US20120053541A1 - Negative pressure wound therapy system and a feedback control method for the same - Google Patents

Negative pressure wound therapy system and a feedback control method for the same Download PDF

Info

Publication number
US20120053541A1
US20120053541A1 US12/872,973 US87297310A US2012053541A1 US 20120053541 A1 US20120053541 A1 US 20120053541A1 US 87297310 A US87297310 A US 87297310A US 2012053541 A1 US2012053541 A1 US 2012053541A1
Authority
US
United States
Prior art keywords
negative pressure
positive pressure
wound
fluid
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/872,973
Inventor
Nan-Kuang Yao
Jhy-Wen Wu
Luo-Hwa Miau
Jen-Chien Chien
Li-Ling Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wellell Inc
Original Assignee
Apex Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apex Medical Corp filed Critical Apex Medical Corp
Priority to US12/872,973 priority Critical patent/US20120053541A1/en
Assigned to APEX MEDICAL CORP. reassignment APEX MEDICAL CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIEN, JEN-CHIEN, MIAU, LUO-HWA, LI, LI-LING, WU, JHY-WEN, YAO, NAN-KUANG
Publication of US20120053541A1 publication Critical patent/US20120053541A1/en
Priority to US13/930,193 priority patent/US9278164B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/79Filters for solid matter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/962Suction control thereof having pumping means on the suction site, e.g. miniature pump on dressing or dressing capable of exerting suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/966Suction control thereof having a pressure sensor on or near the dressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/80Suction pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3351Controlling upstream pump pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3355Controlling downstream pump pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7545General characteristics of the apparatus with filters for solid matter, e.g. microaggregates

Definitions

  • the present invention relates to a negative pressure wound therapy system and a feedback control method for the same, especially to a therapy system creating negative pressure in the wound environment to promote healing in wounds.
  • Negative pressure wound therapy utilizes wound sheets, soft suction pads, or biocompatibility pore materials to attach on the wounds and connects to a vacuum pump.
  • the vacuum pump creates negative pressure in the wound to extract the pus and infection subjects and to draw the healthy tissue fluid so that a moist therapy environment is maintained. Therefore, the blood circulation around the wound is promoted to accelerate wound healing.
  • One of the conventional negative pressure wound therapy systems has a rigid collector connecting to a front end of the vacuum pump to extract the pus and the infection subjects into the rigid collector.
  • a negative pressure sensor detects the negative pressure in the collector to determine whether the traditional system is operated normally.
  • the vacuum pump is connected to the rear end of the rigid collector, the pump is further from the wound so that the pump needs more power to create negative pressure in the wound and to extract the pus and the infection subjects from the wound.
  • the collector is connected to the rear end of the vacuum pump.
  • the vacuum pump is directly connected to the wound sheet attached on the wound so that the vacuum pump uses less power.
  • the collector does not have the same negative pressure environment as the wound. Therefore, the negative pressure sensor is not useful to detect.
  • the present invention provides a negative pressure wound therapy system and a feedback control method for the same to mitigate or obviate the aforementioned problems.
  • the main objective of the present invention is to provide a negative pressure wound therapy system and a feedback control method for the same.
  • the system creates a negative pressure environment in the opening of a wound-dressing unit and a positive pressure environment in the collecting bag. Then a positive pressure detecting procedure is proceeded in the positive pressure environment and a negative pressure detecting procedure is proceeded in the negative pressure environment. The detecting results are sent to determine whether a micro pump is stopped.
  • FIG. 1 is a perspective view of a negative pressure wound therapy system in accordance with the present invention
  • FIG. 2 is a block diagram shown the connection of the negative pressure wound therapy system in FIG. 1 ;
  • FIG. 3 is a perspective view of a wound-dressing unit of the negative pressure wound therapy system
  • FIG. 4 is an exploded perspective view of the negative pressure wound therapy system in FIG. 1 ;
  • FIG. 5 is an exploded perspective view of a sensor assembly and an actuator of the negative pressure wound therapy system in FIG. 1 ;
  • FIG. 6 is a partial perspective view of the actuator of the negative pressure wound therapy system in FIG. 1 ;
  • FIG. 7 is a flow chart shown test mode of a feedback control method in accordance with the present invention for the negative pressure wound therapy system in FIG. 1 ;
  • FIG. 8 is a flow chart shown operating mode of the feedback control method for the negative pressure wound therapy system in FIG. 1 .
  • a negative pressure wound therapy system in accordance with the present invention comprises a controller 10 , a sensor assembly 20 , an actuator 30 , a collector 40 and a wound-dressing unit 50 .
  • the controller 10 comprises a microprocessor 11 , a power supply unit 12 and a control panel 13 .
  • the power supply unit 12 electrically connects to the microprocessor 11 , provides electricity and may be a battery set, or may be a power converter connected to an external power source.
  • the control panel 13 is attached to an outer surface of the controller 10 and electrically connects to the microprocessor 11 and the power supply unit 12 .
  • the sensor assembly 20 comprises a negative pressure sensor 21 , a positive pressure sensor 22 and a relief valve 23 .
  • the relief valve 23 adjusts the pressure of the system and may apply an intermittent mode.
  • the actuator 30 comprises a micro pump 31 .
  • the collector 40 comprises a collecting bag 41 and a liquid absorber 42 .
  • the liquid absorber 42 is mounted in the collecting bag 41 .
  • the wound-dressing unit 50 comprises a wound sheet 51 and a conduit 52 .
  • the wound sheet 51 has an opening 511 .
  • the conduit 52 is attached securely to the wound sheet 51 and is connected to the opening 511 and has a filter strip 521 .
  • the filter strip 521 is made of biocompatibility materials and keeps solid chips such as tissue fragment from flowing into the conduit 52 .
  • the conduit 52 is attached securely to the wound sheet 51 by ultrasonic welding.
  • the negative pressure wound therapy system in accordance with the present invention comprises electrical connection and fluid connection to connect aforementioned elements.
  • the controller 10 is electrically connected to the sensor assembly 20 , and the sensor assembly 20 is electrically connected to the actuator 30 .
  • Detachable electrical wire set forms the electrical connection.
  • an electrical wire 61 with a plug 62 protrudes out from the sensor assembly 20 .
  • the controller 10 has a corresponding socket 63 .
  • the plug 62 is plugged detachably into the socket 63 to form the electrical connection.
  • a fluid connection is formed between the pump inlet 311 of the micro pump 31 and the conduit 52 .
  • a fluid connection is formed between the pump outlet 312 of the micro pump 31 and the entry end of the collecting bag 41 .
  • a check valve is mounted in the entry end 411 of the collecting bag 41 to keep the liquid in the collecting bag 41 from flowing back to infect the wound.
  • Detachable fluid tube set forms the fluid connections. For example, a first tube 64 with a fluid connector 65 protrudes out from the micro pump 31 and a second tube 64 with a fluid connector 65 protrudes out from the conduit 52 .
  • the fluid connectors 65 detachably connect to each other to form the fluid connection.
  • a fluid connection is formed between the positive pressure sensor 22 and the detecting end 412 of the collecting bag 41 .
  • a fluid connection is formed between the negative pressure sensor 21 , the relief valve 23 and the conduit 52 , especially through the pump inlet 311 of the micro pump 31 .
  • Detachable tube set forms the fluid connections.
  • a tube 64 with a first fluid connector 65 protrudes out from the positive pressure sensor 22 .
  • a second fluid connector 65 is mounted on the detecting end 412 of the collecting bag 41 .
  • the fluid connectors 65 detachably connect to each other to form the fluid connection.
  • the sensor assembly 20 has a first connecting interface 201
  • the actuator 30 has a second connecting interface 301 .
  • the first connecting interface 201 has a first electrical connector 202 and a first fluid connector 203 .
  • the second connecting interface 301 has a second electrical connector 302 and a second fluid connector 303 .
  • the micro pump 31 is electrically connected to the second electrical connector 302 .
  • the connecting interfaces 201 , 301 are connected detachably to each other.
  • the first electrical connector 202 is connected to the second electrical connector 302 .
  • the first fluid connector 203 is connected to the second fluid connector 303 .
  • a fluid division 66 may be a manifold and comprises a first passage 661 and a second passage 662 .
  • the first passage 661 connects the pump inlet 311 of the micro pump 31 and the conduit 52 .
  • the second passage 662 connects the second fluid connector 303 and the conduit 52 .
  • filters 70 are mounted in the detecting end 412 of the collecting bag 41 and the second fluid connector 303 of the actuator 30 to keep the infections from flowing into the sensor assembly 20 .
  • the wound sheet 51 covers the wound of the patient with the opening 511 facing the wound.
  • the user actuates the micro pump 31 through the control panel 13 .
  • the micro pump 31 creates a negative pressure environment in the wound through the fluid connections and extracts the pus and infection subjects from the wound.
  • the pus and infection subjects pass through the actuator 30 and are collected in the collecting bag 41 .
  • the system as described has following advantages.
  • each component Since all of the components connect to each other by detachable electrical wire sets and detachable tube sets, each component is available to be disassembled and repaired independently.
  • the components have different lifespan.
  • the collector 40 and the wound-dressing unit 50 directly contact the infections so that the collector 40 and the wound-dressing unit 50 need to be replaced frequently while the controller 10 , the actuator 30 and the sensor assembly 20 can be used for a long time. Therefore, the detachable connections are convenient for users to disassemble and replace each component.
  • the detachable connections allow the user only bring some of the components to move.
  • the user only carries the controller 10 , the sensor assembly 20 and the actuator 30 , and leaves the collectors 40 and the wound-dressing units 50 at different places, and vice versa. Therefore, the user only needs to carry part of the system.
  • the actuator 30 is located in front of the collecting bag 41 .
  • the micro pump 31 is directly connected to the wound sheet attached on the wound so that the micro pump uses less power.
  • a feedback control method in accordance with the present invention for the system as described comprises a test mode and an operating mode.
  • the system enters the test mode.
  • the micro pump 31 inflates the fluid connections in the system.
  • the positive pressure sensor 22 detects whether the positive pressure at the detecting end 412 of the collecting bag 41 is normal.
  • the test mode is ended.
  • the positive pressure is normal. If the positive pressure is normal, the system enters the operating mode.
  • the micro pump 31 creates a negative pressure environment in the wound through the opening 511 of the wound sheet 51 and extracts the pus and infection subjects from the wound. Then the collecting bag 41 is accordingly formed as a positive pressure environment. Then the positive pressure detecting procedure and negative pressure detecting procedure are started.
  • the positive pressure detecting procedure detects the positive pressure in the collecting bag 41 .
  • the positive pressure sensor 22 detects whether the positive pressure in the collecting bag 41 is normal. When the fluid connections between the collecting bag 41 and other elements are disconnected, or an external overload is applied to the collecting bag 41 , or the collecting bag 41 is full of liquid, the positive pressure of the detecting end 412 of the collecting bag 41 is abnormal. If the positive pressure is abnormal, the positive pressure sensor 22 sends a signal to the microprocessor 11 to stop the micro pump 31 and send an alarm signal to notify the user. Therefore, the pus and the infection subjects are prevented from leaking out of the fluid connections or the collecting bag 41 is prevented from breaking because of overload or being full. Then the operating mode is ended. If the positive pressure is normal, the positive pressure sensor 22 keeps processing the positive pressure detecting procedure.
  • the negative pressure detecting procedure detects the negative pressure in the wound.
  • the negative pressure sensor 21 detects whether the negative pressure in the opening 511 of the wound sheet 51 is normal. When the fluid connections is obstructed or is disconnected, the negative pressure is abnormal. If the negative pressure is abnormal, the negative pressure sensor 21 sends a signal to the microprocessor 11 to stop the micro pump 31 and send an alarm signal to notify the user. If the negative pressure is normal, the negative pressure sensor 23 keeps processing the positive pressure detecting procedure.

Abstract

A negative pressure wound therapy system creates a negative pressure environment in the opening of a wound-dressing unit and a positive pressure environment in the collecting bag. Then a positive pressure detecting procedure is proceeded in the positive pressure environment and a negative pressure detecting procedure is proceeded in the negative pressure environment. The detecting results are sent to determine whether a micro pump is stopped.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a negative pressure wound therapy system and a feedback control method for the same, especially to a therapy system creating negative pressure in the wound environment to promote healing in wounds.
  • 2. Description of the Prior Arts
  • Negative pressure wound therapy utilizes wound sheets, soft suction pads, or biocompatibility pore materials to attach on the wounds and connects to a vacuum pump. The vacuum pump creates negative pressure in the wound to extract the pus and infection subjects and to draw the healthy tissue fluid so that a moist therapy environment is maintained. Therefore, the blood circulation around the wound is promoted to accelerate wound healing.
  • One of the conventional negative pressure wound therapy systems has a rigid collector connecting to a front end of the vacuum pump to extract the pus and the infection subjects into the rigid collector. A negative pressure sensor detects the negative pressure in the collector to determine whether the traditional system is operated normally. However, since the vacuum pump is connected to the rear end of the rigid collector, the pump is further from the wound so that the pump needs more power to create negative pressure in the wound and to extract the pus and the infection subjects from the wound.
  • Another conventional negative pressure wound therapy system solves the above problem. The collector is connected to the rear end of the vacuum pump. The vacuum pump is directly connected to the wound sheet attached on the wound so that the vacuum pump uses less power. However, the collector does not have the same negative pressure environment as the wound. Therefore, the negative pressure sensor is not useful to detect.
  • To overcome the shortcomings, the present invention provides a negative pressure wound therapy system and a feedback control method for the same to mitigate or obviate the aforementioned problems.
  • SUMMARY OF THE INVENTION
  • The main objective of the present invention is to provide a negative pressure wound therapy system and a feedback control method for the same. The system creates a negative pressure environment in the opening of a wound-dressing unit and a positive pressure environment in the collecting bag. Then a positive pressure detecting procedure is proceeded in the positive pressure environment and a negative pressure detecting procedure is proceeded in the negative pressure environment. The detecting results are sent to determine whether a micro pump is stopped.
  • Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a negative pressure wound therapy system in accordance with the present invention;
  • FIG. 2 is a block diagram shown the connection of the negative pressure wound therapy system in FIG. 1;
  • FIG. 3 is a perspective view of a wound-dressing unit of the negative pressure wound therapy system;
  • FIG. 4 is an exploded perspective view of the negative pressure wound therapy system in FIG. 1;
  • FIG. 5 is an exploded perspective view of a sensor assembly and an actuator of the negative pressure wound therapy system in FIG. 1;
  • FIG. 6 is a partial perspective view of the actuator of the negative pressure wound therapy system in FIG. 1;
  • FIG. 7 is a flow chart shown test mode of a feedback control method in accordance with the present invention for the negative pressure wound therapy system in FIG. 1; and
  • FIG. 8 is a flow chart shown operating mode of the feedback control method for the negative pressure wound therapy system in FIG. 1.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • With reference to FIG. 1, a negative pressure wound therapy system in accordance with the present invention comprises a controller 10, a sensor assembly 20, an actuator 30, a collector 40 and a wound-dressing unit 50.
  • With reference to FIGS. 1 and 2, the controller 10 comprises a microprocessor 11, a power supply unit 12 and a control panel 13. The power supply unit 12 electrically connects to the microprocessor 11, provides electricity and may be a battery set, or may be a power converter connected to an external power source. The control panel 13 is attached to an outer surface of the controller 10 and electrically connects to the microprocessor 11 and the power supply unit 12.
  • The sensor assembly 20 comprises a negative pressure sensor 21, a positive pressure sensor 22 and a relief valve 23. The relief valve 23 adjusts the pressure of the system and may apply an intermittent mode.
  • The actuator 30 comprises a micro pump 31.
  • The collector 40 comprises a collecting bag 41 and a liquid absorber 42. The liquid absorber 42 is mounted in the collecting bag 41.
  • With reference to FIG. 3, the wound-dressing unit 50 comprises a wound sheet 51 and a conduit 52. The wound sheet 51 has an opening 511. The conduit 52 is attached securely to the wound sheet 51 and is connected to the opening 511 and has a filter strip 521. The filter strip 521 is made of biocompatibility materials and keeps solid chips such as tissue fragment from flowing into the conduit 52. In a preferred embodiment, the conduit 52 is attached securely to the wound sheet 51 by ultrasonic welding.
  • With reference to FIGS. 2 and 4, the negative pressure wound therapy system in accordance with the present invention comprises electrical connection and fluid connection to connect aforementioned elements.
  • The controller 10 is electrically connected to the sensor assembly 20, and the sensor assembly 20 is electrically connected to the actuator 30. Detachable electrical wire set forms the electrical connection. For example, an electrical wire 61 with a plug 62 protrudes out from the sensor assembly 20. The controller 10 has a corresponding socket 63. The plug 62 is plugged detachably into the socket 63 to form the electrical connection.
  • A fluid connection is formed between the pump inlet 311 of the micro pump 31 and the conduit 52. A fluid connection is formed between the pump outlet 312 of the micro pump 31 and the entry end of the collecting bag 41. A check valve is mounted in the entry end 411 of the collecting bag 41 to keep the liquid in the collecting bag 41 from flowing back to infect the wound. Detachable fluid tube set forms the fluid connections. For example, a first tube 64 with a fluid connector 65 protrudes out from the micro pump 31 and a second tube 64 with a fluid connector 65 protrudes out from the conduit 52. The fluid connectors 65 detachably connect to each other to form the fluid connection.
  • A fluid connection is formed between the positive pressure sensor 22 and the detecting end 412 of the collecting bag 41. A fluid connection is formed between the negative pressure sensor 21, the relief valve 23 and the conduit 52, especially through the pump inlet 311 of the micro pump 31. Detachable tube set forms the fluid connections. For example, a tube 64 with a first fluid connector 65 protrudes out from the positive pressure sensor 22. A second fluid connector 65 is mounted on the detecting end 412 of the collecting bag 41. The fluid connectors 65 detachably connect to each other to form the fluid connection.
  • With reference to FIGS. 5 and 6, in a preferred embodiment the sensor assembly 20 has a first connecting interface 201, and the actuator 30 has a second connecting interface 301. The first connecting interface 201 has a first electrical connector 202 and a first fluid connector 203. The second connecting interface 301 has a second electrical connector 302 and a second fluid connector 303. The micro pump 31 is electrically connected to the second electrical connector 302. The connecting interfaces 201, 301 are connected detachably to each other. The first electrical connector 202 is connected to the second electrical connector 302. The first fluid connector 203 is connected to the second fluid connector 303. A fluid division 66 may be a manifold and comprises a first passage 661 and a second passage 662. The first passage 661 connects the pump inlet 311 of the micro pump 31 and the conduit 52. The second passage 662 connects the second fluid connector 303 and the conduit 52.
  • Furthermore, filters 70 are mounted in the detecting end 412 of the collecting bag 41 and the second fluid connector 303 of the actuator 30 to keep the infections from flowing into the sensor assembly 20.
  • With the aforementioned electrical connections and the fluid connections being detachably, the elements are available to detach from each other to be repaired independently.
  • When the system as described is operated, the wound sheet 51 covers the wound of the patient with the opening 511 facing the wound. The user actuates the micro pump 31 through the control panel 13. The micro pump 31 creates a negative pressure environment in the wound through the fluid connections and extracts the pus and infection subjects from the wound. The pus and infection subjects pass through the actuator 30 and are collected in the collecting bag 41.
  • The system as described has following advantages.
  • 1. Since all of the components connect to each other by detachable electrical wire sets and detachable tube sets, each component is available to be disassembled and repaired independently.
  • 2. The components have different lifespan. For example, the collector 40 and the wound-dressing unit 50 directly contact the infections so that the collector 40 and the wound-dressing unit 50 need to be replaced frequently while the controller 10, the actuator 30 and the sensor assembly 20 can be used for a long time. Therefore, the detachable connections are convenient for users to disassemble and replace each component.
  • 3. When the user moves between different places such as hospital and home, the detachable connections allow the user only bring some of the components to move. For example, the user only carries the controller 10, the sensor assembly 20 and the actuator 30, and leaves the collectors 40 and the wound-dressing units 50 at different places, and vice versa. Therefore, the user only needs to carry part of the system.
  • 4. In the fluid connections, the actuator 30 is located in front of the collecting bag 41. The micro pump 31 is directly connected to the wound sheet attached on the wound so that the micro pump uses less power.
  • To ensure the system as described is operated safely, a feedback control method in accordance with the present invention for the system as described comprises a test mode and an operating mode.
  • With reference to FIG. 7, when the system as described is started, the system enters the test mode. The micro pump 31 inflates the fluid connections in the system. Then the positive pressure sensor 22 detects whether the positive pressure at the detecting end 412 of the collecting bag 41 is normal. When the fluid connections are not connected properly, the positive pressure is abnormal. If the positive pressure is abnormal, the system outputs an alarm signal. Then the test mode is ended. When the fluid connections are connected properly, the positive pressure is normal. If the positive pressure is normal, the system enters the operating mode.
  • With reference to FIG. 8, when the system enters the operating mode, the micro pump 31 creates a negative pressure environment in the wound through the opening 511 of the wound sheet 51 and extracts the pus and infection subjects from the wound. Then the collecting bag 41 is accordingly formed as a positive pressure environment. Then the positive pressure detecting procedure and negative pressure detecting procedure are started.
  • The positive pressure detecting procedure detects the positive pressure in the collecting bag 41. The positive pressure sensor 22 detects whether the positive pressure in the collecting bag 41 is normal. When the fluid connections between the collecting bag 41 and other elements are disconnected, or an external overload is applied to the collecting bag 41, or the collecting bag 41 is full of liquid, the positive pressure of the detecting end 412 of the collecting bag 41 is abnormal. If the positive pressure is abnormal, the positive pressure sensor 22 sends a signal to the microprocessor 11 to stop the micro pump 31 and send an alarm signal to notify the user. Therefore, the pus and the infection subjects are prevented from leaking out of the fluid connections or the collecting bag 41 is prevented from breaking because of overload or being full. Then the operating mode is ended. If the positive pressure is normal, the positive pressure sensor 22 keeps processing the positive pressure detecting procedure.
  • The negative pressure detecting procedure detects the negative pressure in the wound. The negative pressure sensor 21 detects whether the negative pressure in the opening 511 of the wound sheet 51 is normal. When the fluid connections is obstructed or is disconnected, the negative pressure is abnormal. If the negative pressure is abnormal, the negative pressure sensor 21 sends a signal to the microprocessor 11 to stop the micro pump 31 and send an alarm signal to notify the user. If the negative pressure is normal, the negative pressure sensor 23 keeps processing the positive pressure detecting procedure.
  • With the aforementioned modes, the system as described is operated safely.
  • Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims (18)

What is claimed is:
1. A feedback control method for a negative pressure wound therapy system that the system has a wound-dressing unit and a collecting bag communicating with the wound-dressing unit, the method comprising an operating mode, which comprises acts of:
(a) creating a negative pressure environment in an opening of a wound-dressing unit and a positive pressure environment in the collecting bag;
(b) proceeding a positive pressure detecting procedure in the positive pressure environment and proceeding a negative pressure detecting procedure in the negative pressure environment; and
(c) sending the detecting results to determine whether the operating mode is ended.
2. The feedback control method as claimed in claim 1, wherein before step (a) further comprises an act of applying a micro pump between the wound-dressing unit and the collecting bag to creating the negative pressure environment and extracting the fluid in the opening.
3. The feedback control method as claimed in claim 2, wherein positive pressure detecting procedure further comprises acts of:
detecting the positive pressure in a detecting end of the collecting bag by a positive pressure sensor; and
determining whether the positive pressure is normal; if the positive pressure is abnormal, the micro pump is stopped and the operating mode is ended; if the positive pressure is normal, the micro pump is kept operating and back to the act of the detecting positive pressure.
4. The feedback control method as claimed in claim 2, wherein negative pressure detecting procedure further comprises acts of:
detecting the negative pressure in the opening of the wound-dressing unit by a negative pressure sensor; and
determining whether the negative pressure is normal; if the negative pressure is abnormal, the micro pump is stopped and the operating mode is ended; if the negative pressure is normal, the micro pump is kept operating and back to the act of the detecting negative pressure.
5. The feedback control method as claimed in claim 3, wherein negative pressure detecting procedure further comprises acts of:
detecting the negative pressure in the opening of the wound-dressing unit by a negative pressure sensor; and
determining whether the negative pressure is normal; if the negative pressure is abnormal, the micro pump is stopped and the operating mode is ended; if the negative pressure is normal, the micro pump is kept operating and back to the act of the detecting negative pressure.
6. The feedback control method as claimed in claim 2 further comprising a test mode before proceeding the operating mode, wherein the test mode comprises acts of:
inflating fluid connections in the system by the micro pump;
detecting the positive pressure in a detecting end of the collecting bag by a positive pressure sensor; and
determining whether the positive pressure is normal; if the positive pressure is abnormal, an alarm signal is output and the test mode is ended; if the positive pressure is normal, the test mode is end and the operating mode is entered.
7. The feedback control method as claimed in claim 3 further comprising a test mode before proceeding the operating mode, wherein the test mode comprises acts of:
inflating fluid connections in the system by the micro pump;
detecting the positive pressure in the detecting end of the collecting bag by the positive pressure sensor; and
determining whether the positive pressure is normal; if the positive pressure is abnormal, an alarm signal is output and the test mode is ended; if the positive pressure is normal, the test mode is end and the operating mode is entered.
8. The feedback control method as claimed in claim 4 further comprising a test mode before proceeding the operating mode, wherein the test mode comprises acts of:
inflating fluid connections in the system by the micro pump;
detecting the positive pressure in the detecting end of the collecting bag by the positive pressure sensor; and
determining whether the positive pressure is normal; if the positive pressure is abnormal, an alarm signal is output and the test mode is ended; if the positive pressure is normal, the test mode is end and the operating mode is entered.
9. The feedback control method as claimed in claim 5 further comprising a test mode before proceeding the operating mode, wherein the test mode comprises acts of:
inflating fluid connections in the system by the micro pump;
detecting the positive pressure in the detecting end of the collecting bag by the positive pressure sensor; and
determining whether the positive pressure is normal; if the positive pressure is abnormal, an alarm signal is output and the test mode is ended; if the positive pressure is normal, the test mode is end and the operating mode is entered.
10. A negative pressure wound therapy system comprising:
a controller;
a sensor assembly electrically connected to the controller and comprising a negative pressure sensor and a positive pressure sensor to detect pressure, and comprising a relief valve;
an actuator comprising a micro pump electrically connected to the sensor assembly;
a collector comprising a collecting bag;
a wound-dressing unit having an opening;
a first fluid connection connecting between the sensor assembly and the collecting bag;
a second fluid connection connecting between the sensor assembly and the wound-dressing unit;
a third fluid connection connecting between the wound-dressing unit, the actuator and the collecting bag, wherein the actuator is located between the wound-dressing unit and the collecting bag in the third fluid connection;
whereby the micro pump creates a negative pressure environment in the opening through the third fluid connection and extracts the fluid from the opening of the wound-dressing unit, and the fluid passes the actuator to flow into the collecting bag, and the collecting bag is defined as a positive pressure environment.
11. The negative pressure wound therapy system as claimed in claim 10 further comprising:
a first detachable electrical wire set connecting between the sensor assembly and the controller;
a second detachable electrical wire set connecting between the sensor assembly and the micro pump;
a first detachable tube set connecting between a pump inlet of the micro pump and the sensor assembly;
a second detachable tube set connecting between a detecting end of the collecting bag and the sensor assembly;
a third detachable tube set connecting between an inlet end of the collecting bag and a pump outlet of the micro pump;
a fourth detachable tube set connecting between the wound-dressing unit and the sensor assembly; and
a fifth detachable tube set connecting between the wound-dressing unit and the pump inlet of the micro pump, wherein
the first fluid connection is formed by the second detachable tube set;
the second fluid connection is formed by the fourth detachable tube set; and
the third fluid connection is formed by the first, third and fifth detachable tube sets.
12. The negative pressure wound therapy system as claimed in claim 11, wherein
the wound-dressing unit comprises
a wound sheet, where the opening of the wound-dressing unit is formed through; and
a conduit attached securely to the wound sheet, connected to the opening and having a filter strip made of biocompatibility materials;
the fourth detachable tube set connects between the conduit and the negative pressure sensor and the relief valve; and
the fifth detachable tube set connects between the conduit and the pump inlet of the micro pump.
13. The negative pressure wound therapy system as claimed in claim 12 further comprising a fluid division, wherein
the sensor assembly has a first connecting interface having a first electrical connector and a first fluid connector; and
the actuator has a second connecting interface connected detachably to the first connecting interface and having
a second electrical connector electrically connected to the micro pump connected to the first electrical connector; and
a second fluid connector connected to the first fluid connector;
the fluid division comprises
a first passage connecting the pump inlet of the micro pump and the conduit; and
a second passage connecting the second fluid connector and the conduit.
14. The negative pressure wound therapy system as claimed in claim 12, wherein the fifth detachable tube set comprises a first tube with a fluid connector protruding out from the micro pump and a second tube with a fluid connector protruding out from the conduit, and the fluid connectors detachably connect to each other.
15. The negative pressure wound therapy system as claimed in claim 13, wherein the fifth detachable tube set comprises a first tube with a fluid connector protruding out from the micro pump and a second tube with a fluid connector protruding out from the conduit, and the fluid connectors detachably connect to each other.
16. The negative pressure wound therapy system as claimed in claim 15, wherein the second detachable tube set comprises a tube with a first fluid connector protruding out from the positive pressure sensor and a second fluid connector mounted on the detecting end of the collecting bag, and the fluid connectors detachably connect to each other.
17. The negative pressure wound therapy system as claimed in claim 16 further comprising two filters respectively mounted in the detecting end of the collecting bag and the second fluid connector of the actuator to keep the infections from flowing into the sensor assembly.
18. The negative pressure wound therapy system as claimed in claim 17 further comprising check valve mounted in an entry end of the collecting bag to keep the liquid in the collecting bag from flowing back.
US12/872,973 2010-08-31 2010-08-31 Negative pressure wound therapy system and a feedback control method for the same Abandoned US20120053541A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/872,973 US20120053541A1 (en) 2010-08-31 2010-08-31 Negative pressure wound therapy system and a feedback control method for the same
US13/930,193 US9278164B2 (en) 2010-08-31 2013-06-28 Negative pressure wound therapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/872,973 US20120053541A1 (en) 2010-08-31 2010-08-31 Negative pressure wound therapy system and a feedback control method for the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/930,193 Division US9278164B2 (en) 2010-08-31 2013-06-28 Negative pressure wound therapy system

Publications (1)

Publication Number Publication Date
US20120053541A1 true US20120053541A1 (en) 2012-03-01

Family

ID=45698167

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/872,973 Abandoned US20120053541A1 (en) 2010-08-31 2010-08-31 Negative pressure wound therapy system and a feedback control method for the same
US13/930,193 Expired - Fee Related US9278164B2 (en) 2010-08-31 2013-06-28 Negative pressure wound therapy system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/930,193 Expired - Fee Related US9278164B2 (en) 2010-08-31 2013-06-28 Negative pressure wound therapy system

Country Status (1)

Country Link
US (2) US20120053541A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140148768A1 (en) * 2012-11-26 2014-05-29 Apex Medical Corp. Wound drainage therapy system
GB2508696A (en) * 2012-09-21 2014-06-11 I2R Medical Ltd Negative pressure wound therapy with relief valve and multi-compartment container
CN104507513A (en) * 2012-03-20 2015-04-08 史密夫及内修公开有限公司 Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
EP2836269A4 (en) * 2012-04-12 2016-04-06 Elwha Llc Computational methods and systems for reporting information regarding appurtenances to wound dressings
CN106323843A (en) * 2016-11-17 2017-01-11 中国三冶集团有限公司 Fault detection method and fault detector for cloth bag of dust remover
CN107405433A (en) * 2015-02-02 2017-11-28 凯希特许有限公司 Pressure operation formula switchs
WO2018006583A1 (en) * 2016-07-04 2018-01-11 广东美捷威通生物科技有限公司 Burn treatment system utilizing sprayer having smart moisture and temperature control
WO2018006582A1 (en) * 2016-07-04 2018-01-11 广东美捷威通生物科技有限公司 Wound treatment system utilizing smart moisture and temperature control
WO2020005577A1 (en) * 2018-06-28 2020-01-02 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
US10624794B2 (en) 2018-02-12 2020-04-21 Healyx Labs, Inc. Negative pressure wound therapy systems, devices, and methods
TWI751318B (en) * 2018-03-31 2022-01-01 國立成功大學 Intelligent negative pressure wound therapy system
US20220080105A1 (en) * 2012-03-12 2022-03-17 Smith & Nephew Plc Reduced pressure apparatus and methods
US20220192887A1 (en) * 2018-09-19 2022-06-23 Deroyal Industries, Inc. Multiple-wound negative pressure wound therapy using multiple fluid collection volumes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174111A (en) * 2014-09-11 2014-12-03 昆山韦睿医疗科技有限公司 Negative pressure wound treatment device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681562A (en) * 1984-11-16 1987-07-21 Walter Beck Method and apparatus for aspirating secreted fluids from a wound
US20100010477A1 (en) * 2008-07-08 2010-01-14 Tyco Healthcare Group Lp Portable Negative Pressure Wound Therapy Device
US20100312202A1 (en) * 1998-08-07 2010-12-09 Alan Wayne Henley Wound Treatment Apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798583A (en) * 1984-11-16 1989-01-17 Walter Beck Method and apparatus for aspirating secreted fluids from a wound
DE3943300A1 (en) * 1989-12-29 1991-07-11 Werner Margrit Dipl Ing Fh SYSTEM FOR COLLECTION AND RETRANSFUSION OF AUTOLOGOUS BLOOD
AU2006287461A1 (en) * 2005-09-07 2007-03-15 Tyco Healthcare Group L.P. Self contained wound dressing apparatus
DK2010245T3 (en) * 2005-11-21 2016-01-18 Joshua David Smith WOUND CARE SYSTEM
WO2008021306A2 (en) * 2006-08-15 2008-02-21 Bio-Innovative Operations, Inc. Computer adjusted pressure wound care devices, systems & methods
US20090281526A1 (en) * 2008-05-09 2009-11-12 Tyco Healthcare Group Lp Negative Pressure Wound Therapy Apparatus Including a Fluid Line Coupling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681562A (en) * 1984-11-16 1987-07-21 Walter Beck Method and apparatus for aspirating secreted fluids from a wound
US20100312202A1 (en) * 1998-08-07 2010-12-09 Alan Wayne Henley Wound Treatment Apparatus
US20100010477A1 (en) * 2008-07-08 2010-01-14 Tyco Healthcare Group Lp Portable Negative Pressure Wound Therapy Device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080105A1 (en) * 2012-03-12 2022-03-17 Smith & Nephew Plc Reduced pressure apparatus and methods
US11903798B2 (en) 2012-03-12 2024-02-20 Smith & Nephew Plc Reduced pressure apparatus and methods
CN104507513A (en) * 2012-03-20 2015-04-08 史密夫及内修公开有限公司 Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US10881764B2 (en) 2012-03-20 2021-01-05 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US11730877B2 (en) 2012-03-20 2023-08-22 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US9901664B2 (en) 2012-03-20 2018-02-27 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
EP2836269A4 (en) * 2012-04-12 2016-04-06 Elwha Llc Computational methods and systems for reporting information regarding appurtenances to wound dressings
US10226553B2 (en) 2012-09-21 2019-03-12 I2R Medical Limited Portable medical device system
GB2508696A (en) * 2012-09-21 2014-06-11 I2R Medical Ltd Negative pressure wound therapy with relief valve and multi-compartment container
GB2508696B (en) * 2012-09-21 2015-04-22 I2R Medical Ltd Portable medical device system
US11197953B2 (en) 2012-09-21 2021-12-14 I2R Medical Limited Portable medical device system
US9199010B2 (en) * 2012-11-26 2015-12-01 Apex Medical Corp. Wound drainage therapy system
US20140148768A1 (en) * 2012-11-26 2014-05-29 Apex Medical Corp. Wound drainage therapy system
CN107405433A (en) * 2015-02-02 2017-11-28 凯希特许有限公司 Pressure operation formula switchs
WO2018006582A1 (en) * 2016-07-04 2018-01-11 广东美捷威通生物科技有限公司 Wound treatment system utilizing smart moisture and temperature control
WO2018006583A1 (en) * 2016-07-04 2018-01-11 广东美捷威通生物科技有限公司 Burn treatment system utilizing sprayer having smart moisture and temperature control
CN106323843A (en) * 2016-11-17 2017-01-11 中国三冶集团有限公司 Fault detection method and fault detector for cloth bag of dust remover
US10624794B2 (en) 2018-02-12 2020-04-21 Healyx Labs, Inc. Negative pressure wound therapy systems, devices, and methods
TWI751318B (en) * 2018-03-31 2022-01-01 國立成功大學 Intelligent negative pressure wound therapy system
US20210260273A1 (en) * 2018-06-28 2021-08-26 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
US11826234B2 (en) * 2018-06-28 2023-11-28 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
WO2020005577A1 (en) * 2018-06-28 2020-01-02 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
US20220192887A1 (en) * 2018-09-19 2022-06-23 Deroyal Industries, Inc. Multiple-wound negative pressure wound therapy using multiple fluid collection volumes
US11786411B2 (en) * 2018-09-19 2023-10-17 Deroyal Industries, Inc. Multiple-wound negative pressure wound therapy using multiple fluid collection volumes

Also Published As

Publication number Publication date
US20130289505A1 (en) 2013-10-31
US9278164B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
US9278164B2 (en) Negative pressure wound therapy system
US11027051B2 (en) Pressure control apparatus
JP5620906B2 (en) Control unit with a pump module for negative pressure type trauma treatment device
CA2732514C (en) Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same
EP2359878A3 (en) Medical/surgical waste evacuator that continually monitors air drawn into the evacuator
EP3597228A1 (en) Apparatus, method & system for controlling negative-pressure treatment
WO2009047524A3 (en) Medical apparatus for use in negative pressure wound therapy
US8303555B2 (en) Soft collector for a negative pressure wound therapy system and its combination
ATE547137T1 (en) VACUUM THERAPY DEVICE
WO2009006489A3 (en) Extracorporeal dialysis ready peritoneal dialysis machine
WO2010144262A1 (en) Negative pressure wound therapy systems capable of vacuum measurement independent of orientation
US9199010B2 (en) Wound drainage therapy system
MX2009002947A (en) Component module for a reduced pressure treatment system.
CN109985283B (en) Negative pressure wound therapy devices, systems, and methods
CA2699679A1 (en) Medical connector able to connect specific medical tube and input port
GB2483281A (en) Negative pressure wound therapy system and feedback control method
CN102294075B (en) Negative-pressure wound caring system and feedback control method thereof
CN107049696B (en) Negative pressure suction signal monitor for dental chair
CN108744077A (en) A kind of novel suction device for cardiac thoracic surgery
US20120053542A1 (en) Actuator for a negative pressure wound therapy system
TW201200109A (en) Feedback control method of negative pressure wound care system and negative pressure wound care system
CN109350771B (en) Multifunctional detection device for thoracic drainage bottle
CN207654384U (en) Tooth chair negative-pressure ward signal monitor
CN202595810U (en) External automatic water supply system for medical device
CN203989152U (en) The portable suction device of supplying gas

Legal Events

Date Code Title Description
AS Assignment

Owner name: APEX MEDICAL CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAO, NAN-KUANG;WU, JHY-WEN;MIAU, LUO-HWA;AND OTHERS;SIGNING DATES FROM 20100420 TO 20100421;REEL/FRAME:024920/0286

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION