US20120011798A1 - Building system and components therefor - Google Patents

Building system and components therefor Download PDF

Info

Publication number
US20120011798A1
US20120011798A1 US13/183,281 US201113183281A US2012011798A1 US 20120011798 A1 US20120011798 A1 US 20120011798A1 US 201113183281 A US201113183281 A US 201113183281A US 2012011798 A1 US2012011798 A1 US 2012011798A1
Authority
US
United States
Prior art keywords
building
panels
structural
roof
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/183,281
Inventor
Ernest Rivellino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/183,281 priority Critical patent/US20120011798A1/en
Publication of US20120011798A1 publication Critical patent/US20120011798A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/12Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of other material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4157Longitudinally-externally threaded elements extending from the concrete or masonry, e.g. anchoring bolt with embedded head
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/24Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like
    • E04D3/32Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like of plastics, fibrous materials, or asbestos cement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/40Slabs or sheets locally modified for auxiliary purposes, e.g. for resting on walls, for serving as guttering; Elements for particular purposes, e.g. ridge elements, specially designed for use in conjunction with slabs or sheets

Definitions

  • U.S. Pat. No. 7,930,861 to Schiffmann et al shows a building system with walls, ceiling and a floor structure that is insulated with foam and made with pultruded materials.
  • U.S. Pat. No. 6,901,710 to Cooper discloses a fiberglass reinforced, pultruded vault construction using prefabricated wall, ceiling and floor panels made from pultruded material that are bonded together with adhesive.
  • U.S. Pat. No. 6,941,715 to Potter is directed to a prefabricated, modular building component made with pultruded materials.
  • U.S. Pat. No. 7,520,099 to Pringle et al relates to a pultruded composite building materials having an inner wall and outer wall with different levels of porosity.
  • the present invention provides a low cost, efficient unibody building construction that uses no nails, no wood, no drywall, trusses or concrete slabs; a building that can be made in weeks, not months or years with little or no waste and construction debris.
  • the building is a low maintenance, ecology friendly design with no toxic emissions that provides all the amenities of much higher cost building.
  • the building system and components for the construction of residential housing, industrial and commercial buildings and other type structures are made with pultrusion technology. Pultrusion is a process of heating, pressing and pulling composite material using pultruded polymer compounds such as polyurethane and reinforced by fiberglass or the like. The reinforced material is pulled through a specifically custom shaped die to create building materials used in the building of the invention and in the process for making the same.
  • the building is formed with a plurality of pultrusion components bonded together to form a unitized structure.
  • the building materials used in the present system include a main perimeter sill beam that is attached to foundation support columns; structural, foam insulated floor, wall and roof panels; corner connectors; a structural one-piece coved “wind spoiler” soffit and fascia tie beam; and, a structural one piece ridge beam.
  • the components are designed to be interconnected with adjacent, mating parts as the building is assembled. These interconnecting parts are bonded together into place using high strength resin adhesives.
  • Another object of the invention is the provision of a building structure formed without conventional construction tools.
  • Still another object is the provision of a low cost, low maintenance building that is easy to build and inexpensive to maintain.
  • Yet another object is the provision of a building made without conventional fasteners.
  • FIG. 1 is a perspective view of a completed building in accordance with the present invention.
  • FIG. 2 is a sectional view of the building of FIG. 1 .
  • FIG. 3 is a perspective view of the soffit and fascia tie beam of the present invention.
  • FIG. 4 is an end view of FIG. 3 .
  • FIG. 5 is an exploded perspective view of a structural ridge beam assembly of the invention.
  • FIG. 6 is an exploded end view of FIG. 5 .
  • FIG. 7 is an assembled end view of FIG. 5 .
  • FIG. 8 is a perspective view of an exterior corner connector of the invention.
  • FIG. 9 is a perspective view of an exterior corner cap of the invention.
  • FIG. 10 is an assembled end view of the corner connector and corner cap of FIGS. 8 and 9 .
  • FIG. 11 is a perspective view of a sill beam of the invention.
  • FIG. 12 is an end view of FIG. 11 .
  • FIG. 13 is a perspective view of a roof panel of the invention.
  • FIG. 14 is an end view of FIG. 13 .
  • FIG. 15 is a perspective view of a wall panel of the invention.
  • FIG. 16 is an end view of FIG. 15 .
  • FIG. 17 is a perspective view of a floor panel of the invention.
  • FIG. 18 is an end view of FIG. 17 .
  • FIG. 19 is an exploded perspective view showing the interconnection of components of the invention.
  • FIG. 20 is an elevational view of FIG. 19 .
  • FIG. 21 is an assembled perspective view of the components of the invention.
  • FIG. 22 is an elevational view of FIG. 21 .
  • FIG. 23 is a perspective view of a stud anchor bracket used with the present invention.
  • FIG. 24 is an elevational view of the stud anchor bracket of FIG. 23 .
  • FIG. 25 is a top view of the bracket of FIG. 23 .
  • FIG. 26 is a perspective view of a corner stud anchor bracket used with the present invention.
  • FIG. 27 is an elevational view of the stud anchor bracket of FIG. 26 .
  • FIG. 28 is a top view of the bracket of FIG. 26 .
  • FIG. 29 is a view of a support column and an anchor bracket.
  • FIGS. 1 and 2 illustrate a typical building 10 made in accordance with the present invention having walls 12 , a roof 14 , floor 16 and foundation column supports 18 .
  • the building 10 includes a soffit and fascia tie beam 20 connecting the roof 14 and walls 12 , a structural ridge 22 at the top of the building 10 at the upper junction of the roof 14 , an exterior corner cap 24 , a corner connector 26 , and sill beam 28 attached to the column supports 18 .
  • the roof 14 is made of a plurality of interconnected panels 32 .
  • the walls 12 are made of a plurality of interconnected panels 34 .
  • the floor 16 is also made with a plurality of interconnected panels 36 .
  • the corner connector 26 connects the wall panels 34 at the outside and inside corners of the wall junctions.
  • the exterior corner cap 24 is positioned over the corner connector 26 .
  • An additional structural beam 38 is centrally located in the building 10 to support the floor 16 on the foundation column supports 18 .
  • the number of structural support beams 38 will vary with the size and shape of the building 10 being constructed.
  • the tie beam 20 is positioned on top of the wall panels 34 and supports the lower ends of the roof panels 32 .
  • the sill beam 28 supports the floor panels 34 and the lower ends of the wall panels 34 . All the components, as they are assembled, are bonded together to form a unitized structure without the need for conventional construction materials and techniques.
  • the drawings show a building 10 with a generally square footprint, however, it will be appreciated that a wide variety of shapes and sizes of buildings lend themselves to construction with the pultruded components and processes defined by the present invention.
  • All the building components are made of pultruded materials created and formed by pulling fiber, such as fiberglass, and resin, such as polyurethane, through a specifically shaped dye.
  • the components are assembled as described in detail hereinbelow by fitting and bonding them together using an adhesive resin so that the adjoining components become unified into a single connected structure.
  • FIGS. 3 and 4 are isometric and end views of a one-piece structural soffit and fascia tie beam 20 .
  • An upper portion of the tie beam 20 forms a receptor platform 102 to receive and bond to lower sections of foam filled panels 32 that are used to construct the roof 14 .
  • a receptor channel 104 extending the entire length of the tie beam 20 is structured to receive and bond to the top of structural foam filled panels 34 that are used to construct the walls 12 .
  • the outer side of the tie beam 20 includes a structural, coved shape member 106 which adds support as well as functioning as a “wind spoiler” to deflect wind away during high wind conditions.
  • the coved shaped member 106 also provides a decorative exterior trim feature to the soffit tie beam 20 .
  • a finishing molding 108 is located at the bottom of the soffit tie member 20 creating another decorative exterior trim feature.
  • a structural stiffing member 110 performs asa drip edge for a fascia 112 component of the soffit tie beam 20 .
  • Another structural stiffing member 114 is an internal rectangular structural stiffening tube located between the coved shaped member 106 and the lower edge of the fascia 112 and extends the entire length of the soffit tie beam 20 .
  • An interior cove structural member 116 is located on the opposite side of the receptor channel 104 adding both stiffing strength while providing a decorative interior ceiling cove molding feature.
  • a finishing molding 118 at the top and bottom of the interior cove structural member 116 provides structural stiffening as well as being a decorative interior ceiling trim feature.
  • FIGS. 5 , 6 and 7 show a one-piece structural ridge beam 22 , a ridge cap 142 and filler cap 144 .
  • a receptor channel 146 receives and bonds to the upper part of an interior wall panel, (not shown) to form a unified structure.
  • the filler cap 144 is inserted into the receptorchannel 146 to hide the channel 146 and also to provide a decorative finished interior surface.
  • the filler cap 144 has tabs 148 running the full length of the cap 144 located along each edge of the cap 144 and offset from the width of the filler cap 144 to fit into the receptor channel 146 at the bottom of the structural ridge beam 22 .
  • Each side of the structural ridge beam 22 is formed with a receptor platform 150 on which the upper edges of the panels 32 forming the roof 14 are bonded to the structural ridge beam 22 .
  • Each side of the structural ridge beam 22 is also formed with a coved shaped, structural support 152 , which also provides a coved molding feature at the interior ceiling of the building 10 where the roof panels 32 of the roof 14 and ridge beam 22 are connected.
  • Ridge cap 142 overlays the top of the ridge beam 22 and the upper edge of the roof panels 32 to lock the parts together and to provide weather protection and a decorative finish to the roof 14 .
  • FIG. 8 is an isometric view of a structural corner connector 26 formed with a receptor channel 160 sized to receive a structural wall panel 34 .
  • a tongue member 162 of the corner connector 26 is sized to fit into a channel of a connecting wall panel 34 . All connected surfaces are bonded to the wall panels 34 using high strength resin adhesives.
  • FIG. 9 is an isometric view of an exterior corner cap 24 , which is used to cover the structural corner connector 26 .
  • Raised tabs 158 on the inner surface of the exterior corner cap 24 are used to attach the corner cap 24 to the corner of the building 10 and give the cap 24 thickness creating a decorative reveal on the corners of the exterior of the building 10 .
  • FIG. 10 is a slightly exploded end view of the decorative corner cap 24 as it would be placed over and attached to the structural corner connector 26 by the tabs 158 .
  • FIGS. 11 and 12 show an isometric and end views of the main perimeter sill beam 30 formed with a receptor channel 164 in which the wall panels 34 are inserted.
  • a vertical flange 166 holds the wall panels 34 in place.
  • a tubular structural beam 168 supports the perimeter of the building structure.
  • the base of the receptor channel 164 and the tubular structural beam 168 are pre-drilled at predetermined locations for fastening the sill beam 30 to the foundation column supports 18 under the building 10 .
  • the top surface 169 of the structural beam 168 supports the perimeter edges of the floor panels 36 .
  • the roof panels 32 , wall panels 34 and floor panels 36 are similar in structure and are made of pultruded material in a flat, elongated shape, generally rectangular in cross section.
  • FIGS. 13 and 14 illustrate a structural roof panel 32 having an upper wall 170 , lower wall 172 and a series of channels 174 formed by interior divider fins 176 connecting the upper wall 170 with the lower wall 172 .
  • the roof panel 32 includes a receptor channel 178 along one side of the panel 32 for connection with an adjacent roof panel 32 by means of a tongue 180 formed at an end of the roof panel 32 opposite the receptor channel 178 .
  • the tongue 180 is narrower than the thickness of the roof panel 32 by twice the thickness of the material forming the panel's wall surfaces.
  • the tongue 180 may be tapered as well as the receptor channel 178 in such a manner to easily fit together during assembly to form equally uniform connecting surfaces.
  • the interior divider fins 176 extend the full length of the panel 32 and bond the inner upper wall 170 and the inner lower wall 172 of the roof panel 32 together while adding lateral support.
  • the roof panel 32 is a one piece structure formed in a custom designed pultrusion die.
  • the interior channels 174 that extend along the full length of the panel 32 are injected with polyurethane or similar, foam insulating materials, during the manufacturing process that adheres to the inner surfaces of the interior channels 174 adding additional rigidity and support to the panel 32 while providing the panel 32 with a high insulation value.
  • a structural exterior rib 182 rises up along the outer edge of the receptor channel 178 running the full length of the panel 32 .
  • the rib 182 serves as a structural stiffener at the panel's edge and provides the finished roof 14 with a decorative, raised seam look. There may be additional ribs equal to the size and shape of the rib 182 rising up along the top surface and running the full length of the roof panel 32 at variable intervals.
  • the roof panels 32 are fit together by sliding the tongue 180 of one panel 32 into the receptor channel 178 of a connecting, adjacent panel 32 , eventually forming a solid roof 14 structure.
  • the tongue 180 is bonded to the inside of the receptor channel 178 using a high strength resin adhesive, which molecularly “welds” the pieces together.
  • the completed tongue 180 and channel 178 connections form double thickness layers at the connection point creating an internal structural beam between each panel 32 , adding additional strength to the roof 14 .
  • the outer surface of the roof panel 32 is the finished roof surface and may be textured and colored during the manufacturing process, or colored with a paint like or texturing material applied after installation and does not require any additional finishing roofing material.
  • FIGS. 15 and 16 show a structural, foam filled wall panel 34 in detail, similar to the roof panels 32 , having a planar upper wall 190 , planar lower wall 192 and a series of channels 194 formed by interior divider fins 196 connecting the upper wall 190 with the lower wall 192 and add lateral strength and support to the wall surfaces.
  • the wall panel 34 includes a receptor channel 198 on one end and a tongue 200 on the opposite end of the wall panel 36 that is narrower than the panel thickness by twice the thickness of the panel's wall material.
  • the tongue 200 may be tapered, as well as the receptor channel 198 , in such a manner to fit together and form equally uniform connecting surfaces.
  • the wall panel 36 is a one piece structure formed in a custom designed pultrusion die.
  • the wall panels 34 are fit together by sliding the tongue 200 of a first wall panel 34 into the receptor channel 198 of an adjacent wall panel 34 , eventually forming a solid wall 12 .
  • the tongue 200 is bonded to the inside of the receptor channel 198 using a high strength resin adhesive, which molecularly “welds” the pieces together.
  • the completed tongue 200 and channel 198 connections form an internal vertical structural beam using the double thickness of the mating connection, adding additional strength to the wall 12 .
  • Polyurethane foam, or other foam type insulation is injected during the manufacturing process into the channels 194 adding insulation value as well as additional strength to the panel structure.
  • the bottoms of the wall panels 34 are inserted into the receptor channel 164 and against inner surface of the vertical flange 166 and boding surface 167 of the sill beam 30 and bonded therein using high strength resin
  • FIGS. 17 and 18 illustrate a structural floor panel 36 similar to the roof and wall panels 32 , having an upper wall 210 , lower wall 212 and a series of channels 214 formed by interior divider fins 216 connecting the upper wall 210 with the lower wall 212 .
  • the floor panel 36 includes a receptor channel 218 on one end and a tongue 220 on the opposite end of the panel 36 that is narrower than the panel thickness by twice the thickness of the panel's wall material. As described above with reference to the other panels, the tongue 220 may be tapered, as well as the receptor channel 218 to fit together and form equally uniform connecting surfaces.
  • Each floor panel 36 is a one piece structure formed in a custom designed pultrusion die.
  • the floor panels 36 are fit together by sliding the tongue 220 of one panel 36 into the receptor channel 218 of a connecting, adjacent panel 36 , eventually forming a solid floor structure.
  • the tongue 220 is bonded to the inside of the receptor channel 218 using a high strength resin adhesive, which molecularly “welds” the pieces together.
  • the completed tongue 220 and channel 218 connections form an internal structural beam using the additional thickness of the mating parts between each panel 36 , thus adding additional strength to the floor.
  • Polyurethane foam, or other foam type insulation is injected during the manufacturing process into the channels 214 formed by the supporting fins 216 adding insulation value as well as additional strength to the floor structure.
  • the ends of each floor panel 36 are bonded to the top surface 169 of the sill beam 30 using high strength resin adhesive to complete the attachment procedure between the two components.
  • FIG. 19 is an exploded isometric view of a building section and FIG. 20 is an end view of the same components showing the way they fit together forming the shell of the building 10 .
  • the components include a sill beam 30 having a receptor channel 164 , foam filled floor panels 36 , foam filled wall panels 34 , a soffit and fascia tie beam 20 , foam filled roof panels 32 and a structural ridge 22 with a ridge cap 142 and filler cap 144 .
  • the portions of the building 10 not shown are mirror images of the components that are shown.
  • FIG. 21 is an isometric view of the same components assembled together.
  • FIG. 22 is an end view of the assembled components.
  • the bottom edge of wall panel 34 is inserted into receptor channel 164 of the sill beam 30 .
  • the floor panel 36 is attached to the top surface of sill beam 30 .
  • the top of a wall panel 34 is shown inserted into the receptor channel 104 of the soffit and fascia tie beam 20 .
  • the bottom of roof panel 32 is shown attached to the receiving platform 102 of the soffit and fascia tie beam 20 and the upper end of the roof panel 32 is shown attached to the receptor platform 150 of the structural ridge beam 22 .
  • the ridge cap 142 is shown attached to the top of the structural ridge 22 , while the ridge filler cap 144 is inserted into the receptor channel 146 of the structural ridge beam 22 .
  • FIGS. 23 , 24 and 25 illustrate an isometric view of a two bolt alignment anchor bracket 300 , which is comprised of a cross shaped support bar 302 which is made of flat, steel, or other like metals, with a rust protective coating, or reinforced polymer material, formed at each end with a “Z” shaped support 304 and threaded anchor bolt holes 303 equally spaced in-line on one of the crossed shaped bars 302 to receive a threaded steel, or other like metal with a rust protective coating, or reinforced polymer material, anchor bolt 306 having a specified length and a steel, or other like metal with a rust protective coating or reinforced polymer material formed knob, or 90 degree extension at the end 308 opposite the threaded end.
  • the alignment bracket 300 is used as part of the building system to fasten the structural sill beam 30 to a column foundation system 18 .
  • the bracket 300 is placed at the top edge of a foundation column form (not shown) with the portion of the bracket bar 302 not having anchor bolts set parallel with the structural sill beam 30 .
  • the anchor bolts 306 are automatically located at the exact location necessary to fit into the pre drilled mounting holes of the structural sill beam 30 .
  • the “Z” shaped end supports 304 allow the anchor bracket 300 to slip into the inner diameter of the form thereby supporting the anchor bracket at the top of the column form.
  • the column foundation form is filled with concrete encasing the anchor bracket support bars 302 and lower section of the anchor bolts to form a foundation column support 18 .
  • FIGS. 26 , 27 and 28 show a four bolt corner alignment anchor bracket 320 used as part of the building system to fasten a structural sill beam 30 at the corners of the building 10 to a column foundation system 18 .
  • the corner alignment anchor bracket 320 is comprised of a cross shaped support bar 322 which is made of flat, steel, or other like metals, with a rust protective coating, or reinforced polymer material.
  • the ends of the support bars 322 are formed with a “Z” shaped support 324 .
  • Each bar 322 has a threaded anchor bolt holes 323 such that two of the holes 323 are equally spaced in-line on each one of the crossed shaped bars 322 .
  • the holes 323 are designed to receive a threaded, steel, other like metal with a rust protective coating, or reinforced polymer material, anchor bolt 326 having a specified length with a 90 degree extension or knob 328 at the end.
  • the corner alignment bracket 320 is placed at the top edge of the foundation column form (not shown) positioned at an angle diagonal to the sill beam's corner.
  • the anchor bolts 326 are automatically located at the exact location to fit into the pre drilled mounting holes of the structural sill beam 30 .
  • the “Z” shaped end supports 324 allow the corner anchor bracket 320 to slip into the inner diameter of the form (not shown) thereby supporting the anchor bracket 320 at the top of the column form.
  • the column foundation form is filled with concrete encasing the anchor bracket support bars 322 and lower section of the anchor bolts 326 .
  • FIG. 29 illustrates a foundation column 18 with an integral anchor support bracket 300 .
  • All components are formed in a pultrusion die and are sized and shaped to interconnect with the others for eventual bonding as a unitized building structure
  • a foundation system of a series of concrete support columns and anchor brackets is located on the building site.
  • a structural sill beam is fastened to the foundation system. Additional structural support beams are placed on the foundation support columns if needed as dictated by the size and shape of the building being constructed.
  • Wall panels are inserted and bonded with adhesive to the receptor channel of the sill beam.
  • the soffit beam is slipped over and bonded to the top of the wall panel. Roof panels are placed and bonded to the receiving platform of the soffit beam.
  • the ridge beam is bonded to the top of the roof panels.
  • the ridge cap is bonded to the ridge beam and roof panels. If needed, the ridge filler cap is snapped into the interior ridge channel.
  • Floor panels are bonded to the top surface of the sill beam. The process is repeated until the building shell is completed.
  • interior partitions are placed and bonded together, structural corner connectors are bonded to the wall panels at the junction of all corners and the wall panels are attached to the floor and the underside of the roof using channel connectors and bonding resins in the same way as the building shell walls.

Abstract

A unitized building construction formed of a plurality of pultruded building components adhesively connected. The building components include a ground support foundation, a main perimeter sill beam that is attached to the support columns; structural, foam insulated floor, wall and roof panels; structural corner connectors; a structural one-piece coved “wind spoiler” soffit and fascia tie beam; and, a structural one piece ridge beam. The components are designed to be interconnected with adjacent parts as the building is assembled. These interconnecting parts are bonded together into place using high strength resin adhesives.

Description

    PROVISIONAL APPLICATION
  • The present invention was shown and described in a provisional application filed Jul. 16, 2010
  • BACKGROUND OF THE INVENTION
  • The need for low cost housing has been a primary concern for a number of years particularly in underdeveloped countries where costs, skilled labor and access to building materials present a considerable barrier to these programs. Various efforts have been made in the area of modular housing with a wide variety of levels of success. For example the following US patents are representative of the known prior art.
  • U.S. Pat. No. 7,930,861 to Schiffmann et al shows a building system with walls, ceiling and a floor structure that is insulated with foam and made with pultruded materials.
  • U.S. Pat. No. 6,901,710 to Cooper discloses a fiberglass reinforced, pultruded vault construction using prefabricated wall, ceiling and floor panels made from pultruded material that are bonded together with adhesive.
  • U.S. Pat. No. 6,941,715 to Potter is directed to a prefabricated, modular building component made with pultruded materials.
  • U.S. Pat. No. 7,520,099 to Pringle et al relates to a pultruded composite building materials having an inner wall and outer wall with different levels of porosity.
  • U.S. Pat. No. 7,698,865 to Pringle et al is also directed to a composite building material that is pultruded.
  • A number of other U.S. patents are directed to making pultruded building components.
  • SUMMARY OF THE INVENTION
  • The present invention provides a low cost, efficient unibody building construction that uses no nails, no wood, no drywall, trusses or concrete slabs; a building that can be made in weeks, not months or years with little or no waste and construction debris. The building is a low maintenance, ecology friendly design with no toxic emissions that provides all the amenities of much higher cost building. The building system and components for the construction of residential housing, industrial and commercial buildings and other type structures are made with pultrusion technology. Pultrusion is a process of heating, pressing and pulling composite material using pultruded polymer compounds such as polyurethane and reinforced by fiberglass or the like. The reinforced material is pulled through a specifically custom shaped die to create building materials used in the building of the invention and in the process for making the same. The building is formed with a plurality of pultrusion components bonded together to form a unitized structure. The building materials used in the present system include a main perimeter sill beam that is attached to foundation support columns; structural, foam insulated floor, wall and roof panels; corner connectors; a structural one-piece coved “wind spoiler” soffit and fascia tie beam; and, a structural one piece ridge beam. The components are designed to be interconnected with adjacent, mating parts as the building is assembled. These interconnecting parts are bonded together into place using high strength resin adhesives.
  • Among the objects of the present invention is the provision of a complete unitized building structure made with a plurality of building components that are adhesively bonded together.
  • Another object of the invention is the provision of a building structure formed without conventional construction tools.
  • Still another object is the provision of a low cost, low maintenance building that is easy to build and inexpensive to maintain.
  • Yet another object is the provision of a building made without conventional fasteners.
  • These and other objects will become apparent with reference to the following specification and accompanying drawings.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a completed building in accordance with the present invention.
  • FIG. 2 is a sectional view of the building of FIG. 1.
  • FIG. 3 is a perspective view of the soffit and fascia tie beam of the present invention.
  • FIG. 4 is an end view of FIG. 3.
  • FIG. 5 is an exploded perspective view of a structural ridge beam assembly of the invention.
  • FIG. 6 is an exploded end view of FIG. 5.
  • FIG. 7 is an assembled end view of FIG. 5.
  • FIG. 8 is a perspective view of an exterior corner connector of the invention.
  • FIG. 9 is a perspective view of an exterior corner cap of the invention.
  • FIG. 10 is an assembled end view of the corner connector and corner cap of FIGS. 8 and 9.
  • FIG. 11 is a perspective view of a sill beam of the invention.
  • FIG. 12 is an end view of FIG. 11.
  • FIG. 13 is a perspective view of a roof panel of the invention.
  • FIG. 14 is an end view of FIG. 13.
  • FIG. 15 is a perspective view of a wall panel of the invention.
  • FIG. 16 is an end view of FIG. 15.
  • FIG. 17 is a perspective view of a floor panel of the invention.
  • FIG. 18 is an end view of FIG. 17.
  • FIG. 19 is an exploded perspective view showing the interconnection of components of the invention.
  • FIG. 20 is an elevational view of FIG. 19.
  • FIG. 21 is an assembled perspective view of the components of the invention.
  • FIG. 22 is an elevational view of FIG. 21.
  • FIG. 23 is a perspective view of a stud anchor bracket used with the present invention.
  • FIG. 24 is an elevational view of the stud anchor bracket of FIG. 23.
  • FIG. 25 is a top view of the bracket of FIG. 23.
  • FIG. 26 is a perspective view of a corner stud anchor bracket used with the present invention.
  • FIG. 27 is an elevational view of the stud anchor bracket of FIG. 26.
  • FIG. 28 is a top view of the bracket of FIG. 26.
  • FIG. 29 is a view of a support column and an anchor bracket.
  • DESCRIPTION OF PREFERRED EMBODOMENTS
  • FIGS. 1 and 2 illustrate a typical building 10 made in accordance with the present invention having walls 12, a roof 14, floor 16 and foundation column supports 18. As seen in the sectional view of FIG. 2, the building 10 includes a soffit and fascia tie beam 20 connecting the roof 14 and walls 12, a structural ridge 22 at the top of the building 10 at the upper junction of the roof 14, an exterior corner cap 24, a corner connector 26, and sill beam 28 attached to the column supports 18. The roof 14 is made of a plurality of interconnected panels 32. Similarly the walls 12 are made of a plurality of interconnected panels 34. The floor 16 is also made with a plurality of interconnected panels 36. The corner connector 26 connects the wall panels 34 at the outside and inside corners of the wall junctions. The exterior corner cap 24 is positioned over the corner connector 26. An additional structural beam 38 is centrally located in the building 10 to support the floor 16 on the foundation column supports 18. The number of structural support beams 38 will vary with the size and shape of the building 10 being constructed. The tie beam 20 is positioned on top of the wall panels 34 and supports the lower ends of the roof panels 32. The sill beam 28 supports the floor panels 34 and the lower ends of the wall panels 34. All the components, as they are assembled, are bonded together to form a unitized structure without the need for conventional construction materials and techniques. The drawings show a building 10 with a generally square footprint, however, it will be appreciated that a wide variety of shapes and sizes of buildings lend themselves to construction with the pultruded components and processes defined by the present invention.
  • All the building components are made of pultruded materials created and formed by pulling fiber, such as fiberglass, and resin, such as polyurethane, through a specifically shaped dye. The components are assembled as described in detail hereinbelow by fitting and bonding them together using an adhesive resin so that the adjoining components become unified into a single connected structure.
  • A detailed description of each component used in the present invention and how they are assembled to form a building are described as follows. FIGS. 3 and 4 are isometric and end views of a one-piece structural soffit and fascia tie beam 20. An upper portion of the tie beam 20 forms a receptor platform 102 to receive and bond to lower sections of foam filled panels 32 that are used to construct the roof 14. A receptor channel 104 extending the entire length of the tie beam 20 is structured to receive and bond to the top of structural foam filled panels 34 that are used to construct the walls 12. The outer side of the tie beam 20 includes a structural, coved shape member 106 which adds support as well as functioning as a “wind spoiler” to deflect wind away during high wind conditions. The coved shaped member 106 also provides a decorative exterior trim feature to the soffit tie beam 20. A finishing molding 108 is located at the bottom of the soffit tie member 20 creating another decorative exterior trim feature. A structural stiffing member 110 performs asa drip edge for a fascia 112 component of the soffit tie beam 20. Another structural stiffing member 114 is an internal rectangular structural stiffening tube located between the coved shaped member 106 and the lower edge of the fascia 112 and extends the entire length of the soffit tie beam 20. An interior cove structural member 116 is located on the opposite side of the receptor channel 104 adding both stiffing strength while providing a decorative interior ceiling cove molding feature. A finishing molding 118 at the top and bottom of the interior cove structural member 116 provides structural stiffening as well as being a decorative interior ceiling trim feature.
  • FIGS. 5, 6 and 7 show a one-piece structural ridge beam 22, a ridge cap 142 and filler cap 144. A receptor channel 146 receives and bonds to the upper part of an interior wall panel, (not shown) to form a unified structure. When no wall panel is inserted into the structural ridge beam 22, the filler cap 144 is inserted into the receptorchannel 146 to hide the channel 146 and also to provide a decorative finished interior surface. The filler cap 144 has tabs 148 running the full length of the cap 144 located along each edge of the cap 144 and offset from the width of the filler cap 144 to fit into the receptor channel 146 at the bottom of the structural ridge beam 22. Each side of the structural ridge beam 22 is formed with a receptor platform 150 on which the upper edges of the panels 32 forming the roof 14 are bonded to the structural ridge beam 22. Each side of the structural ridge beam 22 is also formed with a coved shaped, structural support 152, which also provides a coved molding feature at the interior ceiling of the building 10 where the roof panels 32 of the roof 14 and ridge beam 22 are connected. Ridge cap 142 overlays the top of the ridge beam 22 and the upper edge of the roof panels 32 to lock the parts together and to provide weather protection and a decorative finish to the roof 14.
  • FIG. 8 is an isometric view of a structural corner connector 26 formed with a receptor channel 160 sized to receive a structural wall panel 34. A tongue member 162 of the corner connector 26 is sized to fit into a channel of a connecting wall panel 34. All connected surfaces are bonded to the wall panels 34 using high strength resin adhesives.
  • FIG. 9 is an isometric view of an exterior corner cap 24, which is used to cover the structural corner connector 26. Raised tabs 158 on the inner surface of the exterior corner cap 24 are used to attach the corner cap 24 to the corner of the building 10 and give the cap 24 thickness creating a decorative reveal on the corners of the exterior of the building 10.
  • FIG. 10 is a slightly exploded end view of the decorative corner cap 24 as it would be placed over and attached to the structural corner connector 26 by the tabs 158.
  • FIGS. 11 and 12 show an isometric and end views of the main perimeter sill beam 30 formed with a receptor channel 164 in which the wall panels 34 are inserted. A vertical flange 166 holds the wall panels 34 in place. A tubular structural beam 168 supports the perimeter of the building structure. The base of the receptor channel 164 and the tubular structural beam 168 are pre-drilled at predetermined locations for fastening the sill beam 30 to the foundation column supports 18 under the building 10. The top surface 169 of the structural beam 168 supports the perimeter edges of the floor panels 36.
  • The roof panels 32, wall panels 34 and floor panels 36 are similar in structure and are made of pultruded material in a flat, elongated shape, generally rectangular in cross section.
  • FIGS. 13 and 14 illustrate a structural roof panel 32 having an upper wall 170, lower wall 172 and a series of channels 174 formed by interior divider fins 176 connecting the upper wall 170 with the lower wall 172. The roof panel 32 includes a receptor channel 178 along one side of the panel 32 for connection with an adjacent roof panel 32 by means of a tongue 180 formed at an end of the roof panel 32 opposite the receptor channel 178. Preferably the tongue 180 is narrower than the thickness of the roof panel 32 by twice the thickness of the material forming the panel's wall surfaces. The tongue 180 may be tapered as well as the receptor channel 178 in such a manner to easily fit together during assembly to form equally uniform connecting surfaces. The interior divider fins 176 extend the full length of the panel 32 and bond the inner upper wall 170 and the inner lower wall 172 of the roof panel 32 together while adding lateral support. The roof panel 32 is a one piece structure formed in a custom designed pultrusion die. The interior channels 174 that extend along the full length of the panel 32, are injected with polyurethane or similar, foam insulating materials, during the manufacturing process that adheres to the inner surfaces of the interior channels 174 adding additional rigidity and support to the panel 32 while providing the panel 32 with a high insulation value. A structural exterior rib 182 rises up along the outer edge of the receptor channel 178 running the full length of the panel 32. The rib 182 serves as a structural stiffener at the panel's edge and provides the finished roof 14 with a decorative, raised seam look. There may be additional ribs equal to the size and shape of the rib 182 rising up along the top surface and running the full length of the roof panel 32 at variable intervals. The roof panels 32 are fit together by sliding the tongue 180 of one panel 32 into the receptor channel 178 of a connecting, adjacent panel 32, eventually forming a solid roof 14 structure. The tongue 180 is bonded to the inside of the receptor channel 178 using a high strength resin adhesive, which molecularly “welds” the pieces together. The completed tongue 180 and channel 178 connections form double thickness layers at the connection point creating an internal structural beam between each panel 32, adding additional strength to the roof 14. The outer surface of the roof panel 32 is the finished roof surface and may be textured and colored during the manufacturing process, or colored with a paint like or texturing material applied after installation and does not require any additional finishing roofing material.
  • FIGS. 15 and 16 show a structural, foam filled wall panel 34 in detail, similar to the roof panels 32, having a planar upper wall 190, planar lower wall 192 and a series of channels 194 formed by interior divider fins 196 connecting the upper wall 190 with the lower wall 192 and add lateral strength and support to the wall surfaces. The wall panel 34 includes a receptor channel 198 on one end and a tongue 200 on the opposite end of the wall panel 36 that is narrower than the panel thickness by twice the thickness of the panel's wall material. The tongue 200 may be tapered, as well as the receptor channel 198, in such a manner to fit together and form equally uniform connecting surfaces.
  • The wall panel 36 is a one piece structure formed in a custom designed pultrusion die. The wall panels 34 are fit together by sliding the tongue 200 of a first wall panel 34 into the receptor channel 198 of an adjacent wall panel 34, eventually forming a solid wall 12. The tongue 200 is bonded to the inside of the receptor channel 198 using a high strength resin adhesive, which molecularly “welds” the pieces together. The completed tongue 200 and channel 198 connections form an internal vertical structural beam using the double thickness of the mating connection, adding additional strength to the wall 12. Polyurethane foam, or other foam type insulation, is injected during the manufacturing process into the channels 194 adding insulation value as well as additional strength to the panel structure. In a normal raised vertical position, forming the walls 12 of the building 10, the bottoms of the wall panels 34 are inserted into the receptor channel 164 and against inner surface of the vertical flange 166 and boding surface 167 of the sill beam 30 and bonded therein using high strength resin
  • FIGS. 17 and 18 illustrate a structural floor panel 36 similar to the roof and wall panels 32, having an upper wall 210, lower wall 212 and a series of channels 214 formed by interior divider fins 216 connecting the upper wall 210 with the lower wall 212. The floor panel 36 includes a receptor channel 218 on one end and a tongue 220 on the opposite end of the panel 36 that is narrower than the panel thickness by twice the thickness of the panel's wall material. As described above with reference to the other panels, the tongue 220 may be tapered, as well as the receptor channel 218 to fit together and form equally uniform connecting surfaces. Each floor panel 36 is a one piece structure formed in a custom designed pultrusion die. The floor panels 36 are fit together by sliding the tongue 220 of one panel 36 into the receptor channel 218 of a connecting, adjacent panel 36, eventually forming a solid floor structure. The tongue 220 is bonded to the inside of the receptor channel 218 using a high strength resin adhesive, which molecularly “welds” the pieces together. The completed tongue 220 and channel 218 connections form an internal structural beam using the additional thickness of the mating parts between each panel 36, thus adding additional strength to the floor. Polyurethane foam, or other foam type insulation, is injected during the manufacturing process into the channels 214 formed by the supporting fins 216 adding insulation value as well as additional strength to the floor structure. The ends of each floor panel 36 are bonded to the top surface 169 of the sill beam 30 using high strength resin adhesive to complete the attachment procedure between the two components.
  • FIG. 19 is an exploded isometric view of a building section and FIG. 20 is an end view of the same components showing the way they fit together forming the shell of the building 10. The components, as described in detail hereinabove, include a sill beam 30 having a receptor channel 164, foam filled floor panels 36, foam filled wall panels 34, a soffit and fascia tie beam 20, foam filled roof panels 32 and a structural ridge 22 with a ridge cap 142 and filler cap 144. The portions of the building 10 not shown are mirror images of the components that are shown.
  • FIG. 21 is an isometric view of the same components assembled together. FIG. 22 is an end view of the assembled components. In the assembled views of the building section, the bottom edge of wall panel 34 is inserted into receptor channel 164 of the sill beam 30. The floor panel 36 is attached to the top surface of sill beam 30. The top of a wall panel 34 is shown inserted into the receptor channel 104 of the soffit and fascia tie beam 20. The bottom of roof panel 32 is shown attached to the receiving platform 102 of the soffit and fascia tie beam 20 and the upper end of the roof panel 32 is shown attached to the receptor platform 150 of the structural ridge beam 22. The ridge cap 142 is shown attached to the top of the structural ridge 22, while the ridge filler cap 144 is inserted into the receptor channel 146 of the structural ridge beam 22.
  • FIGS. 23, 24 and 25 illustrate an isometric view of a two bolt alignment anchor bracket 300, which is comprised of a cross shaped support bar 302 which is made of flat, steel, or other like metals, with a rust protective coating, or reinforced polymer material, formed at each end with a “Z” shaped support 304 and threaded anchor bolt holes 303 equally spaced in-line on one of the crossed shaped bars 302 to receive a threaded steel, or other like metal with a rust protective coating, or reinforced polymer material, anchor bolt 306 having a specified length and a steel, or other like metal with a rust protective coating or reinforced polymer material formed knob, or 90 degree extension at the end 308 opposite the threaded end. The alignment bracket 300 is used as part of the building system to fasten the structural sill beam 30 to a column foundation system 18. The bracket 300 is placed at the top edge of a foundation column form (not shown) with the portion of the bracket bar 302 not having anchor bolts set parallel with the structural sill beam 30. The anchor bolts 306 are automatically located at the exact location necessary to fit into the pre drilled mounting holes of the structural sill beam 30. The “Z” shaped end supports 304 allow the anchor bracket 300 to slip into the inner diameter of the form thereby supporting the anchor bracket at the top of the column form. After set in place, the column foundation form is filled with concrete encasing the anchor bracket support bars 302 and lower section of the anchor bolts to form a foundation column support 18.
  • FIGS. 26, 27 and 28 show a four bolt corner alignment anchor bracket 320 used as part of the building system to fasten a structural sill beam 30 at the corners of the building 10 to a column foundation system 18. The corner alignment anchor bracket 320 is comprised of a cross shaped support bar 322 which is made of flat, steel, or other like metals, with a rust protective coating, or reinforced polymer material. The ends of the support bars 322 are formed with a “Z” shaped support 324. Each bar 322 has a threaded anchor bolt holes 323 such that two of the holes 323 are equally spaced in-line on each one of the crossed shaped bars 322. The holes 323 are designed to receive a threaded, steel, other like metal with a rust protective coating, or reinforced polymer material, anchor bolt 326 having a specified length with a 90 degree extension or knob 328 at the end. The corner alignment bracket 320 is placed at the top edge of the foundation column form (not shown) positioned at an angle diagonal to the sill beam's corner. The anchor bolts 326 are automatically located at the exact location to fit into the pre drilled mounting holes of the structural sill beam 30. The “Z” shaped end supports 324 allow the corner anchor bracket 320 to slip into the inner diameter of the form (not shown) thereby supporting the anchor bracket 320 at the top of the column form. After set in place, the column foundation form is filled with concrete encasing the anchor bracket support bars 322 and lower section of the anchor bolts 326.
  • FIG. 29 illustrates a foundation column 18 with an integral anchor support bracket 300.
  • To practice the method of the present invention to construct a unitized, one piece building structure, the following steps are taken. All components are formed in a pultrusion die and are sized and shaped to interconnect with the others for eventual bonding as a unitized building structure A foundation system of a series of concrete support columns and anchor brackets is located on the building site. A structural sill beam is fastened to the foundation system. Additional structural support beams are placed on the foundation support columns if needed as dictated by the size and shape of the building being constructed. Wall panels are inserted and bonded with adhesive to the receptor channel of the sill beam. The soffit beam is slipped over and bonded to the top of the wall panel. Roof panels are placed and bonded to the receiving platform of the soffit beam. The ridge beam is bonded to the top of the roof panels. The ridge cap is bonded to the ridge beam and roof panels. If needed, the ridge filler cap is snapped into the interior ridge channel. Floor panels are bonded to the top surface of the sill beam. The process is repeated until the building shell is completed. When constructing larger building, interior partitions are placed and bonded together, structural corner connectors are bonded to the wall panels at the junction of all corners and the wall panels are attached to the floor and the underside of the roof using channel connectors and bonding resins in the same way as the building shell walls.
  • It will be appreciated that the above description is exemplarily and that many modifications may be made in keeping within the spirit and scope of the following claims.

Claims (23)

1. A method of construction comprising the step of adhesively bonding a plurality of building components into a unitized one piece building.
2. A method to construct a unitized, one piece building structure, from a series of pultruded components comprising the following steps: locating a foundation system of a series of concrete support columns and anchor brackets on a building site; fastening a structural sill beam to the foundation system; attaching wall panels to the sill beam; attaching a soffit beam to the top of the wall panels; attaching roof panels to the soffit beam; attaching a ridge beam to the top of the roof panels; and, attaching floor panels to the sill beam; and, repeating the above steps completing the one piece building structure.
3. The method of claim 1 wherein the attaching steps include bonding the respective components with adhesive.
4. The method of claim 1 wherein said step of attaching wall panels to said sill beam includes inserting the wall panels into a receptor channel in said sill beam and bonding with adhesive.
5. The method of claim 1 further including the step of bonding the soffit beam to the top of the wall panel.
6. The method of claim 5 further including the step of bonding the roof panels to a receiving platform on the soffit beam.
7. The method of claim 6 further including the step of bonding the ridge beam to the top of the roof panels.
8. The method of claim 1 further including the step of bonding the floor panels to the top surface of the sill panel.
9. The method of claim 8 further including the steps of repeating the preceding steps until a complete building structure is formed.
10. A structural building consisting of a plurality of building components attached and bonded together with an adhesive material.
11. A structural building formed of a plurality of building components said components being bonded together into a single unitized structure, said building being further defined by having a plurality of walls; a roof; a floor; foundation supports; a sill beam attached to said foundation supports; said sill beam supporting said floor; a soffit and fascia tie beam connecting the roof and walls, a structural ridge at the top of the building at the upper junction of and supporting said roof; and, a corner connector for joining said walls at a corner junction of said building.
12. The building of claim 11 wherein said floor, walls and roof are made of a plurality of interconnected panels
13. The building of claim 11 being further characterized by said corner connector connecting the wall panels at outside and inside corner junctions of the walls.
14. The building of claim 13 further including an exterior corner cap positioned over the corner connector 26.
15. The building of claim 10 further including an additional structural ridge beam centrally located in the building to support the floor on the foundation column supports.
16. The building of claim 15 further including a ridge cap overlying said structural ridge beam and upper portions of said roof.
17. The building of claim 10 further characterized by said components being made of pultruded materials created and formed by pulling fiber and resin through a specifically shaped die.
18. The building of claim 17 further defined by said floor panels, said wall panels and said roof panels being hollow and filled with insulation.
19. The building of claim 12 wherein said sill frame is further defined by an upper bonding surface to accommodate said floor panels and a receptor channel for bonding to said wall panels.
20. The building of claim 12 wherein said tie beam includes a receptor platform for bonding to a lower end of said roof panels and a receptor channel for bonding to said wall panels.
21. The building of claim 20 further including an arcuate, coved wind spoiler extending the length of said tie beam.
22. The building of claim 21 further including a finishing molding extending the length of said tie beam on a side thereof opposite said coved wind spoiler.
23. The building of claim 12 wherein said structural ridge includes a receptor platform for bonding to an upper end of said roof panels and a receptor channel at a lower portion of said structural ridge.
US13/183,281 2010-07-16 2011-07-14 Building system and components therefor Abandoned US20120011798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/183,281 US20120011798A1 (en) 2010-07-16 2011-07-14 Building system and components therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36516110P 2010-07-16 2010-07-16
US13/183,281 US20120011798A1 (en) 2010-07-16 2011-07-14 Building system and components therefor

Publications (1)

Publication Number Publication Date
US20120011798A1 true US20120011798A1 (en) 2012-01-19

Family

ID=45465803

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/183,281 Abandoned US20120011798A1 (en) 2010-07-16 2011-07-14 Building system and components therefor

Country Status (1)

Country Link
US (1) US20120011798A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2642037A1 (en) * 2012-03-22 2013-09-25 Bayer Intellectual Property GmbH Use of fibre-reinforced polyurethane for forming a rail for a fitting assembly
US20150322686A1 (en) * 2013-09-11 2015-11-12 Harrison, Walker & Harper LP Blast resistant structure
CN107859379A (en) * 2017-11-15 2018-03-30 广东工业大学 One kind family of breeding fish produces interim room
US20180245343A1 (en) * 2015-09-02 2018-08-30 Sabic Global Technologies B.V. A roof forming element for a roof of a building, and roof
WO2019079576A1 (en) * 2017-10-18 2019-04-25 Zephyros, Inc. Flex building system with pultruded material frame
WO2020204687A1 (en) * 2019-03-29 2020-10-08 Bautista Alonso Mario Modular system of fixed constructions
US11047133B1 (en) * 2019-12-17 2021-06-29 Airbnb, Inc. Modular rooftop with variable slope panels
US11371243B2 (en) * 2016-11-26 2022-06-28 Armour Wall Group Pty Limited Building panel
US20230014278A1 (en) * 2020-09-21 2023-01-19 Alain Perez Multi-purpose structural panels and systems for assembling structures
WO2023228201A1 (en) * 2022-05-27 2023-11-30 Govindaraju D An interlocking system and method for constructing a stone structure

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071666A (en) * 1935-03-25 1937-02-23 Sylvan Joseph Sectional metallic building construction
US2336435A (en) * 1942-08-07 1943-12-07 Zirinsky Jerome Prefabricated house
US3070646A (en) * 1960-11-03 1962-12-25 Erik A Lindgren Polar screen room
US3436881A (en) * 1967-01-20 1969-04-08 Ralph O Schlecht Prefabricated structure and a joint assembly therefor
US3738083A (en) * 1969-11-25 1973-06-12 Shimano & Co Ltd Prefabricated house
EP0320745A1 (en) * 1987-12-11 1989-06-21 The B.F. Goodrich Company Modular building structure and prefabricated components therefor and related methods
EP0356297A1 (en) * 1988-08-09 1990-02-28 SAVERDUN TERRE CUITE Société Anonyme dite Precast cornice for a building
US5181353A (en) * 1991-11-04 1993-01-26 Harrington Jr James T Foam sandwich enclosure with interlocking integral frame
US5195282A (en) * 1990-01-29 1993-03-23 Campbell E Logan Low cost-modular element housing
US5277002A (en) * 1991-11-14 1994-01-11 Haag E Keith Ridge cap connector means for joining roof panels in a modular building structure
US20010010137A1 (en) * 2000-01-28 2001-08-02 Jimenez Sanchez Juan Carlos Modular booth
US20020178669A1 (en) * 1999-11-29 2002-12-05 Dzevad Harambasic Building structure utilising modular building elements
US20050091932A1 (en) * 2002-02-26 2005-05-05 Jonathan Roth Building construction assembly of structural modules
US6889475B2 (en) * 1998-08-20 2005-05-10 Royal Group Technologies Limited Prefabricated plastic shed with metal beam ridge assembly
US6901710B1 (en) * 1999-11-29 2005-06-07 Featherlite Vault Structures, Inc. Pultruded fiberglass reinforced plastic underground vault construction
US20080263968A1 (en) * 2007-04-25 2008-10-30 Day Mark O Prefabricated rapid response accommodation structure
US20090013615A1 (en) * 2005-08-11 2009-01-15 Yugenkaisha Japan Tsusyo Resin Knockdown House
US20090255204A1 (en) * 2008-04-11 2009-10-15 Innovida Holdings, Inc. Straight joint for sandwich panels and method of fabricating same
US20090307995A1 (en) * 2008-06-13 2009-12-17 Innovida Factories, Ltd. Roof construction joints made of sandwich panels
US20090320387A1 (en) * 2008-06-27 2009-12-31 Innovida Factories, Ltd. Sandwich panel ground anchor and ground preparation for sandwich panel structures
US20100050553A1 (en) * 2008-08-29 2010-03-04 Innovida Factories, Ltd. sandwich panel joint and method of joining sandwich panels
US20110185644A1 (en) * 2010-02-01 2011-08-04 Hutter Gerhard P Emergency shelter
US20110258943A1 (en) * 2010-04-21 2011-10-27 Vic De Zen Modular building
US20120023837A1 (en) * 2010-07-28 2012-02-02 John Norman Eisenbeisz Building System Pre-Assembled into into Panelized Modular Components that Provides for the Reuse of the Building System Component Parts to Construct Permanent Structures of Any Size, Layout, or Style

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071666A (en) * 1935-03-25 1937-02-23 Sylvan Joseph Sectional metallic building construction
US2336435A (en) * 1942-08-07 1943-12-07 Zirinsky Jerome Prefabricated house
US3070646A (en) * 1960-11-03 1962-12-25 Erik A Lindgren Polar screen room
US3436881A (en) * 1967-01-20 1969-04-08 Ralph O Schlecht Prefabricated structure and a joint assembly therefor
US3738083A (en) * 1969-11-25 1973-06-12 Shimano & Co Ltd Prefabricated house
EP0320745A1 (en) * 1987-12-11 1989-06-21 The B.F. Goodrich Company Modular building structure and prefabricated components therefor and related methods
EP0356297A1 (en) * 1988-08-09 1990-02-28 SAVERDUN TERRE CUITE Société Anonyme dite Precast cornice for a building
US5195282A (en) * 1990-01-29 1993-03-23 Campbell E Logan Low cost-modular element housing
US5181353A (en) * 1991-11-04 1993-01-26 Harrington Jr James T Foam sandwich enclosure with interlocking integral frame
US5277002A (en) * 1991-11-14 1994-01-11 Haag E Keith Ridge cap connector means for joining roof panels in a modular building structure
US6889475B2 (en) * 1998-08-20 2005-05-10 Royal Group Technologies Limited Prefabricated plastic shed with metal beam ridge assembly
US20020178669A1 (en) * 1999-11-29 2002-12-05 Dzevad Harambasic Building structure utilising modular building elements
US6901710B1 (en) * 1999-11-29 2005-06-07 Featherlite Vault Structures, Inc. Pultruded fiberglass reinforced plastic underground vault construction
US20010010137A1 (en) * 2000-01-28 2001-08-02 Jimenez Sanchez Juan Carlos Modular booth
US20050091932A1 (en) * 2002-02-26 2005-05-05 Jonathan Roth Building construction assembly of structural modules
US20090013615A1 (en) * 2005-08-11 2009-01-15 Yugenkaisha Japan Tsusyo Resin Knockdown House
US20080263968A1 (en) * 2007-04-25 2008-10-30 Day Mark O Prefabricated rapid response accommodation structure
US20090255204A1 (en) * 2008-04-11 2009-10-15 Innovida Holdings, Inc. Straight joint for sandwich panels and method of fabricating same
US20090307995A1 (en) * 2008-06-13 2009-12-17 Innovida Factories, Ltd. Roof construction joints made of sandwich panels
US20090320387A1 (en) * 2008-06-27 2009-12-31 Innovida Factories, Ltd. Sandwich panel ground anchor and ground preparation for sandwich panel structures
US20100050553A1 (en) * 2008-08-29 2010-03-04 Innovida Factories, Ltd. sandwich panel joint and method of joining sandwich panels
US20110185644A1 (en) * 2010-02-01 2011-08-04 Hutter Gerhard P Emergency shelter
US20110258943A1 (en) * 2010-04-21 2011-10-27 Vic De Zen Modular building
US20120023837A1 (en) * 2010-07-28 2012-02-02 John Norman Eisenbeisz Building System Pre-Assembled into into Panelized Modular Components that Provides for the Reuse of the Building System Component Parts to Construct Permanent Structures of Any Size, Layout, or Style

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2642037A1 (en) * 2012-03-22 2013-09-25 Bayer Intellectual Property GmbH Use of fibre-reinforced polyurethane for forming a rail for a fitting assembly
EP2642036A1 (en) * 2012-03-22 2013-09-25 Bayer MaterialScience AG Use of fibre-reinforced polyurethane for forming a rail for a fitting assembly
US20150322686A1 (en) * 2013-09-11 2015-11-12 Harrison, Walker & Harper LP Blast resistant structure
US20180245343A1 (en) * 2015-09-02 2018-08-30 Sabic Global Technologies B.V. A roof forming element for a roof of a building, and roof
US10626604B2 (en) * 2015-09-02 2020-04-21 Sabic Global Technologies B.V. Roof forming element for a roof of a building, and roof
US11371243B2 (en) * 2016-11-26 2022-06-28 Armour Wall Group Pty Limited Building panel
WO2019079576A1 (en) * 2017-10-18 2019-04-25 Zephyros, Inc. Flex building system with pultruded material frame
CN107859379A (en) * 2017-11-15 2018-03-30 广东工业大学 One kind family of breeding fish produces interim room
WO2020204687A1 (en) * 2019-03-29 2020-10-08 Bautista Alonso Mario Modular system of fixed constructions
US11047133B1 (en) * 2019-12-17 2021-06-29 Airbnb, Inc. Modular rooftop with variable slope panels
US20230014278A1 (en) * 2020-09-21 2023-01-19 Alain Perez Multi-purpose structural panels and systems for assembling structures
WO2023228201A1 (en) * 2022-05-27 2023-11-30 Govindaraju D An interlocking system and method for constructing a stone structure

Similar Documents

Publication Publication Date Title
US20120011798A1 (en) Building system and components therefor
US4641468A (en) Panel structure and building structure made therefrom
AU659635B2 (en) Building system
US5765333A (en) Unitized post and panel building system
US5359816A (en) Buildings and methods of constructing buildings
US6367215B1 (en) Modular construction system
US8769891B2 (en) Building method using multi-storey panels
US8065846B2 (en) Modular building panels, method of assembly of building panels and method of making building panels
US20040103601A1 (en) Building structure and modular construction method
US4530194A (en) Bracket
US6588161B2 (en) Laminated construction elements and method for constructing an earthquake-resistant building
EP0006756B1 (en) Load bearing composite panel
US8875459B2 (en) Modular building system
MXPA03004874A (en) Cellular-core structural panel, and building structure incorporating same.
US20110197521A1 (en) System of modular construction and assembled structure
US20060254208A1 (en) Paneling system and method
US3174590A (en) Structureal panel and building constructed therefrom
US4590721A (en) Wood panel earth shelter construction
KR20010012388A (en) Modular Sandwich Panel and Method for Housing Construction
JPS5952051A (en) Building
WO1999057387A1 (en) Building structure and construction method
US6341459B1 (en) Method and apparatus for expedited construction of a building
AU2012238289B2 (en) Sandwiched panel construction and a method of manufacturing thereof
CA2310880C (en) Modular construction system
GB2127516A (en) Framework bracket

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION