US20120063232A1 - Method and apparatus for reducing read disturb in memory - Google Patents

Method and apparatus for reducing read disturb in memory Download PDF

Info

Publication number
US20120063232A1
US20120063232A1 US12/878,358 US87835810A US2012063232A1 US 20120063232 A1 US20120063232 A1 US 20120063232A1 US 87835810 A US87835810 A US 87835810A US 2012063232 A1 US2012063232 A1 US 2012063232A1
Authority
US
United States
Prior art keywords
version
read
threshold voltage
word lines
instructions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/878,358
Other versions
US8149624B1 (en
Inventor
Chun-Hsiung Hung
Shuo-Nan Hung
Tseng-Yi Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to US12/878,358 priority Critical patent/US8149624B1/en
Assigned to MACRONIX INTERNATIONAL CO., LTD. reassignment MACRONIX INTERNATIONAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNG, CHUN-HSIUNG, HUNG, SHUO-NAN, LIU, TSENG-YI
Priority to US13/406,215 priority patent/US8526235B2/en
Publication of US20120063232A1 publication Critical patent/US20120063232A1/en
Application granted granted Critical
Publication of US8149624B1 publication Critical patent/US8149624B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits

Definitions

  • Read disturb presents a serious problem to the operation of nonvolatile memory cells such as floating gate and charge trapping memory cells. Read disturb occurs when read operations are performed on nonvolatile memory cells; despite being applied for a read operation rather than a program operation, some programming still occurs while applying a read bias arrangement. Over the course of many read operations, read disturb changes raise the threshold voltage of the affected nonvolatile memory cells.
  • Read disturb occurs in NAND strings because the read bias arrangement voltage Vpass is sufficiently high to cause programming.
  • a read voltage Vread is applied to the word line of a selected memory cell in the NAND string, and a pass voltage Vpass is applied to the word line of unselected memory cell in the NAND string.
  • FIG. 1 is a graph of threshold voltages distributions, showing the HVt and LVt distributions, the word line read voltage window and the word line pass voltage window.
  • Vpass is sufficiently high to turn on the channel under unselected memory cells in the NAND string regardless of the data values stored on the unselected memory cells. In particular, Vpass is sufficiently high to turn on the channel under a memory cell storing the data value associated with the highest threshold voltage distribution.
  • Vread is sufficiently high to turn on the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is lower than Vread, and is sufficiently low to turn off the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is higher than Vread.
  • Vpass voltage exceeds the highest threshold voltage distribution, so that regardless of the data values stored on the unselected memory cells of a NAND string, the channel is turned on under unselected memory cells of a NAND string.
  • various embodiments reduce the Vpass voltage by reducing a maximum of a high threshold voltage distribution.
  • a first aspect has multiple versions of a high threshold voltage distribution—a version with a reduced maximum, and another version, with the particular version depending on the instructions.
  • a second aspect has multiple versions of a high threshold voltage distribution—a version with a reduced maximum, and another version, with the particular version depending on the instructions, depending on the instruction register.
  • a third aspect is a corresponding method. Various aspects are discussed below.
  • a first aspect of the technology is a memory with a plurality of memory cells, a plurality of word lines, and control circuitry.
  • the plurality of memory cells is arranged in series in a semiconductor body.
  • the series has a first end and a second end.
  • Memory cells in the plurality of memory cells have a threshold voltage in one of a first threshold voltage distribution associated with a first data value and a second threshold voltage distribution associated with a second data value.
  • the first threshold voltage distribution is a lower voltage distribution than the second threshold voltage distribution.
  • Word lines in the plurality of word lines are coupled to corresponding memory cells in the plurality of memory cells.
  • the control circuit is coupled to the plurality of word lines.
  • the control circuit having multiple sets of instructions, including a first set of instructions and a second set of instructions.
  • the first set of instructions includes program and read instructions.
  • the first set of instructions corresponds to a first version of the second threshold voltage distribution associated with the second data value.
  • the first version of the second threshold voltage distribution has having a first version distribution maximum.
  • the second set of instructions includes program and read instructions.
  • the second set of instructions corresponds to a second version of the second threshold voltage distribution associated with the second data value.
  • the second version of the second threshold voltage distribution has a second version distribution maximum.
  • the first version distribution maximum is larger than the second version distribution maximum.
  • the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
  • control circuit performs incremental step pulse programming with an incremental step.
  • the incremental step is larger with the program instruction in the first set of instructions than the program instruction in the second set of instructions.
  • the program instruction in the first set of instructions is faster than the program instruction in the second set of instructions.
  • the read instruction in the first set of instructions applies a first read bias arrangement to word lines of the plurality of word lines.
  • the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines.
  • the read instruction in the second set of instructions applies a second read bias arrangement to word lines of the plurality of word lines.
  • the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines.
  • the first pass voltage is larger than the second pass voltage.
  • the memory includes the plurality of memory cells and an additional plurality of memory cells.
  • the control circuit uses the first set of instructions with the plurality of memory cells, and the control circuit uses the second set of instructions with the additional plurality of memory cells. Data stored in the additional plurality of memory cells is less susceptible to error than data stored in the plurality of memory cells.
  • a second aspect of the technology is a memory with a plurality of memory cells, a plurality of word lines, an instruction register, and control circuitry.
  • the instruction register stores one of a first value and a second value.
  • the program and read instructions correspond to a first version of the second threshold voltage distribution associated with the second data value.
  • the first version of the second threshold voltage distribution has a first version distribution maximum.
  • the program and read instructions correspond to a second version of the second threshold voltage distribution associated with the second data value.
  • the second version of the second threshold voltage distribution has a second version distribution maximum.
  • the first version distribution maximum is larger than the second version distribution maximum.
  • the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
  • control circuit performs incremental step pulse programming with an incremental step.
  • the incremental step is larger with the instruction register storing the first value than with the instruction register storing the second value.
  • the program instruction in the first set of instructions is faster than the program instruction in the second set of instructions.
  • the read instruction responsive to the instruction register storing the first value, applies a first read bias arrangement to word lines of the plurality of word lines, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines.
  • the read instruction applies a second read bias arrangement to word lines of the plurality of word lines, and the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines.
  • the first pass voltage is larger than the second pass voltage.
  • the memory includes the plurality of memory cells and an additional plurality of memory cells.
  • the control circuit uses the program and read instructions with the instruction register storing the first value with the plurality of memory cells, and the control circuit uses the program and read instructions with the instruction register storing the second value with the additional plurality of memory cells. Data stored in the additional plurality of memory cells is less susceptible to error than data stored in the plurality of memory cells.
  • a third aspect of the technology is a method of using pluralities of memory cells arranged in series in a semiconductor body.
  • the series has a first end and a second end.
  • Memory cells in the plurality of memory cells have a threshold voltage in one of a first threshold voltage distribution associated with a first data value and a second threshold voltage distribution associated with a second data value.
  • the first threshold voltage distribution is a lower voltage distribution than the second threshold voltage distribution.
  • the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
  • the first version of the program instruction is faster than the second version of the program instruction.
  • the first version of the read instruction applies a first read bias arrangement to word lines of a plurality of word lines accessing a plurality of memory cells, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines,
  • data programmed and read with the second version of program and read instructions is less susceptible to error than data programmed and read with the first version of program and read instructions.
  • the first version of program and read instructions have different instruction codes than the second version of program and read instructions.
  • the first version of program and read instructions share common instruction codes with the second version of program and read instructions, and contents of an instruction register distinguish the first version of program and read instructions from the second version of program and read instructions.
  • FIG. 1 is a graph of threshold voltages distributions, showing the HVt and LVt distributions, a word line read voltage and a word line pass voltage.
  • FIG. 2 is a graph of threshold voltages distributions, showing the modified HVt distribution with a reduced maximum.
  • FIG. 3 is a diagram of a NAND string of nonvolatile memory cells, applying a modified word line pass voltage corresponding to the modified HVt distribution with a reduced maximum.
  • FIG. 4 is a flowchart of the different instructions for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • FIG. 5 is a flowchart of the different instruction register values for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • FIG. 6 is a graph of different incremental step pulse programming, with an incremental step that varies, depending on the particular HVt distribution—a typical one, or one with a reduced maximum.
  • FIG. 7 is a block diagram of a memory integrated circuit with the improvements described herein.
  • FIG. 2 is a graph of threshold voltages distributions, showing the modified HVt distribution with a reduced maximum.
  • Vpass′ is sufficiently high to turn on the channel under unselected memory cells in the NAND string regardless of the data values stored on the unselected memory cells.
  • Vpass′ is sufficiently high to turn on the channel under a memory cell storing the data value associated with the highest threshold voltage distribution HVt which has had the maximum reduced from B 4 to B 4 ′.
  • Vread is sufficiently high to turn on the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is lower than Vread, and is sufficiently low to turn off the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is higher than Vread.
  • the read disturb problem is addressed, because the Vpass voltage is reduced.
  • FIG. 3 is a diagram of a NAND string of nonvolatile memory cells, applying a modified word line pass voltage corresponding to the modified HVt distribution with a reduced maximum.
  • the NAND string between the bit line BL and the source line SRC has a series of nonvolatile memory cells between pass transistors.
  • a diffusion region is between adjacent transistor/memory cell structures.
  • the diffusion region can be removed, and replaced with an inversion region by adding a gate structure which applies an appropriate voltage.
  • Vread is applied to the word line of the memory cell selected for reading.
  • Vpass′ is applied to the other word lines of the memory cells not selected for reading.
  • Vpass′ is applied to turn on the underlying channel regardless of the particular data value and its associated threshold voltage distribution that is stored, and Vpass′ is accordingly set to be high enough to turn on the underlying channel in case a data value associated with a high threshold voltage distribution is stored.
  • FIG. 4 is a flowchart of the different instructions for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • an instruction is received with an instruction code for a typical Vpass voltage that is greater than the unreduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell.
  • the instruction is processed.
  • the instruction may be read or program.
  • an instruction is received with an instruction code for a reduced Vpass′ voltage that is greater than the reduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell.
  • the instruction is processed.
  • the instruction may be read or program.
  • FIG. 5 is a flowchart of the different instruction register values for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • default instruction register contents are entered to indicate that the control circuitry is in the mode of using a typical Vpass voltage that is greater than the unreduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell.
  • an instruction is received with an instruction code for a typical Vpass voltage that is greater than the unreduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell.
  • the instruction is processed. The instruction may be read or program.
  • nondefault instruction register contents are entered to indicate that the control circuitry is in the mode of using a reduced Vpass′ voltage that is greater than the reduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell.
  • an instruction is received with an instruction code for a reduced Vpass′ voltage that is greater than the reduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell.
  • the instruction is processed. The instruction may be read or program.
  • FIG. 6 is a graph of different incremental step pulse programming, with an incremental step that varies, depending on the particular HVt distribution—a typical one, or one with a reduced maximum.
  • the ISPP with a larger step is used with the unreduced Vpass with an unreduced maximum of the highest threshold voltage distribution
  • the ISPP with a smaller step is used with the reduced Vpass′ with a reduced maximum of the highest threshold voltage distribution.
  • FIG. 7 is a block diagram of a memory integrated circuit with the improvements described herein.
  • FIG. 7 is a simplified block diagram of an integrated circuit 750 including a memory array 700 .
  • a word line (or row) and block select decoder 701 is coupled to, and in electrical communication with, a plurality 702 of word lines and string select lines, and arranged along rows in the memory array 700 .
  • a bit line (column) decoder and drivers 703 are coupled to and in electrical communication with a plurality of bit lines 704 arranged along columns in the memory array 700 for reading data from, and writing data to, the memory cells in the memory array 700 . Addresses are supplied on bus 705 to the word line decoder and drivers 701 and to the bit line decoder 703 .
  • Sense amplifiers and data-in structures in block 706 are coupled to the bit line decoder 703 via the bus 707 .
  • Data is supplied via the data-in line 711 from input/output ports on the integrated circuit 750 , to the data-in structures in block 706 .
  • Data is supplied via the data-out line 715 from the sense amplifiers in block 706 to input/output ports on the integrated circuit 750 , or to other data destinations internal or external to the integrated circuit 750 .
  • Program, erase, and read bias arrangement state machine circuitry 709 implements the improved and reduced Vpass′ voltage and multimode operation (with Vpass or with Vpass′), and controls biasing arrangement supply voltages 708 .
  • Alternative embodiments include different instruction codes or an instruction register.

Abstract

Various aspects of a NAND memory include have multiple versions of a high threshold voltage distribution—a version with a reduced maximum, and another version. The version with a reduced maximum has a reduced word line pass voltage.

Description

    BACKGROUND Description of Related Art
  • Read disturb presents a serious problem to the operation of nonvolatile memory cells such as floating gate and charge trapping memory cells. Read disturb occurs when read operations are performed on nonvolatile memory cells; despite being applied for a read operation rather than a program operation, some programming still occurs while applying a read bias arrangement. Over the course of many read operations, read disturb changes raise the threshold voltage of the affected nonvolatile memory cells.
  • Read disturb occurs in NAND strings because the read bias arrangement voltage Vpass is sufficiently high to cause programming. In a NAND string of nonvolatile memory cells arranged in series, a read voltage Vread is applied to the word line of a selected memory cell in the NAND string, and a pass voltage Vpass is applied to the word line of unselected memory cell in the NAND string.
  • FIG. 1 is a graph of threshold voltages distributions, showing the HVt and LVt distributions, the word line read voltage window and the word line pass voltage window. Vpass is sufficiently high to turn on the channel under unselected memory cells in the NAND string regardless of the data values stored on the unselected memory cells. In particular, Vpass is sufficiently high to turn on the channel under a memory cell storing the data value associated with the highest threshold voltage distribution. Vread is sufficiently high to turn on the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is lower than Vread, and is sufficiently low to turn off the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is higher than Vread.
  • SUMMARY
  • Various aspects approach the read disturb problem by reducing the Vpass voltage. Typically, the Vpass voltage exceeds the highest threshold voltage distribution, so that regardless of the data values stored on the unselected memory cells of a NAND string, the channel is turned on under unselected memory cells of a NAND string. However, various embodiments reduce the Vpass voltage by reducing a maximum of a high threshold voltage distribution.
  • A first aspect has multiple versions of a high threshold voltage distribution—a version with a reduced maximum, and another version, with the particular version depending on the instructions. A second aspect has multiple versions of a high threshold voltage distribution—a version with a reduced maximum, and another version, with the particular version depending on the instructions, depending on the instruction register. A third aspect is a corresponding method. Various aspects are discussed below.
  • A first aspect of the technology is a memory with a plurality of memory cells, a plurality of word lines, and control circuitry.
  • The plurality of memory cells is arranged in series in a semiconductor body. The series has a first end and a second end. Memory cells in the plurality of memory cells have a threshold voltage in one of a first threshold voltage distribution associated with a first data value and a second threshold voltage distribution associated with a second data value. The first threshold voltage distribution is a lower voltage distribution than the second threshold voltage distribution.
  • Word lines in the plurality of word lines are coupled to corresponding memory cells in the plurality of memory cells.
  • The control circuit is coupled to the plurality of word lines. The control circuit having multiple sets of instructions, including a first set of instructions and a second set of instructions.
  • The first set of instructions includes program and read instructions. The first set of instructions corresponds to a first version of the second threshold voltage distribution associated with the second data value. The first version of the second threshold voltage distribution has having a first version distribution maximum.
  • The second set of instructions includes program and read instructions. The second set of instructions corresponds to a second version of the second threshold voltage distribution associated with the second data value. The second version of the second threshold voltage distribution has a second version distribution maximum.
  • The first version distribution maximum is larger than the second version distribution maximum.
  • In one embodiment, the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
  • In one embodiment, the control circuit performs incremental step pulse programming with an incremental step. The incremental step is larger with the program instruction in the first set of instructions than the program instruction in the second set of instructions.
  • In one embodiment, the program instruction in the first set of instructions is faster than the program instruction in the second set of instructions.
  • In one embodiment, the read instruction in the first set of instructions applies a first read bias arrangement to word lines of the plurality of word lines. The first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines.
  • The read instruction in the second set of instructions applies a second read bias arrangement to word lines of the plurality of word lines. The second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines. The first pass voltage is larger than the second pass voltage.
  • In one embodiment, the memory includes the plurality of memory cells and an additional plurality of memory cells. The control circuit uses the first set of instructions with the plurality of memory cells, and the control circuit uses the second set of instructions with the additional plurality of memory cells. Data stored in the additional plurality of memory cells is less susceptible to error than data stored in the plurality of memory cells.
  • A second aspect of the technology is a memory with a plurality of memory cells, a plurality of word lines, an instruction register, and control circuitry.
  • The instruction register stores one of a first value and a second value.
  • Responsive to the instruction register storing the first value, the program and read instructions correspond to a first version of the second threshold voltage distribution associated with the second data value. The first version of the second threshold voltage distribution has a first version distribution maximum.
  • Responsive to the instruction register storing the second value, the program and read instructions correspond to a second version of the second threshold voltage distribution associated with the second data value. The second version of the second threshold voltage distribution has a second version distribution maximum.
  • The first version distribution maximum is larger than the second version distribution maximum.
  • In one embodiment, the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
  • In one embodiment, the control circuit performs incremental step pulse programming with an incremental step. The incremental step is larger with the instruction register storing the first value than with the instruction register storing the second value.
  • In one embodiment, the program instruction in the first set of instructions is faster than the program instruction in the second set of instructions.
  • In one embodiment, responsive to the instruction register storing the first value, the read instruction applies a first read bias arrangement to word lines of the plurality of word lines, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines.
  • Responsive to the instruction register storing the second value, the read instruction applies a second read bias arrangement to word lines of the plurality of word lines, and the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines.
  • The first pass voltage is larger than the second pass voltage.
  • In one embodiment, the memory includes the plurality of memory cells and an additional plurality of memory cells. The control circuit uses the program and read instructions with the instruction register storing the first value with the plurality of memory cells, and the control circuit uses the program and read instructions with the instruction register storing the second value with the additional plurality of memory cells. Data stored in the additional plurality of memory cells is less susceptible to error than data stored in the plurality of memory cells.
  • A third aspect of the technology is a method of using pluralities of memory cells arranged in series in a semiconductor body. The series has a first end and a second end. Memory cells in the plurality of memory cells have a threshold voltage in one of a first threshold voltage distribution associated with a first data value and a second threshold voltage distribution associated with a second data value. The first threshold voltage distribution is a lower voltage distribution than the second threshold voltage distribution. The method comprises:
      • using a first version of program and read instructions corresponding to a first version of the second threshold voltage distribution associated with the second data value, the first version of the second threshold voltage distribution having a first version distribution maximum; and
      • using a second version of program and read instructions corresponding to a second version of the second threshold voltage distribution associated with the second data value, the second version of the second threshold voltage distribution having a second version distribution maximum,
      • wherein the first version distribution maximum is larger than the second version distribution maximum.
  • In one embodiment, the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
  • One embodiment further comprises:
      • performing incremental step pulse programming with an incremental step, wherein the incremental step is larger with the first version of the program instruction than with the second version of the program instruction.
  • In one embodiment, the first version of the program instruction is faster than the second version of the program instruction.
  • In one embodiment, the first version of the read instruction applies a first read bias arrangement to word lines of a plurality of word lines accessing a plurality of memory cells, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines,
      • wherein the second version of the read instruction applies a second read bias arrangement to word lines of the plurality of word lines, and the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines,
      • wherein the first pass voltage is larger than the second pass voltage.
  • In one embodiment, data programmed and read with the second version of program and read instructions is less susceptible to error than data programmed and read with the first version of program and read instructions.
  • In one embodiment, the first version of program and read instructions have different instruction codes than the second version of program and read instructions.
  • In one embodiment, the first version of program and read instructions share common instruction codes with the second version of program and read instructions, and contents of an instruction register distinguish the first version of program and read instructions from the second version of program and read instructions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph of threshold voltages distributions, showing the HVt and LVt distributions, a word line read voltage and a word line pass voltage.
  • FIG. 2 is a graph of threshold voltages distributions, showing the modified HVt distribution with a reduced maximum.
  • FIG. 3 is a diagram of a NAND string of nonvolatile memory cells, applying a modified word line pass voltage corresponding to the modified HVt distribution with a reduced maximum.
  • FIG. 4 is a flowchart of the different instructions for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • FIG. 5 is a flowchart of the different instruction register values for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • FIG. 6 is a graph of different incremental step pulse programming, with an incremental step that varies, depending on the particular HVt distribution—a typical one, or one with a reduced maximum.
  • FIG. 7 is a block diagram of a memory integrated circuit with the improvements described herein.
  • DETAILED DESCRIPTION
  • FIG. 2 is a graph of threshold voltages distributions, showing the modified HVt distribution with a reduced maximum.
  • Vpass′ is sufficiently high to turn on the channel under unselected memory cells in the NAND string regardless of the data values stored on the unselected memory cells. In particular, Vpass′ is sufficiently high to turn on the channel under a memory cell storing the data value associated with the highest threshold voltage distribution HVt which has had the maximum reduced from B4 to B4′. Vread is sufficiently high to turn on the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is lower than Vread, and is sufficiently low to turn off the channel under a selected memory cells in the NAND string with a data value associated with a threshold voltage distribution that is higher than Vread.
  • The read disturb problem is addressed, because the Vpass voltage is reduced.
  • FIG. 3 is a diagram of a NAND string of nonvolatile memory cells, applying a modified word line pass voltage corresponding to the modified HVt distribution with a reduced maximum.
  • The NAND string between the bit line BL and the source line SRC has a series of nonvolatile memory cells between pass transistors. A diffusion region is between adjacent transistor/memory cell structures. Alternatively, the diffusion region can be removed, and replaced with an inversion region by adding a gate structure which applies an appropriate voltage.
  • Vread is applied to the word line of the memory cell selected for reading. Vpass′ is applied to the other word lines of the memory cells not selected for reading. Typically, Vpass′ is applied to turn on the underlying channel regardless of the particular data value and its associated threshold voltage distribution that is stored, and Vpass′ is accordingly set to be high enough to turn on the underlying channel in case a data value associated with a high threshold voltage distribution is stored.
  • FIG. 4 is a flowchart of the different instructions for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • In 12, power on occurs. In 14, an instruction is received with an instruction code for a typical Vpass voltage that is greater than the unreduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell. In 16, the instruction is processed. The instruction may be read or program.
  • In 18, an instruction is received with an instruction code for a reduced Vpass′ voltage that is greater than the reduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell. In 20, the instruction is processed. The instruction may be read or program.
  • FIG. 5 is a flowchart of the different instruction register values for a typical HVt distribution with a typical word line pass voltage, and a modified HVt distribution with a reduced maximum and a reduced word line pass voltage.
  • In 42, standby mode occurs. In 43, if an instruction code is not received to modify the instruction register contents, the process continues to 44. Otherwise, the process continues with 52.
  • In 44, default instruction register contents are entered to indicate that the control circuitry is in the mode of using a typical Vpass voltage that is greater than the unreduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell. In 46, an instruction is received with an instruction code for a typical Vpass voltage that is greater than the unreduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell. In 48, the instruction is processed. The instruction may be read or program.
  • In 50, if an instruction code is not received to modify the instruction register contents, the process returns to 46. Otherwise, the process continues with 52.
  • In 52, nondefault instruction register contents are entered to indicate that the control circuitry is in the mode of using a reduced Vpass′ voltage that is greater than the reduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell. In 54, an instruction is received with an instruction code for a reduced Vpass′ voltage that is greater than the reduced maximum of the highest threshold voltage distribution, typically along with the address of the memory cell. In 56, the instruction is processed. The instruction may be read or program.
  • In 58, if an instruction code is not received to modify the instruction register contents, the process returns to 54. Otherwise, the process continues with 44.
  • FIG. 6 is a graph of different incremental step pulse programming, with an incremental step that varies, depending on the particular HVt distribution—a typical one, or one with a reduced maximum.
  • In embodiments with different read and program modes that selectively use the unreduced Vpass with an unreduced maximum of the highest threshold voltage distribution, or the reduced Vpass′ with a reduced maximum of the highest threshold voltage distribution, the ISPP with a larger step is used with the unreduced Vpass with an unreduced maximum of the highest threshold voltage distribution, and the ISPP with a smaller step is used with the reduced Vpass′ with a reduced maximum of the highest threshold voltage distribution.
  • FIG. 7 is a block diagram of a memory integrated circuit with the improvements described herein.
  • FIG. 7 is a simplified block diagram of an integrated circuit 750 including a memory array 700. A word line (or row) and block select decoder 701 is coupled to, and in electrical communication with, a plurality 702 of word lines and string select lines, and arranged along rows in the memory array 700. A bit line (column) decoder and drivers 703 are coupled to and in electrical communication with a plurality of bit lines 704 arranged along columns in the memory array 700 for reading data from, and writing data to, the memory cells in the memory array 700. Addresses are supplied on bus 705 to the word line decoder and drivers 701 and to the bit line decoder 703. Sense amplifiers and data-in structures in block 706, including current sources for the read, program and erase modes, are coupled to the bit line decoder 703 via the bus 707. Data is supplied via the data-in line 711 from input/output ports on the integrated circuit 750, to the data-in structures in block 706. Data is supplied via the data-out line 715 from the sense amplifiers in block 706 to input/output ports on the integrated circuit 750, or to other data destinations internal or external to the integrated circuit 750. Program, erase, and read bias arrangement state machine circuitry 709 implements the improved and reduced Vpass′ voltage and multimode operation (with Vpass or with Vpass′), and controls biasing arrangement supply voltages 708. Alternative embodiments include different instruction codes or an instruction register.
  • While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.

Claims (20)

What is claimed is:
1. A memory, comprising:
a plurality of memory cells arranged in series in a semiconductor body, the series having a first end and a second end, memory cells in the plurality of memory cells having a threshold voltage in one of a first threshold voltage distribution associated with a first data value and a second threshold voltage distribution associated with a second data value, the first threshold voltage distribution being a lower voltage distribution than the second threshold voltage distribution;
a plurality of word lines, word lines in the plurality of word lines coupled to corresponding memory cells in the plurality of memory cells; and
a control circuit coupled to the plurality of word lines, the control circuit having multiple sets of instructions, including:
a first set of instructions including program and read instructions, the first set of instructions corresponding to a first version of the second threshold voltage distribution associated with the second data value, the first version of the second threshold voltage distribution having a first version distribution maximum; and
a second set of instructions including program and read instructions, the second set of instructions corresponding to a second version of the second threshold voltage distribution associated with the second data value, the second version of the second threshold voltage distribution having a second version distribution maximum,
wherein the first version distribution maximum is larger than the second version distribution maximum.
2. The memory of claim 1, wherein the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
3. The memory of claim 1, wherein the control circuit performs incremental step pulse programming with an incremental step, wherein the incremental step is larger with the program instruction in the first set of instructions than the program instruction in the second set of instructions.
4. The memory of claim 1, wherein the program instruction in the first set of instructions is faster than the program instruction in the second set of instructions.
5. The memory of claim 1, wherein the read instruction in the first set of instructions applies a first read bias arrangement to word lines of the plurality of word lines, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines,
wherein the read instruction in the second set of instructions applies a second read bias arrangement to word lines of the plurality of word lines, and the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines,
wherein the first pass voltage is larger than the second pass voltage.
6. The memory of claim 1, wherein the memory includes the plurality of memory cells and an additional plurality of memory cells,
wherein the control circuit uses the first set of instructions with the plurality of memory cells, and the control circuit uses the second set of instructions with the additional plurality of memory cells, and data stored in the additional plurality of memory cells is less susceptible to error than data stored in the plurality of memory cells.
7. The memory of claim 1, comprising:
an instruction register storing one of a first value and a second value;
wherein responsive to the instruction register storing the first value, the program and read instructions correspond to a first version of the second threshold voltage distribution associated with the second data value, the first version of the second threshold voltage distribution having a first version distribution maximum; and
wherein responsive to the instruction register storing the second value, the program and read instructions correspond to a second version of the second threshold voltage distribution associated with the second data value, the second version of the second threshold voltage distribution having a second version distribution maximum,
wherein the first version distribution maximum is larger than the second version distribution maximum.
8. The memory of claim 7, wherein the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
9. The memory of claim 7, wherein the control circuit performs incremental step pulse programming with an incremental step, wherein the incremental step is larger with the instruction register storing the first value than with the instruction register storing the second value.
10. The memory of claim 7, wherein the program instruction in the first set of instructions is faster than the program instruction in the second set of instructions.
11. The memory of claim 7, wherein responsive to the instruction register storing the first value, the read instruction applies a first read bias arrangement to word lines of the plurality of word lines, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines,
wherein responsive to the instruction register storing the second value, the read instruction applies a second read bias arrangement to word lines of the plurality of word lines, and the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines,
wherein the first pass voltage is larger than the second pass voltage.
12. The memory of claim 7, wherein the memory includes the plurality of memory cells and an additional plurality of memory cells,
wherein the control circuit uses the program and read instructions with the instruction register storing the first value with the plurality of memory cells, and the control circuit uses the program and read instructions with the instruction register storing the second value with the additional plurality of memory cells, and data stored in the additional plurality of memory cells is less susceptible to error than data stored in the plurality of memory cells.
13. A method of using pluralities of memory cells arranged in series in a semiconductor body, the series having a first end and a second end, memory cells in the plurality of memory cells having a threshold voltage in one of a first threshold voltage distribution associated with a first data value and a second threshold voltage distribution associated with a second data value, the first threshold voltage distribution being a lower voltage distribution than the second threshold voltage distribution, comprising:
using a first version of program and read instructions corresponding to a first version of the second threshold voltage distribution associated with the second data value, the first version of the second threshold voltage distribution having a first version distribution maximum; and
using a second version of program and read instructions corresponding to a second version of the second threshold voltage distribution associated with the second data value, the second version of the second threshold voltage distribution having a second version distribution maximum,
wherein the first version distribution maximum is larger than the second version distribution maximum.
14. The method of claim 13, wherein the first version of the second threshold voltage distribution is wider than the second version of the second threshold voltage distribution.
15. The method of claim 13, further comprising:
performing incremental step pulse programming with an incremental step, wherein the incremental step is larger with the first version of the program instruction than with the second version of the program instruction.
16. The method of claim 13, wherein the first version of the program instruction is faster than the second version of the program instruction.
17. The method of claim 13, wherein the first version of the read instruction applies a first read bias arrangement to word lines of a plurality of word lines accessing a plurality of memory cells, and the first read bias arrangement applies a first pass voltage to unselected word lines of the plurality of word lines,
wherein the second version of the read instruction applies a second read bias arrangement to word lines of the plurality of word lines, and the second read bias arrangement applies a second pass voltage to unselected word lines of the plurality of word lines,
wherein the first pass voltage is larger than the second pass voltage.
18. The method of claim 13, wherein data programmed and read with the second version of program and read instructions is less susceptible to error than data programmed and read with the first version of program and read instructions.
19. The method of claim 13, wherein the first version of program and read instructions have different instruction codes than the second version of program and read instructions.
20. The method of claim 13, wherein the first version of program and read instructions share common instruction codes with the second version of program and read instructions, and contents of an instruction register distinguish the first version of program and read instructions from the second version of program and read instructions.
US12/878,358 2010-09-09 2010-09-09 Method and apparatus for reducing read disturb in memory Active 2030-09-30 US8149624B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/878,358 US8149624B1 (en) 2010-09-09 2010-09-09 Method and apparatus for reducing read disturb in memory
US13/406,215 US8526235B2 (en) 2010-09-09 2012-02-27 Method and apparatus for reducing read disturb in memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/878,358 US8149624B1 (en) 2010-09-09 2010-09-09 Method and apparatus for reducing read disturb in memory

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/406,215 Continuation US8526235B2 (en) 2010-09-09 2012-02-27 Method and apparatus for reducing read disturb in memory

Publications (2)

Publication Number Publication Date
US20120063232A1 true US20120063232A1 (en) 2012-03-15
US8149624B1 US8149624B1 (en) 2012-04-03

Family

ID=45806606

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/878,358 Active 2030-09-30 US8149624B1 (en) 2010-09-09 2010-09-09 Method and apparatus for reducing read disturb in memory
US13/406,215 Active US8526235B2 (en) 2010-09-09 2012-02-27 Method and apparatus for reducing read disturb in memory

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/406,215 Active US8526235B2 (en) 2010-09-09 2012-02-27 Method and apparatus for reducing read disturb in memory

Country Status (1)

Country Link
US (2) US8149624B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190163B2 (en) 2013-07-30 2015-11-17 Samsung Electronics Co., Ltd. Operating method of nonvolatile memory device and operating method of memory controller controlling the nonvolatile memory device
US9858995B1 (en) * 2016-12-22 2018-01-02 Macronix International Co., Ltd. Method for operating a memory device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625343B2 (en) * 2010-09-09 2014-01-07 Macronix International Co., Ltd. Method and apparatus for reducing read disturb in memory
KR20140146333A (en) * 2013-06-17 2014-12-26 삼성전자주식회사 Memory controller and operating method thereof
US9391084B2 (en) 2014-06-19 2016-07-12 Macronix International Co., Ltd. Bandgap-engineered memory with multiple charge trapping layers storing charge
JP2016054017A (en) * 2014-09-04 2016-04-14 株式会社東芝 Semiconductor memory device
CN109411002B (en) * 2017-08-15 2021-01-29 华为技术有限公司 Data reading method and flash memory controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675783B2 (en) * 2007-02-27 2010-03-09 Samsung Electronics Co., Ltd. Nonvolatile memory device and driving method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680455B1 (en) 2005-06-30 2007-02-08 주식회사 하이닉스반도체 A NAND type flash memory device and Method of manufacturing and operating the same
JP2008052808A (en) 2006-08-24 2008-03-06 Toshiba Corp Nonvolatile semiconductor memory device and method of reading data, and memory card
JP2009193631A (en) 2008-02-14 2009-08-27 Toshiba Corp Nonvolatile semiconductor memory device
US8498151B1 (en) * 2008-08-05 2013-07-30 Apple Inc. Data storage in analog memory cells using modified pass voltages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675783B2 (en) * 2007-02-27 2010-03-09 Samsung Electronics Co., Ltd. Nonvolatile memory device and driving method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190163B2 (en) 2013-07-30 2015-11-17 Samsung Electronics Co., Ltd. Operating method of nonvolatile memory device and operating method of memory controller controlling the nonvolatile memory device
US9858995B1 (en) * 2016-12-22 2018-01-02 Macronix International Co., Ltd. Method for operating a memory device

Also Published As

Publication number Publication date
US8526235B2 (en) 2013-09-03
US8149624B1 (en) 2012-04-03
US20120155181A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
KR100770754B1 (en) Non-volatile memory device and method of programming the same
US8526235B2 (en) Method and apparatus for reducing read disturb in memory
KR100855963B1 (en) Non-volatile memory device and method for programming, reading, and erasing thereof
KR101434399B1 (en) Flash memory device reducing noise of common source line, program verify method thereof, and memory system including that
US8339861B2 (en) Method and apparatus of performing an erase operation on a memory integrated circuit
KR20100025304A (en) Program method of nonvolatile memory device
US8767464B2 (en) Semiconductor memory devices, reading program and method for memory devices
US9613703B2 (en) Semiconductor memory device
US7733705B2 (en) Reduction of punch-through disturb during programming of a memory device
US20140036598A1 (en) Semiconductor memory device and operating method thereof
KR100967008B1 (en) Non volatile memory device and operating method thereof
US9514826B2 (en) Programming method for NAND-type flash memory
KR20190105501A (en) Semiconductor memory device and nand-type flash memory erase method
US9123440B2 (en) Non-volatile semiconductor memory device and method of improving reliability using soft erasing operations
US8787078B2 (en) Method and apparatus for reducing read disturb in memory
JP2008097705A (en) Semiconductor memory device
US7558126B2 (en) Nonvolatile semiconductor memory device
US10141063B2 (en) Memory controller, memory device and method of operating
CN109524043B (en) Semiconductor memory device with a plurality of memory cells
JP2006331497A (en) Semiconductor device
US20120140572A1 (en) Semiconductor memory device and method of operating the same
US20100124128A1 (en) Nand flash memory
CN113345503A (en) Semiconductor memory device and read-out method
JP5250254B2 (en) Nonvolatile semiconductor memory device
TWI451417B (en) Method and apparatus for reducing read disturb in nand nonvolatile memory

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACRONIX INTERNATIONAL CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUNG, CHUN-HSIUNG;HUNG, SHUO-NAN;LIU, TSENG-YI;REEL/FRAME:024985/0956

Effective date: 20100908

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12