US20120042462A1 - Absorbent pad for a steaming apparatus - Google Patents

Absorbent pad for a steaming apparatus Download PDF

Info

Publication number
US20120042462A1
US20120042462A1 US13/013,956 US201113013956A US2012042462A1 US 20120042462 A1 US20120042462 A1 US 20120042462A1 US 201113013956 A US201113013956 A US 201113013956A US 2012042462 A1 US2012042462 A1 US 2012042462A1
Authority
US
United States
Prior art keywords
absorber
pad
super
combination
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/013,956
Inventor
Pierantonio Milanese
Andrea Milanese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US29/378,185 external-priority patent/USD664729S1/en
Application filed by Individual filed Critical Individual
Priority to US13/013,956 priority Critical patent/US20120042462A1/en
Assigned to EUROFLEX S.R.L. reassignment EUROFLEX S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILANESE, ANDREA, MILANESE, PIERANTONIO
Publication of US20120042462A1 publication Critical patent/US20120042462A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/20Mops
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/20Mops
    • A47L13/22Mops with liquid-feeding devices
    • A47L13/225Steam mops

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)

Abstract

In the exemplary embodiment, a steaming appliance in combination with an absorber is disclosed. The steaming appliance has an underside having a nozzle for dispensing steam. The absorber is disposed under the underside and includes a pad having an opening there-through. The absorber is attachable to the underside. The opening is shaped and disposed to avoid the nozzle, such that steam is dispensed without impacting and being absorbed the pad as it exits the nozzle. The pad comprises hydrophilic fibers and hydrogel-forming particles. The absorber also includes an envelope made of a porous fabric for enclosing the pad. The envelope also has a zippered opening through which the pad may be inserted into or removed from the envelope's hollow interior chamber.

Description

    RELATED APPLICATIONS
  • This application is a Continuation of and claims the benefit of pending U.S. application Ser. No. 11/885,994, filed Sep. 10, 2007, and Ser. No. 29/378,185, filed Jan. 11, 2010, the entire teachings of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is related to steam-cleaning and disinfecting. More specifically, the invention is related to steam cleaners which direct steam at a surface via a nozzle, and for an absorbent pad for use in combination therewith to absorb the condensed steam from the surface.
  • BACKGROUND
  • Steam-cleaning appliances are well known and commonly used to clean surfaces, such as floors. Such appliances typically sanitize and disinfect by dispensing steam at the floor. In many arrangements of such apparatuses, it is preferential to dispense the steam from the same portion of the apparatus, such as its underside, that contacts the floor to maximize penetration of the steam into the pores and fissures thereof. The dispensed steam naturally condenses into liquid water upon contact with the cooler floor, creating puddles. A disadvantage common to such prior art steamers is a failure to fully remove these puddles.
  • Wiping pads have been employed with such appliances to collect the condensed water, but in appliances where steam is dispensed from the underside, such wiping pads have had to compromise between the ability to avoid interfering with the dispensing of the steam to the floor, requiring porosity and or a lack of absorbency, and the ability to soak up the condensed water from the floor, requiring absorbency.
  • Super-absorbent polymers are well known, and commonly used in such items as disposable diapers and mopping pads. Such polymers typically include hydrophilic fibers and hydrogel-forming particles. Such hydrophilic fibers often include cotton, and such hydrogel-forming particles often include polyacrylate. A deterrent to using such
  • As used herein, the term “superabsorbent material” means any absorbent material having a gig capacity for water of at least about 15 gig, when measured under a confining pressure of 0.3 psi. Because a majority of the cleaning fluids useful with the present invention are aqueous based, it is preferred that the super absorbent materials have a relatively high gig capacity for water or water-based fluids.
  • Representative superabsorbent materials include water insoluble, water-swellable superabsorbent gelling polymers (referred to herein as “superabsorbent gelling polymers”) which are well known in the literature. These materials demonstrate very high absorbent capacities for water. The superabsorbent gelling polymers useful in the present invention can have a size, shape and/or morphology varying over a wide range. These polymers can be in the form of particles that do not have a large ratio of greatest dimension to smallest dimension (e.g., granules, flakes, pulverulents, interparticle aggregates, interparticle crosslinked aggregates, and the like) or they can be in the form of fibers, sheets, films, foams, laminates, and the like.
  • The use of superabsorbent gelling polymers in fibrous form provides the benefit of enhanced retention, relative to particles, during the cleaning process. While their capacity is generally lower for aqueous-based mixtures than it is for water, these materials still demonstrate significant absorbent capacity for such mixtures. The patent literature is replete with disclosures of water-swellable materials. See, for example, U.S. Pat. No. 3,699,103 (Harper et al.), issued Jun. 13, 1972; U.S. Pat. No. 3,770,731 (Harmon), issued Jun. 20, 1972; U.S. Pat. No. Reissue 32,649 (Brandt et al.), reissued Apr. 19, 1989; U.S. Pat. No. 4,834,735 (Alemany et al.), issued May 30, 1989.
  • Superabsorbent gelling polymers useful in the present invention include a variety of water-insoluble, but water-swellable polymers capable of absorbing large quantities of fluids. Such polymeric materials are also commonly referred to as “hydrocolloids”, and can include polysaccharides such as carboxymethyl starch, carboxymethyl cellulose, and hydroxypropyl cellulose; nonionic types such as polyvinyl alcohol, and polyvinyl ethers; cationic types such as polyvinyl pyridine, polyvinyl morpholinione, and N,Ndimethylaminoethyl or N,N-diethylaminopropyl acrylates and methacrylates, and the respective quaternary salts thereof. Typically, superabsorbent gelling polymers useful in the present invention have a multiplicity of anionic functional groups, such as sulfonic acid, and more typically carboxy, groups. Examples of polymers suitable for use herein include those which are prepared from polymerizable, unsaturated, acid-containing monomers. Thus, such monomers include the olefinically unsaturated acids and anhydrides that contain at least one carbon to carbon olefinic double bond. More specifically, these monomers can be selected from olefinically unsaturated carboxylic acids and acid anhydrides, olefinically unsaturated sulfonic acids, and mixtures thereof.
  • Some non-acid monomers can also be included, usually in minor amounts, in preparing the super absorbent gelling polymers useful herein. Such non-acid monomers can include, for example, the water-soluble or water-dispersible esters of the acid-containing monomers, as well as monomers that contain no carboxylic or sulfonic acid groups at all. Optional non-acid monomers can thus include monomers containing the following types of functional groups: carboxylic acid or sulfonic acid esters, hydroxyl groups, amide-groups, amino groups, nitrile groups, quaternary ammonium salt groups, aryl groups (e.g., phenyl groups, such as those derived from styrene monomer). These nonacid monomers are well-known materials and are described in greater detail, for example, in U.S. Pat. No. 4,076,663 (Masuda et al), issued Feb. 28, 1978, and in U.S. Pat. No. 4,062,817 (Westerman), issued Dec. 13, 1977, both of which are incorporated by reference.
  • Olefinically unsaturated carboxylic acid and carboxylic acid anhydride monomers include the acrylic acids typified by acrylic acid itself, methacrylic acid, ethacrylic acid, a-chloroacrylic acid, a-cyanoacrylic acid, ˜-methylacrylic acid (crotonic acid), a-phenylacrylic acid, ˜-acryloxypropionic acid, sorbic acid, a-chlorosorbic acid, angelic acid, cinnamic acid, p-chlorocinnamic acid, ˜-sterylacrylic acid, itaconic acid, citroconic acid, mesaconic acid, glutaconic acid, aconitic acid, maleic acid, furmaric acid, tricarboxyethylene and maleic acid anhydride.
  • Olefinically unsaturated sulfonic acid monomers include aliphatic or aromatic vinyl sulfonic acids such as vinylsulfonic acid, allyl sulfonic acid, vinyl toluene sulfonic acid and styrene sulfonic acid; acrylic and methacrylic sulfonic acid such as sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-methacryloxypropyl sulfonic acid and 2-acrylamide-2-methylpropane sulfonic acid.
  • Preferred superabsorbent gelling polymers for use in the present invention contain carboxy groups. These polymers include hydrolyzed starch-acrylonitrile graft copolymers, partially neutralized hydrolyzed starch-acrylonitrile graft copolymers, starch-acrylic acid graft copolymers, partially neutralized starch-acrylic acid graft copolymers, saponified vinyl acetate-acrylic ester copolymers, hydrolyzed acrylonitrile or acrylamide copolymers, slightly network crosslinked polymers of any of the foregoing copolymers, partially neutralized polyacrylic acid, and slightly network crosslinked polymers of partially neutralized polyacrylic acid. These polymers can be used either solely or in the form of a mixture of two or more different polymers. Examples of these polymer materials are disclosed in U.S. Pat. Nos. 3,661,875, 4,076,663, 4,093,776, 4,666,983, and 4,734,478.
  • Most preferred polymer materials for use in making the superabsorbent gelling polymers are slightly network cross-linked polymers of partially neutralized polyacrylic acids and starch derivatives thereof. Most preferably, the hydrogel-forming absorbent polymers comprise from about 50 to about 95%, preferably about 75%, neutralized, slightly network cross-linked, polyacrylic acid (i.e. poly(sodium acrylate/acrylic acid)). Network cross-linking renders the polymer substantially water-insoluble and, in part, determines the absorptive capacity and extractable polymer content characteristics of the superabsorbent gelling polymers. Processes for network cross-linking these polymers and typical network cross-linking agents are described in greater detail in U.S. Pat. No. 4,076,663.
  • While the superabsorbent gelling polymers is preferably of one type (i.e., homogeneous), mixtures of polymers can also be used in the implements of the present invention. For example, mixtures of starch-acrylic acid graft copolymers and slightly network cross-linked polymers of partially neutralized polyacrylic acid can be used in the present invention.
  • While any of the superabsorbent gelling polymers described in the prior art can be useful in the present invention, it has recently been recognized that where significant levels (e.g., more than about 50% by weight of the absorbent structure) of superabsorbent gelling polymers are to be included in an absorbent structure, and in particular where one or more regions of the absorbent layer will comprise more than about 50%, by weight of the region, the problem of gel blocking by the swollen particles can impede fluid flow and thereby adversely affect the ability of the gelling polymers to absorb to their full capacity in the desired period of time. U.S. Pat. No. 5,147,343 (Kellenberger et al.), issued Sep. 15, 1992 and U.S. Pat. No. 5,149,335 (Kellenberger et al.), issued Sep. 22, 1992, describe super absorbent gelling polymers in terms of their Absorbency Under Load (AUL), where gelling polymers absorb fluid (0.9% saline) under a confining pressure of 0.3 psi. (The disclosure of each of these patents is incorporated herein.) The methods for determining AUL are described in these patents. Polymers described therein can be particularly useful in embodiments of the present invention that contain regions of relatively high levels of superabsorbent gelling polymers. In particular, where high concentrations of superabsorbent gelling polymer are incorporated in the cleaning pad, those polymers will preferably have an AUL, measured according to the methods described in U.S. Pat. No. 5,147,343, of at least about 24 m1!g, more preferably at least about 27 ml/g after 1 hour; or an AUL, measured according to the methods described in U.S. Pat. No. 5,149,335, of at least about 15 ml/g, more preferably at least about 18 ml/g after 15 minutes.
  • U.S. Pat. No. 5,599,335 (Goldman et al.), issued Feb. 11, 1997, and U.S. Pat. No. 5,562,646 (Goldman et al.), issued Oct. 8, 1996 (both of which are incorporated by reference herein), also address the problem of gel blocking and describe super absorbent gelling polymers useful in overcoming this phenomena. These applications specifically describe superabsorbent gelling polymers which avoid gel blocking at even higher confining pressures, specifically 0.7 psi. In the embodiments of the present invention where the absorbent layer will contain regions comprising high levels (e.g., more than about 50% by weight of the region) of superabsorbent gelling polymer, it can be preferred that the superabsorbent gelling polymer be as described in the aforementioned patents to Goldman et al.
  • Other superabsorbent materials useful herein include hydrophilic polymeric foams, such as those described in commonly assigned U.S. Pat. No. 5,650,222 (DesMarais et al.), issued Jul. 22, 1997; U.S. Pat. No. 5,387,207 (Dyer et al.), issued Feb. 7, 1995; U.S. Pat. No. 5,563,179 (DesMarais et al.), issued Oct. 8, 1996; U.S. Pat. No. 5,550,167 (DesMarais), issued Aug. 27, 1996; and U.S. Pat. No. 5,260,345 (DesMarais et al.), issued Nov. 9, 1993; each of which is incorporated by reference herein. These references describe polymeric, hydrophilic absorbent foams that are obtained by polymerizing a high internal phase water-in-oil emulsion (commonly referred to as HIPEs).
  • These foams are readily tailored to provide varying physical properties (pore size, capillary suction, density, etc.) that affect fluid handling ability. As such, these materials are particularly useful, either alone or in combination with other such foams or with fibrous structures, in providing the overall capacity required by the present invention.
  • Where superabsorbent material is included in the absorbent layer, the absorbent layer will preferably comprise at least about 15%, by weight of the absorbent layer, more preferably at least about 20%, still more preferably at least about 25%, of the superabsorbent material.
  • The absorbent layer can also consist of, or comprise, fibrous material. Fibers useful in the present invention include those that are naturally occurring (modified or unmodified), as well as synthetically made fibers. Examples of suitable unmodified/modified naturally occurring fibers include cotton, Esparto grass, bagasse, kemp, flax, silk, wool, wood pulp, chemically modified wood pulp, jute, ethyl cellulose, and cellulose acetate. Suitable synthetic fibers can be made from polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyvinylidene chloride, polyacrylics such as ORLON®, polyvinyl acetate, Rayon®, polyethylvinyl acetate, non-soluble or soluble polyvinyl alcohol, polyolefins such as polyethylene (e.g., PULPEX®) and polypropylene, polyamides such as nylon, polyesters such as DACRON® or KODEL®, polyurethanes, polystyrenes, and the like. The absorbent layer can comprise solely naturally occurring fibers, solely synthetic fibers, or any compatible combination of naturally occurring and synthetic fibers.
  • The fibers useful herein can be hydrophilic, hydrophobic or can be a combination of both hydrophilic and hydrophobic fibers. As indicated above, the particular selection of hydrophilic or hydrophobic fibers will depend upon the other materials included in the absorbent (and to some degree the scrubbing) layer. That is, the nature of the fibers will be such that the cleaning pad exhibits the necessary fluid delay and overall fluid absorbency. Suitable hydrophilic fibers for use in the present invention include cellulosic fibers, modified cellulosic fibers, rayon, polyester fibers such as hydrophilic nylon (HYDROFIL®). Suitable hydrophilic fibers can also be obtained by hydrophilizing hydrophobic fibers, such as surfactant-treated or silica-treated thermoplastic fibers derived from, for example, polyolefins such as polyethylene or polypropylene, polyacrylics, polyamides, polystyrenes, polyurethanes and the like.
  • Suitable wood pulp fibers can be obtained from well-known chemical processes such as the Kraft and sulfite processes. It is especially preferred to derive these wood pulp fibers from southern soft woods due to their premium absorbency characteristics. These wood pulp fibers can also be obtained from mechanical processes, such as ground wood, refiner mechanical, thermo mechanical, chemo-mechanical, and chemo-thermo-mechanical pulp processes. Recycled or secondary wood pulp fibers, as well as bleached and unbleached wood pulp fibers, can be used.
  • Another type of hydrophilic fiber for use in the present invention is chemically stiffened cellulosic fibers. As used herein, the term “chemically stiffened cellulosic fibers” means cellulosic fibers that have been stiffened by chemical means to increase the stiffness of the fibers under both dry and aqueous conditions. Such means can include the addition of a chemical stiffening agent that, for example, coats and/or impregnates the fibers. Such means can also include the stiffening of the fibers by altering the chemical structure, e.g., by cross-linking polymer chains.
  • Where fibers are used as the absorbent layer (or a constituent component thereof), the fibers can optionally be combined with a thermoplastic material. Upon melting, at least a portion of this thermoplastic material migrates to the intersections of the fibers, typically due to interfiber capillary gradients. These intersections become bond sites for the thermoplastic material. When cooled, the thermoplastic materials at these intersections solidify to form the bond sites that hold the matrix or web of fibers together in each of the respective layers. This can be beneficial in providing additional overall integrity to the cleaning pad.
  • Amongst its various effects, bonding at the fiber intersections increases the overall compressive modulus and strength of the resulting thermally bonded member. In the case of the chemically stiffened cellulosic fibers, the melting and migration of the thermoplastic material also has the effect of increasing the average pore size of the resultant web, while maintaining the density and basis weight of the web as originally formed. This can improve the fluid acquisition properties of the thermally bonded web upon initial exposure to fluid, due to improved fluid permeability, and upon subsequent exposure, due to the combined ability of the stiffened fibers to retain their stiffness upon wetting and the ability of the thermoplastic material to remain bonded at the fiber intersections upon wetting and upon wet compression. In net, thermally bonded webs of stiffened fibers retain their original overall volume, but with the volumetric regions previously occupied by the thermoplastic material becoming open to thus increase the average interfiber capillary pore size.
  • There exists a need for improvement in the sanitizing of surfaces and objects, and such is an object of the present invention. There exists the need for improvement of steaming and steam-cleaning apparatuses, and such is an object of the present invention. There exists the need for elimination of the improvement of microbial regeneration conditions on surfaces and objects after steaming, and such as an object of the present invention. There exists the need for causing the sanitizing agent to penetrate deeply into the pores and fissures of surfaces and objects, and such as an object of the present invention. Further needs and objects exist, which are addressed by the present invention, as may become apparent by the included disclosure of an exemplary embodiment thereof.
  • SUMMARY OF THE INVENTION
  • The invention lies in a combination of a steaming appliance and an absorber, and/or in the absorber alone.
  • In one exemplary embodiment, the invention may be practiced in a combined steaming appliance and absorber, the steaming appliance having an underside having a nozzle for dispensing steam from the underside to a surface to be steamed. The absorber is disposed between the underside and the surface and comprises a pad having an opening there-through. The pad is disposed relative to the underside for absorbing the dispensed steam from the supporting surface as the element rests upon and is moved along the surface. The opening is shaped and disposed to avoid the nozzle, such that steam exiting the nozzle is dispensed directly to the surface without impacting the pad.
  • Preferably, the pad is made of or includes a super-absorbent material, such as hydrophilic fibers and hydrogel-forming particles. More preferably, the hydrophilic fibers are cotton fibers and the hydrogel-forming particles are made of sodium polyacrylate.
  • The exemplary absorber may further include an envelope for containing the pad, the envelope having a bottom sheet for resting on the surface and made of a porous fabric, and a top sheet having a fastening element for attaching the absorber to the underside to retain the relative disposition of the pad to the underside. The fastening element is preferable a series of Velcro-type loops, removably connectable to a mating series of Velcro-type hooks on the underside of the appliance. Alternative. The hooks and loops could be swapped between the absorber and the appliance, or any acceptable means of removable affixation could be used, such as an adhesive strip.
  • The invention may also be embodied in an absorber for a steaming appliance as described above, the absorber having a pad of super absorbent material with an opening through and disposed substantially centrally in the pad.
  • The exemplary absorber, as disclosed, could include an envelope for containing the pad, the envelope having top and bottom sheets sealed along three edges to create a hollow interior chamber. The bottom sheet would preferably be made of a porous fabric and the top sheet would preferably have the afore-mentioned fastening element for attachment to a steaming appliance.
  • The unsealed fourth edge of the envelope would preferably provide a second opening for removal and replacement of the pad. This second opening would preferably be closable and re-openable by means of a second fastening element, such as a zipper. Alternatively, the second fastening element could include any appropriate means for temporarily sealing the fourth edge, such as a Velcro-type hook and loop fastening strip, or an adhesive strip.
  • The invention may also be embodied in an absorber for a steaming appliance including a planar pad of hydrophilic fibers and hydrogel-forming particles, and having a pad opening there-through and disposed substantially centrally there-in. The absorber, as disclosed, may include an envelope comprising a porous non-woven fabric surrounding a hollow chamber, the fabric having an envelope opening for reception and removal of the pad into and from the chamber.
  • Further features and aspects of the invention are disclosed with more specificity in the Detailed Description, Drawings, and Appendices provided herein and showing exemplary embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS AND APPENDICES
  • Many aspects of the invention can be better understood with reference to the included drawings and appendices. The components in the drawings are not necessarily to scale, and all components may not be present in all views, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIG. 1 is an exploded view of a combination steaming appliance/absorber in accordance with a first exemplary embodiment of the invention;
  • FIG. 2 a partial perspective view of the combination of FIG. 1 during floor steaming;
  • FIG. 3 is an exploded view of the absorber of FIG. 1;
  • FIG. 4 is in underside view of the appliance of FIG. 1;
  • FIG. 5 is a partial cross-sectional view of the combination of FIG. 1,
  • FIG. 6 is an exploded view of a combination steaming appliance/absorber in accordance with a second exemplary embodiment of the invention;
  • FIG. 7 a perspective view of the combination of FIG. 6 during floor steaming;
  • FIG. 8 is in underside view of the appliance of FIG. 6;
  • FIG. 9 is a partial cross-sectional view of the combination of FIG. 6,
  • FIG. 10 is a cross-sectional view through the absorber of FIG. 1.
  • FIG. 11 is a cross-sectional view through an absorber in accordance with a third exemplary embodiment of the invention;
  • FIG. 12 is a cross-sectional view through an absorber in accordance with a fourth exemplary embodiment of the invention;
  • FIG. 13 is a cross-sectional view through an absorber assembly in accordance with a fifth exemplary embodiment of the invention;
  • FIG. 14 is an exploded view of the absorber assembly of FIG. 13;
  • FIG. 15 is a partial cross-sectional view of a combination steaming appliance/absorber in accordance with a sixth exemplary embodiment of the invention;
  • FIG. 16 is a partial cross-sectional view of a combination steaming appliance/absorber in accordance with an seventh exemplary embodiment of the invention; and
  • FIG. 17 is a plan view of the absorber frame of the absorber of FIG. 16.
  • DETAILED DESCRIPTION
  • Reference is now made to FIGS. 1 through 5, and 10, where there is shown a steam-cleaning appliance 100 for dispensing steam to a floor and an absorber 102 for soaking up the steam after it has condensed to liquid water on the floor.
  • As best seen in FIG. 4, where the appliance's underside 104 is shown, the appliance has an array of nozzles 106 disposed substantially centrally therein, and a pair of Velcro-type hook strips 108. Referring back to FIG. 2, it can be seen that the nozzles dispense steam 110 to the floor 112.
  • FIG. 3 shows the absorber 102, including its absorbent pad 114 and porous fabric envelope 116. The envelope is made of two porous fabric sheets, top sheet 118 and bottom sheet 120, and has four edges, three of which, 124R, 124B, and 124L along which the top and bottom sheets are permanently bonded, and an unbounded front edge 124F which provides a pad opening 126. The opening allows pad 114 to be inserted into and removed from the envelope's hollow interior chamber 128. The open front edge 124F includes a zipper 130 for temporarily close the front edge 28 while the pad is therein.
  • Top sheet 118 further includes an opening 134 and Velcro-type loop strips 136. The strips and hole are arranges so that the envelop may be affixed by the loops strips to the hook strips 108 of the appliance to affix the absorber to the underside 104, and to align opening 134 with the array of nozzles 106. Pad 114 includes elongate opening 138 there-through, which, when the absorber is affixed to the appliance, is also aligned with the nozzle array.
  • Referring now specifically to FIG. 5, it can be seen how steam 110 leaving nozzles 106 pass though openings 134 and 138, and through porous bottom sheet 120, to reach the floor as steam without being absorbed by pad 114. As this dispensed steam contacts the floor, it simultaneously cleans/sanitizes the floor while condensing into puddles of liquid water on the surface of the floor. As can be readily understood, the wiping of the appliance/absorber combination along the wet floor allows those puddles to be absorbed through the porous bottom sheet 120 and into absorbent pad 114.
  • Pad 114 preferably comprises a matrix of hydrophilic fibers, such as a web of cotton, and a high-absorbency material commonly known as “superabsorbent polymer” (SAP). The SAP material is preferably comprised of superabsorbent hydrogel-forming particles, such as sodium polyacrylate. As an alternative to cotton, the matrix may comprise some other natural fiber such as cellulose fluff, or less preferably, synthetic fibers, polymeric fibers, meltblown fibers or a combination of meltblown fibers and natural fibers. Superabsorbent material may be substantially homogeneously mixed with the hydrophilic fibers, or may be otherwise combined into the absorbent pad.
  • The pad may also alternatively comprise a laminate of fibrous webs and super absorbent material or other suitable means of maintaining a superabsorbent material in a localized area. The high-absorbency material in the absorbent pad may be selected from among other well-known natural, synthetic and modified natural polymers and materials. The high absorbency materials can be inorganic materials, such as silica gels, or organic compounds, such as cross-linked polymers. The term cross-linked refers to any means for effectively rendering normally water-soluble materials substantially water insoluble but swellable, whereby absorbent properties are available but the swelled material is substantially immobile after absorbing water-based liquids. Such means can include, for example, physical entanglement, crystalline domains, covalent bonds, ionic complexes and associations, hydrophilic associations such as hydrogen bonding, and hydrophobic associations or Van der Waals forces.
  • Pad 114 may alternatively comprise a standard barrier tissue layer covering and containing the SAP material and forming a tissue layer there-around. Such tissue layers are well known in the art both in terms of materials and functions. The tissue layers generally are permeable to fluids, but retain the absorbent material therein. A single tissue layer could be wrapped entirely about, and secured to, the pad. Other arrangements, containing layers of various materials disposed on surfaces and/or encompassing absorbent material are contemplated as being within the scope of the invention.
  • Such super-absorbents, or hydrogels, may be of any suitable type, and are readily commercially available from a variety of sources, including the products available under the following to trade names: “Favor” super-absorbent powder (Stockhausen, Greensboro, N.C.); “Sanwet” super-absorbent involutions 172 therein. For example, the web elements powder (Sanyo, Kyoto, Japan); “Aridall” super-absorbent polymer (Chemdal); “Aquasorb” sorbent (Aqualon, Wilmington, Del.) “SuperSorb” (Super Absorbent 15 Company, Lumberton, N.C.); and “DryTech” super absorbent (Dow Chemical Company, Midland, Mich.).
  • A cross section of absorber 102 is shown in FIG. 10, where it can be seen that a micro-fiber sheet 140 may be permanently under-laminated to envelope 116. While porous enough to allow passage of the dispensed steam, the microfiber material enhances the ability of the absorber to scrub and remove residue from the floor.
  • Referring next to FIGS. 6 through 9, there is shown a steam-cleaning mop 200 for dispensing steam to a floor and an absorber 202 for soaking up the steam after it has condensed to liquid water on the floor. Like numerals in the 200-series are used to identify components and features of this embodiment, which otherwise differs only structurally from the first embodiment.
  • FIG. 11 shows a third-embodiment absorber 302 whose construction is applicable to the absorbers used with either of the two afore-described appliances. In microfiber sheet 340 is removably affixed to envelope 316 by Velcro-type hook and loop fastening 342, or some other fastening means, so that the microfiber sheet may be removed from the absorber for washing and/or replacement.
  • FIG. 12 shows a fourth-embodiment absorber 402 having its steam opening 434/438 fully through the absorber's top sheet 418, pad 414, and bottom sheet 420. In this embodiment, the top and bottom sheets are permanently bonded around the full perimeter of the envelope 416, and fully around the steam opening, and the pad is therefore permanently contained within the envelope.
  • FIGS. 13 and 14 show a fifth-embodiment absorber assembly 502, comprising absorber 402 removably contained within a microfiber envelope 540. The microfiber envelope may have a zippered edge and fastening means similar to afore-describe envelope 116, to allowing separation of absorber 402 from envelope 540 so that the envelope may be washed separate from the absorber, and/or so that either the absorber or the envelope may be individually replaced.
  • FIG. 15 is a partial cross-sectional view of a combination steaming appliance/absorber in accordance with a seventh exemplary embodiment of the invention. In this arrangement, the absorber 702 is received in the underside if steaming appliance 700, and a microfiber sheet 740 then covers the absorber. Peripheral ring 742, or some other common fastening means, holds the microfiber sheet to the appliance. The absorber and/or microfiber sheet can thereby be easily removed and replaced as desired.
  • FIGS. 16 and 17 show a combination in accordance with an eighth exemplary embodiment, similar to the seventh embodiment except equipped with a platen 844 biased downwardly by compression springs 846, to gently force the absorber 802 against the microfiber sheet 840.
  • While the invention has been shown and described with reference to these specific exemplary embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention, and that the invention should therefore only be limited according to the following claims, including all equivalent interpretation to which they are entitled.

Claims (22)

We claim:
1. In combination, a steaming appliance and an absorber:
the steaming appliance comprising an underside having a nozzle for dispensing steam from the underside to a surface to be steamed; and
the absorber disposed between the underside and the surface and comprising a pad having an opening there-through;
the pad disposed relative to the underside for absorbing the dispensed steam from the supporting surface as the element rests upon and is moved along the surface; and
the opening shaped and disposed to avoid the nozzle, such that steam exiting the nozzle is dispensed directly to the surface without impacting the pad.
2. The combination of claim 1 wherein the pad comprises a super-absorbent material.
3. The combination of claim 2 wherein the super-absorbent material comprises hydrophilic fibers and hydrogel-forming particles.
4. The combination of claim 2 wherein the super-absorbent material comprises cotton and sodium polyacrylate
5. The combination of claim 1 wherein the absorber further comprises an envelope for containing the pad, the envelope comprising a bottom sheet for resting on the surface and made of a porous fabric, and a top sheet having a fastening element for attaching the absorber to the underside to retain said relative disposition of the pad to the underside.
6. The combination if claim 5 wherein the porous fabric is taken from the group including a micro fiber fabric and a non-woven fabric.
7. The combination of claim 6 wherein the fastening element is taken from the group including Velcro-type hooks, Velcro-type loops, and an adhesive strip.
8. The combination of claim 7 wherein the pad comprises a super-absorbent polymer.
9. The combination of claim 8 wherein the super-absorbent material comprises hydrophilic fibers and hydrogel-forming particles.
10. The combination of claim 8 wherein the super-absorbent material comprises cotton and sodium polyacrylate
11. An absorber for a steaming appliance comprising;
a pad of super absorbent material;
an opening through and disposed substantially centrally in the pad.
12. The absorber of claim 11 further comprising an envelope for containing the pad,
the envelope comprising a bottom sheet made of a porous fabric and a top sheet having a first fastening element for attachment to a steaming appliance.
13. The absorber of claim 12 wherein the super-absorbent material comprises hydrophilic fibers and hydrogel-forming particles.
14. The absorber of claim 12 wherein the super-absorbent material comprises cotton and sodium polyacrylate.
15. The absorber if claim 14 wherein the porous fabric is taken from the group including a micro fiber fabric and a non-woven fabric.
16. The absorbent element of claim 15 wherein the first fastening element is taken from the group including Velcro-type hooks, Velcro-type loops, and an adhesive strip.
17. The absorber of claim 12 wherein the envelope contains a second opening for removal and replacement of the pad.
18. The absorber of claim 17 wherein the second opening is closable and re-openable by means of a second fastening element.
19. The absorber of claim 18 wherein the second fastening element is taken from the group including a zipper, a Velcro-type hook and loop fastening strip, and an adhesive strip.
20. The absorber of claim 11 wherein the super-absorbent material comprises hydrophilic fibers and hydrogel-forming particles.
21. The absorber of claim 20 wherein the super-absorbent material comprises cotton and sodium polyacrylate.
22. An absorber for a steaming appliance comprising;
a planar pad comprising hydrophilic fibers and hydrogel-forming particles, and having a pad opening there-through and disposed substantially centrally there-in; and
an envelope comprising a porous non-woven fabric surrounding a hollow chamber, the fabric having an envelope opening for reception and removal of the pad into and from the chamber.
US13/013,956 2007-09-10 2011-01-26 Absorbent pad for a steaming apparatus Abandoned US20120042462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/013,956 US20120042462A1 (en) 2007-09-10 2011-01-26 Absorbent pad for a steaming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88599407A 2007-09-10 2007-09-10
US29/378,185 USD664729S1 (en) 2010-11-01 2010-11-01 Steamer pad
US13/013,956 US20120042462A1 (en) 2007-09-10 2011-01-26 Absorbent pad for a steaming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US88599407A Continuation 2007-09-10 2007-09-10

Publications (1)

Publication Number Publication Date
US20120042462A1 true US20120042462A1 (en) 2012-02-23

Family

ID=45592880

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/013,956 Abandoned US20120042462A1 (en) 2007-09-10 2011-01-26 Absorbent pad for a steaming apparatus

Country Status (1)

Country Link
US (1) US20120042462A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167891A2 (en) * 2012-05-08 2013-11-14 Techtronic Floor Care Technologies Limited Steam cleaners
EP2708176A2 (en) 2012-09-17 2014-03-19 Bissell Homecare, Inc. Cleaning pad and steam appliance
USD739667S1 (en) 2013-03-01 2015-09-29 Sharkninja Operating Llc Pad
USD740050S1 (en) 2013-03-01 2015-10-06 Sharkninja Operating Llc Pad
USD740051S1 (en) 2013-03-01 2015-10-06 Sharkninja Operating Llc Pad
USD740052S1 (en) 2013-03-01 2015-10-06 Sharkninja Operating Llc Pad
USD741086S1 (en) 2013-03-01 2015-10-20 Sharkninja Operating Llc Pad
US20160135656A1 (en) * 2013-07-01 2016-05-19 Techtronic Floor Care Technology Limited Surface cleaning apparatus
USD757618S1 (en) 2014-07-30 2016-05-31 SharkNinja Operation LLC Pad
US9574764B2 (en) 2012-05-25 2017-02-21 S. C. Johnson & Son, Inc. Portable steam generating device
US9999333B2 (en) 2013-03-01 2018-06-19 Sharkninja Operating Llc Floor cleaning appliance
US10231593B2 (en) * 2015-07-13 2019-03-19 Bonakemi Usa, Incorporated Cleaning pad
US10485392B2 (en) * 2017-09-27 2019-11-26 Ningbo Shijia Cleaning Tools Co., Ltd. Intelligent dust mop
US11297995B2 (en) * 2012-11-29 2022-04-12 Sharkninja Operating Llc Steam cleaning appliance
US11759085B2 (en) 2018-05-29 2023-09-19 Unger Marketing International, Llc Floor cleaning system
USD1015668S1 (en) 2019-05-28 2024-02-20 Unger Marketing International, Llc Floor cleaning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920952A (en) * 1996-11-13 1999-07-13 Ariete S.P.A. Steam-cleaning appliance
US20070107151A1 (en) * 2005-11-17 2007-05-17 The Procter & Gamble Company Cleaning substrate
US20120016326A1 (en) * 2010-07-15 2012-01-19 Jonathan Paul Brennan Absorbent core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920952A (en) * 1996-11-13 1999-07-13 Ariete S.P.A. Steam-cleaning appliance
US20070107151A1 (en) * 2005-11-17 2007-05-17 The Procter & Gamble Company Cleaning substrate
US20120016326A1 (en) * 2010-07-15 2012-01-19 Jonathan Paul Brennan Absorbent core

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167891A3 (en) * 2012-05-08 2014-02-27 Techtronic Floor Care Technologies Limited Steam cleaners
US9351625B2 (en) 2012-05-08 2016-05-31 Techtronic Floor Care Technology Limited Steam cleaners
WO2013167891A2 (en) * 2012-05-08 2013-11-14 Techtronic Floor Care Technologies Limited Steam cleaners
US9574764B2 (en) 2012-05-25 2017-02-21 S. C. Johnson & Son, Inc. Portable steam generating device
US9320408B2 (en) * 2012-09-17 2016-04-26 Bissell Homecare, Inc. Cleaning pad and steam appliance
EP2708176A2 (en) 2012-09-17 2014-03-19 Bissell Homecare, Inc. Cleaning pad and steam appliance
US20140076368A1 (en) * 2012-09-17 2014-03-20 Bissell Homecare, Inc. Cleaning pad and steam appliance
US20160174804A1 (en) * 2012-09-17 2016-06-23 Bissell Homecare, Inc. Surface cleaning apparatus with cleaning pad
US11297995B2 (en) * 2012-11-29 2022-04-12 Sharkninja Operating Llc Steam cleaning appliance
USD739667S1 (en) 2013-03-01 2015-09-29 Sharkninja Operating Llc Pad
USD745790S1 (en) 2013-03-01 2015-12-22 Sharkninja Operating Llc Pad
USD741086S1 (en) 2013-03-01 2015-10-20 Sharkninja Operating Llc Pad
USD740052S1 (en) 2013-03-01 2015-10-06 Sharkninja Operating Llc Pad
USD740051S1 (en) 2013-03-01 2015-10-06 Sharkninja Operating Llc Pad
USD740050S1 (en) 2013-03-01 2015-10-06 Sharkninja Operating Llc Pad
US9999333B2 (en) 2013-03-01 2018-06-19 Sharkninja Operating Llc Floor cleaning appliance
US20160135656A1 (en) * 2013-07-01 2016-05-19 Techtronic Floor Care Technology Limited Surface cleaning apparatus
USD757618S1 (en) 2014-07-30 2016-05-31 SharkNinja Operation LLC Pad
US10881263B2 (en) 2015-07-13 2021-01-05 Bonakemi Usa, Incorporated Cleaning pad
US10231593B2 (en) * 2015-07-13 2019-03-19 Bonakemi Usa, Incorporated Cleaning pad
US11864703B2 (en) 2015-07-13 2024-01-09 Bonakemi Usa, Incorporated Cleaning pad
US10485392B2 (en) * 2017-09-27 2019-11-26 Ningbo Shijia Cleaning Tools Co., Ltd. Intelligent dust mop
US11759085B2 (en) 2018-05-29 2023-09-19 Unger Marketing International, Llc Floor cleaning system
US11896180B2 (en) 2018-05-29 2024-02-13 Unger Marketing International, Llc Floor cleaning system
USD1015668S1 (en) 2019-05-28 2024-02-20 Unger Marketing International, Llc Floor cleaning system

Similar Documents

Publication Publication Date Title
US20120042462A1 (en) Absorbent pad for a steaming apparatus
US6048123A (en) Cleaning implement having high absorbent capacity
JP3992295B2 (en) Cleaning device with controlled fluid absorption
US6003191A (en) Cleaning implement
EP1009275B1 (en) A cleaning implement comprising a removable cleaning pad having multiple cleaning surfaces
RU2184474C2 (en) Washing composition, set and surface cleaning method
KR20000071220A (en) Mixed-bed ion-exchange hydrogel-forming polymer compositions and absorbent members comprising relatively high concentrations of these compositions
US20140259491A1 (en) Multi-layered cleaning cloth
KR20010041820A (en) Absorbent members for absorbing body liquids
AU732487B2 (en) A cleaning implement
AU760336B2 (en) Layered cleaning sheets
AU7216401A (en) A cleaning implement comprising a removable cleaning pad having multiple cleaning surfaces

Legal Events

Date Code Title Description
AS Assignment

Owner name: EUROFLEX S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILANESE, PIERANTONIO;MILANESE, ANDREA;REEL/FRAME:025807/0418

Effective date: 20110131

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION