US20120012592A1 - Controlled base flash forming a standing ring - Google Patents
Controlled base flash forming a standing ring Download PDFInfo
- Publication number
- US20120012592A1 US20120012592A1 US13/181,659 US201113181659A US2012012592A1 US 20120012592 A1 US20120012592 A1 US 20120012592A1 US 201113181659 A US201113181659 A US 201113181659A US 2012012592 A1 US2012012592 A1 US 2012012592A1
- Authority
- US
- United States
- Prior art keywords
- mold
- standing ring
- container
- plastic container
- response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/48—Moulds
- B29C49/54—Moulds for undercut articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
- B65D1/0261—Bottom construction
- B65D1/0276—Bottom construction having a continuous contact surface, e.g. Champagne-type bottom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D79/00—Kinds or details of packages, not otherwise provided for
- B65D79/005—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting
- B65D79/008—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars
- B65D79/0081—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars in the bottom part thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/48—Moulds
- B29C49/4802—Moulds with means for locally compressing part(s) of the parison in the main blowing cavity
- B29C2049/4807—Moulds with means for locally compressing part(s) of the parison in the main blowing cavity by movable mould parts in the mould halves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/62—Venting means
- B29C2049/622—Venting means for venting air between preform and cavity, e.g. using venting holes, gaps or patterned moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/78—Measuring, controlling or regulating
- B29C49/783—Measuring, controlling or regulating blowing pressure
- B29C2049/7831—Measuring, controlling or regulating blowing pressure characterised by pressure values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/78—Measuring, controlling or regulating
- B29C49/786—Temperature
- B29C2049/7861—Temperature of the preform
- B29C2049/7862—Temperature of the preform characterised by temperature values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/78—Measuring, controlling or regulating
- B29C49/786—Temperature
- B29C2049/7864—Temperature of the mould
- B29C2049/78645—Temperature of the mould characterised by temperature values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0715—Preforms or parisons characterised by their configuration the preform having one end closed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/04—Extrusion blow-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/06—Injection blow-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/08—Biaxial stretching during blow-moulding
- B29C49/10—Biaxial stretching during blow-moulding using mechanical means for prestretching
- B29C49/12—Stretching rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/48—Moulds
- B29C49/4802—Moulds with means for locally compressing part(s) of the parison in the main blowing cavity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/065—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/003—PET, i.e. poylethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7158—Bottles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2501/00—Containers having bodies formed in one piece
- B65D2501/0009—Bottles or similar containers with necks or like restricted apertures designed for pouring contents
- B65D2501/0018—Ribs
- B65D2501/0036—Hollow circonferential ribs
Definitions
- This disclosure generally relates to containers for retaining a commodity, such as a solid or liquid commodity. More specifically, this disclosure relates to a blown polyethylene terephthalate (PET) container having a flexible standing ring circumferentially surrounding its base for improved container performance and reduced container weight.
- PET polyethylene terephthalate
- PET containers are now being used more than ever to package numerous commodities previously supplied in glass containers.
- PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form.
- the ability of a PET container to maintain its material integrity relates to the percentage of the PET container in crystalline form, also known as the “crystallinity” of the PET container.
- the following equation defines the percentage of crystallinity as a volume fraction:
- ⁇ is the density of the PET material
- ⁇ a is the density of pure amorphous PET material (1.333 g/cc)
- ⁇ c is the density of pure crystalline material (1.455 g/cc).
- Container manufacturers use mechanical processing and thermal processing to increase the PET polymer crystallinity of a container.
- Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching an injection molded PET preform along a longitudinal axis and expanding the PET preform along a transverse or radial axis to form a PET container. The combination promotes what manufacturers define as biaxial orientation of the molecular structure in the container.
- Manufacturers of PET containers currently use mechanical processing to produce PET containers having approximately 20% crystallinity in the container's sidewall.
- Thermal processing involves heating the material (either amorphous or semi-crystalline) to promote crystal growth.
- thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque, and thus, generally undesirable.
- thermal processing results in higher crystallinity and excellent clarity for those portions of the container having biaxial molecular orientation.
- the thermal processing of an oriented PET container which is known as heat setting, typically includes blow molding a PET preform against a mold heated to a temperature of approximately 250° F.-350° F.
- PET juice bottles which must be hot-filled at approximately 185° F. (85° C.), currently use heat setting to produce PET bottles having an overall crystallinity in the range of approximately 25%-35%.
- a blow-molded plastic container having a base portion having a flexible standing ring radially extending therefrom.
- the flexible standing ring is disposed about a lowest most portion of the container and operable to support the container on a surface.
- the flexible standing ring defines an annular groove thereabout that collapses in response to internal vacuum forces and/or external loading forces.
- the container further comprises a body portion that extends from an upper portion to the base, such that the upper portion, the body portion and the base cooperate to define a receptacle chamber within the container into which product can be filled.
- FIG. 1 is a side view of a plastic container constructed in accordance with the teachings of the present disclosure
- FIG. 2 is an enlarged cross-sectional view of the base portion of the container of FIG. 1 ;
- FIG. 3 is a schematic view of the container with portions in solid lines representing deformation of the container during a cool down response from 83° C. to 23° C. and portions in dashed lines representing the initial configuration;
- FIG. 4A is a schematic view of the container illustrating localized stress concentrations during the cool down response
- FIG. 4B is a schematic view of the container illustrating localized displacement concentrations during the cool down response
- FIG. 5 is a front view of a plastic container constructed in accordance with the teachings of the present disclosure.
- FIG. 6 is a side view of the plastic container of FIG. 5 ;
- FIG. 7 is a graph illustrating the vacuum response (vacuum (inHg) vs. volume displacement (cc)) of various containers according to the principles of the present teachings having sidewall thicknesses of t 010 , t 015 , and t 030 ;
- FIGS. 8A-8D are schematic views of the container with portions in dashed lines representing deformation of the container during a vacuum response wherein the base thickness is t 014 in each example and sidewall thickness varies from t 015 , t 020 , t 025 , to t 030 , respectively;
- FIGS. 9A-9I are schematic views of the container with portions in dashed lines representing deformation of the container during a filled cap top load response wherein the sidewall thickness is t 030 in each example and base thickness varies from t 014 , t 020 , to t 025 , respectively, arranged in sets of threes for each of the first stage, second stage, and third stage of deformation, respectively;
- FIG. 10 is a graph illustrating the cap top load response for containers each having a base thickness of t 014 and varying sidewall thicknesses of t 010 , t 015 , and t 030 ;
- FIGS. 11A and 11B are schematic views of a mold for forming the container of the present teachings shown in a retracted position ( FIG. 11A ) and an extended position ( FIG. 11B );
- FIG. 11C is a schematic view, similar to FIG. 11A , illustrating the positive stop of the mold
- FIG. 11D is a schematic view of a container formed in the mold of FIGS. 11A-11C ;
- FIGS. 12A and 12B are schematic views of a mold for forming the container of the present teachings shown in a retracted position ( FIG. 12A ) and an extended position ( FIG. 12B );
- FIG. 12C is a schematic view of a container formed in the mold of FIGS. 12A-12B having a positive stop;
- FIG. 12D is a schematic view of a container formed in the mold of FIGS. 12A-12B not having a positive stop;
- FIGS. 13A and 13B are schematic views of a mold for forming the container of the present teachings shown in a retracted position ( FIG. 13A ) and an extended position ( FIG. 13B ) having a tapered standing ring slot;
- FIG. 13C is a schematic view of a container formed in the mold of FIGS. 13A-13B ;
- FIGS. 14A and 14B are schematic views of a mold for forming the container of the present teachings shown in a retracted position ( FIG. 14A ) and an extended position ( FIG. 14B ) having a triangular standing ring slot;
- FIG. 14C is a schematic view of a container formed in the mold of FIGS. 14A-14B ;
- FIGS. 15A and 15B are schematic views of a mold for forming the container of the present teachings shown in a retracted position ( FIG. 15A ) and an extended position ( FIG. 15B ) having an adjustably-sized standing ring slot;
- FIG. 15C is a schematic view of a container formed in the mold of FIGS. 15A-15B .
- Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure.
- first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
- Spatially relative terms such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- the present teachings provide for a container having a flexible standing ring that effectively absorbs the internal vacuum while maintaining its basic shape.
- the flexible standing ring can be described as having an integrated base fold that is flexible in the vertical direction (in a direction coaxial with a central axis A-A of the container ( FIG. 2 )) and rigid in a radial direction (in a direction orthogonal to the central axis A-A).
- the container of the present teachings unlike conventional containers, provided increased vacuum performance thereby permitting thinner wall thicknesses and reduced material consumption to be realized.
- the shape of the container of the present teachings can be formed according to any one of a number of variations.
- the container of the present disclosure can be configured to hold any one of a plurality of commodities, such as beverages, food, or other hot-fill type materials.
- the size and the exact shape of the flexible standing ring are dependent on the size of the container and the required vacuum absorption. Therefore, it should be recognized that variations can exist in the presently described designs. According to some embodiments, it should also be recognized that the container can include additional vacuum absorbing features or regions, such as panels, ribs, slots, depressions, and the like.
- the present teachings provide a one-piece plastic, e.g. polyethylene terephthalate (PET), container generally indicated at 10 .
- the container 10 comprises an integrated base fold flexible standing ring design according to the principles of the present teachings.
- PET polyethylene terephthalate
- Those of ordinary skill in the art would appreciate that the following teachings of the present disclosure are applicable to other containers, such as rectangular, triangular, hexagonal, octagonal or square shaped containers, which may have different dimensions and volume capacities. It is also contemplated that other modifications can be made depending on the specific application and environmental requirements.
- the one-piece plastic container 10 defines a body 12 , and includes an upper portion 14 having a cylindrical sidewall 18 forming a finish 20 . Integrally formed with the finish 20 and extending downward therefrom is a shoulder portion 22 .
- the shoulder portion 22 merges into and provides a transition between the finish 20 and a sidewall portion 24 .
- the sidewall portion 24 extends downward from the shoulder portion 22 to a base portion 28 having a base 30 .
- An upper transition portion 32 in some embodiments, may be defined at a transition between the shoulder portion 22 and the sidewall portion 24 .
- a lower transition portion 34 in some embodiments, may be defined at a transition between the base portion 28 and the sidewall portion 24 .
- the exemplary container 10 may also have a neck 23 .
- the neck 23 may have an extremely short height, that is, becoming a short extension from the finish 20 , or an elongated height, extending between the finish 20 and the shoulder portion 22 .
- the upper portion 14 can define an opening.
- the container is shown as a drinking container ( FIGS. 1-4B ) and a food container ( FIGS. 5-6 ), it should be appreciated that containers having different shapes, such as sidewalls and openings, can be made according to the principles of the present teachings.
- the finish 20 of the plastic container 10 may include a threaded region 46 having threads 48 , a lower sealing ridge 49 , and a support ring 51 .
- the threaded region 46 provides a means for attachment of a similarly threaded closure or cap (not illustrated).
- Alternatives may include other suitable devices that engage the finish 20 of the plastic container 10 , such as a press-fit or snap-fit cap for example.
- the closure or cap (not illustrated) engages the finish 20 to preferably provide a hermetical seal of the plastic container 10 .
- the closure or cap (not illustrated) is preferably of a plastic or metal material conventional to the closure industry and suitable for subsequent thermal processing.
- sidewall portion 24 can comprise various vacuum features that effectively absorb at least a portion of the internal vacuum while maintaining the container's basic shape.
- sidewall portion 24 can comprises one or more radially disposed vacuum ribs 60 .
- vacuum ribs 60 can each comprise an inwardly directed rib member defining a reduced container diameter section 62 and a plurality of lands 64 disposed therebetween. Transition features or radiuses 66 can be disposed between vacuum ribs 60 and adjacent lands 64 .
- Vacuum ribs 60 can be equidistantly spaced along sidewall portion 24 .
- vacuum ribs 60 can articulate about reduced container diameter section 62 to achieve a vacuum absorbed posture.
- vacuum ribs 60 can further provide a reinforcement feature to container 10 , thereby providing improved structural integrity and stability.
- container 10 can further comprise an enlarged radially disposed vacuum rib 60 ′ disposed along sidewall portion 24 , shoulder portion 22 , and/or upper transition portion 32 .
- enlarged vacuum rib 60 ′ can comprise an inwardly directed rib member defining a reduced container diameter section 62 ′.
- Reduced diameter section 62 ′ of vacuum rib 60 ′ can define a container diameter that is smaller than the container diameter of reduced diameter section 62 of vacuum rib 60 .
- vacuum rib 60 ′ can have a radiused curvature that is greater than vacuum rib 60 for increased vacuum performance.
- container 10 can comprise vertically oriented vacuum panels 70 having transition surface 72 disposed therebetween.
- Vacuum panels 70 can be generally equidistant spaced about sidewall portion 24 . While such spacing is useful, other factors such as labeling requirements or the incorporation of grip features or graphics may require spacing other than equidistant.
- the container 10 illustrated in FIGS. 5 and 6 can comprise eight (8) vacuum panels 70 . Lands, inclined columns, or transition surfaces 72 are defined between adjacent vacuum panels 70 , which provide structural support and rigidity to sidewall portion 24 of container 10 .
- container 10 further comprises a flexible standing ring 100 disposed radially about base 30 and a center pushup feature 50 disposed centrally along an underside of base 30 .
- flexible standing ring 100 can be an integrated base fold feature that provides a plurality of design advantages over convention prior art base designs.
- flexible standing ring 100 provides 1) increased volume displacement compared to other vacuum absorbing features, 2) positive charge up while under filled and capped vertical loading conditions, 3) improved distributed forces along the base of the container during stacking, 4) rigid central base pushup, 5) improved individual container stacking capability (closure fits within base), and 6) securing shrink wrap label.
- flexible standing ring 100 can comprise a leg portion 102 extending downwardly from base portion 28 that terminates at an outwardly directed foot portion 104 .
- Leg portion 102 can downwardly extend from base portion 28 at a position generally adjacent and inset from a land 106 . The amount of the inset of leg portion 102 can be dependent on the vacuum absorption that is desired.
- Foot portion 104 can extend outwardly from a terminal end of leg portion 102 .
- foot portion 104 can be positioned orthogonal to leg portion 102 .
- leg portion 102 and foot portion 104 can have any one of a number of relative orientations conducive with container performance.
- foot portion 104 extends radially outwardly such that a distal portion or toe portion 108 is radially aligned with an overall shape or dimension of sidewall portion 24 and/or base portion 28 (as shown in FIGS. 1 and 2 ).
- toe portion 108 of foot portion 104 can extend less than an overall shape or dimension of sidewall portion 24 and/or base portion 28 (as shown in FIGS. 5 and 6 ) or greater than (not shown).
- an underside surface 110 of foot portion 104 forms a standing ring that provides a contact surface between container 10 and any support structure thereunder.
- the described structure of flexible standing ring 100 thus provides an annular groove or slot 112 formed about the base of container 10 .
- annular groove 112 can be varied depending on structural, vacuum, and aesthetic characteristics; however, it should be appreciated that flexible standing ring 100 provides a means to accommodate internal vacuum forces in container 10 while minimizing or at least decreasing overall container weight.
- Flexible standing ring 100 can be characterized, in some embodiments, as an assembly having a downwardly and outwardly ring member. This arrangement results in an annular groove disposed above the ring member.
- the ring member further includes a lower surface that contacts the support structure, such as counter, packaging material, display shelf, and the like, and thus is located along a base portion of the container. It should be appreciated that variations of the present design of flexible standing ring 100 exist.
- cool down response of container 10 can comprise a collapse or deformation of container 10 and flexible standing ring 100 in response to internal vacuum forces.
- flexible standing ring 100 collapses in such a way that foot portion 104 is permitted to articulate upward and, in some embodiments, against an underside surface 114 ( FIG. 2 ) of base portion 28 , thereby closing annular slot 112 .
- the amount of deflection of foot portion 104 may vary depending on size of container, wall thickness of material, amount of internal vacuum pressure, and the like. However, contact of foot portion 104 with underside surface 114 of base portion 28 can lead to a second stage of load response of container 10 .
- the cool down response of container 10 can further include collapse or at least narrowing of the thickness of foot portion 104 and/or leg portion 102 .
- opposing walls of foot portion 104 and/or leg portion 102 are forced together in response to vacuum forces.
- This narrowing response further aids in permitting articulations and collapse of flexible standing ring 100 as illustrated in FIG. 3 .
- container 10 in response to internal vacuum forces, exhibits localized stresses in predetermined locations consistent with predictable and manageable collapse of container 10 . Moreover, actual displacement of container 10 can be localized to a lower section of sidewall portion 24 and base portion 28 (including flexible standing ring 100 ).
- vacuum response of container 10 and flexible standing ring 100 can be dependent on wall thickness of sidewall portion 24 , base portion 28 , and/or flexible standing ring 100 .
- vacuum response of container 10 of FIGS. 5 and 6 is illustrated in FIG. 7 , whereby a thickness of center pushup 50 is maintained throughout the several wall thickness variations.
- FIG. 7 illustrates that container 10 , having a wall thickness of t 030 provides increased resistance to vacuum deformation (in other words, greater vacuum was necessary to achieve a particular volume displacement) compared to thinner wall configurations.
- Similar vacuum response deformation is illustrated in FIGS. 8 and 9 , wherein the thickness of center pushup 50 is maintained (t 014 ) while a thickness of sidewall portion 24 varies from t 015 , t 020 , t 025 , to t 030 .
- FIGS. 9A-9I top loading response can be seen for three variations of container 10 of FIGS. 5 and 6 each having identical thickness of sidewall portion 24 and varying thickness of base portion 28 , specifically t 014 , t 020 , and t 025 , and filled with a commodity and capped.
- the downward force is placed on top of container 10 and generally exerted along axis A-A.
- Each set of three figures i.e. 9 A- 9 C, 9 D- 9 F, and 9 G- 9 I
- FIGS. 9A-9C illustrates the container deformation response where an underside slope of base 30 changes in response to a first contact between a corner 120 of base portion 28 and foot portion 104 and deformation of flexible standing ring 100 .
- a second stage ( FIGS. 9D-9F ) illustrates the container deformation response where an underside slope of base 30 changes in response to contact between corner 120 of base portion 28 and the support surface upon which container 10 rests—that is, corner 120 passing beyond foot portion 104 , and contacting the support surface and the deformed flexible standing ring 100 .
- FIGS. 9G-9I illustrates the container deformation response where container 10 further contacts the support surface.
- FIG. 10 A similar graph of filled and capped top load response is illustrated in FIG. 10 for the container of FIGS.
- center pushup 50 has a constant wall thickness (t 014 ) and varying thicknesses of sidewall portion 24 are presented (t 010 , t 015 , t 030 ).
- the first stage is denoted at region 201
- the second stage is denoted at region 202
- the third stage is denoted at region 203 .
- flexible standing ring 100 provides, in part, volume displacement for purposes of vacuum reduction.
- the amount of volume displacement can be calculated by multiplying the radius R 1 of container 10 by the height H 1 of annular groove 112 and Pi. This amount of volume displacement is significant in terms of alternative volume displacement strategies commonly used in container design without the need to account for equivalent fluid displacement.
- the plastic container 10 has been designed to retain a commodity.
- the commodity may be in any form such as a solid or semi-solid product.
- a commodity may be introduced into the container during a thermal process, typically a hot-fill process.
- bottlers generally fill the container 10 with a product at an elevated temperature between approximately 155° F. to 205° F. (approximately 68° C. to 96° C.) and seal the container 10 with a closure (not illustrated) before cooling.
- the plastic container 10 may be suitable for other high-temperature pasteurization or retort filling processes or other thermal processes as well.
- the commodity may be introduced into the container under ambient temperatures.
- the plastic container 10 of the present disclosure is a blow molded, biaxially oriented container with a unitary construction from a single or multi-layer material.
- a well-known stretch-molding, heat-setting process for making the one-piece plastic container 10 can be used that generally involves the manufacture of a preform (not shown) of a polyester material, such as polyethylene terephthalate (PET), having a shape well known to those skilled in the art similar to a test-tube with a generally cylindrical cross section.
- PET polyethylene terephthalate
- a preform version of container 10 includes a support ring 51 , which may be used to carry or orient the preform through and at various stages of manufacture.
- the preform may be carried by the support ring 51 , the support ring 51 may be used to aid in positioning the preform in a mold cavity, or the support ring 51 may be used to carry an intermediate container once molded.
- the preform may be placed into the mold cavity such that the support ring 51 is captured at an upper end of the mold cavity.
- the mold cavity has an interior surface corresponding to a desired outer profile of the blown container.
- the mold cavity defines a body forming region, an optional moil forming region and an optional opening forming region.
- an intermediate container Once the resultant structure, hereinafter referred to as an intermediate container, has been formed, any moil created by the moil forming region may be severed and discarded. It should be appreciated that the use of a moil forming region and/or opening forming region are not necessarily in all forming methods.
- a machine places the preform heated to a temperature between approximately 190° F. to 250° F. (approximately 88° C. to 121° C.) into the mold cavity.
- the mold cavity may be heated to a temperature between approximately 250° F. to 350° F. (approximately 121° C. to 177° C.).
- a stretch rod apparatus (not illustrated) stretches or extends the heated preform within the mold cavity to a length approximately that of the intermediate container thereby molecularly orienting the polyester material in an axial direction generally corresponding with the central longitudinal axis A-A of the container 10 .
- air having a pressure between 300 PSI to 600 PSI (2.07 MPa to 4.14 MPa) assists in extending the preform in the axial direction and in expanding the preform in a circumferential or hoop direction thereby substantially conforming the polyester material to the shape of the mold cavity and further molecularly orienting the polyester material in a direction generally perpendicular to the axial direction, thus establishing the biaxial molecular orientation of the polyester material in most of the intermediate container.
- the pressurized air holds the mostly biaxial molecularly oriented polyester material against the mold cavity for a period of approximately two (2) to five (5) seconds before removal of the intermediate container from the mold cavity. This process is known as heat setting and results in a heat-resistant container suitable for filling with a product at high temperatures.
- plastic container 10 may be suitable for the manufacture of plastic container 10 .
- extrusion blow molding such as for example, extrusion blow molding, one step injection stretch blow molding and injection blow molding, using other conventional materials including, for example, high density polyethylene, polypropylene, polyethylene naphthalate (PEN), a PET/PEN blend or copolymer, and various multilayer structures
- PEN polyethylene naphthalate
- PET/PEN blend or copolymer a PET/PEN blend or copolymer
- multilayer structures may be suitable for the manufacture of plastic container 10 .
- Mold 210 in some embodiments, is an over-stroke type mold having a first mold portion 212 and a second mold portion 214 that are movable relative to each other. It should be noted that first mold portion 212 can be movable or stationary and, likewise, second mold portion 214 can be stationary or movable, respectively. At least in part, first mold portion 212 and second mold portion 214 together define an internal mold cavity 216 having a contour generally following a final or intermediate contour shape of container 10 . Second mold portion 214 can comprise a vent channel 218 extending therethrough and in fluid communication with mold cavity 216 . More particularly, in some embodiments, vent channel 218 is positioned adjacent a vented slot portion 220 of mold cavity 216 that is sized and shaped to form standing ring 100 .
- first mold portion 212 In a first position of first mold portion 212 (e.g. retracted in FIG. 11A ), fluid communication is established between mold cavity 216 and vent channel 218 such that molten plastic is free to flow down and/or be blown down into vented slot portion 220 .
- molten plastic can be molded in such a way that it does not initially contact the metallic portions of mold cavity 216 .
- first mold portion 212 can then be actuated via schematically illustrated drive device 222 and positioned in a second position (e.g. extended upward into mold cavity 216 in FIG. 11B ). In this way, the act of raising the first mold portion 212 , that can define a zero tolerance bearing surface 224 ( FIG.
- FIG. 11C with a positive stop 226 ( FIG. 11C ), generally defining a flat surface, serves to urge or otherwise mold the material within vent channel 218 into a predetermined standing ring shape. Accordingly, as illustrated in FIG. 11D , a container 10 having a standing ring 100 .
- formation of the standing ring can be accomplished using at least two different methods.
- the first method is the aforementioned Over-Stroke mechanism that can be used to form a thin, generally upstanding, standing ring.
- the second method can include the method described herein to form a broader flat surface.
- first mold portion 212 is movable relative to second mold portion 214 between a retracted position ( FIG. 12A ) and an extended position ( FIG. 12B ).
- the first mold portion 212 and the second mold portion 214 can together define a positive stop or no positive stop such that the resultant container 10 can include a generally flat or edge shaped standing ring 100 (see FIG. 12C ) or a standing ring 100 having a generally inconsistent defined edge (see FIG. 12D ).
- standing ring 100 can be generally tapered.
- This tapered shape can be defined by forming a tapered slot 230 between first mold portion 212 and second mold portion 214 .
- tapered slot 230 can comprise a first tapered portion 232 extending from mold cavity 216 defining an angle relative to a longitudinal axis A-A of the mold cavity 216 .
- tapered slot 230 comprises a second tapered portion 234 extending from first tapered portion 232 . More particularly, second tapered portion 234 can define an angle generally perpendicular to longitudinal axis A-A. However, alternative angles can be used. In this way, second tapered portion 232 can define a positive stop (e.g. ledge) 236 that can be used to form a truncated or otherwise shaped standing ring 100 (see FIG. 13C ).
- a positive stop e.g. ledge
- standing ring 100 can be formed, such as a generally triangular shaped standing ring 100 as illustrated in FIG. 14C .
- the generally triangular shaped standing ring 100 can be formed by shaping slot 230 such that it defines an angled surface 240 extending from second mold portion 214 and generally right-angled surfaces 242 , 244 formed in first mold portion 212 . In this way, right-angled surfaces 242 , 244 can define a positive stop (also indicated at 244 ).
- the shape of the resultant standing ring 100 can be varied by using one or more insertable rings or other members 250 within first mold portion 212 (or adjacent first mold portion 212 ). In this way, the overall width, depth, and/or shape of standing ring 100 can be easily changed.
- the methods described herein and illustrated would allow the preform to be blown into a positive stop before the mechanism is raised into its final position. The raising of the mechanism would squeeze the still pliable material to be formed into the standing ring.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/181,659 US20120012592A1 (en) | 2010-07-16 | 2011-07-13 | Controlled base flash forming a standing ring |
PCT/US2011/043824 WO2012009416A2 (en) | 2010-07-16 | 2011-07-13 | Controlled base flash forming a standing ring |
MX2013000557A MX2013000557A (es) | 2010-07-16 | 2011-07-13 | Rebaba de base controlada que forma un anillo de pie. |
CO13023196A CO6680633A2 (es) | 2010-07-16 | 2013-02-05 | Rebaba de base controlada que forma un anillo de pie |
US14/242,457 US9254604B2 (en) | 2010-07-16 | 2014-04-01 | Controlled base flash forming a standing ring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36482710P | 2010-07-16 | 2010-07-16 | |
US13/181,659 US20120012592A1 (en) | 2010-07-16 | 2011-07-13 | Controlled base flash forming a standing ring |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/242,457 Division US9254604B2 (en) | 2010-07-16 | 2014-04-01 | Controlled base flash forming a standing ring |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120012592A1 true US20120012592A1 (en) | 2012-01-19 |
Family
ID=45466126
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/181,659 Abandoned US20120012592A1 (en) | 2010-07-16 | 2011-07-13 | Controlled base flash forming a standing ring |
US14/242,457 Active US9254604B2 (en) | 2010-07-16 | 2014-04-01 | Controlled base flash forming a standing ring |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/242,457 Active US9254604B2 (en) | 2010-07-16 | 2014-04-01 | Controlled base flash forming a standing ring |
Country Status (4)
Country | Link |
---|---|
US (2) | US20120012592A1 (es) |
CO (1) | CO6680633A2 (es) |
MX (1) | MX2013000557A (es) |
WO (1) | WO2012009416A2 (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130153529A1 (en) * | 2010-09-30 | 2013-06-20 | Yoshino Kogyosho Co., Ltd. | Bottle |
USD740663S1 (en) | 2014-08-25 | 2015-10-13 | Societe Des Produits Nestle S.A. | Bottle |
EP2978584A1 (fr) * | 2013-03-27 | 2016-02-03 | Sidel Participations | Récipient à socle renforcé et procédé de fabrication d'un tel récipient |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7183379B2 (ja) | 2019-02-28 | 2022-12-05 | 日精エー・エス・ビー機械株式会社 | 容器の金型および容器の製造方法 |
USD910448S1 (en) | 2019-09-24 | 2021-02-16 | Abbott Laboratories | Bottle |
USD982445S1 (en) * | 2021-01-21 | 2023-04-04 | Graham Packaging Company, L.P. | Grooved container |
Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US166350A (en) * | 1875-08-03 | Improvement in cups for effervescing drinks | ||
US1048411A (en) * | 1912-05-01 | 1912-12-24 | John B Hutchins | Bucket. |
US1048935A (en) * | 1912-09-25 | 1912-12-31 | John F Brady | Drinking-cup. |
US1464548A (en) * | 1922-01-27 | 1923-08-14 | George R Stephens | Collapsible bucket |
US1482425A (en) * | 1922-05-10 | 1924-02-05 | Ziony Raphael | Collapsible drinking cup |
US1583083A (en) * | 1924-06-17 | 1926-05-04 | Macaraig Jose | Collapsible receptacle |
US1744947A (en) * | 1928-10-17 | 1930-01-28 | Owen J Bowman | Bottle |
US1759274A (en) * | 1927-02-10 | 1930-05-20 | Continental Can Co | Receptacle closure |
US1778175A (en) * | 1929-02-12 | 1930-10-14 | Thune Enoch Emanuel | Metallic receptacle |
US2129119A (en) * | 1936-12-16 | 1938-09-06 | Davis Charles | Extrusion container |
US2438434A (en) * | 1945-02-20 | 1948-03-23 | Friedman Theodore | Collapsible container |
US2610489A (en) * | 1948-09-20 | 1952-09-16 | Niels E Clemensen | Drinking vessel |
US2685316A (en) * | 1952-05-12 | 1954-08-03 | Louis R Krasno | Vacuum container |
US2725087A (en) * | 1954-02-23 | 1955-11-29 | Clifford S Potter | Collapsible container |
US2834502A (en) * | 1955-05-11 | 1958-05-13 | Trojan Jean | Collapsible clothes basket |
US2880902A (en) * | 1957-06-03 | 1959-04-07 | Owsen Peter | Collapsible article |
US2886084A (en) * | 1958-07-30 | 1959-05-12 | Delphine L Davison | Collapsible double wall container |
US2899110A (en) * | 1959-08-11 | Parker | ||
US2905351A (en) * | 1956-02-27 | 1959-09-22 | Braun Co W | Snap-on base for a bottle, jar, glass, or the like |
US2997199A (en) * | 1957-05-13 | 1961-08-22 | Reachi Ramon | Table ornament and standard |
US3079037A (en) * | 1960-06-27 | 1963-02-26 | Phillips Petroleum Co | Container provided with cover seal and tray-closure |
US3155281A (en) * | 1962-04-09 | 1964-11-03 | Questron America Inc | Container |
US3217915A (en) * | 1964-04-22 | 1965-11-16 | Merle E Weygandt | Closure |
US3220544A (en) * | 1963-04-26 | 1965-11-30 | Walter C Lovell | Packaging and novel container employed therewith |
US3285459A (en) * | 1964-05-22 | 1966-11-15 | Plura Plastics Inc | Collapsible container |
US3369687A (en) * | 1966-05-02 | 1968-02-20 | Lewals Inc | Plastic container |
US3409167A (en) * | 1967-03-24 | 1968-11-05 | American Can Co | Container with flexible bottom |
US3568878A (en) * | 1967-07-06 | 1971-03-09 | Multi Molds Int Inc | Container |
US3873003A (en) * | 1970-07-06 | 1975-03-25 | Mayer & Co Inc O | Dome-bottomed container |
US3939887A (en) * | 1971-07-14 | 1976-02-24 | Scarnato Thomas J | Hermetically sealable collapsible container |
US3939888A (en) * | 1971-07-14 | 1976-02-24 | Scarnato Thomas J | Hermetically sealable collapsible container |
US3949034A (en) * | 1972-02-11 | 1976-04-06 | Owens-Illinois, Inc. | Method of making blown plastic containers |
US3955705A (en) * | 1973-01-17 | 1976-05-11 | Greif Bros. Corporation | Plastic drum |
US3956441A (en) * | 1974-09-16 | 1976-05-11 | Owens-Illinois, Inc. | Method of making a blown bottle having a ribbed interior surface |
US4047329A (en) * | 1976-01-02 | 1977-09-13 | Hercules Incorporated | Dual purpose container |
US4228122A (en) * | 1978-03-08 | 1980-10-14 | Mauser Kommandit-Gesellschaft | Method of manufacturing roller chimes for closed head drums |
US4377191A (en) * | 1976-07-03 | 1983-03-22 | Kabushiki Kaisha Ekijibishon | Collapsible container |
US4378328A (en) * | 1979-04-12 | 1983-03-29 | Mauser-Werke Gmbh | Method for making chime structure for blow molded hollow member |
US4489847A (en) * | 1978-02-08 | 1984-12-25 | Owens-Illinois, Inc. | Parrot-beakable freestanding plastic drum assemblage |
US4492313A (en) * | 1984-05-29 | 1985-01-08 | William Touzani | Collapsible bottle |
US4574969A (en) * | 1984-12-03 | 1986-03-11 | Mays Ralph E | Collapsible pail |
US4643323A (en) * | 1984-11-06 | 1987-02-17 | Schuetz Udo | Drum of thermoplastic synthetic resin |
US4836398A (en) * | 1988-01-29 | 1989-06-06 | Aluminum Company Of America | Inwardly reformable endwall for a container |
US4955493A (en) * | 1989-08-15 | 1990-09-11 | Touzani William N | Collapsible expansible plastic hollow articles in a latchable configuration |
US4967538A (en) * | 1988-01-29 | 1990-11-06 | Aluminum Company Of America | Inwardly reformable endwall for a container and a method of packaging a product in the container |
US5037010A (en) * | 1988-07-12 | 1991-08-06 | Resdevco Research & Development Co. Ltd. | Dispensing container for viscous substances |
JPH03100788U (es) * | 1990-01-26 | 1991-10-21 | ||
US5067622A (en) * | 1989-11-13 | 1991-11-26 | Van Dorn Company | Pet container for hot filled applications |
US5209372A (en) * | 1992-04-08 | 1993-05-11 | Norwood Peter M | Collapsible spiral container |
US5226551A (en) * | 1991-11-12 | 1993-07-13 | Robbins Edward S Iii | Reusable and re-collapsible container |
US5310068A (en) * | 1991-09-27 | 1994-05-10 | Abdolhamid Saghri | Disposable collapsible beverage bottle |
US5341946A (en) * | 1993-03-26 | 1994-08-30 | Hoover Universal, Inc. | Hot fill plastic container having reinforced pressure absorption panels |
US5348173A (en) * | 1991-09-20 | 1994-09-20 | Norwood Peter M | Collapsible-stackable plastic container |
US5482178A (en) * | 1994-02-16 | 1996-01-09 | Soparco | Receptacle with a deformable foot susceptible of serving as a saucer |
US5543107A (en) * | 1994-09-27 | 1996-08-06 | Sonoco Products Company | Blow molding a closed plastic drum including two speed compression molding of an integral handling ring |
US5573129A (en) * | 1993-02-19 | 1996-11-12 | Fuji Photo Film Co., Ltd. | Collapsible container for a liquid |
US5584413A (en) * | 1994-06-09 | 1996-12-17 | Jung; Myung G. | Pleated plastic container |
JPH09254947A (ja) * | 1996-03-27 | 1997-09-30 | Hiroshi Ishii | 切断し、重ね合わせ、固定するための構造をもつ容器 |
US5690244A (en) * | 1995-12-20 | 1997-11-25 | Plastipak Packaging, Inc. | Blow molded container having paneled side wall |
US5713480A (en) * | 1994-03-16 | 1998-02-03 | Societe Anonyme Des Eaux Minerales D'evian | Molded plastics bottle and a mold for making it |
US5758789A (en) * | 1996-06-19 | 1998-06-02 | Shin; Woong-Sik | Carbonated beverage bottle |
US5799792A (en) * | 1995-01-13 | 1998-09-01 | Abrums; Rolin L. | Nestable and stackable storage unit |
USD403587S (en) * | 1997-07-03 | 1999-01-05 | Colin Thornley | Collapsible bottle |
US5862932A (en) * | 1996-12-03 | 1999-01-26 | Walsh; Carolyn | Portable collapsible garbage can |
US5908128A (en) * | 1995-07-17 | 1999-06-01 | Continental Pet Technologies, Inc. | Pasteurizable plastic container |
US5971184A (en) * | 1997-10-28 | 1999-10-26 | Continental Pet Technologies, Inc. | Hot-fillable plastic container with grippable body |
US6065624A (en) * | 1998-10-29 | 2000-05-23 | Plastipak Packaging, Inc. | Plastic blow molded water bottle |
US6230912B1 (en) * | 1999-08-12 | 2001-05-15 | Pechinery Emballage Flexible Europe | Plastic container with horizontal annular ribs |
US6277321B1 (en) * | 1998-04-09 | 2001-08-21 | Schmalbach-Lubeca Ag | Method of forming wide-mouth, heat-set, pinch-grip containers |
US6413466B1 (en) * | 2000-06-30 | 2002-07-02 | Schmalbach-Lubeca Ag | Plastic container having geometry minimizing spherulitic crystallization below the finish and method |
US20030160055A1 (en) * | 2002-02-01 | 2003-08-28 | Cockroach Design Llc | Collapsible drinking and storage receptacle |
US20030183628A1 (en) * | 2002-03-26 | 2003-10-02 | Barr David Alan | Collapsible storage bin |
US20030221987A1 (en) * | 2002-03-20 | 2003-12-04 | Graham Packaging Company, Lp | Container with stackable base |
USD483225S1 (en) * | 2002-11-26 | 2003-12-09 | Simon Richard Gain | Container |
US20030230588A1 (en) * | 2002-03-27 | 2003-12-18 | Philip Zepter | High-functionality bowl structure |
US6752284B1 (en) * | 1999-02-27 | 2004-06-22 | Yoshino Kogyosho Co., Ltd. | Synthetic resin container with thin wall |
US20040200799A1 (en) * | 2003-03-31 | 2004-10-14 | Graham Packaging Company, L.P. | Hot-fillable container with a waisted dome |
US20050127074A1 (en) * | 2003-12-16 | 2005-06-16 | David Kusuma | Collapsible container |
US20060016819A1 (en) * | 2004-07-20 | 2006-01-26 | Dard Products, Inc. | Bottle assembly with removable container assembly |
US20060191945A1 (en) * | 2005-02-28 | 2006-08-31 | Kao I Feng | Metal container with a base |
US20070181403A1 (en) * | 2004-03-11 | 2007-08-09 | Graham Packaging Company, Lp. | Process and device for conveying odd-shaped containers |
US7273147B2 (en) * | 2003-11-05 | 2007-09-25 | Willat Ergonomic Technologies, Llc | Wine glass |
US20080047964A1 (en) * | 2000-08-31 | 2008-02-28 | C02Pac | Plastic container having a deep-set invertible base and related methods |
US20080230462A1 (en) * | 2007-03-22 | 2008-09-25 | Progressive International Corp. | Collapsible colander & bowl |
US20090000981A1 (en) * | 2007-06-28 | 2009-01-01 | Kwok Kuen So | Bowl and Basket and Salad Spinner Incorporating such an Assembly |
US20090194546A1 (en) * | 2008-01-31 | 2009-08-06 | Lane Michael T | Hybrid base design |
US20090202766A1 (en) * | 2008-02-07 | 2009-08-13 | Amcor Limited | Flex ring base |
US20090293436A1 (en) * | 2006-07-03 | 2009-12-03 | Hokkai Can Co., Ltd. | Method and Device for Producing Content Filling Bottle |
USD608161S1 (en) * | 2009-01-29 | 2010-01-19 | Dart Industries Inc. | Container for icing |
US20100140279A1 (en) * | 2007-08-17 | 2010-06-10 | Sea To Summit Pty., Ltd. | Collapsible Container |
US7799264B2 (en) * | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US7866500B1 (en) * | 2007-08-30 | 2011-01-11 | John David Peggs | Collapsible polymeric bellows storage tube |
US20110017700A1 (en) * | 2003-05-23 | 2011-01-27 | Patcheak Terry D | Hot-fill container |
US7900425B2 (en) * | 2005-10-14 | 2011-03-08 | Graham Packaging Company, L.P. | Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein |
US7926243B2 (en) * | 2009-01-06 | 2011-04-19 | Graham Packaging Company, L.P. | Method and system for handling containers |
US20110089195A1 (en) * | 2007-05-17 | 2011-04-21 | Amcor Limited | Molded preform and container having integrated pour spout |
US20110089135A1 (en) * | 2009-10-19 | 2011-04-21 | Simon John B | Laser modified plastic container |
US20110217494A1 (en) * | 2010-03-04 | 2011-09-08 | Amcor Limited | Flexible standing ring for hot-fill container |
US8025169B2 (en) * | 2007-09-22 | 2011-09-27 | Israel Harry Zimmerman | Self-anchoring beverage container with directional release and attachment capability |
US8205749B2 (en) * | 2008-07-22 | 2012-06-26 | Graham Packaging Company, L.P. | Stackable flexible container assembly |
US8353415B2 (en) * | 2008-11-27 | 2013-01-15 | Yoshino Kogyosho Co., Ltd. | Synthetic resin bottle |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2889110A (en) | 1953-06-19 | 1959-06-02 | Ibm | Bill feeding and piercing devices |
US3050773A (en) * | 1958-07-26 | 1962-08-28 | Reinold Hagen | Process and apparatus for manufacturing blown articles |
FR1441727A (fr) * | 1965-04-23 | 1966-06-10 | Procédé pour la fabrication d'objets en matière plastique soufflée et produits ainsi obtenus | |
US4713207A (en) * | 1986-07-07 | 1987-12-15 | Container Corporation Of America | Manufacturing method for thermoplastic container with integral lifting ring |
JP2780367B2 (ja) * | 1989-08-21 | 1998-07-30 | 凸版印刷株式会社 | プラスチックボトルの製造装置及び製造方法 |
US5266551A (en) | 1992-08-03 | 1993-11-30 | Eastman Kodak Company | Thermal dye transfer receiving element with polycarbonate polyol crosslinked polymer dye-image receiving layer |
CA2368491C (en) * | 2001-01-22 | 2008-03-18 | Ocean Spray Cranberries, Inc. | Container with integrated grip portions |
US7134867B2 (en) * | 2004-06-29 | 2006-11-14 | Amcor Ltd | Apparatus for molding a beverage container with optimized base |
US7455189B2 (en) * | 2005-08-22 | 2008-11-25 | Amcor Limited | Rectangular hot-filled container |
US7874442B2 (en) * | 2006-10-06 | 2011-01-25 | Amcor Limited | Hot-fill plastic container with ribs and grip |
US7568369B2 (en) * | 2007-03-07 | 2009-08-04 | Ball Corporation | Mold construction for a process and apparatus for manufacturing shaped containers |
US8496130B2 (en) * | 2008-05-14 | 2013-07-30 | Amcor Limited | Hot-fill container having movable ribs for accommodating vacuum forces |
-
2011
- 2011-07-13 US US13/181,659 patent/US20120012592A1/en not_active Abandoned
- 2011-07-13 MX MX2013000557A patent/MX2013000557A/es not_active Application Discontinuation
- 2011-07-13 WO PCT/US2011/043824 patent/WO2012009416A2/en active Application Filing
-
2013
- 2013-02-05 CO CO13023196A patent/CO6680633A2/es not_active Application Discontinuation
-
2014
- 2014-04-01 US US14/242,457 patent/US9254604B2/en active Active
Patent Citations (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US166350A (en) * | 1875-08-03 | Improvement in cups for effervescing drinks | ||
US2899110A (en) * | 1959-08-11 | Parker | ||
US1048411A (en) * | 1912-05-01 | 1912-12-24 | John B Hutchins | Bucket. |
US1048935A (en) * | 1912-09-25 | 1912-12-31 | John F Brady | Drinking-cup. |
US1464548A (en) * | 1922-01-27 | 1923-08-14 | George R Stephens | Collapsible bucket |
US1482425A (en) * | 1922-05-10 | 1924-02-05 | Ziony Raphael | Collapsible drinking cup |
US1583083A (en) * | 1924-06-17 | 1926-05-04 | Macaraig Jose | Collapsible receptacle |
US1759274A (en) * | 1927-02-10 | 1930-05-20 | Continental Can Co | Receptacle closure |
US1744947A (en) * | 1928-10-17 | 1930-01-28 | Owen J Bowman | Bottle |
US1778175A (en) * | 1929-02-12 | 1930-10-14 | Thune Enoch Emanuel | Metallic receptacle |
US2129119A (en) * | 1936-12-16 | 1938-09-06 | Davis Charles | Extrusion container |
US2438434A (en) * | 1945-02-20 | 1948-03-23 | Friedman Theodore | Collapsible container |
US2610489A (en) * | 1948-09-20 | 1952-09-16 | Niels E Clemensen | Drinking vessel |
US2685316A (en) * | 1952-05-12 | 1954-08-03 | Louis R Krasno | Vacuum container |
US2725087A (en) * | 1954-02-23 | 1955-11-29 | Clifford S Potter | Collapsible container |
US2834502A (en) * | 1955-05-11 | 1958-05-13 | Trojan Jean | Collapsible clothes basket |
US2905351A (en) * | 1956-02-27 | 1959-09-22 | Braun Co W | Snap-on base for a bottle, jar, glass, or the like |
US2997199A (en) * | 1957-05-13 | 1961-08-22 | Reachi Ramon | Table ornament and standard |
US2880902A (en) * | 1957-06-03 | 1959-04-07 | Owsen Peter | Collapsible article |
US2886084A (en) * | 1958-07-30 | 1959-05-12 | Delphine L Davison | Collapsible double wall container |
US3079037A (en) * | 1960-06-27 | 1963-02-26 | Phillips Petroleum Co | Container provided with cover seal and tray-closure |
US3155281A (en) * | 1962-04-09 | 1964-11-03 | Questron America Inc | Container |
US3220544A (en) * | 1963-04-26 | 1965-11-30 | Walter C Lovell | Packaging and novel container employed therewith |
US3217915A (en) * | 1964-04-22 | 1965-11-16 | Merle E Weygandt | Closure |
US3285459A (en) * | 1964-05-22 | 1966-11-15 | Plura Plastics Inc | Collapsible container |
US3369687A (en) * | 1966-05-02 | 1968-02-20 | Lewals Inc | Plastic container |
US3409167A (en) * | 1967-03-24 | 1968-11-05 | American Can Co | Container with flexible bottom |
US3568878A (en) * | 1967-07-06 | 1971-03-09 | Multi Molds Int Inc | Container |
US3873003A (en) * | 1970-07-06 | 1975-03-25 | Mayer & Co Inc O | Dome-bottomed container |
US3939887A (en) * | 1971-07-14 | 1976-02-24 | Scarnato Thomas J | Hermetically sealable collapsible container |
US3939888A (en) * | 1971-07-14 | 1976-02-24 | Scarnato Thomas J | Hermetically sealable collapsible container |
US3949034A (en) * | 1972-02-11 | 1976-04-06 | Owens-Illinois, Inc. | Method of making blown plastic containers |
US3955705A (en) * | 1973-01-17 | 1976-05-11 | Greif Bros. Corporation | Plastic drum |
US3956441A (en) * | 1974-09-16 | 1976-05-11 | Owens-Illinois, Inc. | Method of making a blown bottle having a ribbed interior surface |
US4047329A (en) * | 1976-01-02 | 1977-09-13 | Hercules Incorporated | Dual purpose container |
US4377191A (en) * | 1976-07-03 | 1983-03-22 | Kabushiki Kaisha Ekijibishon | Collapsible container |
US4489847A (en) * | 1978-02-08 | 1984-12-25 | Owens-Illinois, Inc. | Parrot-beakable freestanding plastic drum assemblage |
US4228122A (en) * | 1978-03-08 | 1980-10-14 | Mauser Kommandit-Gesellschaft | Method of manufacturing roller chimes for closed head drums |
US4378328A (en) * | 1979-04-12 | 1983-03-29 | Mauser-Werke Gmbh | Method for making chime structure for blow molded hollow member |
US4492313A (en) * | 1984-05-29 | 1985-01-08 | William Touzani | Collapsible bottle |
US4643323A (en) * | 1984-11-06 | 1987-02-17 | Schuetz Udo | Drum of thermoplastic synthetic resin |
US4574969A (en) * | 1984-12-03 | 1986-03-11 | Mays Ralph E | Collapsible pail |
US4836398A (en) * | 1988-01-29 | 1989-06-06 | Aluminum Company Of America | Inwardly reformable endwall for a container |
US4967538A (en) * | 1988-01-29 | 1990-11-06 | Aluminum Company Of America | Inwardly reformable endwall for a container and a method of packaging a product in the container |
US5037010A (en) * | 1988-07-12 | 1991-08-06 | Resdevco Research & Development Co. Ltd. | Dispensing container for viscous substances |
US4955493A (en) * | 1989-08-15 | 1990-09-11 | Touzani William N | Collapsible expansible plastic hollow articles in a latchable configuration |
US5067622A (en) * | 1989-11-13 | 1991-11-26 | Van Dorn Company | Pet container for hot filled applications |
JPH03100788U (es) * | 1990-01-26 | 1991-10-21 | ||
US5348173A (en) * | 1991-09-20 | 1994-09-20 | Norwood Peter M | Collapsible-stackable plastic container |
US5310068A (en) * | 1991-09-27 | 1994-05-10 | Abdolhamid Saghri | Disposable collapsible beverage bottle |
US5226551A (en) * | 1991-11-12 | 1993-07-13 | Robbins Edward S Iii | Reusable and re-collapsible container |
US5209372A (en) * | 1992-04-08 | 1993-05-11 | Norwood Peter M | Collapsible spiral container |
US5573129A (en) * | 1993-02-19 | 1996-11-12 | Fuji Photo Film Co., Ltd. | Collapsible container for a liquid |
US5341946A (en) * | 1993-03-26 | 1994-08-30 | Hoover Universal, Inc. | Hot fill plastic container having reinforced pressure absorption panels |
US5482178A (en) * | 1994-02-16 | 1996-01-09 | Soparco | Receptacle with a deformable foot susceptible of serving as a saucer |
US5713480A (en) * | 1994-03-16 | 1998-02-03 | Societe Anonyme Des Eaux Minerales D'evian | Molded plastics bottle and a mold for making it |
US5584413A (en) * | 1994-06-09 | 1996-12-17 | Jung; Myung G. | Pleated plastic container |
US5543107A (en) * | 1994-09-27 | 1996-08-06 | Sonoco Products Company | Blow molding a closed plastic drum including two speed compression molding of an integral handling ring |
US5799792A (en) * | 1995-01-13 | 1998-09-01 | Abrums; Rolin L. | Nestable and stackable storage unit |
US5908128A (en) * | 1995-07-17 | 1999-06-01 | Continental Pet Technologies, Inc. | Pasteurizable plastic container |
US5690244A (en) * | 1995-12-20 | 1997-11-25 | Plastipak Packaging, Inc. | Blow molded container having paneled side wall |
JPH09254947A (ja) * | 1996-03-27 | 1997-09-30 | Hiroshi Ishii | 切断し、重ね合わせ、固定するための構造をもつ容器 |
US5758789A (en) * | 1996-06-19 | 1998-06-02 | Shin; Woong-Sik | Carbonated beverage bottle |
US5862932A (en) * | 1996-12-03 | 1999-01-26 | Walsh; Carolyn | Portable collapsible garbage can |
USD403587S (en) * | 1997-07-03 | 1999-01-05 | Colin Thornley | Collapsible bottle |
US5971184A (en) * | 1997-10-28 | 1999-10-26 | Continental Pet Technologies, Inc. | Hot-fillable plastic container with grippable body |
US6277321B1 (en) * | 1998-04-09 | 2001-08-21 | Schmalbach-Lubeca Ag | Method of forming wide-mouth, heat-set, pinch-grip containers |
US6065624A (en) * | 1998-10-29 | 2000-05-23 | Plastipak Packaging, Inc. | Plastic blow molded water bottle |
US6752284B1 (en) * | 1999-02-27 | 2004-06-22 | Yoshino Kogyosho Co., Ltd. | Synthetic resin container with thin wall |
US7748553B2 (en) * | 1999-02-27 | 2010-07-06 | Yoshino Kogyosho Co., Ltd. | Synthetic resin container with thin wall |
US20040251258A1 (en) * | 1999-02-27 | 2004-12-16 | Yoshino Kogyosho Co., Ltd. | Synthetic resin container with thin wall |
US6230912B1 (en) * | 1999-08-12 | 2001-05-15 | Pechinery Emballage Flexible Europe | Plastic container with horizontal annular ribs |
US6413466B1 (en) * | 2000-06-30 | 2002-07-02 | Schmalbach-Lubeca Ag | Plastic container having geometry minimizing spherulitic crystallization below the finish and method |
US6585124B2 (en) * | 2000-06-30 | 2003-07-01 | Schmalbach-Lubeca Ag | Plastic container having geometry minimizing spherulitic crystallization below the finish and method |
US20080047964A1 (en) * | 2000-08-31 | 2008-02-28 | C02Pac | Plastic container having a deep-set invertible base and related methods |
US6736285B2 (en) * | 2002-02-01 | 2004-05-18 | Theo A. Stewart-Stand | Collapsible drinking and storage receptacle |
US20030160055A1 (en) * | 2002-02-01 | 2003-08-28 | Cockroach Design Llc | Collapsible drinking and storage receptacle |
US20030221987A1 (en) * | 2002-03-20 | 2003-12-04 | Graham Packaging Company, Lp | Container with stackable base |
US20030183628A1 (en) * | 2002-03-26 | 2003-10-02 | Barr David Alan | Collapsible storage bin |
US20030230588A1 (en) * | 2002-03-27 | 2003-12-18 | Philip Zepter | High-functionality bowl structure |
USD483225S1 (en) * | 2002-11-26 | 2003-12-09 | Simon Richard Gain | Container |
US20040200799A1 (en) * | 2003-03-31 | 2004-10-14 | Graham Packaging Company, L.P. | Hot-fillable container with a waisted dome |
US20110017700A1 (en) * | 2003-05-23 | 2011-01-27 | Patcheak Terry D | Hot-fill container |
US7273147B2 (en) * | 2003-11-05 | 2007-09-25 | Willat Ergonomic Technologies, Llc | Wine glass |
US7654402B2 (en) * | 2003-12-16 | 2010-02-02 | Dart Industries Inc. | Collapsible container |
US20050127074A1 (en) * | 2003-12-16 | 2005-06-16 | David Kusuma | Collapsible container |
US20050127073A1 (en) * | 2003-12-16 | 2005-06-16 | David Kusuma | Collapsible container |
US8011166B2 (en) * | 2004-03-11 | 2011-09-06 | Graham Packaging Company L.P. | System for conveying odd-shaped containers |
US20070181403A1 (en) * | 2004-03-11 | 2007-08-09 | Graham Packaging Company, Lp. | Process and device for conveying odd-shaped containers |
US7574846B2 (en) * | 2004-03-11 | 2009-08-18 | Graham Packaging Company, L.P. | Process and device for conveying odd-shaped containers |
US20090218004A1 (en) * | 2004-03-11 | 2009-09-03 | Graham Packaging Company, L.P. | Process and a Device for Conveying Odd-Shaped Containers |
US20060016819A1 (en) * | 2004-07-20 | 2006-01-26 | Dard Products, Inc. | Bottle assembly with removable container assembly |
US20060191945A1 (en) * | 2005-02-28 | 2006-08-31 | Kao I Feng | Metal container with a base |
US7900425B2 (en) * | 2005-10-14 | 2011-03-08 | Graham Packaging Company, L.P. | Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein |
US7799264B2 (en) * | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US20090293436A1 (en) * | 2006-07-03 | 2009-12-03 | Hokkai Can Co., Ltd. | Method and Device for Producing Content Filling Bottle |
US20080230462A1 (en) * | 2007-03-22 | 2008-09-25 | Progressive International Corp. | Collapsible colander & bowl |
US20110089195A1 (en) * | 2007-05-17 | 2011-04-21 | Amcor Limited | Molded preform and container having integrated pour spout |
US20090000981A1 (en) * | 2007-06-28 | 2009-01-01 | Kwok Kuen So | Bowl and Basket and Salad Spinner Incorporating such an Assembly |
US20100140279A1 (en) * | 2007-08-17 | 2010-06-10 | Sea To Summit Pty., Ltd. | Collapsible Container |
US7866500B1 (en) * | 2007-08-30 | 2011-01-11 | John David Peggs | Collapsible polymeric bellows storage tube |
US8025169B2 (en) * | 2007-09-22 | 2011-09-27 | Israel Harry Zimmerman | Self-anchoring beverage container with directional release and attachment capability |
US20090194546A1 (en) * | 2008-01-31 | 2009-08-06 | Lane Michael T | Hybrid base design |
US20090202766A1 (en) * | 2008-02-07 | 2009-08-13 | Amcor Limited | Flex ring base |
US8205749B2 (en) * | 2008-07-22 | 2012-06-26 | Graham Packaging Company, L.P. | Stackable flexible container assembly |
US8353415B2 (en) * | 2008-11-27 | 2013-01-15 | Yoshino Kogyosho Co., Ltd. | Synthetic resin bottle |
US7926243B2 (en) * | 2009-01-06 | 2011-04-19 | Graham Packaging Company, L.P. | Method and system for handling containers |
US8429880B2 (en) * | 2009-01-06 | 2013-04-30 | Graham Packaging Company L.P. | System for filling, capping, cooling and handling containers |
US8096098B2 (en) * | 2009-01-06 | 2012-01-17 | Graham Packaging Company, L.P. | Method and system for handling containers |
US8171701B2 (en) * | 2009-01-06 | 2012-05-08 | Graham Packaging Company, L.P. | Method and system for handling containers |
USD608161S1 (en) * | 2009-01-29 | 2010-01-19 | Dart Industries Inc. | Container for icing |
US20110089135A1 (en) * | 2009-10-19 | 2011-04-21 | Simon John B | Laser modified plastic container |
US8181804B2 (en) * | 2010-03-04 | 2012-05-22 | Amcor Limited | Flexible standing ring for hot-fill container |
US20110217494A1 (en) * | 2010-03-04 | 2011-09-08 | Amcor Limited | Flexible standing ring for hot-fill container |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130153529A1 (en) * | 2010-09-30 | 2013-06-20 | Yoshino Kogyosho Co., Ltd. | Bottle |
US9463900B2 (en) * | 2010-09-30 | 2016-10-11 | Yoshino Kogyosho Co., Ltd. | Bottle made from synthetic resin material and formed in a cylindrical shape having a bottom portion |
EP2978584A1 (fr) * | 2013-03-27 | 2016-02-03 | Sidel Participations | Récipient à socle renforcé et procédé de fabrication d'un tel récipient |
USD740663S1 (en) | 2014-08-25 | 2015-10-13 | Societe Des Produits Nestle S.A. | Bottle |
Also Published As
Publication number | Publication date |
---|---|
WO2012009416A2 (en) | 2012-01-19 |
WO2012009416A3 (en) | 2012-03-29 |
US9254604B2 (en) | 2016-02-09 |
US20140212537A1 (en) | 2014-07-31 |
MX2013000557A (es) | 2013-05-30 |
CO6680633A2 (es) | 2013-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10968006B2 (en) | Container base including hemispherical actuating diaphragm | |
US9079709B2 (en) | Heat set container | |
US8813996B2 (en) | Heat set container | |
EP2285699B1 (en) | Hot-fill container | |
US9254604B2 (en) | Controlled base flash forming a standing ring | |
EP2240370B1 (en) | Hybrid base design | |
US20140305952A1 (en) | Folding container | |
US8528760B2 (en) | Lightweight container having mid-body grip | |
US20120205341A1 (en) | Vacuum panel with balanced vacuum and pressure response | |
US20120205342A1 (en) | Shoulder rib to direct top load force | |
US10723504B2 (en) | Heat set container with label boundary panel | |
US20120000921A1 (en) | Pressure resistant vacuum/label panel | |
CA2791605C (en) | Flexible standing ring for hot-fill container | |
US9415894B2 (en) | Pressure resistant vacuum/label panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMCOR LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LISCH, GEORGE DAVID;PATCHEAK, TERRY D.;MARK, KIRK EDWARD;AND OTHERS;SIGNING DATES FROM 20110726 TO 20110922;REEL/FRAME:026959/0823 |
|
AS | Assignment |
Owner name: AMCOR LIMITED, AUSTRALIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE LAST NAME OF ASSIGNOR PREVIOUSLY RECORDED ON REEL 026959 FRAME 0823. ASSIGNOR(S) HEREBY CONFIRMS THE SPELLING OF ASSIGNOR'S LAST NAME SHOULD BE CHANGED FROM "MARK" TO "MAKI".;ASSIGNORS:LISCH, GEORGE DAVID;PATCHEAK, TERRY D.;MAKI, KIRK EDWARD;AND OTHERS;SIGNING DATES FROM 20110726 TO 20110922;REEL/FRAME:027162/0206 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |