ab | PIPERIDINE DERIVATIVES, PROCESS FOR THE PREPARATION AND USE OF THESE DERIVATIVES IN THE MANUFACTURE OF MEDICINES |
US7091310B2 (en) | 2002-09-13 | 2006-08-15 | Chemokine Therapeutics Corporation | Chemokine analogs for the treatment of human disease |
US20070116669A1 (en) | 2002-09-13 | 2007-05-24 | Chemokine Therapeutics Corporation | Interferon-inducible protein-10 (IP-10 or CXCL10) chemokine analogs for the treatment of human diseases |
DK1287364T3 (en) * | 2000-04-29 | 2009-03-02 | Univ Iowa Res Found | Diagnostic and therapy for macular degeneration-related disorders |
AU2001268607A1 (en) | 2000-06-21 | 2002-01-02 | Bristol-Myers Squibb Company | Piperidine amides as modulators of chemokine receptor activity |
EP1296978A2 (en) | 2000-06-30 | 2003-04-02 | Bristol-Myers Squibb Company | N-ureidoheterocycloaklyl-piperidines as modulators of chemokine receptor activity |
CA2440803A1 (en) | 2001-03-07 | 2002-09-12 | Pfizer Products Inc. | Modulators of chemokine receptor activity |
US20030166589A1 (en) | 2001-06-05 | 2003-09-04 | Nathan Karin | Method and pharmaceutical composition for the treatment of multiple sclerosis |
US20040096446A1 (en) | 2001-08-17 | 2004-05-20 | Lane Thomas E. | Methods for treating demyelinating diseases |
JP2003081937A (en) | 2001-09-07 | 2003-03-19 | Bayer Ag | Benzenesulfonamide derivative |
AU2002326948A1 (en) | 2001-09-18 | 2003-04-01 | Bristol-Myers Squibb Company | Piperizinones as modulators of chemokine receptor activity |
US20040072237A1 (en) | 2001-12-26 | 2004-04-15 | Barry Schweitzer | Use of cytokines secreted by dendritic cells |
GB0203994D0 (en) | 2002-02-20 | 2002-04-03 | Celltech R&D Ltd | Chemical compounds |
TW200800167A (en) | 2002-03-15 | 2008-01-01 | Novartis Ag | Organic compounds |
SE0200843D0 (en) | 2002-03-19 | 2002-03-19 | Astrazeneca Ab | Chemical compounds |
SE0200844D0 (en) | 2002-03-19 | 2002-03-19 | Astrazeneca Ab | Chemical compounds |
US7138229B2 (en) | 2002-12-06 | 2006-11-21 | Renovar, Inc. | Systems and methods for characterizing kidney diseases |
US7244555B2 (en) | 2002-05-14 | 2007-07-17 | Renovak Inc | Systems and methods for identifying organ transplant risk |
JP2005530813A (en) | 2002-06-03 | 2005-10-13 | スミスクライン・ビーチャム・コーポレイション | Imidazolium CXCR3 inhibitor |
DK1515990T3 (en) | 2002-06-12 | 2007-06-11 | Applied Research Systems | Antagonists of CXCR3-binding CXC chemokines |
RU2005102586A (en) | 2002-07-02 | 2005-09-20 | Ф.Хоффманн-Ля Рош Аг (Ch) | 2,5-SUBSTITUTED PYRIMIDINE DERIVATIVES AS ANTAGONISTS IX CCR-3 RECEPTOR |
US20040009503A1 (en) | 2002-07-03 | 2004-01-15 | Molecular Staging, Inc. | Immune modulatory activity of human ribonucleases |
US20040063779A1 (en) | 2002-07-10 | 2004-04-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 1-Phenyl-1,2-diaminoethane derivatives as modulators of the chemokine receptor activity |
CA2512090A1 (en) | 2003-01-07 | 2004-07-29 | Children's Hospital Medical Center | Cytokine inhibition of eosinophils |
US7427487B2 (en) | 2003-03-18 | 2008-09-23 | Arena Pharmaceuticals, Inc. | Constitutively active CXCR3 G protein-coupled chemokine receptor and modulators thereof for the treatment of inflammatory disorders |
US7378524B2 (en) | 2003-04-11 | 2008-05-27 | Taigen Biotechnology Co., Ltd. | Aminoquinoline compounds |
WO2004091485A2 (en) | 2003-04-11 | 2004-10-28 | Taigen Biotechnology | Aminoquinoline compounds |
GB0308801D0 (en) | 2003-04-16 | 2003-05-21 | Celltech R&D Ltd | Chemical compounds |
CA2525647A1 (en) | 2003-05-16 | 2005-02-24 | Intermune, Inc. | Synthetic chemokine receptor ligands and methods of use thereof |
EP1631315B1 (en) | 2003-09-24 | 2014-07-30 | Millennium Pharmaceuticals, Inc. | Antibodies which bind human cxcr3 |
AU2004283842A1 (en) | 2003-10-24 | 2005-05-06 | F. Hoffmann-La Roche Ag | CCR3 receptor antagonists |
EP1687294B1 (en) | 2003-11-17 | 2014-05-21 | Boehringer Ingelheim International GmbH | Novel piperidine-substituted indoles-or hetero-derivatives thereof and their use as modulators of chemokine receptor (ccr-3) |
DE602004031772D1 (en) | 2003-12-04 | 2011-04-21 | Abbott Biotherapeutics Corp | ANTI-IP-10 ANTIBODIES |
PL2383295T3 (en) | 2003-12-10 | 2015-08-31 | Squibb & Sons Llc | IP-10 antibodies and their uses |
CN1946402A (en) | 2004-02-05 | 2007-04-11 | 先灵公司 | Piperdine derivatives useful as CCR3 antagonists |
US7479496B2 (en) | 2004-02-19 | 2009-01-20 | Bristol-Myers Squibb Company | Substituted spiro azabicyclics as modulators of chemokine receptor activity |
US7230022B2 (en) | 2004-02-19 | 2007-06-12 | Bristol-Myers Squibb Company | Substituted fused bicyclic amines as modulators of chemokine receptor activity |
US20050250745A1 (en) | 2004-02-25 | 2005-11-10 | Seddon Johanna M | Biomarkers for age-related macular degeneration (AMD) |
CN1950082B (en) | 2004-03-03 | 2013-02-06 | 凯莫森特里克斯股份有限公司 | Bicyclic and bridged nitrogen-containing heterocycles |
EP1723970A4 (en) | 2004-03-09 | 2009-08-12 | Univ Kyoto | MEDICAL COMPOSITION CONTAINING MEDICAL INHIBITOR CXCR3 |
AU2005243250A1 (en) * | 2004-04-02 | 2005-11-24 | Coley Pharmaceutical Gmbh | Immunostimulatory nucleic acids for inducing IL-10 responses |
WO2006023381A1 (en) | 2004-08-16 | 2006-03-02 | Taigen Biotechnology | Pyrimidinone compounds |
US7332294B2 (en) | 2004-08-17 | 2008-02-19 | University Health Network | CXCL10-based diagnosis and treatment of respiratory illnesses |
TW200714610A (en) | 2005-02-16 | 2007-04-16 | Univ Maryland | CXCR3 is a gliadin receptor |
JP2008545396A (en) | 2005-05-18 | 2008-12-18 | インターミューン インコーポレイテッド | Non-natural chemokine receptor ligands and methods of use thereof |
US20080312215A1 (en) | 2005-06-28 | 2008-12-18 | Pharmacopeia Drug Discovery, Inc. | Substituted [1,4]-diazepanes as CXCR3 antagonists and their use in the treatment of inflammatory disorders |
AU2006265113A1 (en) * | 2005-07-01 | 2007-01-11 | The Johns Hopkins University | Compositions and methods for the treatment or prevention of disorders relating to oxidative stress |
US20070149557A1 (en) | 2005-11-21 | 2007-06-28 | Amgen Inc. | CXCR3 antagonists |
EP1957076A2 (en) | 2005-11-29 | 2008-08-20 | Merck & Co., Inc. | Thiazole derivatives as cxcr3 receptor modulators |
WO2007090826A1 (en) | 2006-02-10 | 2007-08-16 | Janssen Pharmaceutica N.V. | Piperidine derivatives as cxcr3 receptor antagonists |
US10344095B2 (en) * | 2006-02-16 | 2019-07-09 | University Of Kentucky Research Foundation | CCR3 inhibition for ocular angiogenesis and macular degeneration |
US20070196367A1 (en) * | 2006-02-22 | 2007-08-23 | Valentin Dinu | Methods of preventing and treating Alzheimer's disease, age related macular degeneration and other diseases involving extra-cellular debris through the inhibition of the complement system |
WO2007100610A2 (en) | 2006-02-23 | 2007-09-07 | Merck & Co., Inc. | Pyridine, pyrimidine and pyrazine derivatives as cxcr3 receptor modulators |
CA2678626A1 (en) | 2007-02-28 | 2008-09-04 | Novimmune S.A. | Anti-ip-10 antibodies and methods of use thereof |
US20100240138A1 (en) * | 2007-10-08 | 2010-09-23 | Hageman Gregory S | Diagnosis of age-related macular degeneration using biomarkers |
EP2222299B1 (en) | 2007-11-19 | 2011-11-23 | Bausch & Lomb Incorporated | Use of levocabastine for modulating generation of pro-inflammatory cytokines |
-
2010
- 2010-04-28 WO PCT/US2010/032801 patent/WO2010129351A1/en active Application Filing
-
2011
- 2011-10-28 US US13/283,739 patent/US20120087928A1/en not_active Abandoned
-
2013
- 2013-12-19 US US14/134,633 patent/US10117931B2/en active Active
-
2018
- 2018-11-05 US US16/180,285 patent/US20200054745A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080199426A1 (en) * | 2007-01-11 | 2008-08-21 | Sukhatme Vikas P | Methods and compositions for the treatment and diagnosis of vascular inflammatory disorders or endothelial cell disorders |
Non-Patent Citations (3)
Title |
---|
Argarwal, M., et al. CCL11 (Eotaxin-I): A new diagnostic serum marker for prostate cancer. The Prostate, published online on 10/11/2012. * |
Jahnz-Rozyk, K., et al. Eotaxin in serum of patients with asthma or chronic obstructive pulmonary disease: relationship with eosinophil cationic protein and lung function. Mediators of Inflammation, 2000, Vol. 9, p. 175-179. * |
Mo, F.M., et al. Interferone-gamma-inducible protein-10 (IP-10) and eotaxin as biomarkers in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2010, Vol. 51, No. 8, p. 4226-4236. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014126796A3 (en) * | 2013-02-13 | 2014-10-16 | Indiana University Research & Technology Corporation | Methods of diagnosing, treating and monitoring diabetic retinopathy |
US10132815B2 (en) | 2013-02-13 | 2018-11-20 | Indiana University Research & Technology Corporation | Methods of diagnosing, treating and monitoring diabetic retinopathy |
US20160193217A1 (en) * | 2013-07-24 | 2016-07-07 | Mitsubishi Tanabe Pharma Corporation | Therapeutic agent for ophthalmic disease |
US10130634B2 (en) * | 2013-07-24 | 2018-11-20 | Mitsubishi Tanabe Pharma Corporation | Therapeutic agent for ophthalmic disease |
US11253540B2 (en) | 2015-05-29 | 2022-02-22 | Seikagaku Corporation | Composition including glycosaminoglycan derivative and chemokine receptor activity regulator |
Also Published As
Publication number | Publication date |
---|---|
WO2010129351A1 (en) | 2010-11-11 |
US10117931B2 (en) | 2018-11-06 |
US20200054745A1 (en) | 2020-02-20 |
US20140120112A1 (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200054745A1 (en) | Methods for treatment of age-related macular degeneration | |
Mo et al. | Interferon γ–inducible protein-10 (IP-10) and eotaxin as biomarkers in age-related macular degeneration | |
Jung et al. | Tear cytokines as biomarkers for chronic graft-versus-host disease | |
Ricker et al. | Interleukin and growth factor levels in subretinal fluid in rhegmatogenous retinal detachment: a case-control study | |
Yazu et al. | Preoperative aqueous cytokine levels are associated with endothelial cell loss after Descemet's stripping automated endothelial keratoplasty | |
US20220404377A1 (en) | Treatment for age-related macular degeneration (amd) | |
Ricker et al. | Chemokine levels in subretinal fluid obtained during scleral buckling surgery after rhegmatogenous retinal detachment | |
Haas et al. | Impact of visceral fat and pro‐inflammatory factors on the pathogenesis of age‐related macular degeneration | |
JP2003535581A (en) | Diagnosis and treatment of macular degeneration-related diseases | |
Matsuura et al. | Different distribution of pentraxin 3 and C-reactive protein in coronary atherosclerotic plaques | |
Mohammed et al. | Profiling ocular surface responses to preserved and non‐preserved topical glaucoma medications: a 2‐year randomized evaluation study | |
Schulze et al. | Trefoil factor family peptide 3 (TFF3) is upregulated under experimental conditions similar to dry eye disease and supports corneal wound healing effects in vitro | |
Shoji et al. | Antibody array-generated cytokine profiles of tears of patients with vernal keratoconjunctivitis or giant papillary conjunctivitis | |
Adamus | Can innate and autoimmune reactivity forecast early and advance stages of age-related macular degeneration? | |
Shu et al. | IL-8 triggers neutrophil extracellular trap formation through an nicotinamide adenine dinucleotide phosphate oxidase-and mitogen-activated protein kinase pathway-dependent mechanism in uveitis | |
Garweg et al. | Cytokine profiles of phakic and pseudophakic eyes with primary retinal detachment | |
Tomida et al. | Correlations between tear fluid and aqueous humor cytokine levels in bullous keratopathy | |
EP3226853A1 (en) | Animal model for dry eye and methods of use of such animals | |
Ozdamar et al. | Inflammatory mediators and posterior segment involvement in ocular Behcet disease | |
Tominaga et al. | Blocking mast cell–mediated type I hypersensitivity in experimental allergic conjunctivitis by monocyte chemoattractant protein-1/CCR2 | |
He et al. | Association of high-mobility group box-1 with inflammationrelated cytokines in the aqueous humor with acute primary angle-closure eyes | |
Turan et al. | Overexpression of fractalkine and its histopathological characteristics in primary pterygium | |
Letko et al. | Biology of interleukin-5 in ocular cicatricial pemphigoid | |
Xiao et al. | Multiple cytokine analysis of aqueous humor in uveitis with or without secondary glaucoma | |
Tang et al. | Tryptase and TIM-1 double-positive mast cells in different stages of human chronic periodontitis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |