US20120055428A1 - Variable valve actuation apparatus for internal combustion engine - Google Patents

Variable valve actuation apparatus for internal combustion engine Download PDF

Info

Publication number
US20120055428A1
US20120055428A1 US13/318,870 US201013318870A US2012055428A1 US 20120055428 A1 US20120055428 A1 US 20120055428A1 US 201013318870 A US201013318870 A US 201013318870A US 2012055428 A1 US2012055428 A1 US 2012055428A1
Authority
US
United States
Prior art keywords
rocker arm
displacement member
shaft
link
variable valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/318,870
Inventor
Akio Kidooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIDOOKA, AKIO
Publication of US20120055428A1 publication Critical patent/US20120055428A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • F01L1/267Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder with means for varying the timing or the lift of the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L2013/0052Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/031Electromagnets

Definitions

  • the invention relates to a variable valve actuation apparatus for an internal combustion engine.
  • JP-A-6-33714 discloses a variable valve actuation apparatus for an internal combustion engine.
  • This related-art variable valve actuation apparatus includes an intake or exhaust valve, a low-speed cam, a high-speed cam, a main rocker arm that is drivable by the low-speed cam and that drives the intake valve or the exhaust valve, and a sub-rocker arm that is driven by the high-speed cam.
  • the variable valve actuation apparatus includes a hydraulic piston mechanism as mode switch means for switching between a non-coordination mode in which the sub-rocker arm is not coordinated with the main rocker arm and a coordination mode in which the sub-rocker arm is coordinated with the main rocker arm.
  • variable valve actuation apparatus of an internal combustion engine
  • the actuator's drive force needed in order to drive a member that is driven by the actuator becomes inconveniently large if the inertia of the member is large, or if the friction force that occurs on the member when the actuator drives the member is large. Therefore, in order to switch the opening characteristic of valves while minimizing the required power, it is desirable that the inertia of the foregoing member be small and that the friction force that occurs on the member be small.
  • the invention provides a variable valve actuation apparatus for an internal combustion engine which reduces the inertia of a member that is driven by an actuator and reduces the friction that occurs on the member, and which favorably switches the opening characteristic of valves that are provided for at least two cylinders of the engine in association with motion performed by the actuator.
  • a variable valve actuation apparatus for an internal combustion engine in accordance with a first aspect of the invention includes: transfer members that are disposed between cams and valves and that transfer operating force of the cams to the valves; a camshaft on which the cams are provided; a guide rail provided on an outer peripheral surface of a cylindrical portion that is provided on the camshaft; a main displacement member which has an engagement portion that is engageable with and disengageable from the guide rail and which is displaceable in an axis direction of the camshaft; a member-linked shaft which is linked to the main displacement member in such a manner that, relative to the member linked shaft, the main displacement member is allowed to rotate and is constrained from moving in the axis direction; and an actuator that produces drive force for engaging the engagement portion of the main displacement member with the guide rail, wherein when the actuator operates, the main displacement member rotates about the member-linked shaft so that the engagement portion engages with the guide rail, and in association with displacement of the main displacement member and the member-linked shaft that occurs when the engagement portion and
  • the main displacement member and the member-linked shaft is linked together in such a manner that relative rotation therebetween is possible, the main displacement member rotates alone without involving rotation of the member-linked shaft, when the actuator operates so as to engage the engagement portion of the main displacement member with the guide rail. Therefore, according to the first aspect, it becomes possible to reduce the inertia of the member that is driven by the actuator and reduce the friction force that occurs on the member, and to favorably switch the opening characteristic of valves that are provided for at least two cylinders in association with motion performed by the actuator.
  • the main displacement member, the guide rail and the actuator may be provided corresponding to at least one but not all of the cylinders of the internal combustion engine
  • the variable valve actuation apparatus may further include a subsidiary displacement member which is provided for at least one other cylinder that is not provided with the main displacement member, and which is displaced in operative connection with the main displacement member via the member-linked shaft, and the state of motion of the transfer member provided for the cylinder that is provided with the main displacement member may change in association with the displacement of the main displacement member that occurs when the engagement portion and the guide rail are engaged, and the state of motion of the transfer member provided for the at least one other cylinder that is provided with the subsidiary displacement member may change in association with the displacement of the subsidiary displacement member which is in operative connection with the displacement of the main displacement member.
  • the inertia of the member that is driven by the actuator can be reduced, and the friction force that occurs on the member can be reduced.
  • the state of motion of the transfer member of each cylinder can be changed through the utilization of the displacement of the main displacement member and the displacement of the subsidiary displacement member that is in operative connection with the displacement of the main displacement member.
  • the transfer member for each of the at least two cylinders, may include a first rocker arm that is oscillatable synchronously with the cams, and a second rocker arm that is able to push the valves
  • the variable valve actuation apparatus may further include a switch pin that is disposed movably in a pin hole formed in the first rocker arm and in a pin hole formed in the second rocker arm, and the switch pin for the cylinder provided with the main displacement member may be displaced in operative connection with the displacement of the main displacement member, and the switch pin for the at least one cylinder that is provided with the subsidiary displacement member may be displaced in operative connection with the displacement of the subsidiary displacement member, and for the cylinder provided with the main displacement member, the first rocker arm and the second rocker arm may be switched via the switch pin between a linked state in which the first rocker arm and the second rocker arm are linked together and an unlinked state in which linkage between the first rocker arm and the second rocker arm is removed, in operative connection with
  • variable valve actuation apparatus of a type that switches between the state in which the first rocker arm and the second rocker arm are linked together and the unlinked state in which the linkage therebetween is removed, by utilizing the displacement of the switch pin, it becomes possible to reduce the inertia of the member that is driven by the actuator and reduce the friction force that occurs on the member and to switch between the foregoing linked state and the unlinked state.
  • the member-linked shaft may be disposed within a rocker shaft that supports the first rocker arms and the second rocker arms.
  • the second rocker arm may be used for a plurality of the valves that are provided for a cylinder.
  • a mounting space for the main displacement member and the subsidiary displacement member can be secured by utilizing the unoccupied space obtained as a result of the use, of the second rocker arm for two or more valves provided for a cylinder, in comparison with a construction in which one valve is driven by one second rocker arm.
  • an outer peripheral surface of the member-linked shaft may be provided with a groove that has an annular or arcuate shape, and the member-linked shaft may penetrate an interior of the main displacement member, and the variable valve actuation apparatus may further include a pin that penetrates the main displacement member and that engages with the groove.
  • FIG. 1 is a perspective view showing a variable valve actuation apparatus for an internal combustion engine according to an embodiment of the invention
  • FIG. 2A and FIG. 2B are sectional views of portions of the variable valve actuation apparatus shown in FIG. 1 , except a camshaft, which are taken on a plane that includes the axis of a rocker shaft shown in FIG. 1 and the axis of a switch pin also shown in FIG. 1 ;
  • FIG. 3 is an exploded perspective view of characteristic component elements of the variable valve actuation apparatus shown in FIG. 1 ;
  • FIG. 4 is a view of the variable valve actuation apparatus of FIG. 1 which is taken in an axis direction of the camshaft (and the rocker shaft) (more specifically, the direction indicated by an arrow 4 A in FIG. 2A ).
  • FIG. 1 is a perspective view showing a variable valve actuation apparatus 10 for an internal combustion engine 1 according to Embodiment 1 of the invention.
  • the illustration of a later-described camshaft 18 is omitted.
  • the internal combustion engine 1 of Embodiment 1 is, for example, an in-line four-cylinder engine that has four cylinders (No. 1 to No. 4 ).
  • each cylinder of the internal combustion engine 1 is provided with two intake valves and two exhaust valves.
  • the variable valve actuation apparatus 10 functions as an apparatus that drives two intake valves or two exhaust valves that are disposed on each cylinder.
  • each cylinder of the internal combustion engine 1 is provided with a first rocker arm 12 and a second rocker arm 14 that are adjacent to each other.
  • the rocker arms 12 and 14 of each cylinder are rotatably (oscillatably) supported by one rocker shaft 16 .
  • FIG. 2A and FIG. 2B are sectional views of portions of the variable valve actuation apparatus 10 excluding a camshaft 18 , which are taken on a plane that includes the axis of the rocker shaft 16 shown in FIG. 1 and the axis of a switch pin 38 described below.
  • FIG. 2A shows the variable valve actuation apparatus 10 in a linked state described below
  • FIG. 2B shows the variable valve actuation apparatus 10 in an unlinked state described below.
  • the camshaft 18 is linked to a crankshaft (not shown) by a timing chain or a timing belt so as to rotate at half the speed of the crankshaft.
  • the camshaft 18 is provided with a main cam 20 and a subsidiary cam 22 for each cylinder.
  • the rocker shaft 16 is disposed parallel to the camshaft 18 .
  • the main cams 20 are each constructed as a cam that has an arcuate base circle portion that is coaxial with the camshaft 18 (i.e., a lift cam), and a nose portion formed so that a portion of the base circle portion is expanded radially outward.
  • the subsidiary cams 22 are each constructed as a cam that has only a base circle portion (i.e., a zero-lift cam).
  • the first rocker arm 12 has a first roller 24 that is rotatably attached at such a position on the first rocker arm 12 that the first roller 24 can contact the main cam 20 .
  • the first rocker arm 12 is urged so that the first roller 24 is always in contact with the main cam 20 , by a coil spring (not shown) that is attached to the rocker shaft 16 .
  • the first rocker arm 12 constructed as described above oscillates about the rocker shaft 16 that serves as a fulcrum, through cooperation of the operating force of the main cam 20 and the force of the aforementioned coil spring.
  • the second rocker arm 14 has a second roller 26 that is rotatably attached at such a position on the second rocker arm 14 that the second roller 26 can contact the subsidiary cam 22 .
  • the rocker shaft 16 is supported by a cam carrier 27 (or a cylinder head or the like) that is a stationary member of the internal combustion engine 1 , via a lash adjuster (not shown).
  • the second roller 26 provided on the second rocker arm 14 is urged toward the subsidiary cam 22 as the second roller 26 receives upward force from the lash adjuster.
  • an opposite end portion of the second rocker arm 14 from the rocker shaft side thereof is provided with a contact portion 14 a that contacts two valves 28 .
  • the second rocker arm 14 is used for both valves 28 . More specifically, the second rocker arm 14 is disposed so as to be at an intermediate position between the two valves 28 that are provided for each cylinder. Besides, each valve 28 is urged in the closing direction by a valve spring 30 as shown in FIG. 1 .
  • the variable valve actuation apparatus 10 includes a switching mechanism 32 that switches between the linked state in which the first rocker arm 12 and the second rocker arm 14 are linked together (see FIG. 2A ) and the unlinked state in which the linkage between the first rocker arm 12 and the second rocker arm 14 is removed. Due to the provision of the switching mechanism 32 , the opening characteristic of the valves 28 is switched by switching between the state in which the operating force of the main cam 20 is transferred to the second rocker arm 14 via the first rocker arm 12 (the foregoing linked state) and the state in which the operating force of the main cam 20 is not transferred to the second rocker arm 14 (the foregoing unlinked state).
  • a first pin hole 34 a concentric with the first roller 24 is formed within a spindle 34 of the first roller 24 .
  • a second pin hole 36 a concentric with the second roller 26 is formed within a spindle 36 of the second roller 26 .
  • the centers of the pin holes 34 a and 36 a are disposed on an arc whose center is the rocker shaft 16 , which is the rotation center of the rocker arms 12 and 14 . Then, when the first roller 24 is in contact with the base circle portion of the main cam 20 and the second roller 26 is in contact with the base circle portion of the subsidiary cam 22 , the position of the first pin hole 34 a coincides with the position of the second pin hole 36 a in a view in the axis direction.
  • a cylindrical switch pin 38 is slidably disposed in the pin holes 34 a and 36 a. Besides, an opposite end portion of the first pin hole 34 a from the second rocker arm 14 is closed, and a second rocker arm 14 -side end portion of the first pin hole 34 a is open.
  • the first pin hole 34 a contains therein a return spring 40 that urges the switch pin 38 in the direction to the second rocker arm 14 (hereinafter, referred to as “advancement direction of the switch pin”). More specifically, the return spring 40 is constructed so as to always urge the switch pin 38 to the second rocker arm 14 side when it is actually mounted.
  • the second pin hole 36 a is a penetration hole in which a cylindrical piston 42 is slidably inserted. Furthermore, for the cylinder No. 1 , a first link arm 44 that has an arm portion 44 a that contacts the piston 42 is disposed at a side surface of the second rocker arm 14 opposite the first rocker arm 12 -side surface thereof. The first link arm 44 is attached to the rocker shaft 16 .
  • a second link arm 46 that has an arm portion 46 a that contacts the piston 42 is disposed at a side surface of the second rocker arm 14 opposite the first rocker arm 12 -side surface thereof.
  • the second link arm 46 is attached to the rocker shaft 16 .
  • the first link arm 44 is different from the second link arm 46 in the following respects. That is, a distal end of the arm portion 44 a of the first link arm 44 is provided with a projected portion 44 b that is projected toward a peripheral surface of the camshaft 18 . Besides, an opposite end portion of the first link arm 44 from the arm portion 44 a is provided with a pressurization surface 44 c that is pressurized by an electromagnetic solenoid 54 (described below).
  • the link arms provided for the cylinders No. 3 and No. 4 are the same as the second link arm 46 of the cylinder No. 2 .
  • FIG. 3 is an exploded perspective view of characteristic component elements of the variable valve actuation apparatus 10 shown in FIG. 1 .
  • FIG. 3 omits the first roller 24 , the second roller 26 , the switch pin 38 disposed in the first and second rollers, etc.
  • FIG. 4 shows a view of the variable valve actuation apparatus 10 of FIG. 1 which is taken from the axis direction of the camshaft 18 (and of the rocker shaft 16 ) (more specifically, from the direction indicated by the arrow 4 A in FIG. 2A ).
  • the rocker shaft 16 has a hollow shape. Inside the rocker shaft 16 , a link shaft 48 is inserted slidably relative to the rocker shaft 16 .
  • the link shaft 48 is provided for enabling the first link arm 44 disposed for the cylinder No. 1 and the second link arms 46 disposed for the cylinders No. 2 to No. 4 to be simultaneously displaced in the axis direction of the rocker shaft 16 .
  • the link shaft 48 is provided with four annular grooves 48 a that correspond to the placement sites of the link arms 44 and 46 of the four cylinders, as shown mainly in FIG. 3 .
  • a peripheral surface of the rocker shaft 16 is provided with four penetration holes 16 a that correspond to the annular grooves 48 a of the link shaft 48 .
  • the link shaft 48 and the rocker shaft 16 in which the link shaft 48 is inserted penetrate an interior of each link arm 44 , 46 .
  • the link arms 44 and 46 have press-fit pin holes 44 d and 46 b, respectively, each of which receives a press-fit pin 50 that is press-fitted thereinto, as shown in FIG. 3 .
  • the press-fit pins 50 each penetrating a wall of a corresponding one of the link arms 44 and 46 through its pressure-fit hole 44 d, 46 b, are engaged with the corresponding annular grooves 48 a, as shown in FIG. 4 .
  • the width of the annular grooves 48 a is set so as to be substantially equal to the diameter of the press-fit pins 50 .
  • each penetration hole 16 a of the rocker shaft 16 has such a generous size as to avoid causing interference between the press-fit pin 50 and the electromagnetic solenoid 54 and therefore avoid impeding the rotation of the first link arm 44 (or the second link arm 46 ) when the first link arm 44 (or the second link arm 46 ) rotates in association with motion of the electromagnetic solenoid 54 .
  • each penetration hole 16 a has such an elongated hole shape as to avoid causing interference between the penetration hole 16 a and the press-fit pin 50 and therefore avoid impeding the movement of the link shaft 48 when the link shaft 48 moves in the axis direction thereof in association with motion of the electromagnetic solenoid 54 .
  • the first link arm 44 is linked to the link shaft 48 in such a manner that the first link arm 44 is allowed to freely rotate but is constrained from moving in the axis direction of the link shaft 48 .
  • the second link arms 46 are also linked to the link shaft 48 in such a manner that the second link arms 46 are allowed to freely rotate but are constrained from moving in the axis direction.
  • a cylindrical portion 18 a that has a cylindrical shape is provided on an outer peripheral surface of the camshaft 18 which faces a projected portion 44 b that is provided on the arm portion 44 a of the first link arm 44 .
  • An outer peripheral surface of the cylindrical portion 18 a is provided with a helical guide rail 52 that extends in a circumferential direction.
  • the guide rail 52 is formed as a helical groove.
  • the switching mechanism 32 includes an electromagnetic solenoid 54 as an actuator that produces drive force for causing the projected portion 44 b to be engaged with (inserted into) the guide rail 52 .
  • the electromagnetic solenoid 54 is duty-controlled on the basis of commands from an electronic control unit (ECU) 56 .
  • the ECU 56 is an electronic control unit that controls the state of operation of the internal combustion engine 1 .
  • the electromagnetic solenoid 54 is fixed to a stationary member, such as the cam carrier 27 or the like, at such a position that a drive shaft 54 a of the solenoid 54 is able to pressurize the pressurization surface 44 c of the first link arm 44 toward the guide rail 52 .
  • the orientation of the helix of the guide rail 52 is set such that when the camshaft 18 rotates in a predetermined rotation direction shown in FIG. 4 while the projected portion 44 b is inserted in the helical groove, the first link arm 44 , the link shaft 48 that moves in operative connection with the first link arm 44 , and the second link arms 46 that are driven by the link shaft 48 are displaced in the leftward direction in FIG. 2 .
  • the leftward direction in FIG. 2 is the direction in which each of the first link arm 44 and the second link arms 46 approaches its adjacent rocker arms 12 and 14 while pushing the switch pin 38 in the withdrawal direction thereof (that is opposite the foregoing advancement direction of the switch pin) against the force of the return spring 40 .
  • the position of the first link arm 44 in FIG. 2A that is, the position of the first link arm 44 at which the switch pin 38 is inserted in both the first pin hole 34 a and the second pin hole 36 a due to force of the return spring 40 , is referred to as “displacement end Pmax 1 ”.
  • the first link arm 44 is positioned at the displacement end Pmax 1 , the first rocker arm 12 and the second rocker arm 14 assume the foregoing linked state.
  • Embodiment 1 the position of a beginning end 52 a of the guide rail 52 in the axis direction of the camshaft 18 is set so as to coincide with the position that the projected portion 44 b assumes when the first link arm 44 is positioned at the displacement end Pmax 1 .
  • the position of a terminating end 52 b of the guide rail 52 in the axis direction of the camshaft 18 is set so as to coincide with the position that the projected portion 44 b assumes when the first link arm 44 is positioned at the displacement end Pmax 2 . That is, Embodiment 1 is constructed so that the first link arm 44 is displaced between the displacement end Pmax 1 and the displacement end Pmax 2 , in a range determined by the guide rail 52 guiding the projected portion 44 b.
  • the guide rail 52 is provided with a shallow bottom portion 52 c in which the guide rail 52 gradually becomes shallower with rotation of the camshaft 18 , as a predetermined section of the guide rail 52 on a terminating end 52 b side which is used after the first link arm 44 reaches the displacement-end Pmax 2 .
  • the depth of the guide rail 52 except the shallow bottom portion 52 c is constant.
  • the first link arm 44 is provided with a cut-out portion 44 e that is formed in a recess shape by cutting out a portion of the pressurization surface 44 c.
  • the pressurization surface 44 c is provided so that contact thereof with the drive shaft 54 a is maintained while the first link arm 44 is displaced from the displacement end Pmax 1 to the displacement end Pmax 2 .
  • the cut-out portion 44 e is provided at such a site on the first link arm 44 as to be engageable with the drive shaft 54 a when the projected portion 44 b is taken out from the guide rail 52 to the surface of the cylindrical portion 18 a due to operation of the shallow bottom portion 52 c during a state in which the first link arm 44 is positioned at the displacement end Pmax 2 .
  • the cut-out portion 44 e is formed so as to engage with the drive shaft 54 a in a manner such that the engagement of the cut-out portion 44 e with the drive shaft 54 a can restrict the first link arm 44 from rotating in such a direction that the projected portion 44 b is inserted into the guide rail 52 , and such that the engagement can restrict the first link arm 44 from moving in the advancement direction of the switch pin 38 .
  • the switching mechanism 32 is constructed of the switch pin 38 , the return spring 40 , the piston 42 , the first link arm 44 , the second link arm 46 , the link shaft 48 , the press-fit pin 50 , the guide rail 52 , and the electromagnetic solenoid 54 whose electrification is controlled by the ECU 56 .
  • a valve stop motion is performed when the ECU 56 detects a demand for executing a predetermined valve stop motion, for example, a demand for the fuel-cut of the internal combustion engine 1 , and the like.
  • a predetermined valve stop motion for example, a demand for the fuel-cut of the internal combustion engine 1 , and the like.
  • the electrification of the electromagnetic solenoid 54 is started at a predetermined timing.
  • the first link arm 44 rotates about the rocker shaft 16 (the link shaft 48 ) clockwise in FIG. 4 .
  • the first link arm 44 is linked to the link shaft 48 in such a manner as to be rotatable. Therefore, the link shaft 48 does not rotate while the first link arm 44 rotates.
  • the projected portion 44 b engages with the guide rail 52 .
  • torque of the camshaft 18 is utilized to produce a force to move the first link arm 44 toward the displacement end Pmax 2 .
  • the drive force of the first link arm 44 engaged with the guide rail 52 is transferred to the second link arms 46 via the press-fit pins 50 thereof and the link shaft 48 . Therefore, the link shaft 48 linked to the first link arm 44 , and the second link arms 46 linked to the link shaft 48 are displaced in operative connection with the first link arm 44 .
  • a valve returning motion for returning the valve state from the valve stopped state to the valve acting state is performed when the ECU 56 detects a demand for executing a predetermined valve returning motion, for example, a demand for return from the fuel-cut (a demand for discontinuation of the fuel-cut), or the like.
  • This valve returning motion is started by turning off the electrification of the electromagnetic solenoid 54 at a predetermined timing. When the electrification of the electromagnetic solenoid 54 is turned off, the engagement between the cut-out portion 44 e of the first link arm 44 and the drive shaft 54 a of the electromagnetic solenoid 54 is removed.
  • the first link arm 44 (as well as the link shaft 48 and the second link arm 46 that is operatively connected to the first link arm 44 ) is returned from the displacement end Pmax 2 to the displacement end Pmax 1 by the piston 42 .
  • the position of the first link arm 44 in the axis direction is moved between the displacement end Pmax 1 and the displacement end Pmax 2 by utilizing the turning on and off of the electrification of the electromagnetic solenoid 54 , the torque of the camshaft 18 , and the force of the return spring 40 . Therefore, as for the cylinder No. 1 equipped with the first link arm 44 , it becomes possible to switch the motion state of the valves 28 between the valve acting state and the valve stopped state. Furthermore, as for the other cylinders (No. 2 to No.
  • the motion state of the valves 28 disposed for the four cylinders of the internal combustion engine 1 can be switched by using one electromagnetic solenoid 54 .
  • the valve stopped state can be brought about with high response during one rotation of the camshaft 18 , by utilizing the torque of the camshaft 18 .
  • the first link arm 44 is linked to the link shaft 48 in such a manner that, relative to the link shaft 48 , the first link arm 44 is allowed to freely rotate but is constrained from moving in the axis direction. According to this linking method, the first link arm 44 will rotate alone without involving rotation of the link shaft 48 , when the electromagnetic solenoid 54 presses the first link arm 44 . Unlike this construction, in a construction in which the first link arm is fixed to the link shaft, when the first link arm is rotated due to electrification of the electromagnetic solenoid, the link shaft will rotate together therewith.
  • the first link arm 44 and the link shaft 48 are constructed so as to be rotatable relative to each other. Therefore, the inertia of the member that is driven by the electromagnetic solenoid 54 in order to engage the projected portion 44 b with the guide rail 52 can be made small, and the friction force that occurs on the member can be made small. Therefore, the required thrust of the electromagnetic solenoid 54 can be favorably reduced, and the size of the electromagnetic solenoid 54 can be reduced.
  • the first link arm 44 and the second link arms 46 are mounted on the rocker shaft 16 that functions as a support shaft for the first rocker arms 12 and the second rocker arms 14 .
  • the two valves 28 of each cylinder are simultaneously driven by the second rocker arm 14 that has the contact portion 14 a that contacts the two valves 28 .
  • This construction in comparison with a construction in which one valve is driven by one second rocker arm, makes it possible to utilize the unoccupied space obtained as a result of the use of a second rocker arm 14 for two valves in order to mount the first link arm 44 and the second link arms 46 for switching the motion state of the valves 28 . Due to this, by effectively utilizing the space present over the cylinder head of the internal combustion engine 1 , it is possible to improve the mountability of the variable valve actuation apparatus 10 on the internal combustion engine 1 .
  • the link shaft 48 that transfers the drive force of the first link arm 44 engaged with the guide rail 52 to the second link arms 46 of the other cylinders is disposed within the rocker shaft 16 .
  • This construction in comparison with a construction in which the link shaft is supported by a member apart from the rocker shaft, makes it possible to effectively utilize the space present over the cylinder head of the internal combustion engine 1 in order to improve the mountability of the variable valve actuation apparatus 10 on the internal combustion engine 1 .
  • the construction eliminates the need for component parts for supporting the link shaft.
  • variable valve actuation apparatus of the invention is not limited to the foregoing constructions as long as the opening characteristic of valves that are provided for at least two cylinders is switched as the motion state of a transfer member is switched in association with displacement of a main displacement member and a member-linked shaft which occurs when the engagement portion and the guide rail are engaged.
  • the member that is displaced so as to switch the state of motion of the transfer member in association with displacement of the main displacement member and the member-linked shaft which occurs when the engagement portion and the guide rail are engaged is not limited to the switch pin 38 . That is, for example, in a construction in which a rocker arm corresponding to the transfer member is rotatably supported by a rocker shaft, the foregoing member may also be a member that causes an operation in which in association with the movement of the main displacement portion and the member-linked shaft, the rocker arm is displaced on the rocker shaft in the axis direction of the rocker shaft, so that the cam that contacts the rocker arm is switched to another cam and therefore the state of motion of the rocker arm is switched.
  • the foregoing member may also be a member that causes an operation in which in association with the displacement of the main displacement member and the member-linked shaft, the roller is displaced on the rocker arm in the axis direction of the spindle of the roller, so that the cam that contacts the roller is switched to another cam and therefore the state of motion of the rocker arm (transfer member) is switched.
  • the foregoing member may also be a member that causes an operation in which in association with displacement of the main displacement member and the member-linked shaft, the rocker shaft itself is displaced in its own axis direction, so that the cam that contacts the rocker shaft is switched to another cam and therefore the state of motion of the rocker arm is switched.
  • the foregoing member may also be a member that causes an operation in which in association with displacement of the main displacement member and the member-linked shaft, the member equipped with two kinds of cams is displaced in the axis direction of the camshaft, so that the cam that contacts the transfer member is switched to another cam and therefore the state of motion of the transfer member is switched.
  • Embodiment 1 is described above with reference to an example that is the variable valve actuation apparatus 10 that drives the two valves that are disposed on each one of the four cylinders of the internal combustion engine 1 .
  • the variable valve actuation apparatus of the invention is not limited to the foregoing constructions but may have any construction as long as the opening characteristics of the valves provided for at least two cylinders are switched. That is, the variable valve actuation apparatus of the invention may be, for example, an apparatus constructed so as to drive the valves of all the cylinders of the internal combustion engine that has two or more cylinders, or may also be an apparatus constructed so as to drive the valves of at least two cylinders of an internal combustion engine that has three or more cylinders.
  • the cylinder equipped with elements that correspond to the foregoing components is not limited so, but may be any one or more of the cylinders of the engine as long as the foregoing cylinder does not correspond to each one of the cylinders.
  • the first link arm 44 and the second link arms 46 are rotatably supported by utilizing the rocker shaft 16 that is provided for supporting the first rocker arm 12 and the second rocker arms 14 .
  • the member that supports the main displacement member or the subsidiary displacement member in the invention is not limited to the rocker shaft. That is, the member that supports the main displacement member and the subsidiary displacement member in the invention may be, for example, a shaft that is provided separately from the rocker shaft. Alternatively, the main displacement member and the subsidiary displacement member in the invention may be supported only by a member that functions as a member-linked shaft in the invention (for example, by the ring shaft 48 ).
  • the link shaft 48 is disposed within the rocker shaft 16 .
  • the technique of disposing the member-linked shaft in the invention is not limited to this disposal, but it is also permissible to adopt, for example, a construction in which a shaft that functions as the member-linked shaft is provided at an outer peripheral side of the rocker shaft.
  • the link shaft 48 is provided with the annular grooves 48 a that engage with the press-fit pins 50 , in order to link the first link arm 44 (and the second link arms 46 as well) to the link shaft 48 in such a manner that the first link arm 44 is allowed to rotate relative to the link shaft 48 , and is constrained from moving in the axis direction of the link shaft 48 .
  • the element provided for realizing the function of linking the main displacement member in such a manner that the main displacement member is allowed to freely rotate and is constrained from moving in the axis direction does not need to be the annular grooves 48 a.
  • the grooves may be arcuate grooves.
  • the subsidiary cams 22 are zero-lift cams
  • the subsidiary cam in the invention is not limited to a zero-lift cam. That is, in a construction as in the foregoing variable valve actuation apparatus 10 , the subsidiary cams may have a nose portion that achieves a smaller lift than the nose portion of the main cams 20 .
  • Embodiment 1 described above includes the electromagnetic solenoid 54 as an actuator that produces drive force for engaging the projected portion 44 b with the guide rail 52 . Therefore, the opening characteristic of the valves 28 can be switched by utilizing the actuator that is excellent in responsiveness.
  • the actuator is not limited so, but may also be, for example, a hydraulically driven actuator.
  • the main cams 20 function as a “cam” in the first aspect of the invention
  • the first rocker arms 12 and the second rocker arms 14 each function as a “transfer member” in the first aspect
  • the projected portion 44 b functions as an “engagement portion” in the first aspect
  • the first link arm 44 functions as a “main displacement member” in the first aspect
  • the link shaft 48 functions as a “member-linked shaft” in the first aspect
  • the electromagnetic solenoid 54 functions as an “actuator” in the first aspect.
  • the second link arms 46 each function as a “subsidiary displacement member” in the first aspect.
  • the annular grooves 48 a function as a “groove” in the first aspect
  • the press-fit pins 50 function as a “pin” in the first aspect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A variable valve actuation apparatus for an internal combustion engine includes a first link arm which has a projected portion that is engageable with and disengageable from a guide rail, and which is displaceable in the axis direction of a camshaft, and a link shaft linked to the first link arm in such a manner as to allow rotation but constrain movement in the axis direction. When an electro-magnetic solenoid is electrified, the first link arm rotates about the link shaft so that the projected portion engages with the guide rail. In association with the displacement of the link arms that occurs during the engagement, the state of motion of second rocker arms changes, so that the opening characteristic of valves provided for each cylinder is switched.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a variable valve actuation apparatus for an internal combustion engine.
  • 2. Description of the Related Art
  • Japanese Patent Application Publication No. 6-33714 (JP-A-6-33714), for example, discloses a variable valve actuation apparatus for an internal combustion engine. This related-art variable valve actuation apparatus includes an intake or exhaust valve, a low-speed cam, a high-speed cam, a main rocker arm that is drivable by the low-speed cam and that drives the intake valve or the exhaust valve, and a sub-rocker arm that is driven by the high-speed cam. Furthermore, the variable valve actuation apparatus includes a hydraulic piston mechanism as mode switch means for switching between a non-coordination mode in which the sub-rocker arm is not coordinated with the main rocker arm and a coordination mode in which the sub-rocker arm is coordinated with the main rocker arm.
  • By the way, in the variable valve actuation apparatus of an internal combustion engine, when the opening characteristic of valves is switched in association with an motion performed by an actuator, the actuator's drive force needed in order to drive a member that is driven by the actuator becomes inconveniently large if the inertia of the member is large, or if the friction force that occurs on the member when the actuator drives the member is large. Therefore, in order to switch the opening characteristic of valves while minimizing the required power, it is desirable that the inertia of the foregoing member be small and that the friction force that occurs on the member be small.
  • SUMMARY OF THE INVENTION
  • The invention provides a variable valve actuation apparatus for an internal combustion engine which reduces the inertia of a member that is driven by an actuator and reduces the friction that occurs on the member, and which favorably switches the opening characteristic of valves that are provided for at least two cylinders of the engine in association with motion performed by the actuator.
  • A variable valve actuation apparatus for an internal combustion engine in accordance with a first aspect of the invention includes: transfer members that are disposed between cams and valves and that transfer operating force of the cams to the valves; a camshaft on which the cams are provided; a guide rail provided on an outer peripheral surface of a cylindrical portion that is provided on the camshaft; a main displacement member which has an engagement portion that is engageable with and disengageable from the guide rail and which is displaceable in an axis direction of the camshaft; a member-linked shaft which is linked to the main displacement member in such a manner that, relative to the member linked shaft, the main displacement member is allowed to rotate and is constrained from moving in the axis direction; and an actuator that produces drive force for engaging the engagement portion of the main displacement member with the guide rail, wherein when the actuator operates, the main displacement member rotates about the member-linked shaft so that the engagement portion engages with the guide rail, and in association with displacement of the main displacement member and the member-linked shaft that occurs when the engagement portion and the guide rail are engaged, state of motion of the transfer member changes so that opening characteristic of the valves that are provided for at least two cylinders is switched.
  • According to the first aspect of the invention, since the main displacement member and the member-linked shaft is linked together in such a manner that relative rotation therebetween is possible, the main displacement member rotates alone without involving rotation of the member-linked shaft, when the actuator operates so as to engage the engagement portion of the main displacement member with the guide rail. Therefore, according to the first aspect, it becomes possible to reduce the inertia of the member that is driven by the actuator and reduce the friction force that occurs on the member, and to favorably switch the opening characteristic of valves that are provided for at least two cylinders in association with motion performed by the actuator.
  • Besides, in the foregoing construction, the main displacement member, the guide rail and the actuator may be provided corresponding to at least one but not all of the cylinders of the internal combustion engine, and the variable valve actuation apparatus may further include a subsidiary displacement member which is provided for at least one other cylinder that is not provided with the main displacement member, and which is displaced in operative connection with the main displacement member via the member-linked shaft, and the state of motion of the transfer member provided for the cylinder that is provided with the main displacement member may change in association with the displacement of the main displacement member that occurs when the engagement portion and the guide rail are engaged, and the state of motion of the transfer member provided for the at least one other cylinder that is provided with the subsidiary displacement member may change in association with the displacement of the subsidiary displacement member which is in operative connection with the displacement of the main displacement member.
  • Therefore, due to the construction provided in the first aspect, the inertia of the member that is driven by the actuator can be reduced, and the friction force that occurs on the member can be reduced. Besides, the state of motion of the transfer member of each cylinder can be changed through the utilization of the displacement of the main displacement member and the displacement of the subsidiary displacement member that is in operative connection with the displacement of the main displacement member.
  • In the foregoing construction, the transfer member, for each of the at least two cylinders, may include a first rocker arm that is oscillatable synchronously with the cams, and a second rocker arm that is able to push the valves, and the variable valve actuation apparatus may further include a switch pin that is disposed movably in a pin hole formed in the first rocker arm and in a pin hole formed in the second rocker arm, and the switch pin for the cylinder provided with the main displacement member may be displaced in operative connection with the displacement of the main displacement member, and the switch pin for the at least one cylinder that is provided with the subsidiary displacement member may be displaced in operative connection with the displacement of the subsidiary displacement member, and for the cylinder provided with the main displacement member, the first rocker arm and the second rocker arm may be switched via the switch pin between a linked state in which the first rocker arm and the second rocker arm are linked together and an unlinked state in which linkage between the first rocker arm and the second rocker arm is removed, in operative connection with the displacement of the main displacement member, and for the at least one cylinder provided with the subsidiary displacement member, the first rocker arm and the second rocker arm may be switched via the switch pin between the linked state in which the first rocker arm and the second rocker arm are linked together and the unlinked state in which the linkage between the first rocker arm and the second rocker arm is removed, in operative connection with the displacement of the subsidiary displacement member.
  • According to the foregoing construction, in a variable valve actuation apparatus of a type that switches between the state in which the first rocker arm and the second rocker arm are linked together and the unlinked state in which the linkage therebetween is removed, by utilizing the displacement of the switch pin, it becomes possible to reduce the inertia of the member that is driven by the actuator and reduce the friction force that occurs on the member and to switch between the foregoing linked state and the unlinked state.
  • In the foregoing construction, the member-linked shaft may be disposed within a rocker shaft that supports the first rocker arms and the second rocker arms.
  • According to this construction, by effectively utilizing the space present over the cylinder head of the internal combustion engine, it is possible to improve the mountability of the variable valve actuation apparatus on the internal combustion engine, in comparison with a construction in which the member-linked shaft is supported by a member that is separate from the rocker shaft.
  • Besides, in the foregoing construction, the second rocker arm may be used for a plurality of the valves that are provided for a cylinder.
  • According to this construction, a mounting space for the main displacement member and the subsidiary displacement member can be secured by utilizing the unoccupied space obtained as a result of the use, of the second rocker arm for two or more valves provided for a cylinder, in comparison with a construction in which one valve is driven by one second rocker arm.
  • Besides, in the foregoing construction, an outer peripheral surface of the member-linked shaft may be provided with a groove that has an annular or arcuate shape, and the member-linked shaft may penetrate an interior of the main displacement member, and the variable valve actuation apparatus may further include a pin that penetrates the main displacement member and that engages with the groove.
  • According to the foregoing construction, due to the engagement between the groove formed in the member-linked shaft and the pin that penetrates the main displacement member, it is possible to favorably realize the linkage between the main displacement member and the member-linked shaft in a manner that allows relative rotation between the main displacement member and the member-linked shaft but constrains relative movement therebetween in the axis direction.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features, advantages, and technical and industrial significance of this invention will be described in the following detailed description of example embodiments of the invention with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
  • FIG. 1 is a perspective view showing a variable valve actuation apparatus for an internal combustion engine according to an embodiment of the invention;
  • FIG. 2A and FIG. 2B are sectional views of portions of the variable valve actuation apparatus shown in FIG. 1, except a camshaft, which are taken on a plane that includes the axis of a rocker shaft shown in FIG. 1 and the axis of a switch pin also shown in FIG. 1;
  • FIG. 3 is an exploded perspective view of characteristic component elements of the variable valve actuation apparatus shown in FIG. 1; and
  • FIG. 4 is a view of the variable valve actuation apparatus of FIG. 1 which is taken in an axis direction of the camshaft (and the rocker shaft) (more specifically, the direction indicated by an arrow 4A in FIG. 2A).
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • EMBODIMENT 1. Hereinafter, Embodiment 1 of the invention will be described with reference to FIG. 1 to FIG. 4. [CONSTRUCTION OF VARIABLE VALVE ACTUATION APPARATUS] (BASIC
  • CONSTRUCTION OF VARIABLE VALVE ACTUATION APPARATUS) FIG. 1 is a perspective view showing a variable valve actuation apparatus 10 for an internal combustion engine 1 according to Embodiment 1 of the invention. Incidentally, in FIG. 1, the illustration of a later-described camshaft 18 is omitted. Besides, although FIG. 1 shows only two cylinders (cylinders No. 1 and No. 2) while omitting the illustration of other cylinders and the like, the internal combustion engine 1 of Embodiment 1 is, for example, an in-line four-cylinder engine that has four cylinders (No. 1 to No. 4). Besides, each cylinder of the internal combustion engine 1 is provided with two intake valves and two exhaust valves. The variable valve actuation apparatus 10 functions as an apparatus that drives two intake valves or two exhaust valves that are disposed on each cylinder.
  • As shown in FIG. 1, each cylinder of the internal combustion engine 1 is provided with a first rocker arm 12 and a second rocker arm 14 that are adjacent to each other. The rocker arms 12 and 14 of each cylinder are rotatably (oscillatably) supported by one rocker shaft 16.
  • FIG. 2A and FIG. 2B are sectional views of portions of the variable valve actuation apparatus 10 excluding a camshaft 18, which are taken on a plane that includes the axis of the rocker shaft 16 shown in FIG. 1 and the axis of a switch pin 38 described below. FIG. 2A shows the variable valve actuation apparatus 10 in a linked state described below, and FIG. 2B shows the variable valve actuation apparatus 10 in an unlinked state described below. The camshaft 18 is linked to a crankshaft (not shown) by a timing chain or a timing belt so as to rotate at half the speed of the crankshaft. As shown in FIG. 2A and FIG. 2B, the camshaft 18 is provided with a main cam 20 and a subsidiary cam 22 for each cylinder. Besides, the rocker shaft 16 is disposed parallel to the camshaft 18.
  • The main cams 20 are each constructed as a cam that has an arcuate base circle portion that is coaxial with the camshaft 18 (i.e., a lift cam), and a nose portion formed so that a portion of the base circle portion is expanded radially outward. Besides, in Embodiment 1, the subsidiary cams 22 are each constructed as a cam that has only a base circle portion (i.e., a zero-lift cam).
  • As shown in FIG. 1, FIG. 2A and FIG. 2B, with regard to each cylinder, the first rocker arm 12 has a first roller 24 that is rotatably attached at such a position on the first rocker arm 12 that the first roller 24 can contact the main cam 20. The first rocker arm 12 is urged so that the first roller 24 is always in contact with the main cam 20, by a coil spring (not shown) that is attached to the rocker shaft 16. The first rocker arm 12 constructed as described above oscillates about the rocker shaft 16 that serves as a fulcrum, through cooperation of the operating force of the main cam 20 and the force of the aforementioned coil spring.
  • Besides, with regard to each cylinder, the second rocker arm 14 has a second roller 26 that is rotatably attached at such a position on the second rocker arm 14 that the second roller 26 can contact the subsidiary cam 22. Besides, at a rocker shaft 16-side end portion of the second rocker arm 14, the rocker shaft 16 is supported by a cam carrier 27 (or a cylinder head or the like) that is a stationary member of the internal combustion engine 1, via a lash adjuster (not shown). The second roller 26 provided on the second rocker arm 14 is urged toward the subsidiary cam 22 as the second roller 26 receives upward force from the lash adjuster.
  • Besides, an opposite end portion of the second rocker arm 14 from the rocker shaft side thereof is provided with a contact portion 14 a that contacts two valves 28. Specifically, the second rocker arm 14 is used for both valves 28. More specifically, the second rocker arm 14 is disposed so as to be at an intermediate position between the two valves 28 that are provided for each cylinder. Besides, each valve 28 is urged in the closing direction by a valve spring 30 as shown in FIG. 1.
  • (CONSTRUCTION OF SWITCHING MECHANISM) The variable valve actuation apparatus 10 includes a switching mechanism 32 that switches between the linked state in which the first rocker arm 12 and the second rocker arm 14 are linked together (see FIG. 2A) and the unlinked state in which the linkage between the first rocker arm 12 and the second rocker arm 14 is removed. Due to the provision of the switching mechanism 32, the opening characteristic of the valves 28 is switched by switching between the state in which the operating force of the main cam 20 is transferred to the second rocker arm 14 via the first rocker arm 12 (the foregoing linked state) and the state in which the operating force of the main cam 20 is not transferred to the second rocker arm 14 (the foregoing unlinked state).
  • Hereinafter, the construction of the switching mechanism 32 will be described in detail with reference to FIG. 3 and FIG. 4 as well as FIG. 1 and FIGS. 2A and 2B. As shown in FIG. 2A and FIG. 2B, a first pin hole 34 a concentric with the first roller 24 is formed within a spindle 34 of the first roller 24. Likewise, a second pin hole 36 a concentric with the second roller 26 is formed within a spindle 36 of the second roller 26.
  • The centers of the pin holes 34 a and 36 a are disposed on an arc whose center is the rocker shaft 16, which is the rotation center of the rocker arms 12 and 14. Then, when the first roller 24 is in contact with the base circle portion of the main cam 20 and the second roller 26 is in contact with the base circle portion of the subsidiary cam 22, the position of the first pin hole 34 a coincides with the position of the second pin hole 36 a in a view in the axis direction.
  • Furthermore, a cylindrical switch pin 38 is slidably disposed in the pin holes 34 a and 36 a. Besides, an opposite end portion of the first pin hole 34 a from the second rocker arm 14 is closed, and a second rocker arm 14-side end portion of the first pin hole 34 a is open. The first pin hole 34 a contains therein a return spring 40 that urges the switch pin 38 in the direction to the second rocker arm 14 (hereinafter, referred to as “advancement direction of the switch pin”). More specifically, the return spring 40 is constructed so as to always urge the switch pin 38 to the second rocker arm 14 side when it is actually mounted.
  • Besides, the second pin hole 36 a is a penetration hole in which a cylindrical piston 42 is slidably inserted. Furthermore, for the cylinder No. 1, a first link arm 44 that has an arm portion 44 a that contacts the piston 42 is disposed at a side surface of the second rocker arm 14 opposite the first rocker arm 12-side surface thereof. The first link arm 44 is attached to the rocker shaft 16.
  • On another hand, for the cylinder No. 2, a second link arm 46 that has an arm portion 46 a that contacts the piston 42 is disposed at a side surface of the second rocker arm 14 opposite the first rocker arm 12-side surface thereof. The second link arm 46 is attached to the rocker shaft 16.
  • The first link arm 44 is different from the second link arm 46 in the following respects. That is, a distal end of the arm portion 44 a of the first link arm 44 is provided with a projected portion 44 b that is projected toward a peripheral surface of the camshaft 18. Besides, an opposite end portion of the first link arm 44 from the arm portion 44 a is provided with a pressurization surface 44 c that is pressurized by an electromagnetic solenoid 54 (described below). Incidentally, the link arms provided for the cylinders No. 3 and No. 4 are the same as the second link arm 46 of the cylinder No. 2.
  • FIG. 3 is an exploded perspective view of characteristic component elements of the variable valve actuation apparatus 10 shown in FIG. 1. Incidentally, FIG. 3 omits the first roller 24, the second roller 26, the switch pin 38 disposed in the first and second rollers, etc. Besides, FIG. 4 shows a view of the variable valve actuation apparatus 10 of FIG. 1 which is taken from the axis direction of the camshaft 18 (and of the rocker shaft 16) (more specifically, from the direction indicated by the arrow 4A in FIG. 2A).
  • As shown in FIGS. 3 and 4, the rocker shaft 16 has a hollow shape. Inside the rocker shaft 16, a link shaft 48 is inserted slidably relative to the rocker shaft 16. The link shaft 48 is provided for enabling the first link arm 44 disposed for the cylinder No. 1 and the second link arms 46 disposed for the cylinders No. 2 to No. 4 to be simultaneously displaced in the axis direction of the rocker shaft 16.
  • The link shaft 48 is provided with four annular grooves 48 a that correspond to the placement sites of the link arms 44 and 46 of the four cylinders, as shown mainly in FIG. 3. Besides, a peripheral surface of the rocker shaft 16 is provided with four penetration holes 16 a that correspond to the annular grooves 48 a of the link shaft 48.
  • Besides, as shown in FIG. 4, the link shaft 48 and the rocker shaft 16 in which the link shaft 48 is inserted penetrate an interior of each link arm 44, 46. The link arms 44 and 46 have press-fit pin holes 44 d and 46 b, respectively, each of which receives a press-fit pin 50 that is press-fitted thereinto, as shown in FIG. 3. The press-fit pins 50, each penetrating a wall of a corresponding one of the link arms 44 and 46 through its pressure- fit hole 44 d, 46 b, are engaged with the corresponding annular grooves 48 a, as shown in FIG. 4.
  • The width of the annular grooves 48 a is set so as to be substantially equal to the diameter of the press-fit pins 50. Besides, each penetration hole 16 a of the rocker shaft 16 has such a generous size as to avoid causing interference between the press-fit pin 50 and the electromagnetic solenoid 54 and therefore avoid impeding the rotation of the first link arm 44 (or the second link arm 46) when the first link arm 44 (or the second link arm 46) rotates in association with motion of the electromagnetic solenoid 54. Furthermore, each penetration hole 16 a has such an elongated hole shape as to avoid causing interference between the penetration hole 16 a and the press-fit pin 50 and therefore avoid impeding the movement of the link shaft 48 when the link shaft 48 moves in the axis direction thereof in association with motion of the electromagnetic solenoid 54.
  • Since the foregoing construction is adopted, the first link arm 44 is linked to the link shaft 48 in such a manner that the first link arm 44 is allowed to freely rotate but is constrained from moving in the axis direction of the link shaft 48. Likewise, the second link arms 46 are also linked to the link shaft 48 in such a manner that the second link arms 46 are allowed to freely rotate but are constrained from moving in the axis direction.
  • Besides, as shown in FIG. 2A, FIG. 2B and FIG. 4, a cylindrical portion 18 a that has a cylindrical shape is provided on an outer peripheral surface of the camshaft 18 which faces a projected portion 44 b that is provided on the arm portion 44 a of the first link arm 44. An outer peripheral surface of the cylindrical portion 18 a is provided with a helical guide rail 52 that extends in a circumferential direction. In this construction, the guide rail 52 is formed as a helical groove.
  • Besides, the switching mechanism 32 includes an electromagnetic solenoid 54 as an actuator that produces drive force for causing the projected portion 44 b to be engaged with (inserted into) the guide rail 52. The electromagnetic solenoid 54 is duty-controlled on the basis of commands from an electronic control unit (ECU) 56. The ECU 56 is an electronic control unit that controls the state of operation of the internal combustion engine 1.
  • Besides, the electromagnetic solenoid 54 is fixed to a stationary member, such as the cam carrier 27 or the like, at such a position that a drive shaft 54 a of the solenoid 54 is able to pressurize the pressurization surface 44 c of the first link arm 44 toward the guide rail 52.
  • Besides, the orientation of the helix of the guide rail 52 is set such that when the camshaft 18 rotates in a predetermined rotation direction shown in FIG. 4 while the projected portion 44 b is inserted in the helical groove, the first link arm 44, the link shaft 48 that moves in operative connection with the first link arm 44, and the second link arms 46 that are driven by the link shaft 48 are displaced in the leftward direction in FIG. 2. More concretely, the leftward direction in FIG. 2 is the direction in which each of the first link arm 44 and the second link arms 46 approaches its adjacent rocker arms 12 and 14 while pushing the switch pin 38 in the withdrawal direction thereof (that is opposite the foregoing advancement direction of the switch pin) against the force of the return spring 40.
  • The position of the first link arm 44 in FIG. 2A, that is, the position of the first link arm 44 at which the switch pin 38 is inserted in both the first pin hole 34 a and the second pin hole 36 a due to force of the return spring 40, is referred to as “displacement end Pmax1”. When the first link arm 44 is positioned at the displacement end Pmax1, the first rocker arm 12 and the second rocker arm 14 assume the foregoing linked state. The position of the first link arm 44 in FIG. 2B, that is, the position of the first link arm 44 at which the switch pin 38 and the piston 42 are inserted only in the first pin hole 34 a and the second pin hole 36 a, respectively, as the switch pin 38 receives from the link arm 44 the force that is caused by torque of the camshaft 18, is referred to as “displacement end Pmax2”. That is, when the first link arm 44 is positioned at the displacement end Pmax2, the first rocker arm 12 and the second rocker arm 14 assume the foregoing unlinked state.
  • In Embodiment 1, the position of a beginning end 52 a of the guide rail 52 in the axis direction of the camshaft 18 is set so as to coincide with the position that the projected portion 44 b assumes when the first link arm 44 is positioned at the displacement end Pmax1. The position of a terminating end 52 b of the guide rail 52 in the axis direction of the camshaft 18 is set so as to coincide with the position that the projected portion 44 b assumes when the first link arm 44 is positioned at the displacement end Pmax2. That is, Embodiment 1 is constructed so that the first link arm 44 is displaced between the displacement end Pmax1 and the displacement end Pmax2, in a range determined by the guide rail 52 guiding the projected portion 44 b.
  • Furthermore, as shown in FIG. 4, the guide rail 52 is provided with a shallow bottom portion 52 c in which the guide rail 52 gradually becomes shallower with rotation of the camshaft 18, as a predetermined section of the guide rail 52 on a terminating end 52 b side which is used after the first link arm 44 reaches the displacement-end Pmax2. Incidentally, the depth of the guide rail 52 except the shallow bottom portion 52 c is constant.
  • Besides, the first link arm 44 is provided with a cut-out portion 44 e that is formed in a recess shape by cutting out a portion of the pressurization surface 44 c. The pressurization surface 44 c is provided so that contact thereof with the drive shaft 54 a is maintained while the first link arm 44 is displaced from the displacement end Pmax1 to the displacement end Pmax2. Then, the cut-out portion 44 e is provided at such a site on the first link arm 44 as to be engageable with the drive shaft 54 a when the projected portion 44 b is taken out from the guide rail 52 to the surface of the cylindrical portion 18 a due to operation of the shallow bottom portion 52 c during a state in which the first link arm 44 is positioned at the displacement end Pmax2.
  • The cut-out portion 44 e is formed so as to engage with the drive shaft 54 a in a manner such that the engagement of the cut-out portion 44 e with the drive shaft 54 a can restrict the first link arm 44 from rotating in such a direction that the projected portion 44 b is inserted into the guide rail 52, and such that the engagement can restrict the first link arm 44 from moving in the advancement direction of the switch pin 38.
  • As described above, the switching mechanism 32 is constructed of the switch pin 38, the return spring 40, the piston 42, the first link arm 44, the second link arm 46, the link shaft 48, the press-fit pin 50, the guide rail 52, and the electromagnetic solenoid 54 whose electrification is controlled by the ECU 56.
  • [MOTIONS OF VARIABLE VALVE ACTUATION APPARATUS] (DURING VALVE ACTING STATE) During a valve acting state, the driving of the electromagnetic solenoid 54 is off. Therefore, the first link arm 44 is apart from the camshaft 18, and is positioned at the displacement end Pmax1 due to the force that the first link arm 44 receives from the return spring 40. In this state, the first rocker arm 12 and the second rocker arm 14 are linked together via the switch pin 38 (the foregoing linked state), with regard to each cylinder, as shown in FIG. 2A. As a result, the operating force of the main cam 20 is transferred from the first rocker arm 12 to the two valves 28 via the second rocker arm 14. Therefore, in accordance with the profile of the main cams 20, normal lift motion of the valves 28 is performed.
  • (DURING VALVE STOP CONTROL) A valve stop motion is performed when the ECU 56 detects a demand for executing a predetermined valve stop motion, for example, a demand for the fuel-cut of the internal combustion engine 1, and the like. Firstly, the electrification of the electromagnetic solenoid 54 is started at a predetermined timing. As a result, the first link arm 44 rotates about the rocker shaft 16 (the link shaft 48) clockwise in FIG. 4. As stated above, the first link arm 44 is linked to the link shaft 48 in such a manner as to be rotatable. Therefore, the link shaft 48 does not rotate while the first link arm 44 rotates.
  • If the first link arm 44 rotates as described above, the projected portion 44 b engages with the guide rail 52. As a result, since the projected portion 44 b is guided by the guide rail 52, torque of the camshaft 18 is utilized to produce a force to move the first link arm 44 toward the displacement end Pmax2. Then, the drive force of the first link arm 44 engaged with the guide rail 52 is transferred to the second link arms 46 via the press-fit pins 50 thereof and the link shaft 48. Therefore, the link shaft 48 linked to the first link arm 44, and the second link arms 46 linked to the link shaft 48 are displaced in operative connection with the first link arm 44.
  • When the first link arm 44 reaches the displacement end Pmax2, the switch pin 38 is returned into the first pin hole 34 a, so that the first rocker arm 12 and the second rocker arm 14 assume the unlinked state. As a result, the operating force of the main cam 20 discontinues being transferred from the first rocker arm 12 to the second rocker arm 14. Besides, the subsidiary cams 22 that is in contact with the second rollers 26 of the second rocker arms 14 are zero-lift cams. Therefore, after the transfer thereto of the operating force of the main cam 20 discontinues, the second rocker arms 14 are no longer given force for driving the valves 28. As a result, irrespective of the rotation of the main cam 20, the second rocker arm 14 is in a stationary state, and the lift motion of the valves 28 is stopped at the closed valve position.
  • (MOTION FOR MAINTAINING THE VALVE STOPPED STATE) Besides, after the first link arm 44 reaches the displacement end Pmax2, the first link arm 44 is rotated in such a direction as to separate from the camshaft 18 (the guide rail 52) due to operation of the shallow bottom portion 52 c of the guide rail 52. Then, when the first link arm 44 is further rotated so that the cut-out portion 44 e of the first link arm 44 coincides with the drive shaft 54 a that continues being driven by the electromagnetic solenoid 54, the contact site of the first link arm 44 with the drive shaft 54 a switches from the pressurization surface 44 c to the cut-out portion 44 e. As a result, since the drive shaft 54 a engages with the cut-out portion 44 e, the first link arm 44 is held in a state in which the projected portion 44 b is apart from the camshaft 18 and in which the drive shaft 54 a bears the force of the return spring 40. Therefore, the state in which the first rocker arm 12 and the second rocker arm 14 are unlinked from each other, that is, the valve stopped state, is maintained. Besides, according to the motion of the drive shaft 54 a holding the first link arm 44 through the utilization of the cut-out portion 44 e, it is possible to maintain the valve stopped state while avoiding occurrence of friction and abrasion of the drive shaft 54 a associated with the sliding between the drive shaft 54 a and the camshaft 18 when the camshaft 18 rotates.
  • (DURING VALVE RETURNING MOTION) A valve returning motion for returning the valve state from the valve stopped state to the valve acting state is performed when the ECU 56 detects a demand for executing a predetermined valve returning motion, for example, a demand for return from the fuel-cut (a demand for discontinuation of the fuel-cut), or the like. This valve returning motion is started by turning off the electrification of the electromagnetic solenoid 54 at a predetermined timing. When the electrification of the electromagnetic solenoid 54 is turned off, the engagement between the cut-out portion 44 e of the first link arm 44 and the drive shaft 54 a of the electromagnetic solenoid 54 is removed. As a result, the force for retaining the switch pin 38 within the first pin hole 34 a against the force of the return spring 40 disappears. Due to this, the force of the return spring 40 moves the switch pin 38 in the advancement direction, bringing back the state in which the first rocker arm 12 and the second rocker arm 14 are linked together via the switch pin 38, that is, the state in which the lift motion of the valves 28 can be carried out by the operating force of the main cams 20. Besides, as the switch pin 38 moves in the advancement direction due to the force of the return spring 40, the first link arm 44 (as well as the link shaft 48 and the second link arm 46 that is operatively connected to the first link arm 44) is returned from the displacement end Pmax2 to the displacement end Pmax1 by the piston 42.
  • According to the variable valve actuation apparatus 10 of Embodiment 1 constructed as described above, the position of the first link arm 44 in the axis direction is moved between the displacement end Pmax1 and the displacement end Pmax2 by utilizing the turning on and off of the electrification of the electromagnetic solenoid 54, the torque of the camshaft 18, and the force of the return spring 40. Therefore, as for the cylinder No. 1 equipped with the first link arm 44, it becomes possible to switch the motion state of the valves 28 between the valve acting state and the valve stopped state. Furthermore, as for the other cylinders (No. 2 to No. 4), too, it becomes possible to switch the motion state of the valves 28 between the valve acting state and the valve stopped state, via the link shaft 48 and the second link arms 46 that are operatively connected to the first link arm 44. Thus, according to the variable valve actuation apparatus 10, the motion state of the valves 28 disposed for the four cylinders of the internal combustion engine 1 can be switched by using one electromagnetic solenoid 54. Besides, according to the variable valve actuation apparatus 10 having the foregoing construction, the valve stopped state can be brought about with high response during one rotation of the camshaft 18, by utilizing the torque of the camshaft 18.
  • Besides, in the foregoing variable valve actuation apparatus 10, the first link arm 44 is linked to the link shaft 48 in such a manner that, relative to the link shaft 48, the first link arm 44 is allowed to freely rotate but is constrained from moving in the axis direction. According to this linking method, the first link arm 44 will rotate alone without involving rotation of the link shaft 48, when the electromagnetic solenoid 54 presses the first link arm 44. Unlike this construction, in a construction in which the first link arm is fixed to the link shaft, when the first link arm is rotated due to electrification of the electromagnetic solenoid, the link shaft will rotate together therewith. As a result, when the projected portion is engaged with the guide rail, the inertia of the member that is driven by the electromagnetic solenoid increases by an amount that corresponds to the link shaft, and the friction that occurs on the members at the time of driving of the electromagnetic solenoid increases by an amount that corresponds to the sliding between the link shaft and the rocker shaft that occurs during rotation of the link shaft. Therefore, the required thrust force of the electromagnetic solenoid increases, and a large-side electromagnetic solenoid becomes necessary.
  • In Embodiment 1, however, the first link arm 44 and the link shaft 48 are constructed so as to be rotatable relative to each other. Therefore, the inertia of the member that is driven by the electromagnetic solenoid 54 in order to engage the projected portion 44 b with the guide rail 52 can be made small, and the friction force that occurs on the member can be made small. Therefore, the required thrust of the electromagnetic solenoid 54 can be favorably reduced, and the size of the electromagnetic solenoid 54 can be reduced.
  • Besides, in the variable valve actuation apparatus 10, the first link arm 44 and the second link arms 46 are mounted on the rocker shaft 16 that functions as a support shaft for the first rocker arms 12 and the second rocker arms 14. Besides, the two valves 28 of each cylinder are simultaneously driven by the second rocker arm 14 that has the contact portion 14 a that contacts the two valves 28. This construction, in comparison with a construction in which one valve is driven by one second rocker arm, makes it possible to utilize the unoccupied space obtained as a result of the use of a second rocker arm 14 for two valves in order to mount the first link arm 44 and the second link arms 46 for switching the motion state of the valves 28. Due to this, by effectively utilizing the space present over the cylinder head of the internal combustion engine 1, it is possible to improve the mountability of the variable valve actuation apparatus 10 on the internal combustion engine 1.
  • Besides, in the foregoing variable valve actuation apparatus 10, the link shaft 48 that transfers the drive force of the first link arm 44 engaged with the guide rail 52 to the second link arms 46 of the other cylinders is disposed within the rocker shaft 16. This construction, in comparison with a construction in which the link shaft is supported by a member apart from the rocker shaft, makes it possible to effectively utilize the space present over the cylinder head of the internal combustion engine 1 in order to improve the mountability of the variable valve actuation apparatus 10 on the internal combustion engine 1. Besides, the construction eliminates the need for component parts for supporting the link shaft. Besides, in a construction in which a rocker arm is directly supported by a link shaft, unlike the construction of Embodiment 1, friction force occurs between the link shaft and the rocker arm that receives the operating force of the cams when the link shaft is displaced in the axis direction thereof. On the other hand, according to the construction of Embodiment 1, since the link shaft 48 is disposed within the rocker shaft 16, the operating force of the main cams 20 does not directly act on the link shaft 48 via the first rocker arms 12 and the second rocker arms 14, and therefore the friction force that occurs when the link shaft 48 is displaced in the axis direction can be reduced.
  • By the way, in Embodiment 1 described above, in association with displacement of the first link arm 44 and the link shaft 48 (as well as the displacement of the second link arms 46 that occurs during the engagement between the projected portion 44 b of the first link arm 44 and the guide rail 52, the switch pin 38 of each cylinder is displaced. Then, as the first rocker arm 12 and the second rocker arm 14 of each cylinder are switched between the linked state and the unlinked state by displacement of the switch pin 38, the opening characteristic of the valves 28 of each cylinder is switched between the valve acting state and the valve stopped state. However, the variable valve actuation apparatus of the invention is not limited to the foregoing constructions as long as the opening characteristic of valves that are provided for at least two cylinders is switched as the motion state of a transfer member is switched in association with displacement of a main displacement member and a member-linked shaft which occurs when the engagement portion and the guide rail are engaged.
  • Concretely, the member that is displaced so as to switch the state of motion of the transfer member in association with displacement of the main displacement member and the member-linked shaft which occurs when the engagement portion and the guide rail are engaged is not limited to the switch pin 38. That is, for example, in a construction in which a rocker arm corresponding to the transfer member is rotatably supported by a rocker shaft, the foregoing member may also be a member that causes an operation in which in association with the movement of the main displacement portion and the member-linked shaft, the rocker arm is displaced on the rocker shaft in the axis direction of the rocker shaft, so that the cam that contacts the rocker arm is switched to another cam and therefore the state of motion of the rocker arm is switched. Alternatively, for example, in a construction that includes a rocker arm that has a roller that contacts cams, the foregoing member may also be a member that causes an operation in which in association with the displacement of the main displacement member and the member-linked shaft, the roller is displaced on the rocker arm in the axis direction of the spindle of the roller, so that the cam that contacts the roller is switched to another cam and therefore the state of motion of the rocker arm (transfer member) is switched. Also alternatively, for example, in a construction in which a rocker arm corresponding to the transfer member is rotatably supported by a rocker shaft, the foregoing member may also be a member that causes an operation in which in association with displacement of the main displacement member and the member-linked shaft, the rocker shaft itself is displaced in its own axis direction, so that the cam that contacts the rocker shaft is switched to another cam and therefore the state of motion of the rocker arm is switched. Furthermore, for example, in a construction in which a member equipped with two kinds of cams is mounted on a camshaft so as to be movable in the axis direction of the camshaft, the foregoing member may also be a member that causes an operation in which in association with displacement of the main displacement member and the member-linked shaft, the member equipped with two kinds of cams is displaced in the axis direction of the camshaft, so that the cam that contacts the transfer member is switched to another cam and therefore the state of motion of the transfer member is switched.
  • Besides, Embodiment 1 is described above with reference to an example that is the variable valve actuation apparatus 10 that drives the two valves that are disposed on each one of the four cylinders of the internal combustion engine 1. However, the variable valve actuation apparatus of the invention is not limited to the foregoing constructions but may have any construction as long as the opening characteristics of the valves provided for at least two cylinders are switched. That is, the variable valve actuation apparatus of the invention may be, for example, an apparatus constructed so as to drive the valves of all the cylinders of the internal combustion engine that has two or more cylinders, or may also be an apparatus constructed so as to drive the valves of at least two cylinders of an internal combustion engine that has three or more cylinders.
  • Besides, in Embodiment 1 described above, only the cylinder No. 1 of the four cylinders is equipped with the cylindrical portion 18 a that has the guide rail 52, and with the electromagnetic solenoid 54 and the first link arm 44. However, in the invention, the cylinder equipped with elements that correspond to the foregoing components is not limited so, but may be any one or more of the cylinders of the engine as long as the foregoing cylinder does not correspond to each one of the cylinders. Alternatively, it is also permissible to adopt a construction in which the foregoing elements are provided separately from an arbitrary one of the cylinders and each cylinder is equipped with a subsidiary displacement member such as the second link arm 46 that does not have the projected portion 44 b.
  • Besides, in Embodiment 1 described above, the first link arm 44 and the second link arms 46 are rotatably supported by utilizing the rocker shaft 16 that is provided for supporting the first rocker arm 12 and the second rocker arms 14. However, the member that supports the main displacement member or the subsidiary displacement member in the invention is not limited to the rocker shaft. That is, the member that supports the main displacement member and the subsidiary displacement member in the invention may be, for example, a shaft that is provided separately from the rocker shaft. Alternatively, the main displacement member and the subsidiary displacement member in the invention may be supported only by a member that functions as a member-linked shaft in the invention (for example, by the ring shaft 48).
  • Besides, in Embodiment 1 described above, the link shaft 48 is disposed within the rocker shaft 16. However, the technique of disposing the member-linked shaft in the invention is not limited to this disposal, but it is also permissible to adopt, for example, a construction in which a shaft that functions as the member-linked shaft is provided at an outer peripheral side of the rocker shaft.
  • Besides, in Embodiment 1 described above, the link shaft 48 is provided with the annular grooves 48 a that engage with the press-fit pins 50, in order to link the first link arm 44 (and the second link arms 46 as well) to the link shaft 48 in such a manner that the first link arm 44 is allowed to rotate relative to the link shaft 48, and is constrained from moving in the axis direction of the link shaft 48. However, in the invention, the element provided for realizing the function of linking the main displacement member in such a manner that the main displacement member is allowed to freely rotate and is constrained from moving in the axis direction does not need to be the annular grooves 48 a. That is, for example, in the case where there is provided a construction in which the press-fit pins are press-fit into the first link arms as in the construction of Embodiment 1 and where the link shaft has grooves that engage with the press-fit pins, it is not altogether necessary that the grooves be annular if the grooves are provided so that the press-fit pins will move without rotating the link shaft when the first link arm is rotated by the electromagnetic solenoid. For example, the grooves may be arcuate grooves.
  • Besides, although in Embodiment 1 described above, the subsidiary cams 22 are zero-lift cams, the subsidiary cam in the invention is not limited to a zero-lift cam. That is, in a construction as in the foregoing variable valve actuation apparatus 10, the subsidiary cams may have a nose portion that achieves a smaller lift than the nose portion of the main cams 20.
  • Besides, Embodiment 1 described above includes the electromagnetic solenoid 54 as an actuator that produces drive force for engaging the projected portion 44 b with the guide rail 52. Therefore, the opening characteristic of the valves 28 can be switched by utilizing the actuator that is excellent in responsiveness. However, in the invention, the actuator is not limited so, but may also be, for example, a hydraulically driven actuator.
  • Incidentally, in Embodiment 1 described above, the main cams 20 function as a “cam” in the first aspect of the invention, and the first rocker arms 12 and the second rocker arms 14 each function as a “transfer member” in the first aspect, and the projected portion 44 b functions as an “engagement portion” in the first aspect, and the first link arm 44 functions as a “main displacement member” in the first aspect, and the link shaft 48 functions as a “member-linked shaft” in the first aspect, and the electromagnetic solenoid 54 functions as an “actuator” in the first aspect. Besides, in Embodiment 1 described above, the second link arms 46 each function as a “subsidiary displacement member” in the first aspect. Besides, in Embodiment 1 described above, the annular grooves 48 a function as a “groove” in the first aspect, and the press-fit pins 50 function as a “pin” in the first aspect.

Claims (6)

1. A variable valve actuation apparatus for an internal combustion engine comprising:
transfer members that are disposed between cams and valves and that transfer operating force of the cams to the valves;
a camshaft on which the cams are provided;
a guide rail provided on an outer peripheral surface of a cylindrical portion that is provided on the camshaft;
a main displacement member which has an engagement portion that is engageable with and disengageable from the guide rail and which is displaceable in an axis direction of the camshaft;
a member-linked shaft which is linked to the main displacement member in such a manner that, relative to the member-linked shaft, the main displacement member is allowed to rotate and is constrained from moving in the axis direction; and
an actuator that produces drive force for engaging the engagement portion of the main displacement member with the guide rail, wherein when the actuator operates, the main displacement member rotates about the member-linked shaft so that the engagement portion engages with the guide rail, and in association with displacement of the main displacement member and the member-linked shaft that occurs when the engagement portion and the guide rail are engaged, state of motion of the transfer member changes so that opening characteristic of the valves that are provided for at least two cylinders is switched.
2. The variable valve actuation apparatus according to claim 1, wherein the main displacement member, the guide rail and the actuator are provided corresponding to at least one but not all of the cylinders of the internal combustion engine, and the variable valve actuation apparatus further comprising:
a subsidiary displacement member which is provided for at least one other cylinder that is not provided with the main displacement member, and which is displaced in operative connection with the main displacement member via the member-linked shaft, wherein the state of motion of the transfer member provided for the cylinder that is provided with the main displacement member changes in association with the displacement of the main displacement member that occurs when the engagement portion and the guide rail are engaged, and the state of motion of the transfer member provided for the at least one other cylinder that is provided with the subsidiary displacement member changes in association with the displacement of the subsidiary displacement member which is in operative connection with the displacement of the main displacement member.
3. The variable valve actuation apparatus according to claim 2, wherein the transfer member, for each of the at least two cylinders, includes a first rocker arm that is oscillatable synchronously with the cams, and a second rocker arm that is able to push the valves, the variable valve actuation apparatus further comprising:
a switch pin that is disposed movably in a pin hole formed in the first rocker arm and in a pin hole formed in the second rocker arm, wherein the switch pin for the cylinder provided with the main displacement member is displaced in operative connection with the displacement of the main displacement member, and the switch pin for the at least one other cylinder that is provided with the subsidiary displacement member is displaced in operative connection with the displacement of the subsidiary displacement member, and wherein for the cylinder provided with the main displacement member, the first rocker arm and the second rocker arm are switched via the switch pin between a linked state in which the first rocker arm and the second rocker arm are linked together and an unlinked state in which linkage between the first rocker arm and the second rocker arm is removed, in operative connection with the displacement of the main displacement member, and for the at least one other cylinder provided with the subsidiary displacement member, the first rocker arm and the second rocker arm are switched via the switch pin between the linked state in which the first rocker arm and the second rocker arm are linked together and the unlinked state in which the linkage between the first rocker arm and the second rocker arm is removed, in operative connection with the displacement of the subsidiary displacement member.
4. The variable valve actuation apparatus according to claim 3, wherein the member-linked shaft is disposed within a rocker shaft that supports the first rocker arms and the second rocker arms.
5. The variable valve actuation apparatus according to claim 3, wherein the second rocker arm is used for a plurality of the valves that are provided for a cylinder.
6. The variable valve actuation apparatus according to claim 1, wherein an outer peripheral surface of the member-linked shaft is provided with a groove that has an annular or arcuate shape, and the member-linked shaft penetrates an interior of the main displacement member, and the variable valve actuation apparatus further comprising:
a pin that penetrates the main displacement member and that engages with the groove.
US13/318,870 2009-05-28 2010-05-26 Variable valve actuation apparatus for internal combustion engine Abandoned US20120055428A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009129481A JP4752949B2 (en) 2009-05-28 2009-05-28 Variable valve operating device for internal combustion engine
JP2009-129481 2009-05-28
PCT/IB2010/001237 WO2010136875A1 (en) 2009-05-28 2010-05-26 Variable valve actuation apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
US20120055428A1 true US20120055428A1 (en) 2012-03-08

Family

ID=42732715

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/318,870 Abandoned US20120055428A1 (en) 2009-05-28 2010-05-26 Variable valve actuation apparatus for internal combustion engine

Country Status (6)

Country Link
US (1) US20120055428A1 (en)
EP (1) EP2435670A1 (en)
JP (1) JP4752949B2 (en)
KR (1) KR20120012478A (en)
CN (1) CN102449275A (en)
WO (1) WO2010136875A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222635A1 (en) * 2009-11-25 2012-09-06 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
CN103711541A (en) * 2012-09-28 2014-04-09 本田技研工业株式会社 Variable valve of internal combustion engine
US8925504B2 (en) 2009-11-25 2015-01-06 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
US20180045083A1 (en) * 2016-08-09 2018-02-15 Otics Corporation Variable valve mechanism of internal combustion engine
US10352201B2 (en) * 2015-10-05 2019-07-16 Yamaha Hatsudoki Kabushiki Kaisha Valve mechanism of engine
CN110832173A (en) * 2017-07-05 2020-02-21 舍弗勒技术股份两合公司 Variable valve drive mechanism of piston type internal combustion engine
US10767517B2 (en) * 2017-01-31 2020-09-08 Schaeffler Technologies AG & Co. KG Variable valve drive of a combustion piston engine
US11891923B2 (en) 2019-09-10 2024-02-06 Eaton Intelligent Power Limited Valvetrain with rocker shaft housing magnetic latch

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793070B2 (en) * 2011-12-27 2015-10-14 株式会社オティックス Variable valve mechanism
JP2014047623A (en) * 2012-08-29 2014-03-17 Honda Motor Co Ltd Variable valve device
JP6015490B2 (en) * 2013-02-26 2016-10-26 マツダ株式会社 Engine valve gear
KR101448795B1 (en) * 2013-08-27 2014-10-10 현대자동차 주식회사 Mutiple variable valve lift appratus
JP5971228B2 (en) * 2013-11-28 2016-08-17 株式会社デンソー Electromagnetic actuator
TWI572118B (en) * 2015-06-30 2017-02-21 Solen Electric Co Ltd Rotary electromagnetic solenoid
DE202015009047U1 (en) * 2015-08-07 2016-08-03 Mahle International Gmbh Valve train for an internal combustion engine
DE102016204889A1 (en) * 2016-03-23 2017-09-28 Mahle International Gmbh Valve train for an internal combustion engine
JP7101624B2 (en) * 2019-01-16 2022-07-15 株式会社オティックス Variable valve mechanism of internal combustion engine
US11428127B2 (en) * 2020-02-19 2022-08-30 Eaton Intelligent Power Limited Castellation device, mechanical capsule, and rocker arm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415954B2 (en) * 2005-04-26 2008-08-26 Chrysler Llc Rocker shaft arrangement for an engine
US8191520B2 (en) * 2009-05-29 2012-06-05 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
US8251028B2 (en) * 2008-11-05 2012-08-28 Toyota Jidosha Kabushiki Kaisha Valve operating apparatus for internal combustion engine
US8443588B2 (en) * 2010-01-18 2013-05-21 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US8468988B2 (en) * 2009-02-25 2013-06-25 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645103A (en) * 1979-09-21 1981-04-24 Suzue Agric Mach Propelling device of power tiller
JPH0735607B2 (en) * 1986-02-03 1995-04-19 チッソ株式会社 Elastic composite fiber and method for producing the same
DE3687661T2 (en) * 1986-10-01 1993-05-27 Honda Motor Co Ltd VALVE DRIVE MECHANISM FOR INTERNAL COMBUSTION ENGINE.
JPH04194306A (en) * 1990-11-28 1992-07-14 Mazda Motor Corp Valve system for multi-cylinder engine
DE4230877A1 (en) * 1991-09-30 1993-04-01 Volkswagen Ag Control for lift valve with two cams - comprises cam block containing two cams which is axially displaceable but non rotatable peripherally on camshaft
JPH0633714A (en) * 1992-07-17 1994-02-08 Mitsubishi Motors Corp Valve system structure with variable valve timing mechanism
JP3365805B2 (en) * 1993-01-20 2003-01-14 株式会社オティックス Variable valve mechanism
FR2706180B1 (en) * 1993-06-08 1995-07-13 Renault Variable distribution device for internal combustion engine.
DE19611641C1 (en) * 1996-03-25 1997-06-05 Porsche Ag Valve operating cam drive for combustion engines
JPH10196334A (en) * 1996-12-27 1998-07-28 Takashi Hikita Variable valve timing lift mechanism
DE19945340A1 (en) * 1999-09-22 2001-03-29 Schaeffler Waelzlager Ohg Valve gear for different strokes of gas change valve of internal combustion engine; has cam group of at least two cams on camshaft and cam follower with switch slider supported in grooves on camshaft
JP2004143933A (en) * 2002-08-29 2004-05-20 Toyota Motor Corp Valve control mechanism
DE10241920A1 (en) * 2002-09-10 2004-03-18 Bayerische Motoren Werke Ag Valve control system for IC engine has at least two cams per cylinder on a camshaft with axial adjustment and with one cam with a circular outer profile to switch off the valve action
DE102004011586A1 (en) * 2003-03-21 2004-10-07 Audi Ag Valve gear for internal combustion engine has facility whereby in first and second axial positions of cam carrier first and second stop faces fixed on cam carrier bear against respective first and second stop faces fixed on cylinder head
KR100621961B1 (en) * 2004-04-13 2006-09-19 미쯔비시 지도샤 고교 가부시끼가이샤 Variable driving valve device of internal combustion engine
US7156062B2 (en) * 2004-04-19 2007-01-02 Jacobs Vehicle Systems, Inc. Valve actuation system with valve seating control
JP2009293613A (en) * 2008-05-08 2009-12-17 Toyota Motor Corp Valve system of internal-combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415954B2 (en) * 2005-04-26 2008-08-26 Chrysler Llc Rocker shaft arrangement for an engine
US8251028B2 (en) * 2008-11-05 2012-08-28 Toyota Jidosha Kabushiki Kaisha Valve operating apparatus for internal combustion engine
US8468988B2 (en) * 2009-02-25 2013-06-25 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
US8191520B2 (en) * 2009-05-29 2012-06-05 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
US8443588B2 (en) * 2010-01-18 2013-05-21 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222635A1 (en) * 2009-11-25 2012-09-06 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
US8925504B2 (en) 2009-11-25 2015-01-06 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
US8955476B2 (en) * 2009-11-25 2015-02-17 Toyota Jidosha Kabushiki Kaisha Variable valve operating apparatus for internal combustion engine
CN103711541A (en) * 2012-09-28 2014-04-09 本田技研工业株式会社 Variable valve of internal combustion engine
US10352201B2 (en) * 2015-10-05 2019-07-16 Yamaha Hatsudoki Kabushiki Kaisha Valve mechanism of engine
US20180045083A1 (en) * 2016-08-09 2018-02-15 Otics Corporation Variable valve mechanism of internal combustion engine
US10260381B2 (en) * 2016-08-09 2019-04-16 Otics Corporation Variable valve mechanism of internal combustion engine
US10767517B2 (en) * 2017-01-31 2020-09-08 Schaeffler Technologies AG & Co. KG Variable valve drive of a combustion piston engine
CN110832173A (en) * 2017-07-05 2020-02-21 舍弗勒技术股份两合公司 Variable valve drive mechanism of piston type internal combustion engine
US20200224560A1 (en) * 2017-07-05 2020-07-16 Schaeffler Technologies AG & Co. KG Variable valve drive of a combustion piston engine
US10920625B2 (en) * 2017-07-05 2021-02-16 Schaeffler Technologies AG & Co. KG Variable valve drive of a combustion piston engine
US11891923B2 (en) 2019-09-10 2024-02-06 Eaton Intelligent Power Limited Valvetrain with rocker shaft housing magnetic latch

Also Published As

Publication number Publication date
WO2010136875A1 (en) 2010-12-02
JP2010275935A (en) 2010-12-09
CN102449275A (en) 2012-05-09
KR20120012478A (en) 2012-02-09
JP4752949B2 (en) 2011-08-17
EP2435670A1 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US20120055428A1 (en) Variable valve actuation apparatus for internal combustion engine
EP2505797B1 (en) Variable valve device for internal combustion engine
EP1172528B1 (en) Valve drive device of four-stroke cycle engine
US7565887B2 (en) Valve actuation device of internal combustion engine
KR101588763B1 (en) Mutiple variable valve lift appratus
EP2653673A1 (en) A switchable rocker arm
US8186318B2 (en) Variable valve operating apparatus for internal combustion engine
JP4911246B2 (en) Valve operating device for internal combustion engine
KR100969019B1 (en) Continuously variable valve lift system in engines
JP2012007520A (en) Variable valve timing device of internal combustion engine
JP2013501872A (en) Valve drive for an internal combustion engine for operating a gas intake / exhaust valve
US7377241B2 (en) Valve operating system for internal combustion engine
KR101945286B1 (en) Variable valve lift actuator of engine
KR101716321B1 (en) Variable valve lift actuator of engine
JP2011144780A (en) Variable valve system of internal combustion engine
JP4469341B2 (en) Variable valve mechanism
JP2019194443A (en) Variable valve gear of internal combustion engine
JP5569423B2 (en) Variable valve operating device for internal combustion engine
KR101755519B1 (en) Continuous variable vavle duration apparatus and engine provided with the same
KR101675511B1 (en) Variable valve lift actuator of engine
JP2006207591A (en) Cylinder valve operation system of internal combustion engine
JP2010101270A (en) Valve gear of internal combustion engine
JP3923314B2 (en) SOHC type valve gear for internal combustion engine
JPH10103033A (en) Valve system of engine
JP2011190757A (en) Variable valve device of internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIDOOKA, AKIO;REEL/FRAME:027212/0905

Effective date: 20111011

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE