US20120034424A1 - Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same - Google Patents
Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same Download PDFInfo
- Publication number
- US20120034424A1 US20120034424A1 US13/274,605 US201113274605A US2012034424A1 US 20120034424 A1 US20120034424 A1 US 20120034424A1 US 201113274605 A US201113274605 A US 201113274605A US 2012034424 A1 US2012034424 A1 US 2012034424A1
- Authority
- US
- United States
- Prior art keywords
- algae
- granules
- resistant
- resistant roofing
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000008187 granular material Substances 0.000 title claims abstract description 123
- 241000195493 Cryptophyta Species 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims description 62
- 239000003619 algicide Substances 0.000 title abstract description 24
- 238000002386 leaching Methods 0.000 title description 10
- 239000002245 particle Substances 0.000 claims abstract description 78
- 239000011230 binding agent Substances 0.000 claims abstract description 36
- 238000000576 coating method Methods 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 30
- 239000011148 porous material Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 129
- 239000000203 mixture Substances 0.000 claims description 51
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 30
- 239000002585 base Substances 0.000 claims description 23
- 230000002353 algacidal effect Effects 0.000 claims description 21
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 21
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 21
- 229940112669 cuprous oxide Drugs 0.000 claims description 21
- 239000011787 zinc oxide Substances 0.000 claims description 15
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 235000000346 sugar Nutrition 0.000 claims description 10
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims description 9
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 9
- 238000004040 coloring Methods 0.000 claims description 8
- 235000009496 Juglans regia Nutrition 0.000 claims description 6
- 235000020234 walnut Nutrition 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000005749 Copper compound Substances 0.000 claims description 2
- 150000001880 copper compounds Chemical class 0.000 claims description 2
- 150000003752 zinc compounds Chemical class 0.000 claims description 2
- 240000007049 Juglans regia Species 0.000 claims 1
- 229910000314 transition metal oxide Inorganic materials 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 11
- 239000011707 mineral Substances 0.000 abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 5
- 150000004706 metal oxides Chemical class 0.000 abstract description 5
- 239000011146 organic particle Substances 0.000 abstract 2
- 239000000047 product Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000010426 asphalt Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 235000010755 mineral Nutrition 0.000 description 10
- 239000004927 clay Substances 0.000 description 9
- 239000000049 pigment Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000011435 rock Substances 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 229910052911 sodium silicate Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 6
- 241000143432 Daldinia concentrica Species 0.000 description 6
- 229910001431 copper ion Inorganic materials 0.000 description 6
- 241000758789 Juglans Species 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229940047586 chemet Drugs 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- ACTRVOBWPAIOHC-XIXRPRMCSA-N succimer Chemical compound OC(=O)[C@@H](S)[C@@H](S)C(O)=O ACTRVOBWPAIOHC-XIXRPRMCSA-N 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 4
- 230000005791 algae growth Effects 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 235000009508 confectionery Nutrition 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000007931 coated granule Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 241000209149 Zea Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000008202 granule composition Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- -1 preferably Substances 0.000 description 2
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241001464427 Gloeocapsa Species 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- DNEHKUCSURWDGO-UHFFFAOYSA-N aluminum sodium Chemical compound [Na].[Al] DNEHKUCSURWDGO-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 229910000009 copper(II) carbonate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- ZZBBCSFCMKWYQR-UHFFFAOYSA-N copper;dioxido(oxo)silane Chemical compound [Cu+2].[O-][Si]([O-])=O ZZBBCSFCMKWYQR-UHFFFAOYSA-N 0.000 description 1
- PEVZEFCZINKUCG-UHFFFAOYSA-L copper;octadecanoate Chemical compound [Cu+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O PEVZEFCZINKUCG-UHFFFAOYSA-L 0.000 description 1
- 229940076286 cupric acetate Drugs 0.000 description 1
- 239000011646 cupric carbonate Substances 0.000 description 1
- 235000019854 cupric carbonate Nutrition 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical compound [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- GAWWVVGZMLGEIW-GNNYBVKZSA-L zinc ricinoleate Chemical compound [Zn+2].CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O.CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O GAWWVVGZMLGEIW-GNNYBVKZSA-L 0.000 description 1
- 229940100530 zinc ricinoleate Drugs 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229940057977 zinc stearate Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
- A01N59/20—Copper
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/002—Provisions for preventing vegetational growth, e.g. fungi, algae or moss
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D7/00—Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs
- E04D7/005—Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs characterised by loose or embedded gravel or granules as an outer protection of the roof covering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
- Y10T428/2438—Coated
Definitions
- the present invention relates to asphalt roofing shingles, and protective granules for such shingles, and processes for makings such granules and shingles.
- Pigment-coated mineral rocks are commonly used as color granules in roofing applications to provide aesthetic as well as protective functions to the asphalt shingles. Dark blotches or streaks sometimes appear on the surfaces of asphalt shingles, especially in warmer humid climates, as a result of the growth of algae and other microorganisms. The predominant species responsible is Gloeocapsa magma, a blue green algae. Eventually, severe discoloration of the entire roof can occur.
- a common method used to prepare algae-resistant (AR) roofing granules generally involves two major steps.
- metal oxides such as cuprous oxide and zinc oxide are added to a clay and alkali metal silicate mixture that in turn is used to coat crushed mineral rocks.
- the mixture is rendered insoluble on the rock surfaces by firing at high temperatures, such as about 500° C., to provide a ceramic coating.
- the oxides covered rocks are coated with various color pigments to form colored algae-resistant roofing granules.
- the algae-resistant granules, alone, or in a mixture with conventional granules, are then used in the manufacture of asphalt shingles using conventional techniques. The presence of the algae-resistant granules confers algae-resistance on the shingles.
- roofing granules typically comprise crushed and screened mineral materials, which are subsequently coated with a binder containing one or more coloring pigments, such as suitable metal oxides.
- the binder can be a soluble alkaline silicate that is subsequently insolubilized by heat or by chemical reaction, such as by reaction between an acidic material and the alkaline silicate, resulting in an insoluble colored coating on the mineral particles.
- U.S. Pat. No. 3,507,676 discloses roofing granules containing zinc, zinc oxide, or zinc sulfide, as an algaecide and fungicide.
- Algae-resistant shingles are disclosed, for example, in U.S. Pat. No. 5,356,664 assigned to Minnesota Mining and Manufacturing Co., which discloses the use of a blend of algae-resistant granules and non-algae-resistant granules.
- the algae-resistant granules have an inner ceramic coating comprising cuprous oxide and an outer seal coating initially devoid of copper.
- the present invention provides algae-resistant roofing granules having algaecide leaching rates that can be easily controlled, and asphalt shingle roofing products incorporating such algae-resistant roofing granules.
- the present invention employs mineral particles to form algae-resistant roofing granules.
- the process of the present invention employs void-forming additives to contribute to porosity and thus control the leach rate of algaecidal material from the roofing granules.
- This invention thus provides a process for preparing algae-resistant roofing granules having algaecide leaching rates that can be controlled and modified at will.
- the present process for producing algae-resistant roofing granules comprises providing inert base particles and forming first intermediate particles by coating the inert base particles with a first mixture to form a first layer on the inert base particles.
- the inert particles can be, for example, crushed rock.
- the first mixture includes at least one algaecidal material, a void-forming material, and preferably, a binder.
- the binder can include an aluminosilicate material such as clay, and a soluble silicate, such as aqueous sodium silicate.
- the void-forming material preferably releases gaseous material above 90° C., and has an average particle size no larger than about 2 mm.
- the void-forming material can be decomposable into gaseous by-products at temperatures above about 150° C. In the alternative, the void forming material can simply release moisture as a gaseous material to form the desired voids.
- the present process preferably further comprises forming second intermediate particles by coating the first intermediate particles with a second mixture including a coloring material.
- the second mixture can include a binder, such as a binder having the same composition as the first mixture.
- the second mixture can also optionally comprise a void-forming material. Further, the second mixture can optionally include at least one algaecidal material.
- the process requires heating the first and/or second intermediate particles, preferably above the temperature at which the gaseous material is released, to release the gaseous material and form pores in the first layer to produce the roofing granules.
- the at least one algaecidal material is preferably selected from the group consisting of copper compounds and zinc compounds.
- cuprous oxide and/or zinc oxide can be employed.
- both cuprous oxide and zinc oxide are used, and the cuprous oxide comprises about 2 to 6 percent of the algae-resistant granules, and the zinc oxide comprises about 0.1 to 2 percent by weight of the algae-resistant granules.
- the void-forming material can be an organic or inorganic compound, and can be either water soluble or insoluble.
- decomposable void-forming materials include sugar, crushed nuts (such as walnut shells), crushed corn and grains, carbon or graphite balls, synthetic and natural polymers, organic fibers, flame retardants and hydrated compounds.
- the void-forming material preferably comprises a substance selected from the group consisting of ground walnut shells, sugar, and carbon black. In one presently preferred embodiment of the present invention, the void-forming material comprises about 0.5 to 5 percent by weight of the algae-resistant granules.
- the void-forming material can release gaseous material, or decompose or evaporate at elevated temperature, leaving behind hollow openings that provide additional avenues for the metal ions to leach out easily.
- the present invention also provides a process for producing algae-resistant roofing shingles, as well as the shingles themselves.
- This process comprises producing algae-resistant roofing granules using the process of this invention, and adhering the granules to a shingle stock material.
- the algaecidal material concentration preferably is from about 0.1% to about 10% of the total granule weight, and that of the void-forming material is preferably from about 0.05 to about 5%.
- Various combinations of the levels and types of the void-forming materials used in the formulations can provide different amounts of algaecidal material leaching out from the granules.
- the algae-resistant granules prepared according to the process of the present invention can be employed in the manufacture of algae-resistant roofing products, such as algae-resistant asphalt shingles.
- the algae-resistant granules of the present invention can be mixed with conventional roofing granules, and the granule mixture can be embedded in the surface of bituminous roofing products using conventional methods.
- the algae-resistant granules of the present invention can be substituted for conventional roofing granules in manufacture of bituminous roofing products, such as asphalt roofing shingles, to provide those roofing products with algae-resistance.
- the present invention provides a process for preparing AR roofing granules having a controllable algaecide-leaching rate.
- the present invention provides a process for preparing roofing shingles having algae-resistance that can be customized to the specific geographic region in which the shingles are intended to be used.
- the present invention preferably provides algae-resistant roofing granules having controllable levels of algaecide release.
- the present invention also preferably provides algae resistant asphalt shingles.
- FIG. 1 is a graph illustrating the effect of various types of void-forming material on the concentrations of copper ions leached out from granules prepared according to the present invention (after 8 days immersion in warm water of 60° C.). The values above the bars depict the copper concentrations in ppm.
- FIG. 2 is a graph illustrating the effect of various types of void-forming material on the concentrations of zinc ions leached out from granules prepared according to the present invention (after 8 days immersion in warm water of 60° C.). The values above the bars depict the copper concentrations in ppm.
- FIG. 3 is a graph illustrating the effect of varying the amount of void-forming material on the concentrations of zinc ions leached out from granules prepared according to the present invention (after 8 days immersion in warm water of 60° C.). The values above the bars depict the copper concentrations in ppm.
- the inert base particles employed in the process of the present invention are preferably chemically inert materials, such as inert mineral particles.
- the mineral particles which can be produced by a series of quarrying, crushing, and screening operations, are generally intermediate between sand and gravel in size (that is, between about 8 US mesh and 40 US mesh), and preferably have an average particle size of from about 0.2 mm to about 3 mm, and more preferable from about 0.4 mm to about 2.4 mm.
- suitably sized particles of naturally occurring materials such as talc, slag, granite, silica sand, greenstone, andesite, porphyry, marble, syenite, rhyolite, diabase, greystone, quartz, slate, trap rock, basalt, and marine shells can be used, as well as recycled manufactured materials such as crushed bricks, concrete, porcelain, fire clay, and the like.
- the process of the present invention for producing algae-resistant roofing granules comprises providing inert base particles, and forming first intermediate particles by coating the inert base particles with a first mixture to form a first layer on the inert base particles.
- This first mixture includes at least one algaecidal material, at least one void-forming material, and, preferably, a binder.
- the void-forming material can be an organic material or inorganic compound.
- the void-forming material is selected so that it releases gaseous material, such as by decomposing into gaseous products, at suitably elevated temperatures.
- the void-forming material preferably releases gaseous material at a temperature that is greater than 90 degrees C.
- the void-forming material may, for example, release bound water, or water of hydration, at the elevated temperature.
- the void-forming material may itself decompose at an elevated temperature, preferably at a temperature above about 150 degrees C.
- void-forming materials include sugar, sugar-based products such as candy “sprinkles,” crushed nuts (such as walnut shells), crushed corn and grains, carbon or graphite balls, synthetic and natural polymers, organic fibers, flame-retardants, and hydrated compounds.
- the void-forming material can be either water-soluble or water-insoluble.
- the void-forming material comprises at least 0.1 percent by weight of the algae-resistant granules.
- the void-forming material has an average particle size no larger than about 2 mm.
- the void-forming material preferably has an average particle size from about 100 ⁇ m to about 400 ⁇ m.
- the void-forming material preferably comprises a substance selected from the group consisting of ground walnut shells, sugar, and carbon black. In one presently preferred embodiment of the present invention, the void-forming material comprises about 1.4 percent by weight of the algae-resistant granules.
- the at least one algaecide is preferably selected from the group consisting of copper materials, zinc materials, and mixtures thereof.
- cuprous oxide and/or zinc oxide, or a mixture thereof can be used.
- the copper materials that can be used in the process of the present invention include cuprous oxide, cupric acetate, cupric chloride, cupric nitrate, cupric oxide, cupric sulfate, cupric sulfide, cupric stearate, cupric cyanide, cuprous cyanide, cuprous stannate, cuprous thiocyanate, cupric silicate, cuprous chloride, cupric iodide, cupric bromide, cupric carbonate, cupric fluoroborate, and mixtures thereof.
- the zinc materials can include zinc oxide, such as French process zinc oxide, zinc sulfide, zinc borate, zinc sulfate, zinc pyrithione, zinc ricinoleate, zinc stearate, zinc chromate, and mixtures thereof.
- the at least one algaecide preferably comprises cuprous oxide, and it is preferred that the cuprous oxide comprises at least 2 percent of the algae resistant granules.
- the at least one algaecide preferably comprises zinc oxide, and it is preferred that the zinc oxide comprises at least 0.1 percent by weight of the algae-resistant granules.
- the at least one algaecide preferably comprises a mixture of cuprous oxide and zinc oxide.
- the binder employed in the process of the present invention to form the first intermediate particles is preferably formed from a mixture of an alkali metal silicate, such as aqueous sodium silicate, and heat reactive aluminosilicate material, such as clay, preferably, kaolin.
- the proportion of alkali metal silicate to heat-reactive aluminosilicate material is preferably from about 3:1 to about 1:3 parts by weight alkali metal silicate to parts by weight heat-reactive aluminosilicate material, more preferably about 2:1 to about 0.8:1 parts by weight alkali metal silicate to parts by weight heat-reactive aluminosilicate material.
- the clay reacts with and neutralizes the alkali metal silicate, thereby insolubilizing the binder.
- the binder resulting from this clay-silicate process believed to be a sodium aluminum silicate, is porous, such as disclosed in U.S. Pat. No. 2,379,358 (incorporated herein by reference).
- the porosity of the insolubilized binder can be decreased by including an oxygen containing boron compound such as borax in the binder mixture, and firing the granules at a lower temperature, for example, about 250 degree C. to 400 degrees C., such as disclosed in U.S. Pat. No. 3,255,031 (incorporated herein by reference).
- clays examples include kaolin, other aluminosilicate clays, Dover clay, bentonite clay, etc.
- the binder employed in the present invention can include an alkali metal silicate such as an aqueous sodium silicate solution, for example, an aqueous sodium silicate solution having a total solids content of from about 38 percent by weight to about 42 percent by weight, and having a ratio of Na 2 O to SiO 2 of from about 1:2 to about 1:3.25.
- first intermediate particles are formed by coating the inert base particles with a mixture to form a first layer on those inert base particles.
- the first layer has a thickness of from about 10 ⁇ m to about 50 ⁇ m, more preferably about 30 ⁇ m.
- the first intermediate particles can be fired as described above to cure the binder, and to release the gaseous material from the at least one void-forming material to form the desired voids or pores in the first coating.
- the void-forming material is an organic compound
- the applied heat can pyrolyse the compound resulting in the desired pores.
- the algaecidal properties of the algae-resistant granules can be tailored by controlling the porosity and distribution of the algaecidal material.
- the granules have a pore size in the range of about 0.1 ⁇ m to 20 ⁇ m.
- the present process preferably further comprises forming second intermediate particles by coating the first intermediate particles with a second mixture including a coloring material to form a second layer.
- the second mixture can include a binder, such as a binder having the same composition as the first mixture.
- the second intermediate particles are fired to cure the binder.
- the second mixture can optionally include a void-forming material, so as to increase the porosity of the cured coating ultimately formed.
- the second mixture can optionally include at least one algaecidal material, such as cuprous oxide.
- the second layer has a thickness of from about 2 ⁇ m to about 25 ⁇ m, more preferably about 5 ⁇ m.
- the second intermediate particles are formed by coating the first intermediate particles without firing the first intermediate particles to cure the first binder. This reduces the energy required to produce the algae-resistant particles of the present invention by reducing the number of energy-consuming firing steps from two to one.
- the inert base particles are coated with a single mixture including binder, at least one void-forming material, at least one algaecidal material, and at least one colorant, to provide “intermediate” particles.
- the intermediate particles are subsequently fired at elevated temperature to both cure the binder and decompose the at least one void-forming material thus providing the desired voids or pores in the granule coating.
- the algae-resistant roofing granules of the present invention can be colored using conventional coatings pigments.
- coatings pigments that can be used include those provided by the Color Division of Ferro Corporation, 4150 East 56th St., Cleveland, Ohio 44101 , and produced using high temperature calcinations, including PC-9415 Yellow, PC-9416 Yellow, PC-9158 Autumn Gold, PC-9189 Bright Golden Yellow, v-9186 Iron-Free Chestnut Brown, V-780 Black, V0797 IR Black, V-9248 Blue, PC-9250 Bright Blue, PC-5686 Turquoise, V-13810 Red, V-12600 Camouflage Green, V12560 IR Green, V-778 IR Black, and V-799 Black.
- Further examples of coatings pigments that can be used include white titanium dioxide pigments provided by Du Pont de Nemours, P.O. Box 8070, Wilmington, Del. 19880.
- the algaecide resistance properties of the algaecide resistant roofing granules of the present invention are determined by a number of factors, including the porosity of the roofing granules, the nature and amount(s) of the algaecide employed, and the spatial distribution of the algaecide within the granules.
- the process of the present invention advantageously permits the algae resistance of the shingles employing the algae-resistant granules to be tailored to specific local conditions. For example, in geographic areas encumbered with excessive moisture favoring rapid algae growth, the granules can be structured to release the relatively high levels of algaecide required to effectively inhibit algae growth under these conditions. Conversely, where algae growth is less favored by local conditions, the granules can be structured to release the lower levels of algaecide effective under these conditions.
- the algae resistance properties of the granule bodies can also be varied through control of the porosity conferred by the binder employed.
- the binder porosity can be controlled by adjusting the ratio of the aqueous silicate and the aluminosilicate employed.
- Combinations of the above-described alternatives for introducing algaecide into and/or on the granule bodies can also be employed.
- By adjusting the amount and selecting the type of algaecide used, and by adjusting the porosity of the granules a variety of different algaecide leach rates and leaching profiles can be obtained.
- the algae-resistant granules prepared according to the process of the present invention can be employed in the manufacture of algae-resistant roofing products, such as algae-resistant asphalt shingles, using conventional roofing production processes.
- bituminous roofing products are sheet goods that include a non-woven base or scrim formed of a fibrous material, such as a glass fiber scrim.
- the base is coated with one or more layers of a bituminous material such as asphalt to provide water and weather resistance to the roofing product.
- One side of the roofing product is typically coated with mineral granules to provide durability, reflect heat and solar radiation, and to protect the bituminous binder from environmental degradation.
- the algae-resistant granules of the present invention can be mixed with conventional roofing granules, and the granule mixture can be embedded in the surface of such bituminous roofing products using conventional methods.
- the algae-resistant granules of the present invention can be substituted for conventional roofing granules in manufacture of bituminous roofing products to provide those roofing products with algae-resistance.
- Bituminous roofing products are typically manufactured in continuous processes in which a continuous substrate sheet of a fibrous material such as a continuous felt sheet or glass fiber mat is immersed in a bath of hot, fluid bituminous coating material so that the bituminous material saturates the substrate sheet and coats at least one side of the substrate.
- the reverse side of the substrate sheet can be coated with an anti-stick material such as a suitable mineral powder or a fine sand.
- roofing granules are then distributed over selected portions of the top of the sheet, and the bituminous material serves as an adhesive to bind the roofing granules to the sheet when the bituminous material has cooled.
- the sheet can then be cut into conventional shingle sizes and shapes (such as one foot by three feet rectangles), slots can be cut in the shingles to provide a plurality of “tabs” for ease of installation, additional bituminous adhesive can be applied in strategic locations and covered with release paper to provide for securing successive courses of shingles during roof installation, and the finished shingles can be packaged. More complex methods of shingle construction can also be employed, such as building up multiple layers of sheet in selected portions of the shingle to provide an enhanced visual appearance, or to simulate other types of roofing products.
- the bituminous material used in manufacturing roofing products according to the present invention is derived from a petroleum-processing by-product such as pitch, “straight-run” bitumen, or “blown” bitumen.
- the bituminous material can be modified with extender materials such as oils, petroleum extracts, and/or petroleum residues.
- the bituminous material can include various modifying ingredients such as polymeric materials, such as SBS (styrene-butadiene-styrene) block copolymers, resins, flame-retardant materials, oils, stabilizing materials, anti-static compounds, and the like.
- the total amount by weight of such modifying ingredients is not more than about 15 percent of the total weight of the bituminous material.
- the bituminous material can also include amorphous polyolefins, up to about 25 percent by weight.
- suitable amorphous polyolefins include atactic polypropylene, ethylene-propylene rubber, etc.
- the amorphous polyolefins employed have a softening point of from about 130 degrees C. to about 160 degrees C.
- the bituminous composition can also include a suitable filler, such as calcium carbonate, talc, carbon black, stone dust, or fly ash, preferably in an amount from about 10 percent to 70 percent by weight of the bituminous composite material.
- 1,000 g of crushed and screened rhyolite igneous rock from Wrentham, Mass. having an average particle size of 1 mm are mixed for 2 minutes in a paddle mixer with 40 g of aqueous sodium silicate (40% solids, with Na 2 O:SiO 2 ration of 1:3.2) (Occidental Chemical Corporation, Dallas, Tex.), 30 g of Wilkinson brand kaolin clay, 35 g of Chemet brand cuprous oxide (American Chemet Corporation, Deerfield, Ill.) and 1.75 g of Kadox brand zinc oxide (Zinc Corporation of America, Monaca, Pa.), and 6.5 g of Regal carbon balls supplied by Cabot Corporation (Boston, Mass.) and having a chemical composition of 90% carbon black and an average particle size of 25 nm, to form green granules having a particle size of about 1 mm.
- the green granules are then fired in a gas-fired kiln at a temperature of 500 degrees C. for 20 minutes to form algae-resistant
- Example 1 The process of Example 1 is repeated, except that 30 g of table sugar (Domino) having an average particle size of 20 ⁇ m is substituted for the carbon balls.
- table sugar Domino
- Example 1 The process of Example 1 is repeated, except that 12 g of candy sugar “sprinkles” (Signature) having an average particle size of 1.2 mm are substituted for the carbon balls.
- Example 1 The process of Example 1 is repeated, except that 30 g of crushed walnut shells (Composite Materials, Inc.) and having an average particle size of 300 ⁇ m are substituted for the carbon balls.
- 30 g of crushed walnut shells Composite Materials, Inc.
- having an average particle size of 300 ⁇ m are substituted for the carbon balls.
- Example 3 The process of Example 3 is repeated, except that 30 g of candy sugar “sprinkles” are employed.
- Example 4 The process of Example 4 is repeated. 500 g of the granules produced are mixed with a coating mixture for 2 minutes in a paddle mixer, the coating mixture comprising 16 g of aqueous sodium silicate (40% solids, with Na 2 O:SiO 2 ratio of 1:3.2), 10 g of kaolin clay, 6 g of V-780 (black) pigment particles (Ferro Corporation) to form coated granules (second intermediate particles) having a particle size of about 1 mm. The coated granules are then fired in a gas-fired kiln at a temperature of about 500 degrees C. for 20 minutes to form colored, algae-resistant granules according to the present invention.
- a coating mixture comprising 16 g of aqueous sodium silicate (40% solids, with Na 2 O:SiO 2 ratio of 1:3.2), 10 g of kaolin clay, 6 g of V-780 (black) pigment particles (Ferro Corporation) to form coated granules (second
- Example 6 The process of Example 6 is repeated, except that 3 g of Regal carbon balls are added to the coating mixture to increase the porosity of the fired coating.
- Example 6 The process of Example 6 is repeated, except that 7 g of Chemet brand cuprous oxide and 0.35 g of Kadox brand zinc oxide are added to the coating mixture.
- Example 6 The process of Example 6 is repeated, except that twice as much of the Chemet brand cuprous oxide was used in the inner coating, that is, 60 g of cuprous oxide for the inner coating, and 10 g of cuprous oxide is added to the outer coating, so that there is cuprous oxide in both the inner and the outer coatings.
- Example 4 The process of Example 4 is repeated, except that 70 g of Chemet brand cuprous oxide, plus 12 g of V-780 Ferro brand black pigment particles are used to form single-coated, algae-resistant granules.
- Example 1 The process of Example 1 is repeated, except that the carbon balls are omitted.
- the effect of varying the type of void-forming material on the algae-resistance of the algae-resistant granules of the present invention was determined. 100 g of algae-resistant granules prepared as described above in Examples 1-4 and Comparative Example 1 were immersed for 8 days in 100 g of distilled water at 60 degrees C. The concentration of copper ion and zinc ion in the leach water was then determined by inductively coupled plasma (ICP) emission spectroscopy, and the results are shown in FIGS. 1 and 2 . As depicted in FIGS. 1 and 2 , candy sprinkles result in much higher leaching of copper (22.24 ppm) and zinc (2.14 ppm) ions than other additives do.
- ICP inductively coupled plasma
- the effect of varying the amount of void-forming material on the algae-resistance of the algae-resistant granules of the present invention was also determined.
- 100 g of algae-resistant granules prepared as described in Examples 3 and 5 and Comparative Example 1 above were immersed for 8 days in 100 g of distilled water at 60 degrees C.
- the concentration of copper ion and zinc ion in the leach water was then determined by ICP emission spectroscopy, and the results are shown in FIG. 3 .
- the results displayed in FIG. 3 show that granules containing a higher level of sugar sprinkles (30 g per kg of granules) leach out more copper ions than the lower sugar sprinkles or no additive.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Biotechnology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Algae-resistant roofing shingles are prepared with granules are formed by coating mineral particles with a clay-silicate binder including a metal oxide algaecide and small organic particles. When the particles are heated to cure the binder, the organic particles pyrolyse to form pores in the coating. Release of the algaecide is controlled by the structure of the granules.
Description
- This application is a continuation of pending U.S. patent application Ser. No. 12/610,782, filed Nov. 12, 2009, which was a division of U.S. patent application Ser. No. 10/600,847, filed Jun. 20, 2003, now U.S. Pat. No. 7,687,106, issued Mar. 30, 2010.
- 1. Field of the Invention
- The present invention relates to asphalt roofing shingles, and protective granules for such shingles, and processes for makings such granules and shingles.
- 2. Brief Description of the Prior Art
- Pigment-coated mineral rocks are commonly used as color granules in roofing applications to provide aesthetic as well as protective functions to the asphalt shingles. Dark blotches or streaks sometimes appear on the surfaces of asphalt shingles, especially in warmer humid climates, as a result of the growth of algae and other microorganisms. The predominant species responsible is Gloeocapsa magma, a blue green algae. Eventually, severe discoloration of the entire roof can occur.
- Various methods have been used in an attempt to remedy the roofing discoloration. For example, topical treatments with organic algaecides have been used. However, such topical treatments are usually effective only for short term, typically one to two years. Another approach is to add algaecidal metal oxides to the color granule coatings. This approach is likely to provide longer protection, for example, as long as ten years.
- Companies, including Minnesota Mining and Manufacturing (3M) and GAF Materials Corporation/ISP Mineral Products Inc., have commercialized several algaecide granules that are effective in inhibiting algae growth.
- A common method used to prepare algae-resistant (AR) roofing granules generally involves two major steps. In the first step, metal oxides such as cuprous oxide and zinc oxide are added to a clay and alkali metal silicate mixture that in turn is used to coat crushed mineral rocks. The mixture is rendered insoluble on the rock surfaces by firing at high temperatures, such as about 500° C., to provide a ceramic coating. In the second step, the oxides covered rocks are coated with various color pigments to form colored algae-resistant roofing granules. The algae-resistant granules, alone, or in a mixture with conventional granules, are then used in the manufacture of asphalt shingles using conventional techniques. The presence of the algae-resistant granules confers algae-resistance on the shingles.
- Roofing granules typically comprise crushed and screened mineral materials, which are subsequently coated with a binder containing one or more coloring pigments, such as suitable metal oxides. The binder can be a soluble alkaline silicate that is subsequently insolubilized by heat or by chemical reaction, such as by reaction between an acidic material and the alkaline silicate, resulting in an insoluble colored coating on the mineral particles.
- U.S. Pat. No. 3,507,676 discloses roofing granules containing zinc, zinc oxide, or zinc sulfide, as an algaecide and fungicide.
- Algae-resistant shingles are disclosed, for example, in U.S. Pat. No. 5,356,664 assigned to Minnesota Mining and Manufacturing Co., which discloses the use of a blend of algae-resistant granules and non-algae-resistant granules. The algae-resistant granules have an inner ceramic coating comprising cuprous oxide and an outer seal coating initially devoid of copper.
- There is a continuing need for algae-resistant roofing products having algaecide leaching rates that can be controlled so that the roofing products can be tailored for specific local conditions.
- The present invention provides algae-resistant roofing granules having algaecide leaching rates that can be easily controlled, and asphalt shingle roofing products incorporating such algae-resistant roofing granules.
- The present invention employs mineral particles to form algae-resistant roofing granules. In contrast to prior processes for forming algae-resistant granules, which typically rely only upon porosity developed during cure of a ceramic binder, typically a sodium silicate/aluminosilicate binder cured chemically or thermally, the process of the present invention employs void-forming additives to contribute to porosity and thus control the leach rate of algaecidal material from the roofing granules.
- This invention thus provides a process for preparing algae-resistant roofing granules having algaecide leaching rates that can be controlled and modified at will.
- The present process for producing algae-resistant roofing granules comprises providing inert base particles and forming first intermediate particles by coating the inert base particles with a first mixture to form a first layer on the inert base particles. The inert particles can be, for example, crushed rock. The first mixture includes at least one algaecidal material, a void-forming material, and preferably, a binder. The binder can include an aluminosilicate material such as clay, and a soluble silicate, such as aqueous sodium silicate. The void-forming material preferably releases gaseous material above 90° C., and has an average particle size no larger than about 2 mm. The void-forming material can be decomposable into gaseous by-products at temperatures above about 150° C. In the alternative, the void forming material can simply release moisture as a gaseous material to form the desired voids.
- The present process preferably further comprises forming second intermediate particles by coating the first intermediate particles with a second mixture including a coloring material. The second mixture can include a binder, such as a binder having the same composition as the first mixture. The second mixture can also optionally comprise a void-forming material. Further, the second mixture can optionally include at least one algaecidal material.
- The process requires heating the first and/or second intermediate particles, preferably above the temperature at which the gaseous material is released, to release the gaseous material and form pores in the first layer to produce the roofing granules.
- Metal oxides are preferred as algaecidal materials due to their favorable cost and performance. The at least one algaecidal material is preferably selected from the group consisting of copper compounds and zinc compounds. For example, cuprous oxide and/or zinc oxide can be employed. In one presently preferred embodiment of the present invention, both cuprous oxide and zinc oxide are used, and the cuprous oxide comprises about 2 to 6 percent of the algae-resistant granules, and the zinc oxide comprises about 0.1 to 2 percent by weight of the algae-resistant granules.
- The void-forming material can be an organic or inorganic compound, and can be either water soluble or insoluble. Examples of decomposable void-forming materials include sugar, crushed nuts (such as walnut shells), crushed corn and grains, carbon or graphite balls, synthetic and natural polymers, organic fibers, flame retardants and hydrated compounds.
- The void-forming material preferably comprises a substance selected from the group consisting of ground walnut shells, sugar, and carbon black. In one presently preferred embodiment of the present invention, the void-forming material comprises about 0.5 to 5 percent by weight of the algae-resistant granules.
- The void-forming material can release gaseous material, or decompose or evaporate at elevated temperature, leaving behind hollow openings that provide additional avenues for the metal ions to leach out easily.
- The present invention also provides a process for producing algae-resistant roofing shingles, as well as the shingles themselves. This process comprises producing algae-resistant roofing granules using the process of this invention, and adhering the granules to a shingle stock material.
- The algaecidal material concentration preferably is from about 0.1% to about 10% of the total granule weight, and that of the void-forming material is preferably from about 0.05 to about 5%. Various combinations of the levels and types of the void-forming materials used in the formulations can provide different amounts of algaecidal material leaching out from the granules.
- The algae-resistant granules prepared according to the process of the present invention can be employed in the manufacture of algae-resistant roofing products, such as algae-resistant asphalt shingles. The algae-resistant granules of the present invention can be mixed with conventional roofing granules, and the granule mixture can be embedded in the surface of bituminous roofing products using conventional methods. Alternatively, the algae-resistant granules of the present invention can be substituted for conventional roofing granules in manufacture of bituminous roofing products, such as asphalt roofing shingles, to provide those roofing products with algae-resistance.
- In one embodiment, the present invention provides a process for preparing AR roofing granules having a controllable algaecide-leaching rate.
- In another embodiment, the present invention provides a process for preparing roofing shingles having algae-resistance that can be customized to the specific geographic region in which the shingles are intended to be used.
- The present invention preferably provides algae-resistant roofing granules having controllable levels of algaecide release.
- The present invention also preferably provides algae resistant asphalt shingles.
-
FIG. 1 is a graph illustrating the effect of various types of void-forming material on the concentrations of copper ions leached out from granules prepared according to the present invention (after 8 days immersion in warm water of 60° C.). The values above the bars depict the copper concentrations in ppm. -
FIG. 2 is a graph illustrating the effect of various types of void-forming material on the concentrations of zinc ions leached out from granules prepared according to the present invention (after 8 days immersion in warm water of 60° C.). The values above the bars depict the copper concentrations in ppm. -
FIG. 3 is a graph illustrating the effect of varying the amount of void-forming material on the concentrations of zinc ions leached out from granules prepared according to the present invention (after 8 days immersion in warm water of 60° C.). The values above the bars depict the copper concentrations in ppm. - The inert base particles employed in the process of the present invention are preferably chemically inert materials, such as inert mineral particles. The mineral particles, which can be produced by a series of quarrying, crushing, and screening operations, are generally intermediate between sand and gravel in size (that is, between about 8 US mesh and 40 US mesh), and preferably have an average particle size of from about 0.2 mm to about 3 mm, and more preferable from about 0.4 mm to about 2.4 mm.
- In particular, suitably sized particles of naturally occurring materials such as talc, slag, granite, silica sand, greenstone, andesite, porphyry, marble, syenite, rhyolite, diabase, greystone, quartz, slate, trap rock, basalt, and marine shells can be used, as well as recycled manufactured materials such as crushed bricks, concrete, porcelain, fire clay, and the like.
- The process of the present invention for producing algae-resistant roofing granules comprises providing inert base particles, and forming first intermediate particles by coating the inert base particles with a first mixture to form a first layer on the inert base particles. This first mixture includes at least one algaecidal material, at least one void-forming material, and, preferably, a binder.
- The void-forming material can be an organic material or inorganic compound. Preferably, the void-forming material is selected so that it releases gaseous material, such as by decomposing into gaseous products, at suitably elevated temperatures. The void-forming material preferably releases gaseous material at a temperature that is greater than 90 degrees C. The void-forming material may, for example, release bound water, or water of hydration, at the elevated temperature. In the alternative, the void-forming material may itself decompose at an elevated temperature, preferably at a temperature above about 150 degrees C. Examples of void-forming materials include sugar, sugar-based products such as candy “sprinkles,” crushed nuts (such as walnut shells), crushed corn and grains, carbon or graphite balls, synthetic and natural polymers, organic fibers, flame-retardants, and hydrated compounds. The void-forming material can be either water-soluble or water-insoluble. Preferably, the void-forming material comprises at least 0.1 percent by weight of the algae-resistant granules. Preferably, the void-forming material has an average particle size no larger than about 2 mm. The void-forming material preferably has an average particle size from about 100 μm to about 400 μm. Mixtures of void-forming materials can also be used, as well as mixture of water-soluble and water-insoluble void-forming material. The proportions of mixtures of void-forming materials can be tailored to achieve desired leaching characteristics for the resulting algae-resistant particles. The void-forming material preferably comprises a substance selected from the group consisting of ground walnut shells, sugar, and carbon black. In one presently preferred embodiment of the present invention, the void-forming material comprises about 1.4 percent by weight of the algae-resistant granules.
- The at least one algaecide is preferably selected from the group consisting of copper materials, zinc materials, and mixtures thereof. For example, cuprous oxide and/or zinc oxide, or a mixture thereof, can be used. The copper materials that can be used in the process of the present invention include cuprous oxide, cupric acetate, cupric chloride, cupric nitrate, cupric oxide, cupric sulfate, cupric sulfide, cupric stearate, cupric cyanide, cuprous cyanide, cuprous stannate, cuprous thiocyanate, cupric silicate, cuprous chloride, cupric iodide, cupric bromide, cupric carbonate, cupric fluoroborate, and mixtures thereof. The zinc materials can include zinc oxide, such as French process zinc oxide, zinc sulfide, zinc borate, zinc sulfate, zinc pyrithione, zinc ricinoleate, zinc stearate, zinc chromate, and mixtures thereof. In one embodiment, the at least one algaecide preferably comprises cuprous oxide, and it is preferred that the cuprous oxide comprises at least 2 percent of the algae resistant granules. In another embodiment, the at least one algaecide preferably comprises zinc oxide, and it is preferred that the zinc oxide comprises at least 0.1 percent by weight of the algae-resistant granules. When a mixed algaecide is employed, the at least one algaecide preferably comprises a mixture of cuprous oxide and zinc oxide.
- The binder employed in the process of the present invention to form the first intermediate particles is preferably formed from a mixture of an alkali metal silicate, such as aqueous sodium silicate, and heat reactive aluminosilicate material, such as clay, preferably, kaolin. The proportion of alkali metal silicate to heat-reactive aluminosilicate material is preferably from about 3:1 to about 1:3 parts by weight alkali metal silicate to parts by weight heat-reactive aluminosilicate material, more preferably about 2:1 to about 0.8:1 parts by weight alkali metal silicate to parts by weight heat-reactive aluminosilicate material.
- When the algae-resistant granules are fired at an elevated temperature, such as at least about 200 degrees C., and preferably about 250 to 500 degrees C., the clay reacts with and neutralizes the alkali metal silicate, thereby insolubilizing the binder. The binder resulting from this clay-silicate process, believed to be a sodium aluminum silicate, is porous, such as disclosed in U.S. Pat. No. 2,379,358 (incorporated herein by reference). Alternatively, the porosity of the insolubilized binder can be decreased by including an oxygen containing boron compound such as borax in the binder mixture, and firing the granules at a lower temperature, for example, about 250 degree C. to 400 degrees C., such as disclosed in U.S. Pat. No. 3,255,031 (incorporated herein by reference).
- Examples of clays that can be employed in the process of the present invention include kaolin, other aluminosilicate clays, Dover clay, bentonite clay, etc. The binder employed in the present invention can include an alkali metal silicate such as an aqueous sodium silicate solution, for example, an aqueous sodium silicate solution having a total solids content of from about 38 percent by weight to about 42 percent by weight, and having a ratio of Na2O to SiO2 of from about 1:2 to about 1:3.25.
- In the initial step of the process of the present invention, first intermediate particles are formed by coating the inert base particles with a mixture to form a first layer on those inert base particles. Preferably, the first layer has a thickness of from about 10 μm to about 50 μm, more preferably about 30 μm. The first intermediate particles can be fired as described above to cure the binder, and to release the gaseous material from the at least one void-forming material to form the desired voids or pores in the first coating. When the void-forming material is an organic compound, the applied heat can pyrolyse the compound resulting in the desired pores. The algaecidal properties of the algae-resistant granules can be tailored by controlling the porosity and distribution of the algaecidal material. Preferably, the granules have a pore size in the range of about 0.1 μm to 20 μm.
- The present process preferably further comprises forming second intermediate particles by coating the first intermediate particles with a second mixture including a coloring material to form a second layer. The second mixture can include a binder, such as a binder having the same composition as the first mixture. The second intermediate particles are fired to cure the binder. The second mixture can optionally include a void-forming material, so as to increase the porosity of the cured coating ultimately formed. Further, the second mixture can optionally include at least one algaecidal material, such as cuprous oxide. Preferably, the second layer has a thickness of from about 2 μm to about 25 μm, more preferably about 5 μm. Preferably, the second intermediate particles are formed by coating the first intermediate particles without firing the first intermediate particles to cure the first binder. This reduces the energy required to produce the algae-resistant particles of the present invention by reducing the number of energy-consuming firing steps from two to one.
- In alternative embodiment of the process of the present invention, the inert base particles are coated with a single mixture including binder, at least one void-forming material, at least one algaecidal material, and at least one colorant, to provide “intermediate” particles. The intermediate particles are subsequently fired at elevated temperature to both cure the binder and decompose the at least one void-forming material thus providing the desired voids or pores in the granule coating.
- The algae-resistant roofing granules of the present invention can be colored using conventional coatings pigments. Examples of coatings pigments that can be used include those provided by the Color Division of Ferro Corporation, 4150 East 56th St., Cleveland, Ohio 44101, and produced using high temperature calcinations, including PC-9415 Yellow, PC-9416 Yellow, PC-9158 Autumn Gold, PC-9189 Bright Golden Yellow, v-9186 Iron-Free Chestnut Brown, V-780 Black, V0797 IR Black, V-9248 Blue, PC-9250 Bright Blue, PC-5686 Turquoise, V-13810 Red, V-12600 Camouflage Green, V12560 IR Green, V-778 IR Black, and V-799 Black. Further examples of coatings pigments that can be used include white titanium dioxide pigments provided by Du Pont de Nemours, P.O. Box 8070, Wilmington, Del. 19880.
- The algaecide resistance properties of the algaecide resistant roofing granules of the present invention are determined by a number of factors, including the porosity of the roofing granules, the nature and amount(s) of the algaecide employed, and the spatial distribution of the algaecide within the granules.
- The process of the present invention advantageously permits the algae resistance of the shingles employing the algae-resistant granules to be tailored to specific local conditions. For example, in geographic areas encumbered with excessive moisture favoring rapid algae growth, the granules can be structured to release the relatively high levels of algaecide required to effectively inhibit algae growth under these conditions. Conversely, where algae growth is less favored by local conditions, the granules can be structured to release the lower levels of algaecide effective under these conditions.
- The algae resistance properties of the granule bodies can also be varied through control of the porosity conferred by the binder employed. For example, the binder porosity can be controlled by adjusting the ratio of the aqueous silicate and the aluminosilicate employed.
- Combinations of the above-described alternatives for introducing algaecide into and/or on the granule bodies can also be employed. By adjusting the amount and selecting the type of algaecide used, and by adjusting the porosity of the granules, a variety of different algaecide leach rates and leaching profiles can be obtained.
- The algae-resistant granules prepared according to the process of the present invention can be employed in the manufacture of algae-resistant roofing products, such as algae-resistant asphalt shingles, using conventional roofing production processes. Typically, bituminous roofing products are sheet goods that include a non-woven base or scrim formed of a fibrous material, such as a glass fiber scrim. The base is coated with one or more layers of a bituminous material such as asphalt to provide water and weather resistance to the roofing product. One side of the roofing product is typically coated with mineral granules to provide durability, reflect heat and solar radiation, and to protect the bituminous binder from environmental degradation. The algae-resistant granules of the present invention can be mixed with conventional roofing granules, and the granule mixture can be embedded in the surface of such bituminous roofing products using conventional methods. Alternatively, the algae-resistant granules of the present invention can be substituted for conventional roofing granules in manufacture of bituminous roofing products to provide those roofing products with algae-resistance.
- Bituminous roofing products are typically manufactured in continuous processes in which a continuous substrate sheet of a fibrous material such as a continuous felt sheet or glass fiber mat is immersed in a bath of hot, fluid bituminous coating material so that the bituminous material saturates the substrate sheet and coats at least one side of the substrate. The reverse side of the substrate sheet can be coated with an anti-stick material such as a suitable mineral powder or a fine sand. Roofing granules are then distributed over selected portions of the top of the sheet, and the bituminous material serves as an adhesive to bind the roofing granules to the sheet when the bituminous material has cooled. The sheet can then be cut into conventional shingle sizes and shapes (such as one foot by three feet rectangles), slots can be cut in the shingles to provide a plurality of “tabs” for ease of installation, additional bituminous adhesive can be applied in strategic locations and covered with release paper to provide for securing successive courses of shingles during roof installation, and the finished shingles can be packaged. More complex methods of shingle construction can also be employed, such as building up multiple layers of sheet in selected portions of the shingle to provide an enhanced visual appearance, or to simulate other types of roofing products.
- The bituminous material used in manufacturing roofing products according to the present invention is derived from a petroleum-processing by-product such as pitch, “straight-run” bitumen, or “blown” bitumen. The bituminous material can be modified with extender materials such as oils, petroleum extracts, and/or petroleum residues. The bituminous material can include various modifying ingredients such as polymeric materials, such as SBS (styrene-butadiene-styrene) block copolymers, resins, flame-retardant materials, oils, stabilizing materials, anti-static compounds, and the like. Preferably, the total amount by weight of such modifying ingredients is not more than about 15 percent of the total weight of the bituminous material. The bituminous material can also include amorphous polyolefins, up to about 25 percent by weight. Examples of suitable amorphous polyolefins include atactic polypropylene, ethylene-propylene rubber, etc. Preferably, the amorphous polyolefins employed have a softening point of from about 130 degrees C. to about 160 degrees C. The bituminous composition can also include a suitable filler, such as calcium carbonate, talc, carbon black, stone dust, or fly ash, preferably in an amount from about 10 percent to 70 percent by weight of the bituminous composite material.
- The following examples are provided to better disclose and teach processes and compositions of the present invention. They are for illustrative purposes only, and it must be acknowledged that minor variations and changes can be made without materially affecting the spirit and scope of the invention as recited in the claims that follow.
- 1,000 g of crushed and screened rhyolite igneous rock from Wrentham, Mass. having an average particle size of 1 mm are mixed for 2 minutes in a paddle mixer with 40 g of aqueous sodium silicate (40% solids, with Na2O:SiO2 ration of 1:3.2) (Occidental Chemical Corporation, Dallas, Tex.), 30 g of Wilkinson brand kaolin clay, 35 g of Chemet brand cuprous oxide (American Chemet Corporation, Deerfield, Ill.) and 1.75 g of Kadox brand zinc oxide (Zinc Corporation of America, Monaca, Pa.), and 6.5 g of Regal carbon balls supplied by Cabot Corporation (Boston, Mass.) and having a chemical composition of 90% carbon black and an average particle size of 25 nm, to form green granules having a particle size of about 1 mm. The green granules are then fired in a gas-fired kiln at a temperature of 500 degrees C. for 20 minutes to form algae-resistant granules according to the present invention.
- The process of Example 1 is repeated, except that 30 g of table sugar (Domino) having an average particle size of 20 μm is substituted for the carbon balls.
- The process of Example 1 is repeated, except that 12 g of candy sugar “sprinkles” (Signature) having an average particle size of 1.2 mm are substituted for the carbon balls.
- The process of Example 1 is repeated, except that 30 g of crushed walnut shells (Composite Materials, Inc.) and having an average particle size of 300 μm are substituted for the carbon balls.
- The process of Example 3 is repeated, except that 30 g of candy sugar “sprinkles” are employed.
- The process of Example 4 is repeated. 500 g of the granules produced are mixed with a coating mixture for 2 minutes in a paddle mixer, the coating mixture comprising 16 g of aqueous sodium silicate (40% solids, with Na2O:SiO2 ratio of 1:3.2), 10 g of kaolin clay, 6 g of V-780 (black) pigment particles (Ferro Corporation) to form coated granules (second intermediate particles) having a particle size of about 1 mm. The coated granules are then fired in a gas-fired kiln at a temperature of about 500 degrees C. for 20 minutes to form colored, algae-resistant granules according to the present invention.
- The process of Example 6 is repeated, except that 3 g of Regal carbon balls are added to the coating mixture to increase the porosity of the fired coating.
- The process of Example 6 is repeated, except that 7 g of Chemet brand cuprous oxide and 0.35 g of Kadox brand zinc oxide are added to the coating mixture.
- The process of Example 6 is repeated, except that twice as much of the Chemet brand cuprous oxide was used in the inner coating, that is, 60 g of cuprous oxide for the inner coating, and 10 g of cuprous oxide is added to the outer coating, so that there is cuprous oxide in both the inner and the outer coatings.
- The process of Example 4 is repeated, except that 70 g of Chemet brand cuprous oxide, plus 12 g of V-780 Ferro brand black pigment particles are used to form single-coated, algae-resistant granules.
- The process of Example 1 is repeated, except that the carbon balls are omitted.
- The effect of varying the type of void-forming material on the algae-resistance of the algae-resistant granules of the present invention was determined. 100 g of algae-resistant granules prepared as described above in Examples 1-4 and Comparative Example 1 were immersed for 8 days in 100 g of distilled water at 60 degrees C. The concentration of copper ion and zinc ion in the leach water was then determined by inductively coupled plasma (ICP) emission spectroscopy, and the results are shown in
FIGS. 1 and 2 . As depicted inFIGS. 1 and 2 , candy sprinkles result in much higher leaching of copper (22.24 ppm) and zinc (2.14 ppm) ions than other additives do. - The effect of varying the amount of void-forming material on the algae-resistance of the algae-resistant granules of the present invention was also determined. 100 g of algae-resistant granules prepared as described in Examples 3 and 5 and Comparative Example 1 above were immersed for 8 days in 100 g of distilled water at 60 degrees C. The concentration of copper ion and zinc ion in the leach water was then determined by ICP emission spectroscopy, and the results are shown in
FIG. 3 . The results displayed inFIG. 3 show that granules containing a higher level of sugar sprinkles (30 g per kg of granules) leach out more copper ions than the lower sugar sprinkles or no additive. - A comparison of the leaching rates for one-coat and two-granules was made as follows:
- 10 g of algae-resistant granules prepared as described in Examples 9 and 10 were immersed in 10 ml of acetate buffer solution (pH 4.6) at 60° C. for various days. The concentration of cooper ions in the leached solution was determined by first reacting the copper ions with
dipotassium FIG. 4 , show that granules prepared by the one-coated process have higher total leached amounts of copper ions than the two-coated granules have. - Various modifications can be made in the details of the various embodiments of the processes, compositions and articles of the present invention, all within the scope and spirit of the invention and defined by the appended claims.
Claims (21)
1. An algae-resistant roofing product produced by a process comprising producing algae-resistant roofing granules, and adhering the granules to a roofing product stock material, the algae-resistant roofing granules being produced by a process comprising:
(a) providing inert base particles;
(b) forming first intermediate particles by coating the inert base particles with a first mixture including at least one algaecidal material comprising cuprous oxide, and a void-forming material, the void-forming material releasing gaseous material at temperatures above 90 degrees C., and having an average particle size no larger than 2 mm, to form a first layer on the inert base particles;
(c) forming second intermediate particles by coating the first intermediate particles with a second mixture including a binder and a coloring material and not including a void-forming material; and
(d) heating the second intermediate particles to release the gaseous material and form pores in the first layer to produce the roofing granules
2.-14. (canceled)
15. An algae-resistant roofing product produced by a process comprising producing algae-resistant roofing granules, and adhering the granules to a roofing product stock material, the algae-resistant roofing granules being produced by a process comprising:
(a) providing inert base particles;
(b) forming first intermediate particles by coating the inert base particles with a first mixture including; a binder; at least one algaecidal material, and a void-forming material, the void-forming material releasing gaseous material at temperatures above 90 degrees C., and having an average particle size no larger than 2 mm, to form a first layer on the inert base particles;
(c) forming second intermediate particles by coating the first intermediate particles with a second mixture including a binder and a coloring material and not including a void-forming material to form a second coating having a thickness of from about 2 micrometers to about 25 micrometers; and
(d) heating the second intermediate particles to release the gaseous material and form pores in the first layer to produce the roofing granules.
16.-28. (canceled)
29. An algae-resistant roofing product produced by a process comprising producing algae-resistant roofing granules, and adhering the granules to a roofing product stock material, the algae-resistant roofing granules being produced by a process comprising:
(a) providing inert base particles;
(b) forming green granules by coating the inert base particles with a mixture including;
at least one algaecidal material, and
a void-forming material, the void-forming material releasing gaseous material at temperatures above 90° C., and having an average particle size no larger than 2 mm,
at least one coloring material; and
a heat curable binder; and
(c) heating the green granules to release the gaseous material to form pores and cure the binder to produce the roofing granules.
30. An algae-resistant roofing product produced by a process comprising producing algae-resistant roofing granules, and adhering the granules to a roofing product stock material, the algae-resistant roofing granules being produced by a process comprising:
(a) providing inert base particles;
(b) forming first intermediate particles by coating the inert base particles with a first mixture including at least one algaecidal material, and a void-forming material, the void-forming material releasing gaseous material at temperatures above 90° C., and having an average particle size no larger than 2 mm, to form a first layer on the inert base particles;
(c) forming second intermediate particles by coating the first intermediate particles with a second mixture including a coloring material; and
(d) heating the second intermediate particles to decompose the void-forming material and form pores in the first layer to produce the roofing granules.
31. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the first mixture further includes a binder, the binder comprising an aluminosilicate material and an alkali metal silicate.
32. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the second mixture further includes a binder, the binder comprising an aluminosilicate material and an alkali metal silicate.
33. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the at least one algaecidal material is selected from the group consisting of copper compounds and zinc compounds.
34. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the at least one algaecidal material comprises cuprous oxide.
35. The algae-resistant roofing product of claim 34 , wherein in the process for producing the algae-resistant roofing granules, the cuprous oxide comprises at least 2 percent of the algae resistant granules.
36. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the at least one algaecidal material further comprises zinc oxide.
37. The algae-resistant roofing product of claim 36 , wherein in the process for producing the algae-resistant roofing granules, the zinc oxide comprise at least 0.1 percent by weight of the algae-resistant granules.
38. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the void-forming material comprises a substance selected from the group comprising ground walnut shells, sugar, and carbon black.
39. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the void-forming material comprises at least 0.1 percent by weight of the algae-resistant granules.
40. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the coloring material is selected from the group comprising transition metal oxides.
41. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the second intermediate particles are heated to a temperature of at least 500 degrees C.
42. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the granules have a pore size in the range of about 0.1 to 20 micrometers.
43. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the first intermediate layer has a thickness of about 30 micrometers.
44. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the second intermediate layer has a thickness of about 5 micrometers.
45. The algae-resistant roofing product of claim 30 , wherein in the process for producing the algae-resistant roofing granules, the second mixture further includes at least one algaecidal material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/274,605 US20120034424A1 (en) | 2003-06-20 | 2011-10-17 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/600,847 US7687106B2 (en) | 2003-06-20 | 2003-06-20 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles, and process for producing same |
US12/610,782 US8039048B2 (en) | 2003-06-20 | 2009-11-02 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
US13/274,605 US20120034424A1 (en) | 2003-06-20 | 2011-10-17 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/610,782 Continuation US8039048B2 (en) | 2003-06-20 | 2009-11-02 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120034424A1 true US20120034424A1 (en) | 2012-02-09 |
Family
ID=33517837
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/600,847 Active 2026-07-16 US7687106B2 (en) | 2003-06-20 | 2003-06-20 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles, and process for producing same |
US12/610,782 Expired - Fee Related US8039048B2 (en) | 2003-06-20 | 2009-11-02 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
US13/274,605 Abandoned US20120034424A1 (en) | 2003-06-20 | 2011-10-17 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/600,847 Active 2026-07-16 US7687106B2 (en) | 2003-06-20 | 2003-06-20 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles, and process for producing same |
US12/610,782 Expired - Fee Related US8039048B2 (en) | 2003-06-20 | 2009-11-02 | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same |
Country Status (2)
Country | Link |
---|---|
US (3) | US7687106B2 (en) |
CA (1) | CA2471215C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120192510A1 (en) * | 2010-12-20 | 2012-08-02 | David Spencer | Shingle Insert Strips And Method For Eliminating and Prevent Growth of Algae, Moss, or Lichens on a Roof |
US20120324807A1 (en) * | 2010-12-20 | 2012-12-27 | David Spencer | Shingle Inserts And Method For Eliminating and Preventing Growth of Algae, Moss, or Lichens on a Roof |
US9200451B2 (en) | 2003-10-06 | 2015-12-01 | Certainteed Corporation | Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles, and process for producing same |
DE102015000404A1 (en) | 2015-01-14 | 2016-07-14 | Marc Köntges | Photovoltaic module with integrated protection against algae, fungus and moss growth |
US11565970B1 (en) | 2021-07-01 | 2023-01-31 | Bmic Llc | Graphene-containing roofing materials and related methods |
US12060713B2 (en) | 2021-06-24 | 2024-08-13 | Bmic Llc | Building materials comprising graphene and related methods |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2884111B1 (en) * | 2005-04-07 | 2007-05-18 | Saint Gobain Mat Constr Sas | BIOCIDAL GRANULE, IN PARTICULAR FOR THE MANUFACTURE OF ASPHALT SHINGLE |
US9044921B2 (en) | 2005-09-07 | 2015-06-02 | Certainteed Corporation | Solar heat reflective roofing membrane and process for making the same |
US7749593B2 (en) | 2006-07-07 | 2010-07-06 | Certainteed Corporation | Solar heat responsive exterior surface covering |
US20080008858A1 (en) * | 2006-07-08 | 2008-01-10 | Hong Keith C | Roofing Products Containing Phase Change Materials |
US20080115444A1 (en) | 2006-09-01 | 2008-05-22 | Kalkanoglu Husnu M | Roofing shingles with enhanced granule adhesion and method for producing same |
WO2008045992A1 (en) * | 2006-10-13 | 2008-04-17 | 3M Innovative Properties Company | Copper containing algicidal compounds |
US8361597B2 (en) * | 2007-04-02 | 2013-01-29 | Certainteed Corporation | Solar heat-reflective roofing granules, solar heat-reflective shingles, and process for producing same |
CA2680298A1 (en) | 2007-04-03 | 2008-10-16 | Certainteed Corporation | Surfacing media with flame retarding effects and high solar reflectance |
US8349435B2 (en) | 2007-04-04 | 2013-01-08 | Certainteed Corporation | Mineral surfaced asphalt-based roofing products with encapsulated healing agents and methods of producing the same |
US20080261007A1 (en) | 2007-04-19 | 2008-10-23 | Hong Keith C | Post-functionalized roofing granules, and process for preparing same |
WO2008147972A2 (en) | 2007-05-24 | 2008-12-04 | Certainteed Corporation | Roofing granules with high solar reflectance, roofing products with high solar reflectance, and processes for preparing same |
WO2009145968A1 (en) | 2008-03-31 | 2009-12-03 | Certainteed Corporation | Coating compositions for roofing granules, dark colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles, and process for producing the same |
US8394498B2 (en) | 2008-12-16 | 2013-03-12 | Certainteed Corporation | Roofing granules with high solar reflectance, roofing materials with high solar reflectance, and the process of making the same |
US9540822B2 (en) * | 2009-11-24 | 2017-01-10 | Certainteed Corporation | Composite nanoparticles for roofing granules, roofing shingles containing such granules, and process for producing same |
JP5570006B2 (en) | 2009-12-24 | 2014-08-13 | 国立大学法人 東京大学 | Virus inactivating agent |
US9103124B2 (en) * | 2010-12-20 | 2015-08-11 | Laurie Anne Spencer | Shingle inserts and method for eliminating and preventing growth of algae, moss, or lichens on a roof |
US8703166B1 (en) | 2011-01-20 | 2014-04-22 | John Flynn | Systems and methods for reducing microbial growth |
US8978332B2 (en) * | 2011-12-23 | 2015-03-17 | Building Materials Investment Corp. | Roofing shingle system and shingles for use therein |
US9408383B2 (en) | 2012-06-28 | 2016-08-09 | Certainteed Corporation | Roofing granules |
US11427507B2 (en) | 2016-12-31 | 2022-08-30 | Certainteed Llc | Mineral roofing granules and methods for making them |
US10730799B2 (en) | 2016-12-31 | 2020-08-04 | Certainteed Corporation | Solar reflective composite granules and method of making solar reflective composite granules |
US11008254B2 (en) | 2019-08-08 | 2021-05-18 | Specialty Granules Investments Llc | Building materials comprising agglomerated particles |
US11999655B2 (en) | 2021-05-24 | 2024-06-04 | Specialty Granules Investments Llc | Building materials comprising carbon-dioxide-treated agglomerated particles |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2138456A (en) * | 1936-07-23 | 1938-11-29 | Certain Teed Prod Corp | Roofing material |
US2379358A (en) * | 1936-01-30 | 1945-06-26 | Minnesota Mining & Mfg | Colored granulated material |
US3507676A (en) * | 1966-12-15 | 1970-04-21 | Minnesota Mining & Mfg | Zinc containing algicidal surfacing,method,and granules |
US3528842A (en) * | 1966-07-22 | 1970-09-15 | Minnesota Mining & Mfg | Copper compound-containing algicidal surfacing and process |
US4378408A (en) * | 1981-02-11 | 1983-03-29 | Gaf Corporation | Silicate coated roofing granules |
US4469588A (en) * | 1981-03-30 | 1984-09-04 | Ashland Oil, Inc. | Immobilization of vanadia deposited on sorbent materials during visbreaking treatment of carbo-metallic oils |
Family Cites Families (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE20295E (en) | 1937-03-16 | Process of coloring granular slate | ||
USRE19372E (en) | 1934-11-13 | Nonweathering glazed aggregate | ||
US1677701A (en) * | 1927-12-09 | 1928-07-17 | Vanderbilt Co R T | Granule and method of producing same |
US2001448A (en) * | 1934-05-02 | 1935-05-14 | Bird & Son | Manufacture of artificially colored granules |
US2142540A (en) * | 1934-07-31 | 1939-01-03 | Patent & Licensing Corp | Artificially colored granules and method of making same |
US2147058A (en) * | 1934-12-20 | 1939-02-14 | Woodall Industries Inc | Laminated moisture resistant insulating panel or the like |
US2614051A (en) * | 1947-05-19 | 1952-10-14 | Minnesota Mining & Mfg | Roofing granules and method of making same |
US2591149A (en) * | 1948-04-21 | 1952-04-01 | Central Commercial Co | Method of coating mineral granules |
US2799241A (en) * | 1949-01-21 | 1957-07-16 | Wisconsin Alumni Res Found | Means for applying coatings to tablets or the like |
US2695851A (en) * | 1949-03-28 | 1954-11-30 | Minnesota Mining & Mfg | Artificially colored roofing granules, method of making same, and a sheet body having an adherent surfacing of said granules |
US2898232A (en) * | 1956-06-14 | 1959-08-04 | Minnesota Mining & Mfg | Roofing granules and method for making |
US2981636A (en) | 1957-02-18 | 1961-04-25 | Minnesota Mining & Mfg | Colored roofing granules |
NL232500A (en) * | 1957-10-22 | |||
US2981363A (en) * | 1958-01-20 | 1961-04-25 | Union Tank Car Co | Ladder arrangement for floating roof storage tank |
NO98434A (en) * | 1959-04-30 | |||
US2986476A (en) * | 1959-08-10 | 1961-05-30 | Central Commercial Co | Artificially colored granules and method of making same |
US3117027A (en) * | 1960-01-08 | 1964-01-07 | Wisconsin Alumni Res Found | Apparatus for coating particles in a fluidized bed |
US3230064A (en) * | 1960-10-21 | 1966-01-18 | Standard Oil Co | Apparatus for spherulization of fusible particles |
US3207824A (en) * | 1962-06-22 | 1965-09-21 | Wisconsin Alumni Res Found | Process for preparing agglomerates |
US3255031A (en) * | 1962-07-30 | 1966-06-07 | Minnesota Mining & Mfg | Method of making roofing granules and product thereof |
US3196827A (en) * | 1962-11-19 | 1965-07-27 | Wisconsin Alumni Res Found | Apparatus for the encapsulation of discrete particles |
US3365315A (en) * | 1963-08-23 | 1968-01-23 | Minnesota Mining & Mfg | Glass bubbles prepared by reheating solid glass partiles |
US3397073A (en) * | 1963-12-11 | 1968-08-13 | Minnesota Mining & Mfg | Soot-resistant roofing granules |
US3253944A (en) * | 1964-01-13 | 1966-05-31 | Wisconsin Alumni Res Found | Particle coating process |
US3241520A (en) * | 1964-10-19 | 1966-03-22 | Wisconsin Alumni Res Found | Particle coating apparatus |
US3479201A (en) * | 1966-01-18 | 1969-11-18 | Minnesota Mining & Mfg | Color-coated roofing granules |
US3752696A (en) * | 1967-02-17 | 1973-08-14 | Gaf Corp | Colored roofing granules |
US3985540A (en) * | 1970-04-02 | 1976-10-12 | Gaf Corporation | Metal complexes of hydroxyquinoline and polymeric porous granules |
US3945945A (en) * | 1971-05-10 | 1976-03-23 | Norton Company | High surface area alumina bodies |
US3792136A (en) * | 1971-11-02 | 1974-02-12 | Atomic Energy Commission | Method for preparing hollow metal oxide microsphere |
US4092441A (en) * | 1973-08-30 | 1978-05-30 | Gaf Corporation | Roofing granule treatment by coating with a metallic algicide |
US3918407A (en) * | 1973-11-20 | 1975-11-11 | Robins Co Inc A H | Pet collar |
US3961628A (en) * | 1974-04-10 | 1976-06-08 | Alza Corporation | Ocular drug dispensing system |
US3932143A (en) * | 1974-05-23 | 1976-01-13 | Kennecott Copper Corporation | Flame-sprayed roofing material |
US4111713A (en) * | 1975-01-29 | 1978-09-05 | Minnesota Mining And Manufacturing Company | Hollow spheres |
GB1573706A (en) * | 1976-04-30 | 1980-08-28 | Ici Ltd | Crystalline compounds |
US5212143A (en) * | 1978-08-28 | 1993-05-18 | Torobin Leonard B | Hollow porous microspheres made from dispersed particle compositions |
US4279632A (en) * | 1979-05-08 | 1981-07-21 | Nasa | Method and apparatus for producing concentric hollow spheres |
US4430108A (en) * | 1981-10-14 | 1984-02-07 | Pedro Buarque De Macedo | Method for making foam glass from diatomaceous earth and fly ash |
US4391646A (en) * | 1982-02-25 | 1983-07-05 | Minnesota Mining And Manufacturing Company | Glass bubbles of increased collapse strength |
JPS60147276A (en) * | 1984-01-09 | 1985-08-03 | Matsushita Electric Ind Co Ltd | Formation of fluorocarbon resin coating layer |
US4623588A (en) | 1984-02-06 | 1986-11-18 | Biotek, Inc. | Controlled release composite core coated microparticles |
US4675140A (en) * | 1984-05-18 | 1987-06-23 | Washington University Technology Associates | Method for coating particles or liquid droplets |
US4744831A (en) * | 1984-07-30 | 1988-05-17 | Minnesota Mining And Manufacturing Company | Hollow inorganic spheres and methods for making such spheres |
US4631267A (en) * | 1985-03-18 | 1986-12-23 | Corning Glass Works | Method of producing high-strength high surface area catalyst supports |
JPS6213479A (en) * | 1985-07-10 | 1987-01-22 | Sumitomo Electric Ind Ltd | Friction material |
DE3619363A1 (en) * | 1986-06-09 | 1987-12-10 | Brockhues Chem Werke Ag | METHOD FOR COLORING CONCRETE |
US4767726A (en) * | 1987-01-12 | 1988-08-30 | Minnesota Mining And Manufacturing Company | Glass microbubbles |
US4920090A (en) * | 1987-05-15 | 1990-04-24 | Henkel Kommanditgesellschaft Auf Aktien | Process for the formation of shaped agglomerates from particulate solids |
JP2686638B2 (en) * | 1988-03-17 | 1997-12-08 | 石原産業株式会社 | Antibacterial powder and method for producing the same |
US5052162A (en) * | 1988-03-21 | 1991-10-01 | The Celotex Corporation | Roofing shingle |
US5077241A (en) | 1988-11-17 | 1991-12-31 | Minnesota Mining And Manufacturing Company | Sol gel-derived ceramic bubbles |
US5888930A (en) * | 1989-03-27 | 1999-03-30 | Bend Research, Inc. | Asymmetric microporous beads for controlled release |
US5022897A (en) * | 1989-11-22 | 1991-06-11 | Potters Industries, Inc. | Method for hazardous waste removal and neutralization |
US5039311A (en) * | 1990-03-02 | 1991-08-13 | Minnesota Mining And Manufacturing Company | Abrasive granules |
US5180585A (en) * | 1991-08-09 | 1993-01-19 | E. I. Du Pont De Nemours And Company | Antimicrobial compositions, process for preparing the same and use |
US5503840A (en) * | 1991-08-09 | 1996-04-02 | E. I. Du Pont De Nemours And Company | Antimicrobial compositions, process for preparing the same and use |
JPH08505858A (en) * | 1991-08-09 | 1996-06-25 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | Antibacterial composition, production method and use thereof |
US5240760A (en) * | 1992-02-07 | 1993-08-31 | Minnesota Mining And Manufacturing Company | Polysiloxane treated roofing granules |
US5411803A (en) * | 1992-09-15 | 1995-05-02 | Minnesota Mining And Manufacturing Company | Granular materials having an improved ceramic coating, methods of preparing same, and composite sheets including same |
US5356664A (en) * | 1992-09-15 | 1994-10-18 | Minnesota Mining And Manufacturing Company | Method of inhibiting algae growth on asphalt shingles |
US5362566A (en) * | 1993-03-04 | 1994-11-08 | Minnesota Mining And Manufacturing Company | Coating composition, granules coated with same, and method of reducing dust generation |
US5366767A (en) * | 1993-09-14 | 1994-11-22 | Richard Howard | Composition and method for preventing moss growth on roofs |
CA2132288A1 (en) * | 1993-10-14 | 1995-04-15 | W. Stuart Bigham | Inorganic particles coated with organic polymeric binders, composite sheets including same, and methods of making said coated particles |
US5456785A (en) * | 1994-05-17 | 1995-10-10 | Venable; Jesse S. | Composite roofing product and method and apparatus for making a composite roofing product |
US5643399A (en) * | 1994-05-17 | 1997-07-01 | Carlisle Corporation | Composite roofing product and apparatus and method for cleaning vulcanized rubber and for making a composite roofing product |
WO1996007538A1 (en) | 1994-09-06 | 1996-03-14 | Thermacell Technologies, Inc. | Insulation microspheres and method of manufacture |
JPH10506579A (en) * | 1994-09-30 | 1998-06-30 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | Coated abrasive article, method of making and using the same |
US5916947A (en) * | 1994-12-02 | 1999-06-29 | Cape Cod Research, Inc. | Zinc oxide photoactive antifoulant material |
GB9502253D0 (en) | 1995-02-06 | 1995-03-29 | Giltech Ltd | The effects of antibacterial agents on the behaviour of mouse fibroblasts in vitro |
US5599586A (en) * | 1995-04-18 | 1997-02-04 | Israel; Michael G. | Chemical maintenance systems for residential roofing materials |
US5733842A (en) * | 1996-04-30 | 1998-03-31 | Norton Checmical Process Products Corporation | Method of making porous catalyst carrier without the addition of pore forming agents |
US6245850B1 (en) * | 1997-04-10 | 2001-06-12 | John R. Fields | Reflective asphalt emulsions and method |
CA2243028C (en) * | 1997-08-18 | 2008-04-08 | Isp Investments Inc. | Color stable pigment for granular surface coated roofing and siding shingles |
TW561064B (en) | 1998-03-05 | 2003-11-11 | Sumitomo Chemical Co | Method for microencapsulating of a solid substance |
US6120913A (en) * | 1998-04-23 | 2000-09-19 | Shell Oil Company | Bituminous composition for shingles |
US6531200B2 (en) * | 1998-06-29 | 2003-03-11 | Northern Elastomeric, Inc. | Roofing material with encapsulated fibrous mat |
US6296912B1 (en) * | 1998-06-29 | 2001-10-02 | Northern Elastomeric, Inc. | Roofing material with fibrous mat |
US6238794B1 (en) * | 1998-09-03 | 2001-05-29 | 3M Innovative Properties Company | Fade resistant black coating for roofing granules |
US6214466B1 (en) * | 1999-07-28 | 2001-04-10 | Isp Investments Inc. | Algae-resistant roofing granules |
US6306795B1 (en) * | 1999-09-07 | 2001-10-23 | Cytec Technology Corp. | Stable highly active supported copper based catalysts |
US6245381B1 (en) * | 1999-11-12 | 2001-06-12 | Michael G. Israel | Manufacture of composite roofing products with matrix formulated microbiocide |
US6495074B1 (en) * | 2000-05-02 | 2002-12-17 | Clipper Roof Coatings, Inc. | Resaturation of asphalt shingles |
WO2001094718A1 (en) * | 2000-06-08 | 2001-12-13 | Elk Corporation Of Dallas | Surface covering building materials resistant to microbial growth staining |
US8197893B2 (en) * | 2000-06-08 | 2012-06-12 | Building Materials Investment Corporation | Colored metal flake surfaced roofing materials |
JP2002018358A (en) | 2000-07-10 | 2002-01-22 | Nikko Co Ltd | Equipment for blending and separating crushed stone powder |
DE10049777A1 (en) * | 2000-10-09 | 2002-04-18 | Fraunhofer Ges Forschung | Micro-encapsulated particles, e.g. metal oxide, made by using partly etherated amino-resin precondensates in which one component has high surface activity due to co-condensation with ethoxylated fatty amine |
ATE462774T1 (en) * | 2000-10-16 | 2010-04-15 | 3M Innovative Properties Co | METHOD FOR PRODUCING CERAMIC AGGLOMERA PARTICLES |
US6521004B1 (en) * | 2000-10-16 | 2003-02-18 | 3M Innovative Properties Company | Method of making an abrasive agglomerate particle |
US20020160151A1 (en) * | 2000-10-18 | 2002-10-31 | Pinault Duane M. | Integrated granule product |
US20020098110A1 (en) * | 2000-11-30 | 2002-07-25 | Graham William David | Exterior panels containing algae-inhibiting properties |
US6502360B2 (en) * | 2001-03-27 | 2003-01-07 | Thantex Specialties, Inc. | Single-ply roofing membrane with laminated, skinned nonwoven |
US6548145B2 (en) * | 2001-05-10 | 2003-04-15 | Isp Investments Inc. | Roofing granules with a decorative metallic appearance |
US20030068303A1 (en) * | 2001-05-11 | 2003-04-10 | Selvig Thomas A. | Biologic-chemical fungicide compositions and methods of use |
US6797277B2 (en) * | 2001-06-01 | 2004-09-28 | Wilbur-Ellis Company | Delivery system for pesticides and crop-yield enhancement products using micro-encapsulated active ingredients in extruded granules |
US7335419B2 (en) * | 2001-09-24 | 2008-02-26 | Shaun Azari | System and method for energy-conserving roofing |
US7238408B2 (en) * | 2001-10-10 | 2007-07-03 | Owens-Corning Fiberglas Technology Inc. | Roofing materials having engineered coatings |
US6936644B2 (en) * | 2002-10-16 | 2005-08-30 | Cookson Electronics, Inc. | Releasable microcapsule and adhesive curing system using the same |
US7060658B2 (en) | 2002-11-27 | 2006-06-13 | Isp Investments Inc. | Roofing granules |
US7070843B2 (en) * | 2003-09-10 | 2006-07-04 | Johns Manville | Highly reflective asphalt-based roofing membrane |
US7070844B2 (en) * | 2003-09-10 | 2006-07-04 | Johns Manville | Highly reflective asphalt-based roofing membrane |
US7241500B2 (en) * | 2003-10-06 | 2007-07-10 | Certainteed Corporation | Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles, and process for producing same |
US7455899B2 (en) * | 2003-10-07 | 2008-11-25 | 3M Innovative Properties Company | Non-white construction surface |
US20080095984A1 (en) * | 2004-09-09 | 2008-04-24 | Building Materials Investment Corporation | Shingle |
US20080131664A1 (en) * | 2006-07-26 | 2008-06-05 | Teng Yihsien H | Roofing shingle having agglomerated microorganism resistant granules |
WO2008045992A1 (en) | 2006-10-13 | 2008-04-17 | 3M Innovative Properties Company | Copper containing algicidal compounds |
-
2003
- 2003-06-20 US US10/600,847 patent/US7687106B2/en active Active
-
2004
- 2004-06-16 CA CA2471215A patent/CA2471215C/en not_active Expired - Fee Related
-
2009
- 2009-11-02 US US12/610,782 patent/US8039048B2/en not_active Expired - Fee Related
-
2011
- 2011-10-17 US US13/274,605 patent/US20120034424A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2379358A (en) * | 1936-01-30 | 1945-06-26 | Minnesota Mining & Mfg | Colored granulated material |
US2138456A (en) * | 1936-07-23 | 1938-11-29 | Certain Teed Prod Corp | Roofing material |
US3528842A (en) * | 1966-07-22 | 1970-09-15 | Minnesota Mining & Mfg | Copper compound-containing algicidal surfacing and process |
US3507676A (en) * | 1966-12-15 | 1970-04-21 | Minnesota Mining & Mfg | Zinc containing algicidal surfacing,method,and granules |
US4378408A (en) * | 1981-02-11 | 1983-03-29 | Gaf Corporation | Silicate coated roofing granules |
US4469588A (en) * | 1981-03-30 | 1984-09-04 | Ashland Oil, Inc. | Immobilization of vanadia deposited on sorbent materials during visbreaking treatment of carbo-metallic oils |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9200451B2 (en) | 2003-10-06 | 2015-12-01 | Certainteed Corporation | Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles, and process for producing same |
US10316520B2 (en) | 2003-10-06 | 2019-06-11 | Certainteed Corporation | Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles and process for producing same |
US11255089B2 (en) | 2003-10-06 | 2022-02-22 | Certainteed Llc | Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles and process for producing same |
US20120192510A1 (en) * | 2010-12-20 | 2012-08-02 | David Spencer | Shingle Insert Strips And Method For Eliminating and Prevent Growth of Algae, Moss, or Lichens on a Roof |
US20120324807A1 (en) * | 2010-12-20 | 2012-12-27 | David Spencer | Shingle Inserts And Method For Eliminating and Preventing Growth of Algae, Moss, or Lichens on a Roof |
DE102015000404A1 (en) | 2015-01-14 | 2016-07-14 | Marc Köntges | Photovoltaic module with integrated protection against algae, fungus and moss growth |
US12060713B2 (en) | 2021-06-24 | 2024-08-13 | Bmic Llc | Building materials comprising graphene and related methods |
US11565970B1 (en) | 2021-07-01 | 2023-01-31 | Bmic Llc | Graphene-containing roofing materials and related methods |
Also Published As
Publication number | Publication date |
---|---|
US20100047524A1 (en) | 2010-02-25 |
CA2471215A1 (en) | 2004-12-20 |
US8039048B2 (en) | 2011-10-18 |
US7687106B2 (en) | 2010-03-30 |
CA2471215C (en) | 2012-10-30 |
US20040255548A1 (en) | 2004-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8039048B2 (en) | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles and process for producing same | |
US10876294B2 (en) | Algae resistant roofing granules with controlled algaecide leaching rates, algae resistant shingles, and process for producing same | |
US7595107B2 (en) | Algae resistant roofing system containing silver compounds, algae resistant shingles, and process for producing same | |
US8920926B2 (en) | Photocatalytic colored roofing granules | |
US10214449B2 (en) | Coating compositions for roofing granules, dark colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles and process for producing the same | |
US11130708B2 (en) | Roofing granules with high solar reflectance, roofing products with high solar reflectance, and processes for preparing same | |
US20170043308A1 (en) | Composite nanoparticles for roofing granules, roofing shingles containing such granules, and process for producing same | |
US9243409B2 (en) | Controlled time-release algae resistant roofing system | |
US3528842A (en) | Copper compound-containing algicidal surfacing and process | |
US6881701B2 (en) | Photocatalytic composition and method for preventing algae growth on building materials | |
US7455899B2 (en) | Non-white construction surface | |
US6838152B2 (en) | Low pigments costs algae-retardant roofing granule products containing metallic copper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |