US20120066897A1 - Concentrated winding coil and method of manufacturing same - Google Patents

Concentrated winding coil and method of manufacturing same Download PDF

Info

Publication number
US20120066897A1
US20120066897A1 US13/307,210 US201113307210A US2012066897A1 US 20120066897 A1 US20120066897 A1 US 20120066897A1 US 201113307210 A US201113307210 A US 201113307210A US 2012066897 A1 US2012066897 A1 US 2012066897A1
Authority
US
United States
Prior art keywords
wire
bobbin
coil
winding
coil layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/307,210
Inventor
Hiromichi Hiramatsu
Takashi Ishigami
Takashi Naganawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/307,210 priority Critical patent/US20120066897A1/en
Publication of US20120066897A1 publication Critical patent/US20120066897A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/082Devices for guiding or positioning the winding material on the former
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/082Devices for guiding or positioning the winding material on the former
    • H01F41/086Devices for guiding or positioning the winding material on the former in a special configuration on the former, e.g. orthocyclic coils or open mesh coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0442Loop windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Definitions

  • the present invention relates to a concentrated winding coil for use in an electric motor for example. Furthermore, this invention relates to a method of manufacturing the concentrated winding coils.
  • a stator comprising a core and a winding wire, used for various kinds of electric motors
  • winding density of the wire has been required to increase in order to pursue high efficiency of the electric motor.
  • FIG. 1 is a schematic illustration showing top and side views of a conventional concentrated winding coil disposed in a core.
  • FIG. 1 shows a positional relationship between a coiled bobbin 10 and a core 5 , wherein a wire 2 is wound around a bobbin 1 in the core 5 .
  • the circumferential length of the bobbin's outer flange 1 - b is longer than that of the bobbin's inner flange 1 - c .
  • the coiled bobbin 10 includes a coil slot section 10 a located inside the core 5 and a coil end section 10 b located outside the core 5 . Since the coil slot section 10 a located inside the core 5 greatly influences characteristics of an electric motor, the coil slot is a rectangle shape having a long side on the coil slot section 10 a side and a short side on the coil end section 10 b side as shown in the cross sectional view of FIG. 2 .
  • FIG. 2 is a schematic illustration showing a top view and a cross sectional view cutting along A-A line in the top view of an example of a conventional bobbin 1 used for a concentrated winding coil.
  • the outer flange 1 - b and the inner flange 1 - c are configured respectively on each side of the bobbin body 1 - a , around which a wire 2 is wound, so as to prevent the wire 2 from removing from the bobbin body 1 - a .
  • an R (round) portion is provided on each of the four corners of the bobbin body 1 - a.
  • the radius of the R portion is usually determined according to the flexibility of the wire 2 and the strength of coating layer (insulator) of the wire 2 .
  • FIG. 3 is a model drawing for explaining the winding problem.
  • side A and side C are of the coil slot section
  • side B and side D are of the coil end section
  • a terminal wire is pulled out in the direction of side D.
  • each side is drawn with the same length.
  • the winding method is: a wire is wound around the bobbin by the rotation of the bobbin with regard to a wire nozzle (not shown).
  • FIG. 4 is a drawing for explaining a relationship between a wire position in a coil layer and a side of the bobbin.
  • FIG. 4 shows the trajectory of the wire in the n-th turn and the (n+1)-th turn (“n” is a natural number) on each side of the bobbin when guiding of the wire 2 in the coil axis direction (expressed as “wire traverse”) with a constant rate is provided in synchronization with a rotation angle of the bobbin.
  • the wire 2 of the (n+1)-th turn is wound in close contact with the previous turn (n-th turn) not to have a gap therebetween in order to increase the winding density.
  • FIG. 5 is a drawing for explaining another relationship between a wire position in a coil layer and a side of the bobbin. As shown in FIG. 5 , this is a method in which wire traverse is not executed between side A and side C but is executed only on side D, thereby increasing the slot-fill rate in the coil slot section on side A and side C.
  • FIG. 6 is an explanatory drawing that shows an actual winding state with occurrence of a wire drifting.
  • a wire drifting occurs only on side C, or in the range from side C to side B, or from side C to side A.
  • JP-A-2003-244906 a method has been proposed in which a pair of wire guides called “former” are disposed on the outer circumference of the winding bobbin, and a wire is put through the guides and is wound around the winding bobbin.
  • the former is approximated to the bobbin's flanges and is moved from the inner flange to the outer flange with winding the wire, thereby increasing the accuracy of positioning the wire on the winding bobbin.
  • FIG. 7 is a schematic illustration showing cross sectional views at a slot portion of another example of a conventional bobbin and a concentrated winding coil wound on the bobbin in which a process of wire winding until the third coil layer is illustrated.
  • a bobbin 1 has grooves that correspond to the wire pitch on the bobbin body 1 - a.
  • a wire guide method shown in FIG. 5
  • the grooves of the bobbin body 1 - a prevent the drifting that disturbs the wire alignment as shown in FIG. 6 .
  • drifting of the wire is inhibited by the grooves of the bobbin body 1 - a , and on the second and after coil layers, the wound wire on the previous coil layer achieves the same function as grooves.
  • the present invention is originated to solve the above problems. It is an object of the present invention to provide a concentrated winding coil having a high slot-fill rate, which prevents the occurrence of disturbance in wire alignment and contributes to increasing the efficiency of the electric motor and reducing the size of an electric motor. Furthermore, it is another object of the present invention to provide a method of manufacturing said concentrated winding coil without increasing bobbin die costs.
  • a concentrated winding coil comprises: a plurality of coil layers each of which comprises a plurality of wire turns wound in alignment winding; and a bobbin comprising an inner flange, an outer flange and a bobbin body on which the wire is wound, wherein: each of the coil layers includes a turn shift section where the wire is shifted from an n-th turn to an (n+1)-th turn (“n” is a natural number); the turn shift section is located only on a side of a coil end section of the coil; and the bobbin body has no guide grooves.
  • the concentrated winding coil further comprises a layer shift section where the wire is shifted from an m-th coil layer to an (m+1)-th coil layer (“m” is a natural number); and the layer shift section is located only on the coil end side of the coil.
  • An electrical rotating machine comprises said concentrated winding coil.
  • the wire is a round wire or a rectangular wire.
  • a clearance between a length of the bobbin body in a coil axis direction and a length of the coil layer in the same direction is shorter than a width of the wire. (In other words, a length of the bobbin body in a coil axis direction is not smaller than integer multiple of a width of the wire.)
  • Said side is one side which is located on the coil end section of the bobbin.
  • a method of manufacturing a concentrated winding coil in which a wire is wound on a bobbin having an inner flange, an outer flange and a bobbin body comprises steps of: winding the wire on the bobbin; and pressing the wire by a wire guiding/holding member toward the inner flange or toward the outer flange.
  • the method of manufacturing a concentrated winding coil further comprises a step of pressing the wire toward the bobbin body by the wire guiding/holding member.
  • the wire is a round wire or a rectangular wire.
  • the “inside the bobbin” means a space around the bobbin body and between the inner flange and the outer one.
  • the present invention provides a concentrated winding coil having a high slot-fill rate, which can prevent the occurrence of disturbance in wire alignment and contribute to increasing the efficiency of the electric motor and reducing the size of an electric motor. Furthermore, the present invention provides a method of manufacturing said concentrated winding coil without increasing bobbin die manufacture costs.
  • FIG. 1 is a schematic illustration showing top and side views of a conventional concentrated winding coil disposed in a core.
  • FIG. 2 is a schematic illustration showing a top view and a cross sectional view cutting along A-A line in the top view of an example of a conventional bobbin used for a concentrated winding coil.
  • FIG. 3 is a model drawing for explaining the winding problem.
  • FIG. 4 is a drawing for explaining a relationship between a wire position in a coil layer and a side of the bobbin.
  • FIG. 5 is a drawing for explaining another relationship between a wire position in a coil layer and a side of the bobbin.
  • FIG. 6 is an explanatory drawing that shows an actual winding state with occurrence of a wire drifting.
  • FIG. 7 is a schematic illustration showing cross sectional views at a slot portion of another example of a conventional bobbin and of a concentrated winding coil wound on the bobbin, in which a progress of wire winding until the third coil layer is illustrated.
  • FIGS. 8( a ) to 8 ( g ) are schematic illustrations showing top views of a concentrated winding coil for explaining a winding method according to the present invention.
  • FIG. 9 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the first coil layer progresses proximately before the last turn of the first coil layer.
  • FIGS. 10( a ) and 10 ( b ) are schematic illustrations showing a top view of a coil with the first coil layer winding and that of the coil with the second coil layer winding respectively, for explaining a winding method according to the present invention.
  • FIG. 11 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the second coil layer progresses proximately before the last turn of the second coil layer.
  • FIG. 12 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a first embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated.
  • FIG. 13 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a second embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated.
  • FIG. 14 is a schematic illustration showing cross sectional views at a slot portion of a concentrated winding coil wound on a bobbin according to a third embodiment of the present invention, in which a progress of wire winding until the fourth coil layer is illustrated.
  • FIG. 15 is a schematic illustration showing a perspective view of a coil end section of a concentrated winding coil wound on a bobbin according to a fourth embodiment of the present invention.
  • FIGS. 8( a ) to 8 ( g ) description will be provided about winding the first coil layer adjacent to the bobbin body by a winding method according to the present invention.
  • One of essential points of the present invention is the positional relationship among a wire guiding/holding member, a wire and a bobbin during the winding; therefore, description of other parts will be omitted.
  • FIGS. 8( a ) to 8 ( g ) are schematic illustrations showing top views of a concentrated winding coil for explaining a winding method according to the present invention.
  • FIG. 8( a ) shows a bobbin 1 before a wire is wound around.
  • the bobbin 1 comprises: a bobbin body 1 - a on which a wire 2 is wound and which has no guide grooves; an outer flange 1 - b which prevents a wire 2 from removing and is located on the outer circumference when the bobbin 1 is disposed in the core 5 ; and an inner flange 1 - c which also prevents a wire 2 from removing and is located on the inner circumference when the bobbin 1 is disposed in the core 5 .
  • FIG. 8( b ) shows a state in which a start-of-winding wire 2 - a is positioned on the bobbin 1 .
  • winding is started while a wire is adjacent to the outer flange 1 - b and is located on the left side of the bobbin body 1 - a ; however, winding can be started from other positions depending on the location of the terminal wire or on the coil winding direction.
  • the position of the wire guiding/holding member of front side 3 - a will be explained when the start-of-winding wire 2 - a is positioned on the bobbin 1 .
  • the wire guiding/holding portion of front side 3 - a is disposed on a winding spindle around which the bobbin 1 rotates, thereby the wire guiding/holding member of front side 3 - a rotates along with the bobbin 1 . That is, it is not necessary to position the mechanism on the outer circumference portion separate from the winding spindle.
  • the wire guiding/holding member of front side 3 - a comprises an end portion 3 - a 1 which faces the bobbin body 1 - a , and a wire contact portion 3 - a 2 which guides a wire 2 when winding is executed.
  • a surface of the wire contact portion 3 - a 2 comes in contact with a wire 2 while the wire is being wound and also comes in contact with the wire 2 in order to press the wire 2 (to adjust a wire alignment) after the wire 2 has reached the bobbin body 1 - a.
  • the distance between the end portion 3 - a 1 of the wire guiding/holding member of front side 3 - a and the bobbin body 1 - a has to be determined so that the wire 2 is prevented from entering the space and also the end portion 3 - a 1 is not in contact with the bobbin body 1 - a.
  • the distance between the end portion 3 - a 1 of the wire guiding/holding member of front side 3 - a and the bobbin body 1 - a can be set within a range of 0.1 d and 0.5 d to satisfy the above-mentioned conditions.
  • the wire contact portion 3 - a 2 of the wire guiding/holding portion of front side 3 - a is positioned at a distance within a range of 1.1 d and 2 d to the outer flange 1 - b when a wire 2 does not exist between the wire contact portion 3 - a 2 and the outer flange 1 - b , or to the most recently wound wire when a wire 2 exists and winding progresses. By setting the distance at that value, it is easy to guide the wire 2 when the wire is wound.
  • FIG. 8( c ) shows a state in which the winding progresses for a prescribed angle rotation from the state in FIG. 8( b ).
  • the position of the wire contact portion 3 - a 2 of the wire guiding/holding member of front side 3 - a has a clearance with regard to the diameter [d] of the wire 2 ; therefore, it is possible to wind a wire without interference when the wire 2 is dropped onto the bobbin body 1 - a.
  • FIG. 8( d ) shows a state in which the wire is pressed (is adjusted) toward the outer flange 1 - b by the wire contact portion 3 - a 2 .
  • the wire contact portion 3 - a 2 of the wire guiding/holding member of front side 3 - a comes in contact with the wire 2 and presses the wire 2 toward the outer flange 1 - b by a pressing mechanism, not shown, thereby making the wire 2 come in contact with the outer flange 1 - b , and ensuring the wire alignment inside the bobbin 1 .
  • An optimal value for a pressing force should be selected according to the conditions, such as a diameter of a wire, flexibility of a wire, and wire tension while the wire is wound.
  • FIG. 8( e ) shows a state in which the winding further progresses when compared to the state shown in FIG. 8( d ) and the wire contact portion 3 - a 2 of the wire guiding/holding member of front side 3 - a is released from the wire 2 before the following turn of wire 2 is wound around.
  • the position of the wire guiding/holding member of front side 3 - a will be explained.
  • the distance between the end portion 3 - a 1 of the wire guiding/holding member of front side 3 - a and the bobbin body 1 - a has to be determined so that the wire 2 is prevented from entering the space and also the end portion 3 - a 1 is not in contact with the bobbin body 1 - a.
  • the distance between the end portion 3 - a 1 of the wire guiding/holding member of front side 3 - a and the bobbin body 1 - a can be set within a range of 0.1 d and 0.5 d to satisfy the above-mentioned conditions.
  • the wire contact portion 3 - a 2 of the wire guiding/holding member of front side 3 - a is positioned at a distance within a range of 1.1 d and 2 d to the most recently wound wire. By changing the distance to that value, it is easy to guide the wire 2 when the wire is further wound.
  • FIG. 8( f ) shows a state in which the winding further progresses for a prescribed angle rotation from the state in FIG. 8( e ).
  • the position of the wire contact portion 3 - a 2 of the wire guiding/holding member of front side 3 - a includes a clearance to the wire 2 to be wound with regard to the diameter [d] of the wire 2 ; therefore, it is possible to wind a wire without interference when the wire 2 is dropped onto the bobbin body 1 - a.
  • FIG. 8( g ) shows a state in which the wire is pressed (is adjusted) toward the outer flange 1 - b by the wire contact portion 3 - a 2 .
  • the wire contact portion 3 - a 2 of the wire guiding/holding member of front side 3 - a comes in contact with the wire 2 and presses the wire toward the outer flange 1 - b by a pressing mechanism, not shown, thereby making the wire 2 come in contact with the most recently wound wire 2 , and ensuring the wire alignment inside the bobbin 1 .
  • An optimal value for the pressing force should be selected according to the conditions, such as a diameter of a wire, flexibility of a wire, and wire tension while the wire is wound.
  • FIG. 9 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the first coil layer progresses proximately before the last turn of the first coil layer is dropped on the bobbin body 1 - a.
  • the wire guiding/holding member of front side 3 - a is retracted from a passage of the wire 2 , and the last turn of the wire 2 of the first coil layer is positioned between the most recently wound wire 2 and the inner flange 1 - c.
  • FIGS. 10( a ) and 10 ( b ) are schematic illustrations showing a top view of a coil with the first coil layer winding and that of the coil with the second coil layer winding respectively, for explaining a winding method according to the present invention.
  • the method of the second coil layer winding is almost the same as that of the first coil layer winding described by referring to FIGS. 8( a ) to 8 ( g ).
  • the difference is: as shown in FIG. 10( b ), a wire guiding/holding member of rear side 3 - b is used, which is anteroposteriorly symmetrical with respect to the wire guiding/holding member of front side 3 - a used for the first coil layer winding; and a direction of forming a coil layer is reverse, from the inner flange 1 - c toward the outer flange 1 - b.
  • FIG. 11 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the second coil layer progresses proximately before the last turn of the second coil layer is dropped on the first coil layer toward the bobbin body 1 - a.
  • the wire guiding/holding member of rear side 3 - b is retracted from the passage of the wire 2 , and the last turn of the second coil layer is positioned between the most recently wound wire 2 and the outer flange 1 - b.
  • the method of winding an m-th coil layer is as follows (“m” is a natural number): to wind a wire for an odd-number-th coil layer, the wire guiding/holding member of front side 3 - a is used in the same manner as the first coil layer and the winding of the odd-number coil layer progresses from the outer flange 1 - b toward the inner flange 1 - c ; and to wind a wire for an even-number-th coil layer, the wire guiding/holding member of rear side 3 - b is used in the same manner as the second coil layer and the winding of the even-number coil layer progresses from the inner flange 1 - c toward the outer flange 1 - b.
  • the disturbance in wire alignment is prone to occur in a layer shift section where the wire is shifted from an m-th coil layer to an (m+1)-th coil layer.
  • the layer shift section is located only on the coil end side of the coil. The situation can be easily achieved by the winding method of the present invention because a wire on the coil slot side is guided and held during the winding by the wire guiding/holding members in the pressing mechanism according to the present invention.
  • the alignment winding of a coil is not sufficiently controlled; accordingly, a length of the bobbin body in the coil axis direction is often set to be enough longer than a prescribed length of the coil layer in the same direction. In that case, when a good alignment winding is executed, a number of turns in the coil layer becomes one turn more; and when a poor alignment winding is executed, the winding on upper coil layer becomes unsteady. These situations degrade the reliability of the coils and inhibit the increase in a slot-fill rate.
  • the wire guiding/holding member of front side 3 - a and the wire guiding/holding member of rear side 3 - b which are a pair are located only one side of the coil slot section; however, according to the degree of disturbance in wire alignment caused depending on flexibility of the wire or winding tension, by disposing another pair of wire guiding/holding members on the opposite side of the coil slot section, it is possible to further increase the effects of preventing the disturbance in wire alignment.
  • FIG. 12 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a first embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated.
  • the bobbin body 1 - a has no grooves, it is possible to prevent the increase in production cost resulting from groove formation, and the design capability increases because it is easy to change design conditions, such as a diameter of a wire, shape of a wire, shape of a bobbin, and so on.
  • wires of the second coil layer and the third coil layer are located just right on the wires of the first coil layer.
  • This winding configuration cannot be achieved by a conventional winding method, but is possible by the winding method according to the present invention.
  • the winding configuration as shown in FIG. 7 can be easily manufactured by the winding method of the present invention without using a grooved bobbin.
  • FIG. 13 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a second embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated.
  • the wire 2 to be used is a rectangular (quadrate) wire.
  • the rectangular wire is often used for an electric motor that requires a high slot-fill rate. By using a rectangular wire, it is possible to significantly eliminate clearance that generates between coil layers of round wire and between turns of round wire.
  • the conventional bobbin as shown in FIG.
  • the winding method according to the present invention must be needed in order to ensure the winding alignment of the rectangular wire 2 without providing guide grooves on the bobbin body 1 - a.
  • FIG. 14 is a schematic illustration showing cross sectional views at a slot portion of a concentrated winding coil wound on a bobbin according to a third embodiment of the present invention, in which a progress of wire winding until the fourth coil layer is illustrated.
  • the concentrated winding coil in this embodiment has the coil layer in which the number of turns differs for each coil layer.
  • the bobbin has almost the same bobbin body 1 - a as those shown in FIGS. 12 and 13 , which has no grooves. Therefore, an explanatory drawing is omitted.
  • the concentrated winding coil of this embodiment is intended to increase a slot-fill rate by decreasing a clearance between adjacent coils disposed in the core as shown in a top view of FIG. 1 . Specifically, the number of turns close to the outer flange 1 - b in the coil is increased.
  • the winding is executed as follows: the maximum number of turns that can fit the length of the bobbin body 1 - a in the coil axis direction (the distance between the inner flange 1 - c and the outer flange 1 - b ) are wound as the first coil layer and the second coil layer, e.g.; a turned-back position is changed in the third coil layer; and a coil layer from which the winding is started is changed in the fourth coil layer.
  • This process is made possible only by the winding method according to the present invention in which a wire 2 is guided and held after the winding.
  • FIG. 15 is a schematic illustration showing a perspective view of a coil end section of a concentrated winding coil wound on a bobbin according to a fourth embodiment of the present invention. As shown in FIG. 15 , a start-of-winding wire, an end-of-winding wire, and terminal wire latch portions can be seen.
  • the wire 2 - b is led out through the terminal wire latch portion disposed in the end-of-winding half part on the coil end side due to a reason of designing of the terminal wire, the wire has to be led once to a start-of-winding half part (an opposite half part to the end-of-winding half part) on the coil end side in order to suppress slack and drift, and then has to be returned to the end-of-winding half part and be latched at the terminal wire latch position for the end-of-winding wire.
  • a leading portion of the end-of-winding wire to the terminal wire latch portion must be positioned in the start-of-winding half part on the coil end viewed from the coil end.
  • the present invention it is possible to prevent the wire from becoming slack and drift by directly holding the wire 2 with the wire guiding/holding member while handling for the terminal wire is executed.
  • the end-of-winding wire 2 - b directly to the terminal wire latch portion for the end-of-winding wire disposed in the end-of-winding half part on the coil end side viewed from the coil end, as shown in FIG. 15 .
  • the leading portion of the end-of-winding wire to the terminal wire latch portion can be also positioned in the end-of-winding half part on the coil end side viewed from the coil end.
  • the concentrated winding coil according to the present invention can shift all turns and all coil layers only on the coil end side, therefore maintaining a wire alignment condition of the coil, especially in the slot section inserted into a stator core. Furthermore, in the coil winding method of the present invention, a wire guiding/holding mechanism is disposed in the vicinity of a winding bobbin, and the wire guiding/holding mechanism stands ready at a position, which has a space with regard to the width of the wire, to guide the position of the wire before the wire is wound around the bobbin, and the wire guiding/holding mechanism then applies a pressing force onto the wire after the wire has been wound around.
  • the wire guiding/holding member can position a wire inside the bobbin, thereby preventing the disturbance in alignment of the coil wire and enabling highly accurate winding.
  • inside the bobbin means a space around the bobbin body and between the inner flange and the outer one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Coil Winding Methods And Apparatuses (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

A concentrated winding coil includes a plurality of coil layers each of which comprises a plurality of wire turns wound in alignment winding; and a bobbin including an inner flange, an outer flange and a bobbin body on which the wire is wound, wherein: each of the coil layers includes a turn shift portion where the wire is shifted from an n-th turn to an (n+1)-th turn; the turn shift portion is located only on a side of a coil end section of the coil; and the bobbin body has no guide grooves. A method of manufacturing the concentrated winding coil includes steps of: winding the wire on the bobbin; and pressing the wire by a wire guiding/holding member toward the inner flange or toward the outer flange.

Description

    CLAIM OF PRIORITY
  • This application is a continuation of application Ser. No. 11/954,305, filed on Dec. 12, 2007, now allowed, which claims the benefit of Japanese Application No. JP 2006-333942 filed on Dec. 12, 2006, in the Japanese Patent Office, the disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a concentrated winding coil for use in an electric motor for example. Furthermore, this invention relates to a method of manufacturing the concentrated winding coils.
  • 2. Description of Related Art
  • In a stator, comprising a core and a winding wire, used for various kinds of electric motors, winding density of the wire has been required to increase in order to pursue high efficiency of the electric motor.
  • FIG. 1 is a schematic illustration showing top and side views of a conventional concentrated winding coil disposed in a core. FIG. 1 shows a positional relationship between a coiled bobbin 10 and a core 5, wherein a wire 2 is wound around a bobbin 1 in the core 5. As shown in the top view, in order to dispose the coiled bobbin 10 closely adjacent to the core 5 that is arranged circular in the final assembly, the circumferential length of the bobbin's outer flange 1-b is longer than that of the bobbin's inner flange 1-c. Also, as shown in the side view, the coiled bobbin 10 includes a coil slot section 10 a located inside the core 5 and a coil end section 10 b located outside the core 5. Since the coil slot section 10 a located inside the core 5 greatly influences characteristics of an electric motor, the coil slot is a rectangle shape having a long side on the coil slot section 10 a side and a short side on the coil end section 10 b side as shown in the cross sectional view of FIG. 2.
  • FIG. 2 is a schematic illustration showing a top view and a cross sectional view cutting along A-A line in the top view of an example of a conventional bobbin 1 used for a concentrated winding coil. The outer flange 1-b and the inner flange 1-c are configured respectively on each side of the bobbin body 1-a, around which a wire 2 is wound, so as to prevent the wire 2 from removing from the bobbin body 1-a. As shown in the cross sectional view, an R (round) portion is provided on each of the four corners of the bobbin body 1-a. The radius of the R portion is usually determined according to the flexibility of the wire 2 and the strength of coating layer (insulator) of the wire 2.
  • By referring to FIGS. 3 through 6, problems will be explained, which occur when a wire is wound around the above-mentioned bobbin 1. FIG. 3 is a model drawing for explaining the winding problem. Herein, side A and side C are of the coil slot section, side B and side D are of the coil end section, and a terminal wire is pulled out in the direction of side D. For purposes of simplifying, each side is drawn with the same length. The winding method is: a wire is wound around the bobbin by the rotation of the bobbin with regard to a wire nozzle (not shown).
  • FIG. 4 is a drawing for explaining a relationship between a wire position in a coil layer and a side of the bobbin. FIG. 4 shows the trajectory of the wire in the n-th turn and the (n+1)-th turn (“n” is a natural number) on each side of the bobbin when guiding of the wire 2 in the coil axis direction (expressed as “wire traverse”) with a constant rate is provided in synchronization with a rotation angle of the bobbin. Basically, in alignment winding, the wire 2 of the (n+1)-th turn is wound in close contact with the previous turn (n-th turn) not to have a gap therebetween in order to increase the winding density. In this case, however, useless space inevitably generates at a start and an end portions of the coil layer since the wire is wound in a regular helical form. Specifically, there are problems in that the slot-fill rate (ratio of the total wiring area to the winding space) decreases in the coil slot section on side A and side C, thereby affecting (degrading) the characteristics of the electric motor.
  • Accordingly, in order to solve the above problems, a method of guiding the wire 2 in the coil layer has been presented. FIG. 5 is a drawing for explaining another relationship between a wire position in a coil layer and a side of the bobbin. As shown in FIG. 5, this is a method in which wire traverse is not executed between side A and side C but is executed only on side D, thereby increasing the slot-fill rate in the coil slot section on side A and side C.
  • FIG. 6 is an explanatory drawing that shows an actual winding state with occurrence of a wire drifting. As shown by the broken line in the drawing, when wire traverse from side A through side C is set at 0 and wire traverse of the same quantity as a winding pitch is applied only on side D, an actual trajectory of the wire is prone to be as shown by the solid line. This is because the wire 2 is wound around the bobbin 1 while the wire is being pulled, and as shown in a cross sectional view of FIG. 2, this is also because the wire 2 tends to slip due to the R portion located on four corners of the bobbin body 1-a. Then, a component force of the tension is applied to the wire 2 so that the shortest distance is taken. Consequently, disturbance in wire alignment (e.g., a wire drifting) occurs only on side C, or in the range from side C to side B, or from side C to side A.
  • To solve the above problems, as described in JP-A-2003-244906, a method has been proposed in which a pair of wire guides called “former” are disposed on the outer circumference of the winding bobbin, and a wire is put through the guides and is wound around the winding bobbin. In this method, the former is approximated to the bobbin's flanges and is moved from the inner flange to the outer flange with winding the wire, thereby increasing the accuracy of positioning the wire on the winding bobbin.
  • FIG. 7 is a schematic illustration showing cross sectional views at a slot portion of another example of a conventional bobbin and a concentrated winding coil wound on the bobbin in which a process of wire winding until the third coil layer is illustrated. As shown in FIG. 7, a bobbin 1 has grooves that correspond to the wire pitch on the bobbin body 1-a. By applying a wire guide method, shown in FIG. 5, when a wire 2 is wound around the bobbin along the grooves, it is possible to ensure a good alignment on the side that is incorporated into the core slot. This is made possible because the grooves of the bobbin body 1-a prevent the drifting that disturbs the wire alignment as shown in FIG. 6. On the first coil layer of winding, drifting of the wire is inhibited by the grooves of the bobbin body 1-a, and on the second and after coil layers, the wound wire on the previous coil layer achieves the same function as grooves.
  • However, there are problems about the grooved bobbin, shown in FIG. 7, in that die manufacture cost is high. That is because antitype grooves must be created on a die, e.g., when the bobbin is made by a plastic molding. In addition, die alteration cost is generated when design conditions, such as a wire diameter, wire shape, shape of the bobbin, etc., are changed because the shape of grooves and a groove pitch are prescribed on the die.
  • On the other hand, in the method according to JP-A-2003-244906, because a wire is guided from outside of the bobbin, previously mentioned disturbance (the wire drifting) in wire alignment is prone to occur, causing a problem in accuracy.
  • SUMMARY OF THE INVENTION
  • Under these circumstances, the present invention is originated to solve the above problems. It is an object of the present invention to provide a concentrated winding coil having a high slot-fill rate, which prevents the occurrence of disturbance in wire alignment and contributes to increasing the efficiency of the electric motor and reducing the size of an electric motor. Furthermore, it is another object of the present invention to provide a method of manufacturing said concentrated winding coil without increasing bobbin die costs.
  • (1) According to one aspect of the present invention, a concentrated winding coil comprises: a plurality of coil layers each of which comprises a plurality of wire turns wound in alignment winding; and a bobbin comprising an inner flange, an outer flange and a bobbin body on which the wire is wound, wherein: each of the coil layers includes a turn shift section where the wire is shifted from an n-th turn to an (n+1)-th turn (“n” is a natural number); the turn shift section is located only on a side of a coil end section of the coil; and the bobbin body has no guide grooves.
  • In the above invention (1), the following modifications and changes can be made.
  • (i) The concentrated winding coil further comprises a layer shift section where the wire is shifted from an m-th coil layer to an (m+1)-th coil layer (“m” is a natural number); and the layer shift section is located only on the coil end side of the coil.
  • (ii) An electrical rotating machine comprises said concentrated winding coil.
  • (iii) The wire is a round wire or a rectangular wire.
  • (iv) A clearance between a length of the bobbin body in a coil axis direction and a length of the coil layer in the same direction is shorter than a width of the wire. (In other words, a length of the bobbin body in a coil axis direction is not smaller than integer multiple of a width of the wire.)
  • (v) A number of turns on each coil layer is not the same.
  • (vi) Said side is one side which is located on the coil end section of the bobbin.
  • (vii) In the same half part on the coil end side viewed from the coil end are positioned an end-of-winding wire, a terminal wire latch portion for the end-of-winding wire, and a leading portion of the end-of-winding wire to the terminal wire latch portion.
  • (viii) Wires of a second and after coil layers of the coil are located just right on the wires of a first coil layer.
  • (2) According to another aspect of the present invention, a method of manufacturing a concentrated winding coil in which a wire is wound on a bobbin having an inner flange, an outer flange and a bobbin body, comprises steps of: winding the wire on the bobbin; and pressing the wire by a wire guiding/holding member toward the inner flange or toward the outer flange.
  • (3) According to another aspect of the present invention, a method of manufacturing a concentrated winding coil in which a wire is wound on a bobbin, wherein a position of the wire is adjusted inside the bobbin by a wire guiding/holding member.
  • In the above inventions (2) and (3), the following modifications and changes can be made.
  • (ix) During the step of winding the wire on the bobbin, the wire guiding/holding member stands ready at a position away from the wire.
  • (x) The method of manufacturing a concentrated winding coil further comprises a step of pressing the wire toward the bobbin body by the wire guiding/holding member.
  • (xi) The wire is a round wire or a rectangular wire.
  • (xii) The “inside the bobbin” means a space around the bobbin body and between the inner flange and the outer one.
  • ADVANTAGES OF THE INVENTION
  • The present invention provides a concentrated winding coil having a high slot-fill rate, which can prevent the occurrence of disturbance in wire alignment and contribute to increasing the efficiency of the electric motor and reducing the size of an electric motor. Furthermore, the present invention provides a method of manufacturing said concentrated winding coil without increasing bobbin die manufacture costs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration showing top and side views of a conventional concentrated winding coil disposed in a core.
  • FIG. 2 is a schematic illustration showing a top view and a cross sectional view cutting along A-A line in the top view of an example of a conventional bobbin used for a concentrated winding coil.
  • FIG. 3 is a model drawing for explaining the winding problem.
  • FIG. 4 is a drawing for explaining a relationship between a wire position in a coil layer and a side of the bobbin.
  • FIG. 5 is a drawing for explaining another relationship between a wire position in a coil layer and a side of the bobbin.
  • FIG. 6 is an explanatory drawing that shows an actual winding state with occurrence of a wire drifting.
  • FIG. 7 is a schematic illustration showing cross sectional views at a slot portion of another example of a conventional bobbin and of a concentrated winding coil wound on the bobbin, in which a progress of wire winding until the third coil layer is illustrated.
  • FIGS. 8( a) to 8(g) are schematic illustrations showing top views of a concentrated winding coil for explaining a winding method according to the present invention.
  • FIG. 9 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the first coil layer progresses proximately before the last turn of the first coil layer.
  • FIGS. 10( a) and 10(b) are schematic illustrations showing a top view of a coil with the first coil layer winding and that of the coil with the second coil layer winding respectively, for explaining a winding method according to the present invention.
  • FIG. 11 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the second coil layer progresses proximately before the last turn of the second coil layer.
  • FIG. 12 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a first embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated.
  • FIG. 13 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a second embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated.
  • FIG. 14 is a schematic illustration showing cross sectional views at a slot portion of a concentrated winding coil wound on a bobbin according to a third embodiment of the present invention, in which a progress of wire winding until the fourth coil layer is illustrated.
  • FIG. 15 is a schematic illustration showing a perspective view of a coil end section of a concentrated winding coil wound on a bobbin according to a fourth embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preferred embodiments according to the present invention will be described bellow with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein.
  • First Embodiment of the Invention
  • With reference to FIGS. 8( a) to 8(g), description will be provided about winding the first coil layer adjacent to the bobbin body by a winding method according to the present invention. One of essential points of the present invention is the positional relationship among a wire guiding/holding member, a wire and a bobbin during the winding; therefore, description of other parts will be omitted. FIGS. 8( a) to 8(g) are schematic illustrations showing top views of a concentrated winding coil for explaining a winding method according to the present invention.
  • FIG. 8( a) shows a bobbin 1 before a wire is wound around. The bobbin 1 comprises: a bobbin body 1-a on which a wire 2 is wound and which has no guide grooves; an outer flange 1-b which prevents a wire 2 from removing and is located on the outer circumference when the bobbin 1 is disposed in the core 5; and an inner flange 1-c which also prevents a wire 2 from removing and is located on the inner circumference when the bobbin 1 is disposed in the core 5.
  • FIG. 8( b) shows a state in which a start-of-winding wire 2-a is positioned on the bobbin 1. In this drawing, winding is started while a wire is adjacent to the outer flange 1-b and is located on the left side of the bobbin body 1-a; however, winding can be started from other positions depending on the location of the terminal wire or on the coil winding direction.
  • The position of the wire guiding/holding member of front side 3-a will be explained when the start-of-winding wire 2-a is positioned on the bobbin 1. The wire guiding/holding portion of front side 3-a is disposed on a winding spindle around which the bobbin 1 rotates, thereby the wire guiding/holding member of front side 3-a rotates along with the bobbin 1. That is, it is not necessary to position the mechanism on the outer circumference portion separate from the winding spindle. As a result, it is possible to inhibit the decrease in rotation rate of the winding spindle; and the mechanical structure allows the wire guiding/holding member of front side 3-a to press and hold the wire 2 while the winding spindle rotates (described later in detail).
  • The wire guiding/holding member of front side 3-a comprises an end portion 3-a 1 which faces the bobbin body 1-a, and a wire contact portion 3-a 2 which guides a wire 2 when winding is executed. A surface of the wire contact portion 3-a 2 comes in contact with a wire 2 while the wire is being wound and also comes in contact with the wire 2 in order to press the wire 2 (to adjust a wire alignment) after the wire 2 has reached the bobbin body 1-a. For this reason, it is desirable that the surface roughness of the wire contact portion 3-a 2 be small by means of finish such as polishing.
  • The distance between the end portion 3-a 1 of the wire guiding/holding member of front side 3-a and the bobbin body 1-a has to be determined so that the wire 2 is prevented from entering the space and also the end portion 3-a 1 is not in contact with the bobbin body 1-a. Actually, when the diameter or height of the wire 2 is d, the distance between the end portion 3-a 1 of the wire guiding/holding member of front side 3-a and the bobbin body 1-a can be set within a range of 0.1 d and 0.5 d to satisfy the above-mentioned conditions.
  • The wire contact portion 3-a 2 of the wire guiding/holding portion of front side 3-a is positioned at a distance within a range of 1.1 d and 2 d to the outer flange 1-b when a wire 2 does not exist between the wire contact portion 3-a 2 and the outer flange 1-b, or to the most recently wound wire when a wire 2 exists and winding progresses. By setting the distance at that value, it is easy to guide the wire 2 when the wire is wound.
  • FIG. 8( c) shows a state in which the winding progresses for a prescribed angle rotation from the state in FIG. 8( b). As shown in FIG. 8( c), the position of the wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a has a clearance with regard to the diameter [d] of the wire 2; therefore, it is possible to wind a wire without interference when the wire 2 is dropped onto the bobbin body 1-a.
  • FIG. 8( d) shows a state in which the wire is pressed (is adjusted) toward the outer flange 1-b by the wire contact portion 3-a 2. The wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a comes in contact with the wire 2 and presses the wire 2 toward the outer flange 1-b by a pressing mechanism, not shown, thereby making the wire 2 come in contact with the outer flange 1-b, and ensuring the wire alignment inside the bobbin 1. An optimal value for a pressing force should be selected according to the conditions, such as a diameter of a wire, flexibility of a wire, and wire tension while the wire is wound.
  • FIG. 8( e) shows a state in which the winding further progresses when compared to the state shown in FIG. 8( d) and the wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a is released from the wire 2 before the following turn of wire 2 is wound around. In this state, the position of the wire guiding/holding member of front side 3-a will be explained. The distance between the end portion 3-a 1 of the wire guiding/holding member of front side 3-a and the bobbin body 1-a has to be determined so that the wire 2 is prevented from entering the space and also the end portion 3-a 1 is not in contact with the bobbin body 1-a. Actually, when the diameter or height of the wire 2 is d, the distance between the end portion 3-a 1 of the wire guiding/holding member of front side 3-a and the bobbin body 1-a can be set within a range of 0.1 d and 0.5 d to satisfy the above-mentioned conditions. The wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a is positioned at a distance within a range of 1.1 d and 2 d to the most recently wound wire. By changing the distance to that value, it is easy to guide the wire 2 when the wire is further wound.
  • Moreover, with regard to the timing at which the wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a is released from the wire 2, by releasing the wire contact portion 3-a 2 proximately before the wire 2 reaches the bobbin body 1-a in synchronization with the rotation angle of the winding, it is possible to minimize the disturbance in wire alignment.
  • FIG. 8( f) shows a state in which the winding further progresses for a prescribed angle rotation from the state in FIG. 8( e). As shown in FIG. 8( f), the position of the wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a includes a clearance to the wire 2 to be wound with regard to the diameter [d] of the wire 2; therefore, it is possible to wind a wire without interference when the wire 2 is dropped onto the bobbin body 1-a.
  • FIG. 8( g) shows a state in which the wire is pressed (is adjusted) toward the outer flange 1-b by the wire contact portion 3-a 2. The wire contact portion 3-a 2 of the wire guiding/holding member of front side 3-a comes in contact with the wire 2 and presses the wire toward the outer flange 1-b by a pressing mechanism, not shown, thereby making the wire 2 come in contact with the most recently wound wire 2, and ensuring the wire alignment inside the bobbin 1. An optimal value for the pressing force should be selected according to the conditions, such as a diameter of a wire, flexibility of a wire, and wire tension while the wire is wound.
  • After that, operations shown in FIGS. 8( e) to 8(g) are repeated to continue winding the wire.
  • FIG. 9 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the first coil layer progresses proximately before the last turn of the first coil layer is dropped on the bobbin body 1-a. After the state in FIG. 9, when the last turn of the first coil layer is dropped on the bobbin body 1-a, the wire guiding/holding member of front side 3-a is retracted from a passage of the wire 2, and the last turn of the wire 2 of the first coil layer is positioned between the most recently wound wire 2 and the inner flange 1-c.
  • Space for the last turn of the first coil layer is ensured by pressing the wire 2 toward the outer flange 1-b in each turn. However, when the wire 2 does not reach the bobbin body 1-a due to a narrow space which resulted from uneven diameter of the wire 2 or uneven distance between the outer flange 1-b and the inner flange 1-c caused in the manufacturing process of the bobbin, the wire 2 can be reached the bobbin body 1-a by pressing the wire 2 toward the bobbin body 1-a by means of the end portion 3-a 1 of the wire guiding/holding member of front side 3-a, as shown in FIG. 10( a). In this case, it is desirable that a surface of the end portion 3-a 1 as well as the surface of the wire contact portion 3-a 2 be polished so as to decrease the surface roughness. Besides, FIGS. 10( a) and 10(b) are schematic illustrations showing a top view of a coil with the first coil layer winding and that of the coil with the second coil layer winding respectively, for explaining a winding method according to the present invention.
  • The method of the second coil layer winding is almost the same as that of the first coil layer winding described by referring to FIGS. 8( a) to 8(g). The difference is: as shown in FIG. 10( b), a wire guiding/holding member of rear side 3-b is used, which is anteroposteriorly symmetrical with respect to the wire guiding/holding member of front side 3-a used for the first coil layer winding; and a direction of forming a coil layer is reverse, from the inner flange 1-c toward the outer flange 1-b.
  • FIG. 11 is a schematic illustration showing top and side views of a concentrated winding coil according to the present invention, of which state is that winding of the second coil layer progresses proximately before the last turn of the second coil layer is dropped on the first coil layer toward the bobbin body 1-a. After the state of FIG. 11, when the last turn of the second coil layer is dropped on the first coil layer, the wire guiding/holding member of rear side 3-b is retracted from the passage of the wire 2, and the last turn of the second coil layer is positioned between the most recently wound wire 2 and the outer flange 1-b.
  • Space for the last turn of the second coil layer is ensured by pressing the wire 2 toward the inner flange 1-c in each turn. However, when the wire 2 does not reach the first coil layer due to a narrow space which resulted from uneven diameter of the wire 2 or uneven distance between the outer flange 1-b and the inner flange 1-c caused in the manufacturing process of the bobbin, the wire 2 can be reached the first coil layer by pressing the wire 2 toward the bobbin body 1-a (toward the first coil layer) by means of an end portion 3- b 1 of the wire guiding/holding member of rear side 3-b, as shown in FIG. 10( b). In this case, it is desirable that a surface of the end portion 3- b 1 as well as the surface of a wire contact portion 3- b 2 be polished so as to decrease the surface roughness.
  • The method of winding an m-th coil layer is as follows (“m” is a natural number): to wind a wire for an odd-number-th coil layer, the wire guiding/holding member of front side 3-a is used in the same manner as the first coil layer and the winding of the odd-number coil layer progresses from the outer flange 1-b toward the inner flange 1-c; and to wind a wire for an even-number-th coil layer, the wire guiding/holding member of rear side 3-b is used in the same manner as the second coil layer and the winding of the even-number coil layer progresses from the inner flange 1-c toward the outer flange 1-b.
  • On the other hand, the disturbance in wire alignment is prone to occur in a layer shift section where the wire is shifted from an m-th coil layer to an (m+1)-th coil layer. Therefor, it is preferable that the layer shift section is located only on the coil end side of the coil. The situation can be easily achieved by the winding method of the present invention because a wire on the coil slot side is guided and held during the winding by the wire guiding/holding members in the pressing mechanism according to the present invention.
  • Herein, above description has been provided in the case that a wire is wound on an outer circumference of a bobbin body with making a coil layer and that a length of the coil layer in the coil axis direction is almost the same as a length of the bobbin body in the same direction. And the corresponding problems and solutions have been also described.
  • In a conventional winding method, the alignment winding of a coil is not sufficiently controlled; accordingly, a length of the bobbin body in the coil axis direction is often set to be enough longer than a prescribed length of the coil layer in the same direction. In that case, when a good alignment winding is executed, a number of turns in the coil layer becomes one turn more; and when a poor alignment winding is executed, the winding on upper coil layer becomes unsteady. These situations degrade the reliability of the coils and inhibit the increase in a slot-fill rate.
  • As shown in the present invention, by cohering the wires with each other in every turn using the pressing mechanism, it is possible to select design specifications in which a wire is wound around the outer circumference of the bobbin with forming a coil layer, and a clearance between a length of the bobbin body in the coil axis direction and a length of the coil layer in the same direction is shorter than the width of the wire. Consequently, a high slot-fill rate can be achieved as designed.
  • Furthermore, herein, the wire guiding/holding member of front side 3-a and the wire guiding/holding member of rear side 3-b which are a pair are located only one side of the coil slot section; however, according to the degree of disturbance in wire alignment caused depending on flexibility of the wire or winding tension, by disposing another pair of wire guiding/holding members on the opposite side of the coil slot section, it is possible to further increase the effects of preventing the disturbance in wire alignment.
  • FIG. 12 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a first embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated. As shown in FIG. 12, because the bobbin body 1-a has no grooves, it is possible to prevent the increase in production cost resulting from groove formation, and the design capability increases because it is easy to change design conditions, such as a diameter of a wire, shape of a wire, shape of a bobbin, and so on.
  • In FIG. 12, wires of the second coil layer and the third coil layer are located just right on the wires of the first coil layer. This winding configuration cannot be achieved by a conventional winding method, but is possible by the winding method according to the present invention. Of course, the winding configuration as shown in FIG. 7 can be easily manufactured by the winding method of the present invention without using a grooved bobbin.
  • Second Embodiment of the Invention
  • FIG. 13 is a schematic illustration showing cross sectional views at a slot portion of a bobbin and of a concentrated winding coil wound on the bobbin according to a second embodiment of the present invention, in which a progress of wire winding until the third coil layer is illustrated. Herein, instead of using a round wire as shown in FIG. 12, the wire 2 to be used is a rectangular (quadrate) wire. The rectangular wire is often used for an electric motor that requires a high slot-fill rate. By using a rectangular wire, it is possible to significantly eliminate clearance that generates between coil layers of round wire and between turns of round wire. The conventional bobbin, as shown in FIG. 7, has a guide groove that fits a round wire, however, it is difficult to prepare a bobbin with a guide groove that fits a rectangular wire, i.e., the guide grooves for the rectangular wire are not provided on the bobbin body 1-a. Thus, it can be said that the winding method according to the present invention must be needed in order to ensure the winding alignment of the rectangular wire 2 without providing guide grooves on the bobbin body 1-a.
  • Third Embodiment of the Invention
  • FIG. 14 is a schematic illustration showing cross sectional views at a slot portion of a concentrated winding coil wound on a bobbin according to a third embodiment of the present invention, in which a progress of wire winding until the fourth coil layer is illustrated. As shown in FIG. 14, the concentrated winding coil in this embodiment has the coil layer in which the number of turns differs for each coil layer. The bobbin has almost the same bobbin body 1-a as those shown in FIGS. 12 and 13, which has no grooves. Therefore, an explanatory drawing is omitted.
  • The concentrated winding coil of this embodiment is intended to increase a slot-fill rate by decreasing a clearance between adjacent coils disposed in the core as shown in a top view of FIG. 1. Specifically, the number of turns close to the outer flange 1-b in the coil is increased.
  • In this embodiment, the winding is executed as follows: the maximum number of turns that can fit the length of the bobbin body 1-a in the coil axis direction (the distance between the inner flange 1-c and the outer flange 1-b) are wound as the first coil layer and the second coil layer, e.g.; a turned-back position is changed in the third coil layer; and a coil layer from which the winding is started is changed in the fourth coil layer. This process is made possible only by the winding method according to the present invention in which a wire 2 is guided and held after the winding.
  • Fourth Embodiment of the Invention
  • FIG. 15 is a schematic illustration showing a perspective view of a coil end section of a concentrated winding coil wound on a bobbin according to a fourth embodiment of the present invention. As shown in FIG. 15, a start-of-winding wire, an end-of-winding wire, and terminal wire latch portions can be seen.
  • In the conventional winding method, because a wire 2 is not directly held during the winding, the wire tends to become slack and drift while handling for a terminal wire is executed. For this reason, it was difficult to lead the end-of-winding wire 2-b to out of the coil directly from a terminal wire latch portion disposed in an end-of-winding half part on the coil end side viewed from the coil end. Therefore, in the case that the end-of-winding wire 2-b is led out through the terminal wire latch portion disposed in the end-of-winding half part on the coil end side due to a reason of designing of the terminal wire, the wire has to be led once to a start-of-winding half part (an opposite half part to the end-of-winding half part) on the coil end side in order to suppress slack and drift, and then has to be returned to the end-of-winding half part and be latched at the terminal wire latch position for the end-of-winding wire. In other words, a leading portion of the end-of-winding wire to the terminal wire latch portion must be positioned in the start-of-winding half part on the coil end viewed from the coil end.
  • On the contrary, according to the present invention, it is possible to prevent the wire from becoming slack and drift by directly holding the wire 2 with the wire guiding/holding member while handling for the terminal wire is executed. As a result, it is possible to lead the end-of-winding wire 2-b directly to the terminal wire latch portion for the end-of-winding wire disposed in the end-of-winding half part on the coil end side viewed from the coil end, as shown in FIG. 15. It means that the leading portion of the end-of-winding wire to the terminal wire latch portion can be also positioned in the end-of-winding half part on the coil end side viewed from the coil end. By doing so, limitations to the designing of the terminal wire can be reduced, thereby increasing the degree of flexibility of design.
  • As stated above, the concentrated winding coil according to the present invention can shift all turns and all coil layers only on the coil end side, therefore maintaining a wire alignment condition of the coil, especially in the slot section inserted into a stator core. Furthermore, in the coil winding method of the present invention, a wire guiding/holding mechanism is disposed in the vicinity of a winding bobbin, and the wire guiding/holding mechanism stands ready at a position, which has a space with regard to the width of the wire, to guide the position of the wire before the wire is wound around the bobbin, and the wire guiding/holding mechanism then applies a pressing force onto the wire after the wire has been wound around. Thus, it is possible to prevent the disturbance in alignment of the coil wire and to provide a coil having a high slot-fill rate, thereby contributing to the increase in efficiency of an electric motor and the reduction of the motor size. Furthermore, according to the present invention, the wire guiding/holding member can position a wire inside the bobbin, thereby preventing the disturbance in alignment of the coil wire and enabling highly accurate winding. Herein, “inside the bobbin” means a space around the bobbin body and between the inner flange and the outer one.
  • Although the invention has been described with respect to the specific embodiments for complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.

Claims (7)

What is claimed is:
1. A method of manufacturing a concentrated winding coil in which a wire is wound on a bobbin having an inner flange, an outer flange and a bobbin body, comprising steps of:
winding the wire on the bobbin; and
pressing the wire by a wire guiding/holding member toward the inner flange or toward the outer flange.
2. The method of manufacturing a concentrated winding coil according to claim 1, wherein:
during the step of winding the wire on the bobbin, the wire guiding/holding member stands ready at a position away from the wire.
3. The method of manufacturing a concentrated winding coil according to claim 1, further comprising a step of:
pressing the wire toward the bobbin body by the wire guiding/holding member.
4. The method of manufacturing a concentrated winding coil according to claim 1, wherein:
the wire is a round wire or a rectangular wire.
5. A method of manufacturing a concentrated winding coil in which a wire is wound on a bobbin,
wherein a position of the wire is adjusted inside the bobbin by a wire guiding/holding member.
6. The method of manufacturing a concentrated winding coil according to claim 5, wherein:
the wire is a round wire or a rectangular wire.
7. The method of manufacturing a concentrated winding coil according to claim 5, wherein:
the bobbin comprises an inner flange, an outer flange and a bobbin body; and the “inside the bobbin” means a space around the bobbin body and between the inner flange and the outer one.
US13/307,210 2006-12-12 2011-11-30 Concentrated winding coil and method of manufacturing same Abandoned US20120066897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/307,210 US20120066897A1 (en) 2006-12-12 2011-11-30 Concentrated winding coil and method of manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-333942 2006-12-12
JP2006333942A JP2008148470A (en) 2006-12-12 2006-12-12 Concentrated winding coil and its manufacturing method
US11/954,305 US8093779B2 (en) 2006-12-12 2007-12-12 Concentrated winding coil and method of manufacturing same
US13/307,210 US20120066897A1 (en) 2006-12-12 2011-11-30 Concentrated winding coil and method of manufacturing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/954,305 Division US8093779B2 (en) 2006-12-12 2007-12-12 Concentrated winding coil and method of manufacturing same

Publications (1)

Publication Number Publication Date
US20120066897A1 true US20120066897A1 (en) 2012-03-22

Family

ID=39193584

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/954,305 Active 2028-07-02 US8093779B2 (en) 2006-12-12 2007-12-12 Concentrated winding coil and method of manufacturing same
US13/307,210 Abandoned US20120066897A1 (en) 2006-12-12 2011-11-30 Concentrated winding coil and method of manufacturing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/954,305 Active 2028-07-02 US8093779B2 (en) 2006-12-12 2007-12-12 Concentrated winding coil and method of manufacturing same

Country Status (4)

Country Link
US (2) US8093779B2 (en)
EP (1) EP1933445A3 (en)
JP (1) JP2008148470A (en)
CN (2) CN102306985B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230735B2 (en) 2013-03-11 2016-01-05 Regal Beloit America, Inc. Electrical coil forming apparatus and methods of assembling electrical coils
WO2016155969A3 (en) * 2015-03-27 2016-11-24 Epcos Ag Inductive component and method for producing an inductive component
CN106469609A (en) * 2015-08-13 2017-03-01 建准电机工业股份有限公司 Coil winding and winding sleeve thereof

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109829A (en) * 2006-10-27 2008-05-08 Toyota Motor Corp Stator structure for rotary electric machine, and manufacturing method therefor
JP4582164B2 (en) * 2008-03-12 2010-11-17 トヨタ自動車株式会社 Stator assembly method
JP5233752B2 (en) * 2009-03-04 2013-07-10 トヨタ自動車株式会社 Cassette coil manufacturing method
AT508080B1 (en) * 2009-03-16 2012-08-15 Egston System Electronics Eggenburg Gmbh METHOD FOR MANUFACTURING A COIL
US7694909B1 (en) * 2009-06-05 2010-04-13 Remy Technologies, L.L.C. Method of winding a flexible core
JP5636710B2 (en) * 2010-03-23 2014-12-10 日産自動車株式会社 Insulator for rotating electrical machine and method for manufacturing stator winding structure
JP5610887B2 (en) * 2010-07-16 2014-10-22 株式会社ベステック Winding machine and winding method for split core type work
JP2012230972A (en) * 2011-04-25 2012-11-22 Sumida Corporation Coil component, dust inductor, and winding method of coil component
WO2013157291A1 (en) * 2012-04-16 2013-10-24 三菱電機株式会社 Rotating electrical machine armature, insulator therefor, and coil winding device
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
DE112012006571T5 (en) * 2012-06-21 2015-03-05 Mitsubishi Electric Corporation Electric rotary machine
KR20140003674A (en) * 2012-06-22 2014-01-10 엘지이노텍 주식회사 Motor
KR101468821B1 (en) 2012-12-19 2014-12-03 티디케이가부시기가이샤 Common mode filter
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US10177633B2 (en) 2014-12-23 2019-01-08 Abb Schweiz Ag Multiphase fractional slot concentrated winding machine with end mounted detachable or integrated multiphase series converter circuit
EP3079242A1 (en) * 2015-04-10 2016-10-12 Siemens Aktiengesellschaft Manufacturing method of winding around a salient pol for a synchronous engine
DE202015005009U1 (en) 2015-07-17 2015-08-28 Zoltán Szöcs electric motor
WO2017090513A1 (en) * 2015-11-26 2017-06-01 日立オートモティブシステムズエンジニアリング株式会社 Electric motor
JP2017216801A (en) * 2016-05-31 2017-12-07 三菱電機株式会社 Coil winding device and coil winding method
JP6477622B2 (en) * 2016-07-15 2019-03-06 株式会社村田製作所 Coil parts
EP3611826B1 (en) * 2017-04-13 2022-03-16 Panasonic Intellectual Property Management Co., Ltd. Coil and motor using same
CN107731487A (en) * 2017-10-31 2018-02-23 昆山玛冀电子有限公司 A kind of production technology of coil for inductance production
DE102017221836A1 (en) * 2017-12-04 2019-06-06 Mahle International Gmbh Electric machine, in particular for a vehicle
CN108831737B (en) * 2018-07-02 2024-01-19 河南森源电气股份有限公司 Transformer wire winding location frock
DE102018130504B4 (en) * 2018-11-30 2023-11-23 Borgwarner Ludwigsburg Gmbh Primary coil former for an ignition coil and ignition coil with such a primary coil former
JP6591031B1 (en) * 2018-12-06 2019-10-16 三菱電機株式会社 Coil device
CN110164682B (en) * 2019-04-17 2021-12-31 惠州学院 Winding method of winding device
JP2021048688A (en) * 2019-09-18 2021-03-25 日本電産トーソク株式会社 Motor, and electrically-driven pump
WO2022107607A1 (en) * 2020-11-19 2022-05-27 株式会社多賀製作所 Wire winding method and wire winding device
DE102020131417A1 (en) 2020-11-26 2022-06-02 Nidec Motors & Actuators (Germany) Gmbh Stator with wire lead insulator
DE102020131418A1 (en) * 2020-11-26 2022-06-02 Nidec Motors & Actuators (Germany) Gmbh Stator with wire lead insulator
CN112489988B (en) * 2020-11-30 2022-11-01 保定天威集团特变电气有限公司 Method and structure for manufacturing continuous coil of transformer and transformer
CN112489987B (en) * 2020-11-30 2022-09-02 保定天威集团特变电气有限公司 Manufacturing method and structure of coil matched with number of turns of voltage regulation and transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054419A (en) * 1983-09-02 1985-03-28 Aichi Electric Mfg Co Ltd Manufacture of transformer iron core
US5209414A (en) * 1991-10-30 1993-05-11 Dana Corporation Apparatus for precisely winding a coil of wire
US5310125A (en) * 1991-10-23 1994-05-10 Kitamura Kiden Co., Ltd. Transformer coil winding apparatus for winding wire on a coil bobbin
US20010005934A1 (en) * 1998-02-12 2001-07-05 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing a rectangular-wire coil

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1504005A (en) * 1922-06-01 1924-08-05 Gen Electric Coil-winding machine
US2930014A (en) * 1954-12-24 1960-03-22 Philips Corp Polygonal electric coil
DE1181816B (en) * 1963-01-02 1964-11-19 Licentia Gmbh Winding device for axially pressing the wires of a tube winding together
JPS6197908A (en) * 1984-10-19 1986-05-16 Jeol Ltd Coil winding method
JPS61254049A (en) * 1985-05-03 1986-11-11 Nippon Denso Co Ltd Winding device for coil
JPS63222412A (en) * 1987-03-11 1988-09-16 Mitsubishi Electric Corp Coil winding apparatus
US4794361A (en) * 1988-03-10 1988-12-27 General Motors Corporation Coil winding method for maximum utilization of winding envelope
US5174013A (en) * 1988-06-16 1992-12-29 Nippondenso Co., Ltd. Winding apparatus and method which deforms the wire during winding
JP3715029B2 (en) * 1996-05-13 2005-11-09 株式会社ダイヘン Winding method of transformer coil
JP3515280B2 (en) * 1996-05-27 2004-04-05 株式会社三協精機製作所 Method of manufacturing stator for rotating electric machine
JPH1118331A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Stator of motor
JP2000083338A (en) * 1998-09-04 2000-03-21 Mitsubishi Electric Corp Rotor of ac generator for vehicle
JP3572209B2 (en) 1998-11-30 2004-09-29 株式会社東芝 Coil winding method
JP3700444B2 (en) * 1999-02-05 2005-09-28 トヨタ自動車株式会社 Coil forming device
JP2001118505A (en) * 1999-10-20 2001-04-27 Sony Corp Coil winding apparatus and method for manufacturing deflection coil
JP3498129B2 (en) * 2001-05-24 2004-02-16 三菱電機株式会社 Rotating electric machine
JP3623471B2 (en) * 2001-09-03 2005-02-23 本田技研工業株式会社 Stator
JP3930419B2 (en) * 2001-12-13 2007-06-13 アスモ株式会社 Rotating electrical machine manufacturing method
JP3980402B2 (en) * 2002-05-13 2007-09-26 本田技研工業株式会社 Rotating electric machine
WO2004038893A1 (en) * 2002-10-22 2004-05-06 Mitsubishi Denki Kabushiki Kaisha Rotor for dynamo-electric machine
JP3903922B2 (en) * 2003-01-27 2007-04-11 株式会社デンソー Concentrated winding stator coil of rotating electric machine
US7026739B2 (en) * 2003-05-23 2006-04-11 Honda Motor Co., Ltd Stator and insulating bobbin and a manufacturing method of the stator
JP2005057931A (en) * 2003-08-06 2005-03-03 Honda Motor Co Ltd Stator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054419A (en) * 1983-09-02 1985-03-28 Aichi Electric Mfg Co Ltd Manufacture of transformer iron core
US5310125A (en) * 1991-10-23 1994-05-10 Kitamura Kiden Co., Ltd. Transformer coil winding apparatus for winding wire on a coil bobbin
US5209414A (en) * 1991-10-30 1993-05-11 Dana Corporation Apparatus for precisely winding a coil of wire
US20010005934A1 (en) * 1998-02-12 2001-07-05 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing a rectangular-wire coil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Language Translation (English) of Japanese Patent Publication, JP 200228851, April 2014. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230735B2 (en) 2013-03-11 2016-01-05 Regal Beloit America, Inc. Electrical coil forming apparatus and methods of assembling electrical coils
WO2016155969A3 (en) * 2015-03-27 2016-11-24 Epcos Ag Inductive component and method for producing an inductive component
US10580562B2 (en) 2015-03-27 2020-03-03 Epcos Ag Inductive component and method for producing an inductive component
CN106469609A (en) * 2015-08-13 2017-03-01 建准电机工业股份有限公司 Coil winding and winding sleeve thereof

Also Published As

Publication number Publication date
CN102306985A (en) 2012-01-04
CN101202477A (en) 2008-06-18
JP2008148470A (en) 2008-06-26
EP1933445A3 (en) 2015-01-14
US20080136286A1 (en) 2008-06-12
CN101202477B (en) 2011-11-16
CN102306985B (en) 2014-02-26
US8093779B2 (en) 2012-01-10
EP1933445A2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
US8093779B2 (en) Concentrated winding coil and method of manufacturing same
KR100636489B1 (en) Rotor for dynamo-electric machine
US6975056B2 (en) Stator
JP4402976B2 (en) Insulator for stator core and winding method for stator core
EP1854111B1 (en) Winding method and coil unit
US7166949B2 (en) Stator and insulating bobbin and a manufacturing method of the stator
EP1966808B1 (en) Winding method and coil unit
JP2562448B2 (en) Wire winding spool
US20010015393A1 (en) Winding apparatus
JP4271495B2 (en) Stator
US6037694A (en) Rotor for an automotive alternator
US9608489B2 (en) Rotating electrical machine armature
JP2008172863A (en) Rotary electric machine and its manufacturing process
WO2018047839A1 (en) Rotary electric machine stator and method for producing same
JP7431764B2 (en) Motor armature winding structure and motor armature winding method
CN116730092A (en) Winding feeding method and winding feeding device
WO2021106674A1 (en) Motor winding bobbin
CN101397107B (en) Welding wire winding shaft having slot
JPH09327137A (en) Fixed magnetic-pole core for motor
CN112117841A (en) Stator with wire passing groove and winding method thereof
JP2012139098A (en) Method of manufacturing concentrated winding coil
JPH06273645A (en) Flexure-resisting optical cable and its production
JP2003315644A (en) Apparatus and method for manufacturing slot type cable

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION