US20120009580A1 - Methods for quantitating small rna molecules - Google Patents

Methods for quantitating small rna molecules Download PDF

Info

Publication number
US20120009580A1
US20120009580A1 US13/240,847 US201113240847A US2012009580A1 US 20120009580 A1 US20120009580 A1 US 20120009580A1 US 201113240847 A US201113240847 A US 201113240847A US 2012009580 A1 US2012009580 A1 US 2012009580A1
Authority
US
United States
Prior art keywords
mir
seq
primer
microrna
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/240,847
Inventor
Christopher K. Raymond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2006/002591 external-priority patent/WO2006081284A2/en
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority to US13/240,847 priority Critical patent/US20120009580A1/en
Publication of US20120009580A1 publication Critical patent/US20120009580A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates

Definitions

  • sequence listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification.
  • the name of the text file containing the sequence listing is 37790_Sequence_Final.txt.
  • the text file is 250 KB; was created on Sep. 20, 2011; and is being submitted via EFS-Web with the filing of the specification.
  • the present invention relates to methods of amplifying and quantitating small RNA molecules.
  • RNA interference is an evolutionarily conserved process that functions to inhibit gene expression (Bernstein et al. (2001), Nature 409:363-6; Dykxhoorn et al. (2003) Nat. Rev. Mol. Cell. Biol. 4:457-67).
  • the phenomenon of RNAi was first described in Caenorhabditis elegans , where injection of double-stranded RNA (dsRNA) led to efficient sequence-specific gene silencing of the mRNA that was complementary to the dsRNA (Fire et al. (1998) Nature 391:806-11).
  • RNAi has also been described in plants as a phenomenon called post-transcriptional gene silencing (PTGS), which is likely used as a viral defense mechanism (Jorgensen (1990) Trends Biotechnol. 8:340-4; Brigneti et al. (1998) EMBO J. 17:6739-46; Hamilton & Baulcombe (1999) Science 286:950-2).
  • PTGS post-transcriptional gene silencing
  • siRNAs small interfering RNAs
  • siRNA molecules can also be introduced into cells, in vivo, to inhibit the expression of specific proteins (see, e.g., Soutschek, J., et al., Nature 432 (7014):173-178 (2004)).
  • siRNA molecules have promise both as therapeutic agents for inhibiting the expression of specific proteins, and as targets for drugs that affect the activity of siRNA molecules that function to regulate the expression of proteins involved in a disease state.
  • a first step in developing such therapeutic agents is to measure the amounts of specific siRNA molecules in different cell types within an organism, and thereby construct an “atlas” of siRNA expression within the body. Additionally, it will be useful to measure changes in the amount of specific siRNA molecules in specific cell types in response to a defined stimulus, or in a disease state.
  • Short RNA molecules are difficult to quantitate. For example, with respect to the use of PCR to amplify and measure the small RNA molecules, most PCR primers are longer than the small RNA molecules, and so it is difficult to design a primer that has significant overlap with a small RNA molecule, and that selectively hybridizes to the small RNA molecule at the temperatures used for primer extension and PCR amplification reactions.
  • the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules.
  • the methods include the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and (b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer.
  • at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule. It will be understood that, in the practice of the present invention, typically numerous (e.g., millions) of individual microRNA molecules are amplified in a sample (e.g., a solution of RNA molecules isolated from living cells).
  • the present invention provides methods for measuring the amount of a target microRNA in a sample from a living organism.
  • the methods of this aspect of the invention include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method including the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension; (2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer; and (3) measuring the amount of the amplified DNA molecules.
  • at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.
  • the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7.
  • the primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.
  • kits for detecting at least one mammalian target microRNA comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer for amplifying the cDNA molecule and (3) a reverse PCR primer for amplifying the cDNA molecule.
  • the extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer.
  • the reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule.
  • at least one of the universal forward and reverse primers include at least one locked nucleic acid molecule.
  • the kits of the invention may be used to practice various embodiments of the methods of the invention.
  • the present invention is useful, for example, for quantitating specific microRNA molecules within different types of cells in a living organism, or, for example, for measuring changes in the amount of specific microRNAs in living cells in response to a stimulus (e.g., in response to administration of a drug).
  • FIG. 1 shows a flow chart of a representative method of the present invention
  • FIG. 2 graphically illustrates the standard curves for assays specific for the detection of microRNA targets miR-95 and miR-424 as described in EXAMPLE 3;
  • FIG. 3A is a histogram plot showing the expression profile of miR-1 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5;
  • FIG. 3B is a histogram plot showing the expression profile of miR-124 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5;
  • FIG. 3C is a histogram plot showing the expression profile of miR-150 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5.
  • the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules.
  • the methods include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules.
  • at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • LNA molecule refers to a nucleic acid molecule that includes a 2′-0,4′-C-methylene- ⁇ -D-ribofuranosyl moiety.
  • LNA molecule refers to a nucleic acid molecule that includes a 2′-0,4′-C-methylene- ⁇ -D-ribofuranosyl moiety.
  • Exemplary 2′-0,4′-C-methylene- ⁇ -D-ribofuranosyl moieties, and exemplary LNAs including such moieties, are described, for example, in Petersen, M., and Wengel, J., Trends in Biotechnology 21(2):74-81 (2003) which publication is incorporated herein by reference in its entirety.
  • microRNA refers to an RNA molecule that has a length in the range of from 21 nucleotides to 25 nucleotides. Some microRNA molecules (e.g., siRNA molecules) function in living cells to regulate gene expression.
  • FIG. 1 shows a flowchart of a representative method of the present invention.
  • a microRNA is the template for synthesis of a complementary first DNA molecule.
  • the synthesis of the first DNA molecule is primed by an extension primer, and so the first DNA molecule includes the extension primer and newly synthesized DNA (represented by a dotted line in FIG. 1 ).
  • the synthesis of DNA is catalyzed by reverse transcriptase.
  • the extension primer includes a first portion (abbreviated as FP in FIG. 1 ) and a second portion (abbreviated as SP in FIG. 1 ).
  • the first portion hybridizes to the microRNA target template
  • the second portion includes a nucleic acid sequence that hybridizes with a universal forward primer, as described infra.
  • a quantitative polymerase chain reaction is used to make a second DNA molecule that is complementary to the first DNA molecule.
  • the synthesis of the second DNA molecule is primed by the reverse primer that has a sequence that is selected to specifically hybridize to a portion of the target first DNA molecule.
  • the reverse primer does not hybridize to nucleic acid molecules other than the first DNA molecule.
  • the reverse primer may optionally include at least one LNA molecule located within the portion of the reverse primer that does not overlap with the extension primer. In FIG. 1 , the LNA molecules are represented by shaded ovals.
  • a universal forward primer hybridizes to the 3′ end of the second DNA molecule and primes synthesis of a third DNA molecule. It will be understood that, although a single microRNA molecule, single first DNA molecule, single second DNA molecule, single third DNA molecule and single extension, forward and reverse primers are shown in FIG. 1 , typically the practice of the present invention uses reaction mixtures that include numerous copies (e.g., millions of copies) of each of the foregoing nucleic acid molecules.
  • microRNA molecules useful as templates in the methods of the invention can be isolated from any organism (e.g., eukaryote, such as a mammal) or part thereof, including organs, tissues, and/or individual cells (including cultured cells). Any suitable RNA preparation that includes microRNAs can be used, such as total cellular RNA.
  • RNA may be isolated from cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein.
  • Cells of interest include wild-type cells, drug-exposed wild-type cells, modified cells, and drug-exposed modified cells.
  • RNase inhibitors may be added to the lysis buffer.
  • the sample of RNA can comprise a multiplicity of different microRNA molecules, each different microRNA molecule having a different nucleotide sequence.
  • the microRNA molecules in the RNA sample comprise at least 100 different nucleotide sequences.
  • the microRNA molecules of the RNA sample comprise at least 500, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000 90,000, or 100,000 different nucleotide sequences.
  • the methods of the invention may be used to detect the presence of any microRNA.
  • the methods of the invention can be used to detect one or more of the microRNA targets described in a database such as “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/.
  • a list of exemplary microRNA targets is also described in the following references: Lagos-Quintana et al., Curr. Biol. 12(9):735-9 (2002).
  • first DNA molecules are synthesized that are complementary to the microRNA target molecules, and that are composed of an extension primer and newly synthesized DNA (wherein the extension primer primes the synthesis of the newly synthesized DNA).
  • Individual first DNA molecules can be complementary to a whole microRNA target molecule, or to a portion thereof; although typically an individual first DNA molecule is complementary to a whole microRNA target molecule.
  • a population of first DNA molecules is synthesized that includes individual DNA molecules that are each complementary to all, or to a portion, of a target microRNA molecule.
  • the synthesis of the first DNA molecules is catalyzed by reverse transcriptase.
  • Any reverse transcriptase molecule can be used to synthesize the first DNA molecules, such as those derived from Moloney murine leukemia virus (MMLV-RT), avian myeloblastosis virus (AMV-RT), bovine leukemia virus (BLV-RT), Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV-RT).
  • a reverse transcriptase lacking RNaseH activity e.g., S UPERSCRIPT IIITM sold by Invitrogen, 1600 Faraday Avenue, P.O. Box 6482, Carlsbad, Calif.
  • the reverse transcriptase molecule should also preferably be thermostable so that the DNA synthesis reaction can be conducted at as high a temperature as possible, while still permitting hybridization of primer to the microRNA target molecules.
  • the synthesis of the first DNA molecules is primed using an extension primer.
  • the length of the extension primer is in the range of from 10 nucleotides to 100 nucleotides, such as 20 to 35 nucleotides.
  • the nucleic acid sequence of the extension primer is incorporated into the sequence of each, synthesized, DNA molecule.
  • the extension primer includes a first portion that hybridizes to a portion of the microRNA molecule.
  • the first portion of the extension primer includes the 3′-end of the extension primer.
  • the first portion of the extension primer typically has a length in the range of from 6 nucleotides to 20 nucleotides, such as from 10 nucleotides to 12 nucleotides. In some embodiments, the first portion of the extension primer has a length in the range of from 3 nucleotides to 25 nucleotides.
  • the extension primer also includes a second portion that typically has a length of from 18 to 25 nucleotides.
  • the second portion of the extension primer can be 20 nucleotides long.
  • the second portion of the extension primer is located 5′ to the first portion of the extension primer.
  • the second portion of the extension primer includes at least a portion of the hybridization site for the universal forward primer.
  • the second portion of the extension primer can include all of the hybridization site for the universal forward primer, or, for example, can include as little as a single nucleotide of the hybridization site for the universal forward primer (the remaining portion of the hybridization site for the forward primer can, for example, be located in the first portion of the extension primer).
  • An exemplary nucleic acid sequence of a second portion of an extension primer is 5′ CATGATCAGCTGGGCCAAGA 3′ (SEQ ID NO:1).
  • the first DNA molecules are enzymatically amplified using the polymerase chain reaction.
  • a universal forward primer and a reverse primer are used to prime the polymerase chain reaction.
  • the reverse primer includes a nucleic acid sequence that is selected to specifically hybridize to a portion of a first DNA molecule.
  • the reverse primer typically has a length in the range of from 10 nucleotides to 100 nucleotides. In some embodiments, the reverse primer has a length in the range of from 12 nucleotides to 20 nucleotides.
  • the nucleotide sequence of the reverse primer is selected to hybridize to a specific target nucleotide sequence under defined hybridization conditions.
  • the reverse primer and extension primer are both present in the PCR reaction mixture, and so the reverse primer should be sufficiently long so that the melting temperature (Tm) is at least 50° C., but should not be so long that there is extensive overlap with the extension primer which may cause the formation of “primer dimers.”
  • “Primer dimers” are formed when the reverse primer hybridizes to the extension primer, and uses the extension primer as a substrate for DNA synthesis, and the extension primer hybridizes to the reverse primer, and uses the reverse primer as a substrate for DNA synthesis.
  • the reverse primer and the extension primer are designed so that they do not overlap with each other by more than 6 nucleotides.
  • the reverse primer primes the synthesis of a second DNA molecule that is complementary to the first DNA molecule.
  • the universal forward primer hybridizes to the portion of the second DNA molecule that is complementary to the second portion of the extension primer which is incorporated into all of the first DNA molecules.
  • the universal forward primer primes the synthesis of third DNA molecules.
  • the universal forward primer typically has a length in the range of from 16 nucleotides to 100 nucleotides. In some embodiments, the universal forward primer has a length in the range of from 16 nucleotides to 30 nucleotides.
  • the universal forward primer may include at least one locked nucleic acid molecule. In some embodiments, the universal forward primer includes from 1 to 25 locked nucleic acid molecules.
  • the nucleic acid sequence of an exemplary universal forward primer is set forth in SEQ ID NO:13.
  • a desirable number of amplification cycles is between one and 45 amplification cycles, such as from one to 25 amplification cycles, or such as from five to 15 amplification cycles, or such as ten amplification cycles.
  • Hybridization conditions are selected that promote the specific hybridization of a primer molecule to the complementary sequence on a substrate molecule.
  • specific hybridization occurs at a temperature of 50° C.
  • hybridization of a 20 nucleotide universal forward primer to a complementary DNA molecule, and hybridization of a reverse primer (having a length in the range of from 12-20 nucleotides, such as from 14-16 nucleotides) to a complementary DNA molecule occurs at a temperature of 50° C.
  • a reverse primer having a length in the range of from 12-20 nucleotides, such as from 14-16 nucleotides
  • LNA molecules can be incorporated into at least one of the extension primer, reverse primer, and universal forward primer to raise the Tm of one, or more, of the foregoing primers to at least 50° C.
  • Incorporation of an LNA molecule into the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may be useful because this portion of the reverse primer is typically no more than 10 nucleotides in length.
  • the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer may include at least one locked nucleic acid molecule (e.g., from 1 to 25 locked nucleic acid molecules). In some embodiments, two or three locked nucleic acid molecules are included within the first 8 nucleotides from the 5′ end of the reverse primer.
  • the number of LNA residues that must be incorporated into a specific primer to raise the Tm to a desired temperature mainly depends on the length of the primer and the nucleotide composition of the primer.
  • a tool for determining the effect on Tm of one or more LNAs in a primer is available on the Internet Web site of Exiqon, Bygstubben 9, DK-2950 Vedbaek, Denmark.
  • LNAs can be included in any of the primers used in the practice of the present invention, it has been found that the efficiency of synthesis of cDNA is low if an LNA is incorporated into the extension primer. While not wishing to be bound by theory, LNAs may inhibit the activity of reverse transcriptase.
  • the amplified DNA molecules can be detected and quantitated by the presence of detectable marker molecules, such as fluorescent molecules.
  • detectable marker molecules such as fluorescent molecules.
  • the amplified DNA molecules can be detected and quantitated by the presence of a dye (e.g., SYBR green) that preferentially or exclusively binds to double stranded DNA during the PCR amplification step of the methods of the present invention.
  • SYBR green a dye that preferentially or exclusively binds to double stranded DNA during the PCR amplification step of the methods of the present invention.
  • another dye (referred to as “BEBO”) that can be used to label double stranded DNA produced during real-time PCR is described by Bengtsson, M., et al., Nucleic Acids Research 3/(8):e45 (Apr. 15, 2003), which publication is incorporated herein by reference.
  • a forward and/or reverse primer that includes a fluorophore and quencher can be used to prime the PCR amplification step of the methods of the present invention.
  • the physical separation of the fluorophore and quencher that occurs after extension of the labeled primer during PCR permits the fluorophore to fluoresce, and the fluorescence can be used to measure the amount of the PCR amplification products.
  • Examples of commercially available primers that include a fluorophore and quencher include Scorpion primers and Uniprimers, which are both sold by Molecular Probes, Inc.
  • the present invention is useful for producing cDNA molecules from microRNA target molecules.
  • the amount of the DNA molecules can be measured which provides a measurement of the amount of target microRNA molecules in the starting material.
  • the methods of the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in living cells.
  • the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in different cell types in a living body, thereby producing an “atlas” of the distribution of specific microRNA molecules within the body.
  • the present invention can be used to measure changes in the amount of specific microRNA molecules (e.g., specific siRNA molecules) in response to a stimulus, such as in response to treatment of a population of living cells with a drug.
  • the present invention provides methods for measuring the amount of a target microRNA in a multiplicity of different cell types within a living organism (e.g., to make a microRNA “atlas” of the organism).
  • the methods of this aspect of the invention each include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) using primer extension to make a DNA molecule complementary to the target microRNA molecule isolated from a cell type of a living organism; (2) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules, and (3) measuring the amount of the amplified DNA molecules.
  • At least one of the forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • the measured amounts of amplified DNA molecules can, for example, be stored in an interrogatable database in electronic form, such as on a computer-readable medium (e.g., a floppy disc).
  • the methods may be used to discriminate between two or more mammalian target microRNA that have a similar sequence in a sample from a living organism, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to the first microRNA molecule using a first extension primer specific to the first microRNA molecule; (b) amplifying the first DNA molecule to produce a first population of amplified DNA molecules using a universal forward primer and a first reverse primer; (c) producing a second DNA molecule that is complementary to the second microRNA molecule using a second extension primer specific to the second microRNA molecule; (d) amplifying the second DNA molecule to produce a second population of amplified DNA molecules using a universal forward primer and a second reverse primer; (e) measuring the amount of the first and second population of amplified DNA molecules, wherein the first and second extension primers or the first and second reverse primers differ by one or more nucleotides in the portion that is complementary to the target microRNA.
  • This method may be used to discriminate between
  • the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7.
  • the primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.
  • the invention provides sets of nucleic acid primers consisting of SEQ ID NO:500 to SEQ ID NO: 965, as shown in TABLE 8.
  • the sets of primer molecules of the invention can be used for the detection of microRNA target molecules from human, mouse, and rat, using the methods of the invention described herein.
  • kits for detecting at least one mammalian target microRNA comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer, and (3) a reverse PCR primer for amplifying the cDNA molecule.
  • the extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer.
  • the reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule.
  • at least one of the universal forward and reverse primers includes at least one locked nucleic acid molecule.
  • extension primer, universal forward and reverse primers for inclusion in the kit may be designed to detect any mammalian target microRNA in accordance with the methods described herein.
  • Nonlimiting examples of human target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 1, TABLE 2, and TABLE 6.
  • Nonlimiting examples of murine target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 7.
  • a nonlimiting example of a universal forward primer is set forth as SEQ ID NO: 13.
  • the kit includes a set of primers comprising an extension primer, reverse and universal forward primers for a selected target microRNA molecule that each have a hybridization temperature in the range of from 50° C. to 60° C.
  • the kit includes a plurality of primer sets that may be used to detect a plurality of mammalian microRNA targets, such as two microRNA targets up to several hundred microRNA targets.
  • the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-5p, miR-30e-3p, miR-31, miR-32, miR-33, miR-34a, miR-34b, miR-34c, miR-92, miR-93, miR-95, miR-
  • microRNA targets are provided in “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/.
  • the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR363, miR-376b, miR379, miR410, miR412, miR424, miR429, miR431, miR449, miR451, let7a
  • the kit comprises one or more primer sets capable of detecting at least one or more of the following human, mouse or rat microRNA target templates: miR-1, miR-9, miR-18b, miR-20b, miR-92b, miR-146b, miR-181d, miR-193b, miR-194, miR-206, miR-291a-3p, miR-291b-3p, miR-301b, miR-329, miR-346, miR-351, miR-362, miR-362-3p, miR-369-5p, miR-384, miR-409-3p, miR-409-5p, miR-425-5p, miR-449b, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-493-3p, miR-494, miR-495, miR-497
  • the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 493, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7.
  • the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421,
  • the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 500 to SEQ ID NO: 965, as shown in TABLE 8.
  • kits of the invention can also provide reagents for primer extension and amplification reactions.
  • the kit may further include one or more of the following components: a reverse transcriptase enzyme, a DNA polymerase enzyme, a Tris buffer, a potassium salt (e.g., potassium chloride), a magnesium salt (e.g., magnesium chloride), a reducing agent (e.g., dithiothreitol), and deoxynucleoside triphosphates (dNTPs).
  • a reverse transcriptase enzyme e.g., a DNA polymerase enzyme
  • Tris buffer e.g., a Tris buffer
  • a potassium salt e.g., potassium chloride
  • a magnesium salt e.g., magnesium chloride
  • a reducing agent e.g., dithiothreitol
  • dNTPs deoxynucleoside triphosphates
  • the kit may include a detection reagent such as SYBR green dye or BEBO dye that preferentially or exclusively binds to double stranded DNA during a PCR amplification step.
  • the kit may include a forward and/or reverse primer that includes a fluorophore and quencher to measure the amount of the PCR amplification products.
  • the kit optionally includes instructions for using the kit in the detection and quantitation of one or more mammalian microRNA targets.
  • the kit can also be optionally provided in a suitable housing that is preferably useful for robotic handling in a high throughput manner.
  • This Example describes a representative method of the invention for producing DNA molecules from microRNA target molecules.
  • Primer extension was conducted as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme). The following reaction mixture was prepared on ice:
  • the mixture was incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, then cooled to room temperature and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).
  • Real-time PCR was conducted using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number.
  • a typical 101.11 PCR reaction mixture contained:
  • the reaction was monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products was measured.
  • the assay was capable of detecting microRNA in a concentration range of from 2 nM to 20 fM.
  • the assays were linear at least up to a concentration of 2 nM of synthetic microRNA (>1,000,000 copies/cell).
  • This Example describes the evaluation of the minimum sequence requirements for efficient primer-extension mediated cDNA synthesis using a series of extension primers for microRNA assays having gene specific regions that range in length from 12 to 3 base pairs.
  • Primer Extension Reactions were conducted using the target molecules miR-195 and miR-215 as follows.
  • the target templates miR-195 and miR-215 were diluted to 1 nM RNA (100,000 copies/cell) in TE zero plus 100 ng/ ⁇ l total yeast RNA.
  • a no template control (NTC) was prepared with TE zero plus 100 ng/ ⁇ l total yeast RNA.
  • the reverse transcriptase reactions were carried out as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme) using a series of extension primers for miR-195 (SEQ ID NO: 25-34) and a series of extension primers for miR-215 (SEQ ID NO: 35-44) the sequences of which are shown below in TABLE 2.
  • the reactions were incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).
  • Quantitative Real-Time PCR Reactions Following reverse transcription, quadruplicate measurements of cDNA were made by quantitative real-time (qPCR) using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number.
  • qPCR quantitative real-time
  • ABI 7900 HTS detection system Applied Biosystems, Foster City, Calif., U.S.A.
  • Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated.
  • the DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the miR-195 and miR-215 assays are shown below in TABLE 2.
  • the assay results for miR-195 are shown below in TABLE 3 and the assay results for miR-215 are shown below in TABLE 4.
  • the sensitivity of each assay was measured by the cycle threshold (Ct) value which is defined as the cycle count at which fluorescence was detected in an assay containing microRNA target template.
  • Ct cycle threshold
  • the ⁇ Ct value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay.
  • Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) and broad dynamic range ( ⁇ Ct ⁇ 12) between the signal of a sample containing target template and a no template background control sample.
  • results of the miR195 and miR215 assays using extension primers having a gene specific portion ranging in size from 12 nucleotides to 3 nucleotides are shown below in TABLE 3 and TABLE 4, respectively.
  • the results of these experiments unexpectedly demonstrate that gene-specific priming sequences as short as 3 nucleotides exhibit template specific priming.
  • the results demonstrate that the dynamic range ( ⁇ Ct) for both sets of assays are fairly consistent for extension primers having gene specific regions that are greater or equal to 8 nucleotides in length.
  • the dynamic range of the assay begins to decrease for extension primers having gene specific regions below 8 nucleotides, with a reduction in assay specificity below 7 nucleotides in the miR-195 assays, and below 6 nucleotides in the miR-215 assays.
  • a melting point analysis of the miR-215 samples demonstrated that even at 3 nucleotides, there is specific PCR product present in the plus template samples (data not shown). Taken together, these data demonstrate that the gene specific region of extension primers is ideally ⁇ 8 nucleotides, but can be as short as 3 nucleotides in length.
  • This Example describes assays and primer sets designed for quantitative analysis of human microRNA expression patterns.
  • microRNA target templates the sequence of the target templates as described herein are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute Web site in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.
  • extension primers gene specific primers for primer extension of a microRNA to form a cDNA followed by quantitative PCR (qPCR) amplification were designed to (1) convert the RNA template into cDNA; (2) to introduce a “universal” PCR binding site (SEQ ID NO:1) to one end of the cDNA molecule; and (3) to extend the length of the cDNA to facilitate subsequent monitoring by qPCR.
  • qPCR quantitative PCR
  • Reverse primers unmodified reverse primers and locked nucleic acid (LNA) containing reverse primers (RP) were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13).
  • LNA locked nucleic acid
  • RP reverse primers
  • SEQ ID NO:13 a generic universal forward primer
  • two or three LNA modified bases were substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide, as shown below in the exemplary reverse primer sequences provided in TABLE 6.
  • the LNA base substitutions were selected to raise the predicted Tm of the primer by the highest amount, and the final predicted Tm of the selected primers were specified to be preferably less than or equal to 55° C.
  • primer extension was conducted using DNA templates corresponding to miR-95 and miR-424 as follows.
  • the DNA templates were diluted to 0 nM, 1 nM, 100 pM, 10 pM, and 1 pM dilutions in TE zero (10 mM Tris pH 7.6, 0.1 mM EDTA) plus 100 ng/ ⁇ l yeast total RNA (Ambion, Austin, Tex.).
  • the reverse transcriptase reactions were carried out using the following primers:
  • miR-95GSP CATGATCAGCTGGGCCAAGATGCTCAATAA SEQ ID NO: 123
  • miR-424GSP CATGATCAGCTGGGCCAAGATTCAAAACAT (SEQ ID NO: 415)
  • Reverse primers (diluted to 10 mM)
  • miR-95_RP4 TT+CAAC+GGGTATTTATTGA (SEQ ID NO: 124) miR-424RP2 C+AG+CAGCAATTCATGTTTT (SEQ ID NO: 416)
  • RNAse OUT (InVitrogen, Carlsbad, Calif.)
  • the reactions were mixed and incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE zero.
  • Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated.
  • the DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the representative miR-95 and miR-424 assays as well as primer sets for 212 different human microRNA templates are shown below in TABLE 6. Primer sets for assays requiring extensive testing and design modification to achieve a sensitive assay with a high dynamic range are indicated in TABLE 6 with the symbol # following the primer name.
  • TABLE 5 shows the Ct values (averaged from four samples) from the miR-95 and miR-424 assays, which are plotted in the graph shown in FIG. 2 .
  • the results of these assays are provided as representative examples in order to explain the significance of the assay parameters shown in TABLE 6 designated as slope (column 6), intercept (column 7) and background (column 8).
  • the Ct value for each template at various concentrations is provided.
  • the Ct values (x-axis) are plotted as a function of template concentration (y-axis) to generate a standard curve for each assay, as shown in FIG. 2 .
  • the slope and intercept define the assay measurement characteristics that permit an estimation of number of copies/cell for each microRNA. For example, when the Ct values for 50 ⁇ g total RNA input for the miR-95 assay are plotted, a standard curve is generated with a slope and intercept of ⁇ 0.03569 and 9.655, respectively. When these standard curve parameters are applied to the Ct of an unknown sample (x), they yield log 10 (copies/20 pg total RNA) (y).
  • the background provides an estimate of the minimum copy number that can be measured in a sample and is computed by inserting the no template control (NTC) value into this equation.
  • NTC no template control
  • reverse primers that do not contain LNA may also be used in accordance with the methods of the invention. See, e.g., SEQ ID NO:494-499.
  • SEQ ID NO:494-499 The sensitivity and dynamic range of the assays using non-LNA containing reverse primers SEQ ID NO:494-499, yielded similar results to the corresponding assays using LNA-containing reverse primers.
  • This Example describes assays and primers designed for quantitative analysis of murine miRNA expression patterns.
  • the representative murine microRNA target templates described in TABLE 7 are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144.
  • the murine microRNA templates are either totally identical to the corresponding human microRNA templates, identical in the overlapping sequence with differing ends, or contain one or more base pair changes as compared to the human microRNA sequence.
  • the murine microRNA templates that are identical or that have identical overlapping sequence to the corresponding human templates can be assayed using the same primer sets designed for the human microRNA templates, as indicated in TABLE 7.
  • primer sets have been designed specifically for detection of the murine microRNA, and these primers are provided in TABLE 7.
  • the extension primer reaction and quantitative PCR reactions for detection of the murine microRNA templates may be carried out as described in EXAMPLE 3.
  • This Example describes the detection and analysis of expression profiles for three microRNAs in total RNA isolated from twelve different tissues using methods in accordance with an embodiment of the present invention.
  • extension primer (SEQ ID NO: 213) CATGATCAGCTGGGCCAAGACACTGGTA reverse primer: (SEQ ID NO: 214) T+CT+CCCAACCCTTG forward primer: (SEQ ID NO: 13) CATGATCAGCTGGGCCAAGA
  • FIGS. 3A , 3 B, and 3 C The expression profiles for miR-1, miR-124 and miR-150 are shown in FIGS. 3A , 3 B, and 3 C, respectively.
  • the data in FIGS. 3A-3C are presented in units of microRNA copies per 10 pg of total RNA (y-axis). These units were chosen since human cell lines typically yield ⁇ 10 pg of total RNA per cell. Hence the data shown are estimates of microRNA copies per cell.
  • the numbers on the x-axis correspond to the following tissues: (1) brain, (2) heart, (3) intestine, (4) kidney, (5) liver, (6) lung, (7) lymph, (8) ovary, (9) skeletal muscle, (10) spleen, (11) thymus and (12) uterus.
  • miR-1 very high levels of striated muscle-specific expression were found for miR-1 (as shown in FIG. 3A ), and high levels of brain expression were found for miR-124 (as shown in FIG. 3B ) (see Lagos-Quintana et al., RNA 9:175-179, 2003). Quantitative analysis reveals that these microRNAs are present at tens to hundreds of thousands of copies per cell. These data are in agreement with quantitative Northern blot estimates of miR-1 and miR-124 levels (see Lim et al., Nature 433:769-773, 2005). As shown in FIG. 3C , miR-150 was found to be highly expressed in the immune-related lymph node, thymus and spleen samples which is also consistent with previous findings (see Baskerville et al., RNA 11:241-247, 2005).
  • This Example describes the selection and validation of primers for detecting mammalian microRNAs of interest.
  • the sensitivity of an assay to detect mammalian microRNA targets using the methods of the invention may be measured by the cycle threshold (Ct) value.
  • Ct cycle threshold
  • the ⁇ Ct value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers.
  • desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) (preferably in the range of from about 5 to about 25, such as from about 10 to about 20), and broad dynamic range (preferably in the range of from about 10 and 35, such as ⁇ Ct ⁇ 12) between the signal of a sample containing target template and a no template background control sample.
  • high sensitivity low Ct value
  • broad dynamic range preferably in the range of from about 10 and 35, such as ⁇ Ct ⁇ 12
  • Empirical data generated as described in Examples 1-5 suggests that gene specific (GS) extension primers are primarily responsible for the dynamic range of the assays for detecting mammalian microRNA targets using the methods described herein.
  • GS gene specific
  • ⁇ Ct dynamic range
  • specificity of the assays tested decreased for extension primers having gene specific regions below 6 to 7 nucleotides. Therefore, in order to optimize microRNA detection assays, extension primers were designed that have 7 to 10 nucleotide overlap with the microRNA target of interest.
  • Exemplary extension primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8 (SEQ ID NO:500 to SEQ ID NO:965). These exemplary extension primers have a gene specific (GS) region from 7 to 10 nucleotide overlap with the microRNA target of interest.
  • Unmodified and locked nucleic acid (LNA)-containing reverse primers were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). Based on the data generated as described in Examples 1-5, it was determined that the design of the reverse primers contributes to the efficiency of the PCR reactions, with the observation that the longer the reverse primer, the better the PCR performance. However, it was also observed that the longer the overlap with the extension primer, the higher the background. Therefore, the reverse primers were designed to be as long as possible while minimizing the overlap with the gene specific portion of the extension primer, in order to reduce the non-specific background signal.
  • LNA locked nucleic acid
  • LNA base substitutions may be selected to raise the predicted Tm of the primer, with two or three LNA base substitutions typically substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide.
  • Exemplary reverse primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8. While these exemplary reverse primers contain LNA base substitutions (the “+” symbol preceding a nucleotide designates an LNA substitution), this feature is optional and not required.
  • Primer designs were determined using the principles described above. Typically, 4 extension primer candidates and 2 reverse primer candidates were designed for each microRNA target of interest. The extension primers in each set overlap the gene specific region by 7, 8, 9 and 10 nucleotides, respectively, at the 3′ end. Exemplary primers designed according to these design principles are provided in TABLE 8 for the microRNA targets listed in TABLE 9.
  • Exemplary target microRNA miR-495 has an RNA target sequence (SEQ ID NO:966) that is conserved across human (h), mouse (m) and rat (r), as indicated by the designation “hmr”-miR-495 in TABLE 9. Therefore, the primer designed for this target sequence would be expected to be useful to detect miR-495 in samples obtained from human, mouse, and rat.
  • microRNA miR-495 target RNA sequence 5′ AAACAAACAUGGUGCACUUCUU 3′ (SEQ ID NO:966)
  • hmr-miR-495GS10 5′ CATGATCAGCTGGGCCAAGA AAGAAGTGCA 3′
  • hmr-miR-495GS9 5′ CATGATCAGCTGGGCCAAGA AAGAAGTGC 3′
  • hmr-miR-495GS8 5′ CATGATCAGCTGGGCCAAGA AAGAAGTG 3′
  • hmr-miR-495GS7 5′ CATGATCAGCTGGGCCAAGA AAGAAGT Reverse Primers (2 candidates) (SEQ ID NO: 504)
  • hmr-miR-495RP1 5′ AAA+CAAA+CA+TGGTGCAC 3′
  • hmr-miR-495RP2 5′ AAA+C+AAA+CATGGTGC 3′
  • TABLE 8 shows exemplary primer sets for use in detection assays for 78 microRNA targets (shown in TABLE 9).
  • the candidate primers for use in these assays were designed to specifically detect human (h), mouse (m) and rat (r) microRNAs, or microRNAs from one or more species.
  • assays with the “hmr” prefix are designed to detect a perfectly conserved microRNA in all three species, whereas a “mr” prefix means the assay is designed to detect a microRNA conserved between mouse and rat, but not human.
  • Nucleotides preceded by a plus (+) sign may be optionally locked (LNA).
  • TABLE 9 shows the microRNA target sequence for each assay.
  • h-miR-519d CAAAGUGCCUCCCUUUAGAGUGU 972 8.
  • h-miR-520a AAAGUGCUUCCCUUUGGACUGU 973 9.
  • h-miR-520b AAAGUGCUUCCUUUUAGAGGG 974 10.
  • h-miR-520d AAAGUGCUUCUCUUUGGUGGGUU 975 11.
  • h-miR-520e AAAGUGCUUCCUUUUUGAGGG 976 12.
  • h-miR-520f AAGUGCUUCCUUUUAGAGGGUU 977 13.
  • mr-miR-329 AACACACCCAGCUAACCUUUUU 978 14.
  • hmr-miR-181d AACAUUCAUUGUUGUCGGUGGGUU 979 15. hmr-miR-193b AACUGGCCCUCAAAGUCCCGCUUU 980 16. h-miR-362 AAUCCUUGGAACCUAGGUGUGAGU 981 17. mr-mIR-362-3p AAUCCUUGGAACCUAGGUGUGAA 982 18. h-miR-500 AUGCACCUGGGCAAGGAUUCUG 983 19. mr-miR-500 AUGCACCUGGGCAAGGGUUCAG 984 20. h-miR-501 AAUCCUUUGUCCCUGGGUGAGA 985 21.
  • mr-miR-501 AAUCCUUUGUCCCUGGGUGAAA 986 22.
  • hmr-miR-487b AAUCGUACAGGGUCAUCCACU 987 23.
  • h-miR-489 AGUGACAUCACAUAUACGGCAGC 988 24.
  • m-miR-489 AAUGACACCACAUAUAUGGCAGC 989 25.
  • r-miR-489 AAUGACAUCACAUAUAUGGCAGC 990 26.
  • hmr-miR-652 AAUGGCGCCACUAGGGUUGUGCA 992 28.
  • hmr-miR-485 AGAGGCUGGCCGUGAUGAAUUC 993 -5p 29.
  • hmr-miR-485 AGUCAUACACGGCUCUCCUCUCU 994 -3p 30.
  • hmr-miR-369 AGAUCGACCGUGUUAUAUUCG 995 -5p 31.
  • hmr-miR-671 AGGAAGCCCUGGAGGGGCUGGAGG 996
  • h-miR-449b AGGCAGUGUAUUGUUAGCUGGC 997 33.
  • mr-miR-449b AGGCAGUGCAUUGCUAGCUGG 998 34.
  • m-miR-699 AGGCAGUGCGACCUGGCUCG 999 35.
  • hmr-miR-497 CAGCAGCACACUGUGGUUUGU 1007 43.
  • h-miR-301b CAGUGCAAUGAUAUUGUCAAAGCA 1008 44.
  • mr-miR-301b CAGUGCAAUGGUAUUGUCAAAGCA 1009 45.
  • hmr-miR-721 CAGUGCAAUUAAAAGGGGGAA 1010 46.
  • hmr-miR-532 CAUGCCUUGAGUGUAGGACCGU 1011
  • h-miR-488 CCCAGAUAAUGGCACUCUCAA 1012
  • mr-miR-488 CCCAGAUAAUAGCACUCUCAA 1013 49.
  • hmr-miR-539 GGAGAAAUUAUCCUUGGUGUGU 1014 50.
  • h-miR-505 GUCAACACUUGCUGGUUUCCUC 1015 51.
  • mr-miR-505 CGUCAACACUUGCUGGUUUUCU 1016 52.
  • h-miR-18b UAAGGUGCAUCUAGUGCAGUUA 1017 53.
  • mr-miR-18b UAAGGUGCAUCUAGUGCUGUUA 1018 54.
  • hmr-miR-503 UAGCAGCGGGAACAGUACUGC 1019 55.
  • hmr-miR-455 UAUGUGCCUUUGGACUACAUCG 1020 56.
  • hmr-miR-92b UAUUGCACUCGUCCCGGCCUC 1021 57.
  • h-miR-483 UCACUCCUCUCCUCCCGUCUUCU 1022 58.
  • mr-miR-483 UCACUCCUCCCCUCCCGUCUUGU 1023 59.
  • hmr-miR-484 UCAGGCUCAGUCCCCUCCCGAU 1024 60.
  • hmr-miR-615 UCCGAGCCUGGGUCUCCCUCU 1026 62.
  • hmr-miR-486 UCCUGUACUGAGCUGCCCCGAG 1027 63.
  • hmr-miR-494 UGAAACAUACACGGGAAACCU 1028 64.
  • hmr-miR-493 UGAAGGUCUACUGUGUGCCAG 1029 3p 65.
  • hmr-miR-146b UGAGAACUGAAUUCCAUAGGCU 1030 66.
  • r-miR-1 UGGAAUGUAAAGAAGUGUGUA 1031 67.
  • h-miR-675-5p UGGUGCGGAGAGGGCCCACAGUG 1032 68.
  • mr-miR-675-5p UGGUGCGGAAAGGGCCCACAGU 1033 69.
  • hmr-miR-668 UGUCACUCGGCUCGGCCCACUAC 1034 70.
  • r-miR-346 UGUCUGCCUGAGUGCCUGCCUCU 1035 71.
  • hmr-miR-499 UUAAGACUUGCAGUGAUGUUU 1038
  • hmr-miR-758 UUUGUGACCUGGUCCACUAACC 1039 75.
  • hmiR-194 UGUAACAGCAACUCCAUGUGGA 1040 76.
  • hmiR-206 UGGAAUGUAAGGAAGUGUGUGG 1041 77.
  • hmiR-9 UCUUUGGUUAUCUAGCUGUAUGA 1043
  • test assay e.g., assay #75, #76, #77 and #78 listed in TABLE 8
  • assay #75, #76, #77 and #78 listed in TABLE 8 was run in 4 ⁇ 4 wells of a 96 well plate, with 6 assays per 96 well plate, thereby allowing for rapid determination of the optimal primer pair for each target.
  • each of the 4 candidate extension (GS) primers were tested in a separate row of the 96 well plate.
  • Each of the 2 reverse primers were tested plus (1 nM DNA) or minus template (10 mM Tris pH 7.6, 0.1 mM EDTA, 100 ng/ul yeast total RNA).
  • Ct values for the PCR reactions were determined based on a baseline threshold of 0.01.
  • the sensitivity (Ct value of 1 nM template) and dynamic range (Ct of no-template control minus the Ct of the 1 nM template) were determined for each primer pair in each assay.
  • the results of exemplary assays #75, #76, #77 and #78, listed in TABLE 8, are shown in TABLE 10 below.
  • Optimal primer pairs were identified based on superior sensitivity (e.g., a preferred range between 5 and 25) and dynamic range (e.g., a preferred range between 10 and 35) characteristics. As shown above in TABLE 10, an optimal primer pair was identified for miR-194: GS8 (SEQ ID NO:946) and RP1 (SEQ ID NO:948) with a sensitivity of 13 and a dynamic range of 17. An optimal primer pair was identified for miR-1: GS10 (SEQ ID NO:47) and RP2 (SEQ ID NO:48) with a sensitivity of 13 and a dynamic range of 15.
  • GS7 SEQ ID NO:953
  • RP2 SEQ ID NO:955
  • TABLE 10 the GS primers control specificity, as shown by the significant increase in dynamic range (driven by a decrease in background) in going from GS9 to GS8 (see, e.g., miR-194).
  • Candidate primers designed based on the principles described above, such as the additional exemplary primers listed in TABLE 8, or other candidate primers designed using the design principles described herein, may be tested using the screening methods described above.
  • the assays may be further optimized by using HPLC purified templates to avoid problems associated with degraded templates.
  • microRNAs that differ from each other in sequence by only 1, 2 or 3 nucleotide changes can be readily distinguished from one another through the use of the primers designed according to the design principles and methods described herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce DNA molecules. The methods each include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 11/779,759, filed Jul. 18, 2007, which is a continuation-in-part of application Ser. No. 10/579,029, filed Nov. 19, 2008, which is the National Stage of International Application No. PCT/US2006/002591, filed Jan. 25, 2006, which claims the benefit of Provisional Application No. 60/647,178, filed Jan. 25, 2005, all of which are incorporated herein by reference in their entirety.
  • STATEMENT REGARDING SEQUENCE LISTING
  • The sequence listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the text file containing the sequence listing is 37790_Sequence_Final.txt. The text file is 250 KB; was created on Sep. 20, 2011; and is being submitted via EFS-Web with the filing of the specification.
  • FIELD OF THE INVENTION
  • The present invention relates to methods of amplifying and quantitating small RNA molecules.
  • BACKGROUND OF THE INVENTION
  • RNA interference (RNAi) is an evolutionarily conserved process that functions to inhibit gene expression (Bernstein et al. (2001), Nature 409:363-6; Dykxhoorn et al. (2003) Nat. Rev. Mol. Cell. Biol. 4:457-67). The phenomenon of RNAi was first described in Caenorhabditis elegans, where injection of double-stranded RNA (dsRNA) led to efficient sequence-specific gene silencing of the mRNA that was complementary to the dsRNA (Fire et al. (1998) Nature 391:806-11). RNAi has also been described in plants as a phenomenon called post-transcriptional gene silencing (PTGS), which is likely used as a viral defense mechanism (Jorgensen (1990) Trends Biotechnol. 8:340-4; Brigneti et al. (1998) EMBO J. 17:6739-46; Hamilton & Baulcombe (1999) Science 286:950-2).
  • An early indication that the molecules that regulate PTGS were short RNAs processed from longer dsRNA was the identification of short 21 to 22 nucleotide dsRNA derived from the longer dsRNA in plants (Hamilton & Baulcombe (1999) Science 286:950-2). This observation was repeated in Drosophila embryo extracts where long dsRNA was found processed into 21-25 nucleotide short RNA by the RNase III type enzyme, Dicer (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). These observations led Elbashir et al. to test if synthetic 21-25 nucleotide synthetic dsRNAs function to specifically inhibit gene expression in Drosophila embryo lysates and mammalian cell culture (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). They demonstrated that small interfering RNAs (siRNAs) had the ability to specifically inhibit gene expression in mammalian cell culture without induction of the interferon response.
  • These observations led to the development of techniques for the reduction, or elimination, of expression of specific genes in mammalian cell culture, such as plasmid-based systems that generate hairpin siRNAs (Brummelkamp et al. (2002) Science 296:550-3; Paddison et al. (2002) Genes Dev. 16:948-58; Paddison et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99:1443-8; Paul et al. 2002) Nat. Biotechnol. 20:404-8). siRNA molecules can also be introduced into cells, in vivo, to inhibit the expression of specific proteins (see, e.g., Soutschek, J., et al., Nature 432 (7014):173-178 (2004)).
  • siRNA molecules have promise both as therapeutic agents for inhibiting the expression of specific proteins, and as targets for drugs that affect the activity of siRNA molecules that function to regulate the expression of proteins involved in a disease state. A first step in developing such therapeutic agents is to measure the amounts of specific siRNA molecules in different cell types within an organism, and thereby construct an “atlas” of siRNA expression within the body. Additionally, it will be useful to measure changes in the amount of specific siRNA molecules in specific cell types in response to a defined stimulus, or in a disease state.
  • Short RNA molecules are difficult to quantitate. For example, with respect to the use of PCR to amplify and measure the small RNA molecules, most PCR primers are longer than the small RNA molecules, and so it is difficult to design a primer that has significant overlap with a small RNA molecule, and that selectively hybridizes to the small RNA molecule at the temperatures used for primer extension and PCR amplification reactions.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and (b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule. It will be understood that, in the practice of the present invention, typically numerous (e.g., millions) of individual microRNA molecules are amplified in a sample (e.g., a solution of RNA molecules isolated from living cells).
  • In another aspect, the present invention provides methods for measuring the amount of a target microRNA in a sample from a living organism. The methods of this aspect of the invention include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method including the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension; (2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer; and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.
  • In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.
  • In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer for amplifying the cDNA molecule and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kit, at least one of the universal forward and reverse primers include at least one locked nucleic acid molecule. The kits of the invention may be used to practice various embodiments of the methods of the invention.
  • The present invention is useful, for example, for quantitating specific microRNA molecules within different types of cells in a living organism, or, for example, for measuring changes in the amount of specific microRNAs in living cells in response to a stimulus (e.g., in response to administration of a drug).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 shows a flow chart of a representative method of the present invention;
  • FIG. 2 graphically illustrates the standard curves for assays specific for the detection of microRNA targets miR-95 and miR-424 as described in EXAMPLE 3;
  • FIG. 3A is a histogram plot showing the expression profile of miR-1 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5;
  • FIG. 3B is a histogram plot showing the expression profile of miR-124 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5; and
  • FIG. 3C is a histogram plot showing the expression profile of miR-150 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In accordance with the foregoing, in one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • As used herein, the term “locked nucleic acid molecule” (abbreviated as LNA molecule) refers to a nucleic acid molecule that includes a 2′-0,4′-C-methylene-β-D-ribofuranosyl moiety. Exemplary 2′-0,4′-C-methylene-β-D-ribofuranosyl moieties, and exemplary LNAs including such moieties, are described, for example, in Petersen, M., and Wengel, J., Trends in Biotechnology 21(2):74-81 (2003) which publication is incorporated herein by reference in its entirety.
  • As used herein, the term “microRNA” refers to an RNA molecule that has a length in the range of from 21 nucleotides to 25 nucleotides. Some microRNA molecules (e.g., siRNA molecules) function in living cells to regulate gene expression.
  • Representative Method of the Invention. FIG. 1 shows a flowchart of a representative method of the present invention. In the method represented in FIG. 1, a microRNA is the template for synthesis of a complementary first DNA molecule. The synthesis of the first DNA molecule is primed by an extension primer, and so the first DNA molecule includes the extension primer and newly synthesized DNA (represented by a dotted line in FIG. 1). The synthesis of DNA is catalyzed by reverse transcriptase.
  • The extension primer includes a first portion (abbreviated as FP in FIG. 1) and a second portion (abbreviated as SP in FIG. 1). The first portion hybridizes to the microRNA target template, and the second portion includes a nucleic acid sequence that hybridizes with a universal forward primer, as described infra.
  • A quantitative polymerase chain reaction is used to make a second DNA molecule that is complementary to the first DNA molecule. The synthesis of the second DNA molecule is primed by the reverse primer that has a sequence that is selected to specifically hybridize to a portion of the target first DNA molecule. Thus, the reverse primer does not hybridize to nucleic acid molecules other than the first DNA molecule. The reverse primer may optionally include at least one LNA molecule located within the portion of the reverse primer that does not overlap with the extension primer. In FIG. 1, the LNA molecules are represented by shaded ovals.
  • A universal forward primer hybridizes to the 3′ end of the second DNA molecule and primes synthesis of a third DNA molecule. It will be understood that, although a single microRNA molecule, single first DNA molecule, single second DNA molecule, single third DNA molecule and single extension, forward and reverse primers are shown in FIG. 1, typically the practice of the present invention uses reaction mixtures that include numerous copies (e.g., millions of copies) of each of the foregoing nucleic acid molecules.
  • The steps of the methods of the present invention are now considered in more detail.
  • Preparation of microRNA Molecules Useful as Templates. microRNA molecules useful as templates in the methods of the invention can be isolated from any organism (e.g., eukaryote, such as a mammal) or part thereof, including organs, tissues, and/or individual cells (including cultured cells). Any suitable RNA preparation that includes microRNAs can be used, such as total cellular RNA.
  • RNA may be isolated from cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein. Cells of interest include wild-type cells, drug-exposed wild-type cells, modified cells, and drug-exposed modified cells.
  • Additional steps may be employed to remove some or all of the DNA. Cell lysis may be accomplished with a nonionic detergent, followed by microcentrifugation to remove the nuclei and hence the bulk of the cellular DNA. In one embodiment, RNA is extracted from cells of the various types of interest using guanidinium thiocyanate lysis followed by CsCl centrifugation to separate the RNA from DNA (see, Chirgwin et al., 1979, Biochemistry 18:5294-5299). Separation of RNA from DNA can also be accomplished by organic extraction, for example, with hot phenol or phenol/chloroform/isoamyl alcohol.
  • If desired, RNase inhibitors may be added to the lysis buffer. Likewise, for certain cell types, it may be desirable to add a protein denaturation/digestion step to the protocol.
  • The sample of RNA can comprise a multiplicity of different microRNA molecules, each different microRNA molecule having a different nucleotide sequence. In a specific embodiment, the microRNA molecules in the RNA sample comprise at least 100 different nucleotide sequences. In other embodiments, the microRNA molecules of the RNA sample comprise at least 500, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000 90,000, or 100,000 different nucleotide sequences.
  • The methods of the invention may be used to detect the presence of any microRNA. For example, the methods of the invention can be used to detect one or more of the microRNA targets described in a database such as “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/. A list of exemplary microRNA targets is also described in the following references: Lagos-Quintana et al., Curr. Biol. 12(9):735-9 (2002).
  • Synthesis of DNA Molecules Using microRNA Molecules As Templates. In the practice of the methods of the invention, first DNA molecules are synthesized that are complementary to the microRNA target molecules, and that are composed of an extension primer and newly synthesized DNA (wherein the extension primer primes the synthesis of the newly synthesized DNA). Individual first DNA molecules can be complementary to a whole microRNA target molecule, or to a portion thereof; although typically an individual first DNA molecule is complementary to a whole microRNA target molecule. Thus, in the practice of the methods of the invention, a population of first DNA molecules is synthesized that includes individual DNA molecules that are each complementary to all, or to a portion, of a target microRNA molecule.
  • The synthesis of the first DNA molecules is catalyzed by reverse transcriptase. Any reverse transcriptase molecule can be used to synthesize the first DNA molecules, such as those derived from Moloney murine leukemia virus (MMLV-RT), avian myeloblastosis virus (AMV-RT), bovine leukemia virus (BLV-RT), Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV-RT). A reverse transcriptase lacking RNaseH activity (e.g., SUPERSCRIPT III™ sold by Invitrogen, 1600 Faraday Avenue, P.O. Box 6482, Carlsbad, Calif. 92008) is preferred in order to minimize the amount of double-stranded cDNA synthesized at this stage. The reverse transcriptase molecule should also preferably be thermostable so that the DNA synthesis reaction can be conducted at as high a temperature as possible, while still permitting hybridization of primer to the microRNA target molecules.
  • Priming the Synthesis of the First DNA Molecules. The synthesis of the first DNA molecules is primed using an extension primer. Typically, the length of the extension primer is in the range of from 10 nucleotides to 100 nucleotides, such as 20 to 35 nucleotides. The nucleic acid sequence of the extension primer is incorporated into the sequence of each, synthesized, DNA molecule. The extension primer includes a first portion that hybridizes to a portion of the microRNA molecule. Typically the first portion of the extension primer includes the 3′-end of the extension primer. The first portion of the extension primer typically has a length in the range of from 6 nucleotides to 20 nucleotides, such as from 10 nucleotides to 12 nucleotides. In some embodiments, the first portion of the extension primer has a length in the range of from 3 nucleotides to 25 nucleotides.
  • The extension primer also includes a second portion that typically has a length of from 18 to 25 nucleotides. For example, the second portion of the extension primer can be 20 nucleotides long. The second portion of the extension primer is located 5′ to the first portion of the extension primer. The second portion of the extension primer includes at least a portion of the hybridization site for the universal forward primer. For example, the second portion of the extension primer can include all of the hybridization site for the universal forward primer, or, for example, can include as little as a single nucleotide of the hybridization site for the universal forward primer (the remaining portion of the hybridization site for the forward primer can, for example, be located in the first portion of the extension primer). An exemplary nucleic acid sequence of a second portion of an extension primer is 5′ CATGATCAGCTGGGCCAAGA 3′ (SEQ ID NO:1).
  • Amplification of the DNA Molecules. In the practice of the methods of the invention, the first DNA molecules are enzymatically amplified using the polymerase chain reaction. A universal forward primer and a reverse primer are used to prime the polymerase chain reaction. The reverse primer includes a nucleic acid sequence that is selected to specifically hybridize to a portion of a first DNA molecule.
  • The reverse primer typically has a length in the range of from 10 nucleotides to 100 nucleotides. In some embodiments, the reverse primer has a length in the range of from 12 nucleotides to 20 nucleotides. The nucleotide sequence of the reverse primer is selected to hybridize to a specific target nucleotide sequence under defined hybridization conditions. The reverse primer and extension primer are both present in the PCR reaction mixture, and so the reverse primer should be sufficiently long so that the melting temperature (Tm) is at least 50° C., but should not be so long that there is extensive overlap with the extension primer which may cause the formation of “primer dimers.” “Primer dimers” are formed when the reverse primer hybridizes to the extension primer, and uses the extension primer as a substrate for DNA synthesis, and the extension primer hybridizes to the reverse primer, and uses the reverse primer as a substrate for DNA synthesis. To avoid the formation of “primer dimers,” typically the reverse primer and the extension primer are designed so that they do not overlap with each other by more than 6 nucleotides. If it is not possible to make a reverse primer having a Tm of at least 50° C., and wherein the reverse primer and the extension primer do not overlap by more than 6 nucleotides, then it is preferable to lengthen the reverse primer (since Tm usually increases with increasing oligonucleotide length) and decrease the length of the extension primer.
  • The reverse primer primes the synthesis of a second DNA molecule that is complementary to the first DNA molecule. The universal forward primer hybridizes to the portion of the second DNA molecule that is complementary to the second portion of the extension primer which is incorporated into all of the first DNA molecules. The universal forward primer primes the synthesis of third DNA molecules. The universal forward primer typically has a length in the range of from 16 nucleotides to 100 nucleotides. In some embodiments, the universal forward primer has a length in the range of from 16 nucleotides to 30 nucleotides. The universal forward primer may include at least one locked nucleic acid molecule. In some embodiments, the universal forward primer includes from 1 to 25 locked nucleic acid molecules. The nucleic acid sequence of an exemplary universal forward primer is set forth in SEQ ID NO:13.
  • In general, the greater the number of amplification cycles during the polymerase chain reaction, the greater the amount of amplified DNA that is obtained. On the other hand, too many amplification cycles (e.g., more than 35 amplification cycles) may result in spurious and unintended amplification of non-target double-stranded DNA. Thus, in some embodiments, a desirable number of amplification cycles is between one and 45 amplification cycles, such as from one to 25 amplification cycles, or such as from five to 15 amplification cycles, or such as ten amplification cycles.
  • Use of LNA Molecules and Selection of Primer Hybridization Conditions. Hybridization conditions are selected that promote the specific hybridization of a primer molecule to the complementary sequence on a substrate molecule. With respect to the hybridization of a 12 nucleotide first portion of an extension primer to a microRNA, it has been found that specific hybridization occurs at a temperature of 50° C. Similarly, it has been found that hybridization of a 20 nucleotide universal forward primer to a complementary DNA molecule, and hybridization of a reverse primer (having a length in the range of from 12-20 nucleotides, such as from 14-16 nucleotides) to a complementary DNA molecule occurs at a temperature of 50° C. By way of example, it is often desirable to design extension, reverse and universal forward primers that each have a hybridization temperature in the range of from 50° C. to 60° C.
  • In some embodiments, LNA molecules can be incorporated into at least one of the extension primer, reverse primer, and universal forward primer to raise the Tm of one, or more, of the foregoing primers to at least 50° C. Incorporation of an LNA molecule into the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may be useful because this portion of the reverse primer is typically no more than 10 nucleotides in length. For example, the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may include at least one locked nucleic acid molecule (e.g., from 1 to 25 locked nucleic acid molecules). In some embodiments, two or three locked nucleic acid molecules are included within the first 8 nucleotides from the 5′ end of the reverse primer.
  • The number of LNA residues that must be incorporated into a specific primer to raise the Tm to a desired temperature mainly depends on the length of the primer and the nucleotide composition of the primer. A tool for determining the effect on Tm of one or more LNAs in a primer is available on the Internet Web site of Exiqon, Bygstubben 9, DK-2950 Vedbaek, Denmark.
  • Although one or more LNAs can be included in any of the primers used in the practice of the present invention, it has been found that the efficiency of synthesis of cDNA is low if an LNA is incorporated into the extension primer. While not wishing to be bound by theory, LNAs may inhibit the activity of reverse transcriptase.
  • Detecting and Measuring the Amount of the Amplified DNA Molecules. The amplified DNA molecules can be detected and quantitated by the presence of detectable marker molecules, such as fluorescent molecules. For example, the amplified DNA molecules can be detected and quantitated by the presence of a dye (e.g., SYBR green) that preferentially or exclusively binds to double stranded DNA during the PCR amplification step of the methods of the present invention. For example, Molecular Probes, Inc. (29851 Willow Creek Road, Eugene, Oreg. 97402) sells quantitative PCR reaction mixtures that include SYBR green dye. By way of further example, another dye (referred to as “BEBO”) that can be used to label double stranded DNA produced during real-time PCR is described by Bengtsson, M., et al., Nucleic Acids Research 3/(8):e45 (Apr. 15, 2003), which publication is incorporated herein by reference. Again by way of example, a forward and/or reverse primer that includes a fluorophore and quencher can be used to prime the PCR amplification step of the methods of the present invention. The physical separation of the fluorophore and quencher that occurs after extension of the labeled primer during PCR permits the fluorophore to fluoresce, and the fluorescence can be used to measure the amount of the PCR amplification products. Examples of commercially available primers that include a fluorophore and quencher include Scorpion primers and Uniprimers, which are both sold by Molecular Probes, Inc.
  • Representative Uses of the Present Invention. The present invention is useful for producing cDNA molecules from microRNA target molecules. The amount of the DNA molecules can be measured which provides a measurement of the amount of target microRNA molecules in the starting material. For example, the methods of the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in living cells. Again by way of example, the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in different cell types in a living body, thereby producing an “atlas” of the distribution of specific microRNA molecules within the body. Again by way of example, the present invention can be used to measure changes in the amount of specific microRNA molecules (e.g., specific siRNA molecules) in response to a stimulus, such as in response to treatment of a population of living cells with a drug.
  • Thus, in another aspect, the present invention provides methods for measuring the amount of a target microRNA in a multiplicity of different cell types within a living organism (e.g., to make a microRNA “atlas” of the organism). The methods of this aspect of the invention each include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) using primer extension to make a DNA molecule complementary to the target microRNA molecule isolated from a cell type of a living organism; (2) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules, and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the methods, at least one of the forward primer and the reverse primer comprises at least one locked nucleic acid molecule. The measured amounts of amplified DNA molecules can, for example, be stored in an interrogatable database in electronic form, such as on a computer-readable medium (e.g., a floppy disc).
  • In some embodiments, the methods may be used to discriminate between two or more mammalian target microRNA that have a similar sequence in a sample from a living organism, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to the first microRNA molecule using a first extension primer specific to the first microRNA molecule; (b) amplifying the first DNA molecule to produce a first population of amplified DNA molecules using a universal forward primer and a first reverse primer; (c) producing a second DNA molecule that is complementary to the second microRNA molecule using a second extension primer specific to the second microRNA molecule; (d) amplifying the second DNA molecule to produce a second population of amplified DNA molecules using a universal forward primer and a second reverse primer; (e) measuring the amount of the first and second population of amplified DNA molecules, wherein the first and second extension primers or the first and second reverse primers differ by one or more nucleotides in the portion that is complementary to the target microRNA. This method may be used to discriminate between microRNA targets that differ by one, two, three or more nucleotides, by designing the gene-specific region of the first and second extension primers to hybridize to the region of the microRNA targets that are not identical.
  • In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.
  • In another aspect, the invention provides sets of nucleic acid primers consisting of SEQ ID NO:500 to SEQ ID NO: 965, as shown in TABLE 8. The sets of primer molecules of the invention can be used for the detection of microRNA target molecules from human, mouse, and rat, using the methods of the invention described herein.
  • In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer, and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kits, at least one of the universal forward and reverse primers includes at least one locked nucleic acid molecule.
  • The extension primer, universal forward and reverse primers for inclusion in the kit may be designed to detect any mammalian target microRNA in accordance with the methods described herein. Nonlimiting examples of human target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 1, TABLE 2, and TABLE 6. Nonlimiting examples of murine target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 7. A nonlimiting example of a universal forward primer is set forth as SEQ ID NO: 13.
  • In certain embodiments, the kit includes a set of primers comprising an extension primer, reverse and universal forward primers for a selected target microRNA molecule that each have a hybridization temperature in the range of from 50° C. to 60° C.
  • In certain embodiments, the kit includes a plurality of primer sets that may be used to detect a plurality of mammalian microRNA targets, such as two microRNA targets up to several hundred microRNA targets.
  • In certain embodiments, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-5p, miR-30e-3p, miR-31, miR-32, miR-33, miR-34a, miR-34b, miR-34c, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a, miR-99b, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-107, miR-122, miR-122a, miR-124, miR-124, miR-124a, miR-125 a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-143, miR-144, miR-145, miR-146, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-182*, miR-182, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-190, miR-191, miR-192, miR-193, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a*, miR-199a, miR-199b, miR-200a, miR-200b, miR-200c, miR-202, miR-203, miR-204, miR-205, miR-206, miR-208, miR-210, miR-211, miR-212, miR-213, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-220, miR-221, miR-222, miR-223, miR-224, miR-296, miR-299, miR-301, miR-302a*, miR-302a, miR-302b*, miR-302b, miR-302d, miR-302c*, miR-302c, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-330, miR-331, miR-337, miR-338, miR-339, miR-340, miR-342, miR-345, miR-346, miR-363, miR-367, miR-368, miR-370, miR-371, miR-372, miR-373*, miR-373, miR-374, miR-375, miR-376b, miR-378, miR-379, miR-380-5p, miR-380-3p, miR-381, miR-382, miR-383, miR-410, miR-412, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-429, miR-431, miR-448, miR-449, miR-450, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, let7i, miR-376a, and miR-377. The sequences of the above-mentioned microRNA targets are provided in “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/.
  • Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2, and TABLE 6 below.
  • In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR363, miR-376b, miR379, miR410, miR412, miR424, miR429, miR431, miR449, miR451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, and let7i. Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2, and TABLE 6 below.
  • In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human, mouse or rat microRNA target templates: miR-1, miR-9, miR-18b, miR-20b, miR-92b, miR-146b, miR-181d, miR-193b, miR-194, miR-206, miR-291a-3p, miR-291b-3p, miR-301b, miR-329, miR-346, miR-351, miR-362, miR-362-3p, miR-369-5p, miR-384, miR-409-3p, miR-409-5p, miR-425-5p, miR-449b, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-493-3p, miR-494, miR-495, miR-497, miR-499, miR-500, miR-501, miR-503, miR-505, miR-519a, miR-519b, miR-519c, miR-519d, miR-520a, miR-520b, miR-520d, miR-520e, miR-520f, miR-532, miR-539, miR-542-3p, miR-542-5p, miR-615, miR-652, miR-668, miR-671, miR-675-5p, miR-699, miR-721, and miR-758.
  • Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 8.
  • In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 493, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7.
  • In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461 and 462, as shown in TABLE 6.
  • In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 500 to SEQ ID NO: 965, as shown in TABLE 8.
  • A kit of the invention can also provide reagents for primer extension and amplification reactions. For example, in some embodiments, the kit may further include one or more of the following components: a reverse transcriptase enzyme, a DNA polymerase enzyme, a Tris buffer, a potassium salt (e.g., potassium chloride), a magnesium salt (e.g., magnesium chloride), a reducing agent (e.g., dithiothreitol), and deoxynucleoside triphosphates (dNTPs).
  • In various embodiments, the kit may include a detection reagent such as SYBR green dye or BEBO dye that preferentially or exclusively binds to double stranded DNA during a PCR amplification step. In other embodiments, the kit may include a forward and/or reverse primer that includes a fluorophore and quencher to measure the amount of the PCR amplification products.
  • The kit optionally includes instructions for using the kit in the detection and quantitation of one or more mammalian microRNA targets. The kit can also be optionally provided in a suitable housing that is preferably useful for robotic handling in a high throughput manner.
  • The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.
  • Example 1
  • This Example describes a representative method of the invention for producing DNA molecules from microRNA target molecules.
  • Primer extension was conducted as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme). The following reaction mixture was prepared on ice:
      • 1 μl of 10 mM dNTPs
      • 1 μl of 21.1M extension primer
      • 1-5 μl of target template
      • 4 μl of “5×cDNA buffer”
      • 1 μl of 0.1 M DTT
      • 1 μl of RNAse OUT
      • 1 μl of SuperScript III® enzyme
      • water to 20
  • The mixture was incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, then cooled to room temperature and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).
  • Real-time PCR was conducted using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. A typical 101.11 PCR reaction mixture contained:
      • 5 μl of 2×SYBR® green master mix (ABI)
      • 0.8 μl of 10 μM universal forward primer
      • 0.8 μl of 10 μM reverse primer
      • 1.4 μl of water
      • 2.0 μl of target template (10-fold diluted RT reaction)
  • The reaction was monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products was measured.
  • The foregoing method was successfully used in eleven primer extension PCR assays for quantitation of endogenous microRNAs present in a sample of total RNA. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in these 11 assays are shown in TABLE 1.
  • TABLE 1
    Target Primer Primer SEQ
    microRNA number Name DNA sequence (5′ to 3′) ID NO
    gene-specific extension primers1
    humanb let7a 357 let7aP4 CATGATCAGCTGGGCCAAGAAACTATACAACCT 2
    human miR-1 337 miR1P5 CATGATCAGCTGGGCCAAGATACATACTTCT 3
    human miR-15a 344 miR15aP3 CATGATCAGCTGGGCCAAGACACAAACCATTATG 4
    human miR-16 351 miR16P2 CATGATCAGCTGGGCCAAGACGCCAATATTTACGT 5
    human miR-21 342 miR21P6 CATGATCAGCTGGGCCAAGATCAACATCAGT 6
    human miR-24 350 miR24P5 CATGATCAGCTGGGCCAAGACTGTTCCTGCTG 7
    human miR-122 222 122-E5F CATGATCAGCTGGGCCAAGAACAAACACCATTGTCA 8
    human miR-124 226 124-E5F CATGATCAGCTGGGCCAAGATGGCATTCACCGCGTG 9
    human miR-143 362 miR143P5 CATGATCAGCTGGGCCAAGATGAGCTACAGTG 10
    human miR-145 305 miR145P2 CATGATCAGCTGGGCCAAGAAAGGGATTCCTGGGAA 11
    human miR-155 367 miR155P3 CATGATCAGCTGGGCCAAGACCCCTATCACGAT 12
    universal forward primer
    230 E5F CATGATCAGCTGGGCCAAGA 13
    RNA species-specific reverse primers2
    human let7a 290 miRlet7a- TG+AGGT+AGTAGGTTG 14
    1,2,3R
    human miR-1 285 miR1-1,2R TG+GAA+TG+TAAAGAAGTA 15
    human miR-15a 287 miR15aR TAG+CAG+CACATAATG 16
    human miR-16 289 miR16-1,2R T+AGC+AGCACGTAAA 17
    human miR-21 286 miR21R T+AG+CT+TATCAGACTGAT 18
    human miR-24 288 miR24-1,2R TGG+CTCAGTTCAGC 19
    human miR-122 234 122LNAR T+G+GAG+TGTGACAA 20
    human miR-124 235 124LNAR T+TAA+GGCACGCG 21
    human miR-143 291 miR143R TG+AGA+TGAAGCACTG 22
    human miR-145 314 miR145R2 GT+CCAGTTTTCCCA 23
    human miR-155 293 miR155R T+TAA+TG+CTAATCGTGA 24
    1Universal forward primer binding sites are shown in italics. The overlap with the RNA-specific reverse primers are underlined.
    2LNA molecules are preceded by a “+”. Region of overlap of the reverse primers with the corresponding extension primers are underlined.
  • The assay was capable of detecting microRNA in a concentration range of from 2 nM to 20 fM. The assays were linear at least up to a concentration of 2 nM of synthetic microRNA (>1,000,000 copies/cell).
  • Example 2
  • This Example describes the evaluation of the minimum sequence requirements for efficient primer-extension mediated cDNA synthesis using a series of extension primers for microRNA assays having gene specific regions that range in length from 12 to 3 base pairs.
  • Primer Extension Reactions. Primer extension was conducted using the target molecules miR-195 and miR-215 as follows. The target templates miR-195 and miR-215 were diluted to 1 nM RNA (100,000 copies/cell) in TE zero plus 100 ng/μl total yeast RNA. A no template control (NTC) was prepared with TE zero plus 100 ng/μl total yeast RNA.
  • The reverse transcriptase reactions were carried out as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme) using a series of extension primers for miR-195 (SEQ ID NO: 25-34) and a series of extension primers for miR-215 (SEQ ID NO: 35-44) the sequences of which are shown below in TABLE 2.
  • The following reaction mixtures were prepared on ice:
      • Set 1: No Template Control
      • 37.5 μl water
      • 12.5 μl of 10 mM dNTPs
      • 12.5 μl 0.1 mM DTT
      • 50 μl of “5×cDNA buffer”
      • 12.5 μl RNAse OUT
      • 12.5 μl Superscript III® reverse transcriptase enzyme
      • 12.5 μl 1 μg/μl Hela cell total RNA (Ambion)
      • plus 50 μl of 2 μM extension primer
      • plus 50 μl TEzero+yeast RNA
      • Set 2: Spike-in Template
      • 37.5 μl water
      • 12.5 μl of 10 mM dNTPs
      • 12.5 μl 0.1 mM DTT
      • 50 μl of “5×cDNA buffer”
      • 12.5 μl RNAse OUT
      • 12.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen)
      • 12.5 μl 1 μg/μl Hela cell total RNA (Ambion)
      • plus 50 μl of 2 μM extension primer
      • plus 50 μl 1 nM RNA target template (miR-195 or miR-215)
      • serially diluted in 10-fold increments
  • The reactions were incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).
  • Quantitative Real-Time PCR Reactions. Following reverse transcription, quadruplicate measurements of cDNA were made by quantitative real-time (qPCR) using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. The following reaction mixture was prepared:
      • 5 μl of 2×SYBR green master mix (ABI)
      • 0.8 μl of 10 μM universal forward primer (SEQ ID NO: 13)
      • 0.8 μl of 10 μM reverse primer (miR-195RP:SEQ ID NO: 45 or
      • miR215RP: SEQ ID NO: 46)
      • 1.4 μl of water
      • 2.0 μl of target template (10-fold diluted miR-195 or miR-215 RT reaction)
  • Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the miR-195 and miR-215 assays are shown below in TABLE 2. The assay results for miR-195 are shown below in TABLE 3 and the assay results for miR-215 are shown below in TABLE 4.
  • TABLE 2
    Target Primer SEQ ID
    microRNA number Primer Name DNA sequence (5′ to 3′) NO:
    gene-specific extension primers1
    miR-195 646 mir195-GS1 CATGATCAGCTGGGCCAAGAGCCAATATTTCT 25
    miR-195 647 mir195-GS2 CATGATCAGCTGGGCCAAGAGCCAATATTTC 26
    miR-195 648 mir195-GS3 CATGATCAGCTGGGCCAAGAGCCAATATTT 27
    miR-195 649 mir195-GS4 CATGATCAGCTGGGCCAAGAGCCAATATT 28
    miR-195 650 mir195-GS5 CATGATCAGCTGGGCCAAGAGCCAATAT 29
    miR-195 651 mir195-GS6 CATGATCAGCTGGGCCAAGAGCCAATA 30
    miR-195 652 mir195-GS7 CATGATCAGCTGGGCCAAGAGCCAAT 31
    miR-195 653 mir195-GS8 CATGATCAGCTGGGCCAAGAGCCAA 32
    miR-195 654 mir195-GS9 CATGATCAGCTGGGCCAAGAGCCA 33
    miR-195 655 mir195-GS10 CATGATCAGCTGGGCCAAGAGCC 34
    miR-215 656 mir215-GS1 CATGATCAGCTGGGCCAAGAGTCTGTCAATTC 35
    miR-215 657 mir215-GS2 CATGATCAGCTGGGCCAAGAGTCTGTCAATT 36
    miR-215 658 mir215-GS3 CATGATCAGCTGGGCCAAGAGTCTGTCAAT 37
    miR-215 659 mir215-GS4 CATGATCAGCTGGGCCAAGAGTCTGTCAA 38
    miR-215 660 mir215-GS5 CATGATCAGCTGGGCCAAGAGTCTGTCA 39
    miR-215 661 mir215-GS6 CATGATCAGCTGGGCCAAGAGTCTGTC 40
    miR-215 662 mir215-GS7 CATGATCAGCTGGGCCAAGAGTCTGT 41
    miR-215 663 mir215-GS8 CATGATCAGCTGGGCCAAGAGTCTG 42
    miR-215 664 mir215-GS9 CATGATCAGCTGGGCCAAGAGTCT 43
    miR-215 665 mir215-GS10 CATGATCAGCTGGGCCAAGAGTC 44
    RNA species-specific reverse primers2
    miR-195 442 mir195RP T+AGC+AGCACAGAAAT 45
    miR-215 446 mir215RP A+T+GA+CCTATGAATTG 46
    1Universal forward primer binding sites are shown in italics.
    2The “+” symbol precedes the LNA molecules.
  • Results:
  • The sensitivity of each assay was measured by the cycle threshold (Ct) value which is defined as the cycle count at which fluorescence was detected in an assay containing microRNA target template. The lower this Ct value (e.g. the fewer number of cycles), the more sensitive was the assay. For microRNA samples, it was generally observed that while samples that contain template and no template controls both eventually cross the detection threshold, the samples with template do so at a much lower cycle number. The ΔCt value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) and broad dynamic range (ΔCt≧12) between the signal of a sample containing target template and a no template background control sample.
  • The results of the miR195 and miR215 assays using extension primers having a gene specific portion ranging in size from 12 nucleotides to 3 nucleotides are shown below in TABLE 3 and TABLE 4, respectively. The results of these experiments unexpectedly demonstrate that gene-specific priming sequences as short as 3 nucleotides exhibit template specific priming. For both the miR-195 assay sets (shown in TABLE 3) and the miR-215 assay sets (shown in TABLE 4), the results demonstrate that the dynamic range (ΔCt) for both sets of assays are fairly consistent for extension primers having gene specific regions that are greater or equal to 8 nucleotides in length. The dynamic range of the assay (ΔCt) begins to decrease for extension primers having gene specific regions below 8 nucleotides, with a reduction in assay specificity below 7 nucleotides in the miR-195 assays, and below 6 nucleotides in the miR-215 assays. A melting point analysis of the miR-215 samples demonstrated that even at 3 nucleotides, there is specific PCR product present in the plus template samples (data not shown). Taken together, these data demonstrate that the gene specific region of extension primers is ideally ≧8 nucleotides, but can be as short as 3 nucleotides in length.
  • TABLE 3
    MIR195 ASSAY RESULTS
    GS Primer Ct: No Ct: Plus
    Length Template Control Template Δ Ct
    12 34.83 20.00 14.82
    12 34.19 19.9 14.3
    11 40.0 19.8 20.2
    10 36.45 21.2 15.2
    9 36.40 22.2 14.2
    8 40.0 23.73 16.27
    7 36.70 25.96 10.73
    6 30.95 26.58 4.37
    5 30.98 31.71 −0.732
    4 32.92 33.28 −0.364
    3 35.98 35.38 −0.605
    Ct = the cycle count where the fluorescence exceeds the threshold of detection.
    Δ Ct = the difference between the Ct value with template and no template.
  • TABLE 4
    MIR215 ASSAY RESULTS
    GS Primer Ct: No Ct: Plus
    Length Template Control Template Δ Ct
    12 33.4 13.57 19.83
    12 33.93 14.15 19.77
    11 35.51 15.76 19.75
    10 35.33 15.49 19.84
    9 36.02 16.84 19.18
    8 35.79 17.07 18.72
    7 32.29 17.58 14.71
    6 34.38 20.62 13.75
    5 34.41 28.65 5.75
    4 36.36 33.92 2.44
    3 35.09 33.38 1.70
    Ct = the cycle count where the fluorescence exceeds the threshold of detection.
    Δ Ct = the difference between the Ct value with template and no template.
  • Example 3
  • This Example describes assays and primer sets designed for quantitative analysis of human microRNA expression patterns.
  • Primer Design:
  • microRNA target templates: the sequence of the target templates as described herein are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute Web site in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.
  • Extension primers: gene specific primers for primer extension of a microRNA to form a cDNA followed by quantitative PCR (qPCR) amplification were designed to (1) convert the RNA template into cDNA; (2) to introduce a “universal” PCR binding site (SEQ ID NO:1) to one end of the cDNA molecule; and (3) to extend the length of the cDNA to facilitate subsequent monitoring by qPCR.
  • Reverse primers: unmodified reverse primers and locked nucleic acid (LNA) containing reverse primers (RP) were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). For the locked nucleic acid containing reverse primers, two or three LNA modified bases were substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide, as shown below in the exemplary reverse primer sequences provided in TABLE 6. The LNA base substitutions were selected to raise the predicted Tm of the primer by the highest amount, and the final predicted Tm of the selected primers were specified to be preferably less than or equal to 55° C.
  • An example describing an assay utilizing an exemplary set of primers the detection of miR-95 and miR-424 is described below.
  • Primer Extension Reactions: primer extension was conducted using DNA templates corresponding to miR-95 and miR-424 as follows. The DNA templates were diluted to 0 nM, 1 nM, 100 pM, 10 pM, and 1 pM dilutions in TE zero (10 mM Tris pH 7.6, 0.1 mM EDTA) plus 100 ng/μl yeast total RNA (Ambion, Austin, Tex.).
  • The reverse transcriptase reactions were carried out using the following primers:
  • Extension primers: (diluted to 500 nM)
  • miR-95GSP
    CATGATCAGCTGGGCCAAGATGCTCAATAA (SEQ ID NO: 123)
    miR-424GSP
    CATGATCAGCTGGGCCAAGATTCAAAACAT (SEQ ID NO: 415)
  • Reverse primers: (diluted to 10 mM)
  • miR-95_RP4
    TT+CAAC+GGGTATTTATTGA (SEQ ID NO: 124)
    miR-424RP2
    C+AG+CAGCAATTCATGTTTT (SEQ ID NO: 416)
  • Reverse Transcription (per reaction):
  • 2 μl water
  • 2 μl of “5×cDNA buffer” (InVitrogen, Carlsbad, Calif.)
  • 0.5 μl of 0.1 mM DTT (InVitrogen, Carlsbad, Calif.)
  • 0.5 μl of 10 mM dNTPs (InVitrogen, Carlsbad, Calif.)
  • 0.5 μl RNAse OUT (InVitrogen, Carlsbad, Calif.)
  • 0.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen, Carlsbad, Calif.)
  • 2 μl of extension primer plus 2 μl of template dilution
  • The reactions were mixed and incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE zero.
  • Quantitative Real-Time PCR Reactions (per reaction):
      • 5 μl 12×SYBR mix (Applied Biosystems, Foster City, Calif.)
      • 1.4 μl water
      • 0.8 μl universal primer (CATGATCAGCTGGGCCAAGA (SEQ ID NO: 13))
      • 2.0 μl of diluted reverse transcription (RT) product from above.
  • Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the representative miR-95 and miR-424 assays as well as primer sets for 212 different human microRNA templates are shown below in TABLE 6. Primer sets for assays requiring extensive testing and design modification to achieve a sensitive assay with a high dynamic range are indicated in TABLE 6 with the symbol # following the primer name.
  • Results:
  • TABLE 5 shows the Ct values (averaged from four samples) from the miR-95 and miR-424 assays, which are plotted in the graph shown in FIG. 2. The results of these assays are provided as representative examples in order to explain the significance of the assay parameters shown in TABLE 6 designated as slope (column 6), intercept (column 7) and background (column 8).
  • As shown in TABLE 5, the Ct value for each template at various concentrations is provided. The Ct values (x-axis) are plotted as a function of template concentration (y-axis) to generate a standard curve for each assay, as shown in FIG. 2. The slope and intercept define the assay measurement characteristics that permit an estimation of number of copies/cell for each microRNA. For example, when the Ct values for 50 μg total RNA input for the miR-95 assay are plotted, a standard curve is generated with a slope and intercept of −0.03569 and 9.655, respectively. When these standard curve parameters are applied to the Ct of an unknown sample (x), they yield log 10 (copies/20 pg total RNA) (y). Because the average cell yields 20 pg of total RNA, these measurements equate to copies of microRNA/cell. The background provides an estimate of the minimum copy number that can be measured in a sample and is computed by inserting the no template control (NTC) value into this equation. In this example, as shown in TABLE 6, miR-95 yields a background of 1.68 copies/20 pg at 50 μg of RNA input.
  • As further shown in TABLE 6, reverse primers that do not contain LNA may also be used in accordance with the methods of the invention. See, e.g., SEQ ID NO:494-499. The sensitivity and dynamic range of the assays using non-LNA containing reverse primers SEQ ID NO:494-499, yielded similar results to the corresponding assays using LNA-containing reverse primers.
  • TABLE 5
    Ct Values (averaged from four samples)
    Template concentration
    10 nM 1 nM 0.1 nM 0.01 nM 0.001 nM NTC
    copies/20 pg 500,000  50,000 5000  500  50
    RNA (50 μg input)
    copies/20 pg 5,000,000 500,000 50,000 5000 500
    RNA (5 μg input)
    miR-95 11.71572163 14.17978 17.46353 19.97259 23.33171 27.44383
    miR-424 10.47708975 12.76806 15.69251 18.53729 21.56897 23.2813 
    log10 (copies  5.698970004  4.69897  3.69897  2.69897  1.69897
    for 50 μg input)
  • TABLE 6
    PRIMERS TO DETECT HUMAN MICRORNA TARGET TEMPLATES
    Human
    Target Background
    micro RNA input
    RNA Extension Primer Name Extension Primer Sequence Reverse Primer Name Reverse Primer Sequence Slope Intercept 50 ug 5 ug
    miR-1 miR1GSP10# CATGATCAGCTGGGCCAAGATACATACTTC miR-1RP# T+G+GAA+TG+TAAAGAAGT −0.2758 8.3225 2.44 24.36
    SEQ ID NO: 47 SEQ ID NO: 48
    miR-7 miR-7GSP10# CATGATCAGCTGGGCCAAGACAACAAAATC miR-7_RP6# T+GGAA+GACTAGTGATTTT −0.2982 10.435 11.70 116.99
    SEQ ID NO: 49 SEQ ID NO: 50
    miR-9* miR-9*GSP CATGATCAGCTGGGCCAAGAACTTTCGGTT miR-9*RP TAAA+GCT+AGATAACCG −0.2405 8.9145 3.71 37.15
    SEQ ID NO: 51 SEQ ID NO: 52
    miR-10a miR-10aGSP CATGATCAGCTGGGCCAAGACACAAATTCG miR-10aRP T+AC+CCTGTAGATCCG −0.2755 8.6976 0.09 0.94
    SEQ ID NO: 53 SEQ ID NO: 54
    miR-10b miR- CATGATCAGCTGGGCCAAGAACAAATTCGGT miR- TA+CCC+TGT+AGAACCGA −0.3505 8.7109 0.55 5.52
    10b_GSP11# SEQ ID NO: 55 10b_RP2# SEQ ID NO: 56
    miR-15a miR-15aGSP CATGATCAGCTGGGCCAAGACACAAACCAT miR-15aRP T+AG+CAGCACATAATG −0.2831 8.4519 4.40 44.01
    SEQ ID NO: 57 SEQ ID NO: 58
    miR-15b miR-15bGSP2 CATGATCAGCTGGGCCAAGATGTAAACCA miR-15bRP T+AG+CAGCACATCAT −0.2903 8.4206 0.18 1.84
    SEQ ID NO: 59 SEQ ID NO: 60
    miR-16 miR-16GSP2 CATGATCAGCTGGGCCAAGACGCCAATAT miR-16RP T+AG+CAGCACGTAAA −0.2542 9.3689 1.64 16.42
    SEQ ID NO: 61 SEQ ID NO: 62
    miR-17- miR-17-3pGSP CATGATCAGCTGGGCCAAGAACAAGTGCCT miR-17-3pRP A+CT+GCAGTGAAGGC −0.2972 8.2625 1.08 10.78
    3p SEQ ID NO: 63 SEQ ID NO: 64
    miR-17- miR-17- CATGATCAGCTGGGCCAAGAACTACCTGC miR-17-5pRP C+AA+AGTGCTTACAGTG −0.2956 7.9101 0.13 1.32
    5p 5pGSP2 SEQ ID NO: 65 SEQ ID NO: 66
    miR-19a miR-19aGSP2 CATGATCAGCTGGGCCAAGATCAGTTTTG miR-19aRP TG+TG+CAAATCTATGC −0.2984 9.461 0.02 0.23
    SEQ ID NO: 67 SEQ ID NO: 68
    miR-19b miR-19bGSP CATGATCAGCTGGGCCAAGATCAGTTTTGC miR-19bRP TG+TG+CAAATCCATG −0.294 8.1434 2.26 22.55
    SEQ ID NO: 69 SEQ ID NO: 70
    miR-20 miR-20GSP3 CATGATCAGCTGGGCCAAGACTACCTGC miR-20RP T+AA+AGTGCTTATAGTGCA −0.2979 7.9929 0.16 1.60
    SEQ ID NO: 71 SEQ ID NO: 72
    miR-21 miR-21GSP2 CATGATCAGCTGGGCCAAGATCAACATCA miR-21RP T+AG+CTTATCAGACTGATG −0.2849 8.1624 1.80 17.99
    SEQ ID NO: 73 SEQ ID NO: 74
    miR-23a miR-23aGSP CATGATCAGCTGGGCCAAGAGGAAATCCCT miR-23aRP A+TC+ACATTGCCAGG −0.3172 9.4253 2.41 24.08
    SEQ ID NO: 75 SEQ ID NO: 76
    miR-23b miR-23bGSP CATGATCAGCTGGGCCAAGAGGTAATCCCT miR-23bRP A+TC+ACATTGCCAGG −0.2944 9.0985 5.39 53.85
    SEQ ID NO: 77 SEQ ID NO: 78
    miR-25 miR-25GSP CATGATCAGCTGGGCCAAGATCAGACCGAG miR-25RP C+AT+TGCACTTGTCTC −0.3009 8.2482 1.52 15.19
    SEQ ID NO: 79 SEQ ID NO: 80
    miR-26a miR-26aGSP9# CATGATCAGCTGGGCCAAGAGCCTATCCT miR- TT+CA+AGTAATCCAGGAT −0.2807 8.558 0.26 2.56
    SEQ ID NO: 81 26aRP2# SEQ ID NO: 82
    miR-26b miR-26bGSP9# CATGATCAGCTGGGCCAAGAAACCTATCC miR- TT+CA+AGT+AATTCAGGAT −0.2831 8.7885 0.37 3.67
    SEQ ID NO: 83 26bRP2# SEQ ID NO: 84
    miR-27a miR-27aGSP CATGATCAGCTGGGCCAAGAGCGGAACTTA miR-27aRP TT+CA+CAGTGGCTAA −0.2765 9.5239 5.15 51.51
    SEQ ID NO: 85 SEQ ID NO: 86
    miR-27b miR-27bGSP CATGATCAGCTGGGCCAAGAGCAGAACTTA miR-27bRP TT+CA+CAGTGGCTAA −0.28 9.5483 5.97 59.71
    SEQ ID NO: 87 SEQ ID NO: 88
    miR-28 miR-28GSP CATGATCAGCTGGGCCAAGACTCAATAGAC miR-28RP A+AG+GAGCTCACAGT −0.3226 10.071 7.19 71.87
    SEQ ID NO: 89 SEQ ID NO: 90
    miR-29a miR-29aGSP8# CATGATCAGCTGGGCCAAGAAACCGATT miR- T+AG+CACCATCTGAAAT −0.29 8.8731 0.04 0.38
    SEQ ID NO: 91 29aRP2# SEQ ID NO: 92
    miR-29b miR-29bGSP2 CATGATCAGCTGGGCCAAGAAACACTGAT miR-29bRP2 T+AG+CACCATTTGAAATCAG −0.3162 9.6276 3.56 35.57
    SEQ ID NO: 93 SEQ ID NO: 94
    miR-30a- miR-30a- CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30a- T+GT+AAACATCCTCGAC −0.2772 9.0694 1.92 19.16
    5p 5pGSP SEQ ID NO: 95 5pRP SEQ ID NO: 96
    miR-30b miR-30bGSP CATGATCAGCTGGGCCAAGAAGCTGAGTGT miR-30bRP TGT+AAA+CATCCTACACT −0.2621 8.5974 0.11 1.13
    SEQ ID NO: 97 SEQ ID NO: 98
    miR-30c miR-30cGSP CATGATCAGCTGGGCCAAGAGCTGAGAGTG miR-30cRP TGT+AAA+CATCCTACACT −0.2703 8.699 0.15 1.48
    SEQ ID NO: 99 SEQ ID NO: 100
    miR-30d miR-30dGSP CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30dRP T+GTAAA+CATCCCCG −0.2506 9.3875 0.23 2.31
    SEQ ID NO: 101 SEQ ID NO: 102
    miR-30e- miR-30e- CATGATCAGCTGGGCCAAGAGCTGTAAAC miR-30e- CTTT+CAGT+CGGATGTTT −0.325 11.144 6.37 63.70
    3p 3pGSP9# SEQ ID NO: 103 3pRP5# SEQ ID NO: 104
    miR-30e- miR-30e- CATGATCAGCTGGGCCAAGATCCAGTCAAG miR-30e- TG+TAAA+CATCCTTGAC −0.2732 8.1604 8.50 85.03
    5p 5pGSP SEQ ID NO: 105 5pRP SEQ ID NO: 106
    miR-31 miR-31GSP CATGATCAGCTGGGCCAAGACAGCTATGCC miR-31RP G+GC+AAGATGCTGGC −0.3068 8.2605 3.74 37.43
    SEQ ID NO: 107 SEQ ID NO: 108
    miR-32 miR-32GSP CATGATCAGCTGGGCCAAGAGCAACTTAGT miR-32RP TATTG+CA+CATTACTAAG −0.2785 8.9581 0.39 3.93
    SEQ ID NO: 109 SEQ ID NO: 110
    miR-33 miR-33GSP2 CATGATCAGCTGGGCCAAGACAATGCAAC miR-33RP G+TG+CATTGTAGTTGC −0.3031 8.42 2.81 28.14
    SEQ ID NO: 111 SEQ ID NO: 112
    miR-34a miR-34aGSP CATGATCAGCTGGGCCAAGAAACAACCAGC miR-34aRP T+GG+CAGTGTCTTAG −0.3062 9.1522 2.40 23.99
    SEQ ID NO: 113 SEQ ID NO: 114
    miR-34b miR-34bGSP CATGATCAGCTGGGCCAAGACAATCAGCTA miR-34bRP TA+GG+CAGTGTCATT −0.3208 9.054 0.04 0.37
    SEQ ID NO: 115 SEQ ID NO: 116
    miR-34c miR-34cGSP CATGATCAGCTGGGCCAAGAGCAATCAGCT miR-34cRP A+GG+CAGTGTAGTTA −0.2995 10.14 1.08 10.83
    SEQ ID NO: 117 SEQ ID NO: 118
    miR-92 miR-92GSP CATGATCAGCTGGGCCAAGACAGGCCGGGA miR-92RP T+AT+TGCACTTGTCCC −0.3012 8.6908 8.92 89.17
    SEQ ID NO: 119 SEQ ID NO: 120
    miR-93 miR-93GSP CATGATCAGCTGGGCCAAGACTACCTGCAC miR-93RP AA+AG+TGCTGTTCGT −0.3025 7.9933 4.63 46.30
    SEQ ID NO: 121 SEQ ID NO: 122
    miR-95 miR-95GSP# CATGATCAGCTGGGCCAAGATGCTCAATAA miR- TT+CAAC+GGGTATTTATTGA −0.3436 9.655 1.68 16.80
    SEQ ID NO: 123 95_RP4# SEQ ID NO: 124
    miR-96 miR-96GSP CATGATCAGCTGGGCCAAGAGCAAAAATGT miR-96RP T+TT+GGCACTAGCAC −0.2968 9.2611 0.00 0.05
    SEQ ID NO: 125 SEQ ID NO: 126
    miR-98 miR-98GSP CATGATCAGCTGGGCCAAGAAACAATACAA miR-98RP TGA+GGT+AGTAAGTTG −0.2797 9.5654 1.05 10.48
    SEQ ID NO: 127 SEQ ID NO: 128
    miR-99a miR-99aGSP CATGATCAGCTGGGCCAAGACACAAGATCG miR-99aRP A+AC+CCGTAGATCCG −0.2768 8.781 0.21 2.08
    SEQ ID NO: 129 SEQ ID NO: 130
    miR-99b miR-99bGSP CATGATCAGCTGGGCCAAGACGCAAGGTCG miR-99bRP C+AC+CCGTAGAACCG −0.2747 7.9855 0.25 2.53
    SEQ ID NO: 131 SEQ ID NO: 132
    miR-100 miR-100GSP CATGATCAGCTGGGCCAAGACACAAGTTCG miR-100RP A+AC+CCGTAGATCCG −0.2902 8.669 0.04 0.35
    SEQ ID NO: 133 SEQ ID NO: 134
    miR-101 miR-101GSP CATGATCAGCTGGGCCAAGACTTCAGTTAT miR-101RP TA+CAG+TACTGTGATAACT −0.3023 8.2976 0.46 4.63
    SEQ ID NO: 135 SEQ ID NO: 136
    miR-103 miR-103GSP CATGATCAGCTGGGCCAAGATCATAGCCCT miR-103RP A+GC+AGCATTGTACA −0.3107 8.5776 0.02 0.21
    SEQ ID NO: 137 SEQ ID NO: 138
    miR-105 miR-105GSP CATGATCAGCTGGGCCAAGAACAGGAGTCT miR-105RP T+CAAA+TGCTCAGACT −0.2667 8.9832 0.93 9.28
    SEQ ID NO: 139 SEQ ID NO: 140
    miR-106a miR-106aGSP CATGATCAGCTGGGCCAAGAGCTACCTGCA miR-106aRP AAA+AG+TGCTTACAGTG −0.3107 8.358 0.03 0.31
    SEQ ID NO: 141 SEQ ID NO: 142
    miR-106b miR-106bGSP CATGATCAGCTGGGCCAAGAATCTGCACTG miR-106bRP T+AAAG+TGCTGACAGT −0.2978 8.7838 0.10 1.04
    SEQ ID NO: 143 SEQ ID NO: 144
    miR-107 miR-107GSP8# CATGATCAGCTGGGCCAAGATGATAGCC miR- A+GC+AGCATTGTACAG −0.304 9.1666 0.34 3.41
    SEQ ID NO: 145 107RP2# SEQ ID NO: 146
    miR-122a miR-122aGSP CATGATCAGCTGGGCCAAGAACAAACACCA miR-122aRP T+GG+AGTGTGACAAT −0.3016 8.1479 0.06 0.58
    SEQ ID NO: 147 SEQ ID NO: 148
    miR-124a miR-124aGSP CATGATCAGCTGGGCCAAGATGGCATTCAC miR-124aRP T+TA+AGGCACGCGGT −0.3013 8.6906 0.56 5.63
    SEQ ID NO: 149 SEQ ID NO: 150
    miR-125a miR-125aGSP CATGATCAGCTGGGCCAAGACACAGGTTAA miR-125aRP T+CC+CTGAGACCCTT −0.2938 8.6754 0.09 0.91
    SEQ ID NO: 151 SEQ ID NO: 152
    miR-125b miR-125bGSP CATGATCAGCTGGGCCAAGATCACAAGTTA miR-125bRP T+CC+CTGAGACCCTA −0.283 8.1251 0.20 1.99
    SEQ ID NO: 153 SEQ ID NO: 154
    miR-126 miR-126GSP CATGATCAGCTGGGCCAAGAGCATTATTAC miR-126RP T+CG+TACCGTGAGTA −0.26 8.937 0.18 1.80
    SEQ ID NO: 155 SEQ ID NO: 156
    miR-126* miR-126*GSP3 CATGATCAGCTGGGCCAAGACGCGTACC miR-126*RP C+ATT+ATTA+CTTTTGGTACG −0.2969 8.184 3.58 35.78
    SEQ ID NO: 157 SEQ ID NO: 158
    miR-127 miR-127GSP CATGATCAGCTGGGCCAAGAAGCCAAGCTC miR-127RP T+CG+GATCCGTCTGA −0.2432 9.1013 1.11 11.13
    SEQ ID NO: 159 SEQ ID NO: 160
    miR-128a miR-128aGSP CATGATCAGCTGGGCCAAGAAAAAGAGACC miR-128aRP T+CA+CAGTGAACCGG −0.2866 8.0867 0.16 1.60
    SEQ ID NO: 161 SEQ ID NO: 162
    miR-128b miR-128bGSP CATGATCAGCTGGGCCAAGAGAAAGAGACC miR-128bRP T+CA+CAGTGAACCGG −0.2923 8.0608 0.07 0.74
    SEQ ID NO: 163 SEQ ID NO: 164
    miR-129 miR-129GSP CATGATCAGCTGGGCCAAGAGCAAGCCCAG miR-129RP CTTTT+TG+CGGTCTG −0.2942 9.7731 0.88 8.85
    SEQ ID NO: 165 SEQ ID NO: 166
    miR-130a miR-130aGSP CATGATCAGCTGGGCCAAGAATGCCCTTTT miR-130aRP C+AG+TGCAATGTTAAAAG −0.2943 8.7465 1.28 12.78
    SEQ ID NO: 167 SEQ ID NO: 168
    miR-130b miR-130bGSP CATGATCAGCTGGGCCAAGAATGCCCTTTC miR-130bRP C+AG+TGCAATGATGA −0.2377 9.1403 3.14 31.44
    SEQ ID NO: 169 SEQ ID NO: 170
    miR-132 miR-132GSP CATGATCAGCTGGGCCAAGACGACCATGGC miR-132RP T+AA+CAGTCTACAGCC −0.2948 8.1167 0.11 1.13
    SEQ ID NO: 171 SEQ ID NO: 172
    miR-133a miR-133aGSP CATGATCAGCTGGGCCAAGAACAGCTGGTT miR-133aRP T+TG+GTCCCCTTCAA −0.295 9.3679 0.10 1.04
    SEQ ID NO: 173 SEQ ID NO: 174
    miR-133b miR-133bGSP CATGATCAGCTGGGCCAAGATAGCTGGTTG miR-133bRP T+TG+GTCCCCTTCAA −0.3062 8.3649 0.02 0.18
    SEQ ID NO: 175 SEQ ID NO: 176
    miR-134 miR-134GSP CATGATCAGCTGGGCCAAGACCCTCTGGTC miR-134RP T+GT+GACTGGTTGAC −0.2965 9.0483 0.14 1.39
    SEQ ID NO: 177 SEQ ID NO: 178
    miR-135a miR-135aGSP CATGATCAGCTGGGCCAAGATCACATAGGA miR-135aRP T+AT+GGCTTTTTATTCCT −0.2914 8.092 1.75 17.50
    SEQ ID NO: 179 SEQ ID NO: 180
    miR-135b miR-135bGSP CATGATCAGCTGGGCCAAGACACATAGGAA miR-135bRP T+AT+GGCTTTTCATTCC −0.2962 7.8986 0.05 0.49
    SEQ ID NO: 181 SEQ ID NO: 182
    miR-136 miR-136GSP CATGATCAGCTGGGCCAAGATCCATCATCA miR-136RP A+CT+CCATTTGTTTTGATG −0.3616 10.229 0.68 6.77
    SEQ ID NO: 183 SEQ ID NO: 184
    miR-137 miR-137GSP CATGATCAGCTGGGCCAAGACTACGCGTAT miR-137RP T+AT+TGCTTAAGAATACGC −0.2876 8.234 8.57 85.71
    SEQ ID NO: 185 SEQ ID NO: 186
    miR-138 miR-138GSP2 CATGATCAGCTGGGCCAAGACGGCCTGAT miR-138RP A+GC+TGGTGTTGTGA −0.3023 9.0814 0.22 2.19
    SEQ ID NO: 187 SEQ ID NO: 188
    miR-139 miR-139GSP CATGATCAGCTGGGCCAAGAAGACACGTGC miR-139RP T+CT+ACAGTGCACGT −0.2983 8.1141 6.92 69.21
    SEQ ID NO: 189 SEQ ID NO: 190
    miR-140 miR-140GSP CATGATCAGCTGGGCCAAGACTACCATAGG miR-140RP A+GT+GGTTTTACCCT −0.2312 8.3231 0.13 1.34
    SEQ ID NO: 191 SEQ ID NO: 192
    miR-141 miR-141GSP9# CATGATCAGCTGGGCCAAGACCATCTTTA miR- TAA+CAC+TGTCTGGTAA −0.2805 9.6671 0.13 1.26
    SEQ ID NO: 193 141RP2# SEQ ID NO: 194
    miR-142- miR-142- CATGATCAGCTGGGCCAAGATCCATAAA miR-142- TGT+AG+TGTTTCCTACT −0.2976 8.4046 0.03 0.27
    3p 3pGSP3 SEQ ID NO: 195 3pRP SEQ ID NO: 196
    miR-143 miR-143GSP8# CATGATCAGCTGGGCCAAGATGAGCTAC miR- T+GA+GATGAAGCACTG −0.3008 9.2675 0.37 3.71
    SEQ ID NO: 197 143RP2# SEQ ID NO: 198
    miR-144 miR-144GSP2 CATGATCAGCTGGGCCAAGACTAGTACAT miR-144RP TA+CA+GTAT+AGATGATG −0.2407 9.4441 0.95 9.52
    SEQ ID NO: 199 SEQ ID NO: 200
    miR-145 miR-145GSP2 CATGATCAGCTGGGCCAAGAAAGGGATTC miR-145RP G+TC+CAGTTTTCCCA −0.2937 8.0791 0.39 3.86
    SEQ ID NO: 201 SEQ ID NO: 202
    miR-146 miR-146GSP3 CATGATCAGCTGGGCCAAGAAACCCATG miR-146RP T+GA+GAACTGAATTCCA −0.2861 8.8246 0.08 0.75
    SEQ ID NO: 203 SEQ ID NO: 204
    miR-147 miR-147GSP CATGATCAGCTGGGCCAAGAGCAGAAGCAT miR-147RP G+TG+TGTGGAAATGC −0.2989 8.8866 1.65 16.47
    SEQ ID NO: 205 SEQ ID NO: 206
    miR-148a miR-148aGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR- T+CA+GTGCACTACAGAACT −0.2928 9.4654 1.27 12.65
    SEQ ID NO: 207 148aRP2 SEQ ID NO: 208
    miR-148b miR-148bGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR-148bRP T+CA+GTGCATCACAG −0.2982 10.417 0.24 2.44
    SEQ ID NO: 209 SEQ ID NO: 210
    miR-149 miR-149GSP2 CATGATCAGCTGGGCCAAGAGGAGTGAAG miR-149RP T+CT+GGCTCCGTGTC −0.2996 8.3392 2.15 21.50
    SEQ ID NO: 211 SEQ ID NO: 212
    miR-150 miR-150GSP3 CATGATCAGCTGGGCCAAGACACTGGTA miR-150RP T+CT+CCCAACCCTTG −0.2943 8.3945 0.06 0.56
    SEQ ID NO: 213 SEQ ID NO: 214
    miR-151 miR-151GSP2 CATGATCAGCTGGGCCAAGACCTCAAGGA miR-151RP A+CT+AGACTGAAGCTC −0.2975 8.651 0.16 1.60
    SEQ ID NO: 215 SEQ ID NO: 216
    miR-152 miR-152GSP2 CATGATCAGCTGGGCCAAGACCCAAGTTC miR-152RP T+CA+GTGCATGACAG −0.2741 8.7404 0.33 3.25
    SEQ ID NO: 217 SEQ ID NO: 218
    miR-153 miR-153GSP2 CATGATCAGCTGGGCCAAGATCACTTTTG miR-153RP TTG+CAT+AGTCACAAAA −0.2723 9.5732 3.32 33.19
    SEQ ID NO: 219 SEQ ID NO: 220
    miR-154* miR- CATGATCAGCTGGGCCAAGAAATAGGTCA miR- AATCA+TA+CACGGTTGAC −0.3056 8.8502 0.07 0.74
    154*GSP9# SEQ ID NO: 221 154*RP2# SEQ ID NO: 222
    miR-154 miR-154GSP9# CATGATCAGCTGGGCCAAGACGAAGGCAA miR- TA+GGTTA+TCCGTGTT −0.3062 9.3947 0.10 0.96
    SEQ ID NO: 223 154RP3# SEQ ID NO: 224
    miR-155 miR-155GSP8# CATGATCAGCTGGGCCAAGACCCCTATC miR- TT+AA+TGCTAATCGTGATAGG −0.3201 8.474 5.49 54.91
    SEQ ID NO: 225 155RP2# SEQ ID NO: 226
    miR-181a miR- CATGATCAGCTGGGCCAAGAACTCACCGA miR- AA+CATT+CAACGCTGTC −0.2919 7.968 1.70 17.05
    181aGSP9# SEQ ID NO: 227 181aRP2# SEQ ID NO: 228
    miR-181c miR- CATGATCAGCTGGGCCAAGAACTCACCGA miR- AA+CATT+CAACCTGTCG −0.3102 7.9029 1.08 10.78
    181cGSP9# SEQ ID NO: 229 181cRP2# SEQ ID NO: 230
    miR-182* miR-182*GSP CATGATCAGCTGGGCCAAGATAGTTGGCAA miR-182*RP T+GG+TTCTAGACTTGC −0.2978 8.5876 4.25 42.47
    SEQ ID NO: 231 SEQ ID NO: 232
    miR-182 miR-182GSP2 CATGATCAGCTGGGCCAAGATGTGAGTTC miR-182RP TTT+GG+CAATGGTAG −0.2863 9.0854 1.52 15.20
    SEQ ID NO: 233 SEQ ID NO: 234
    miR-183 miR-183GSP2 CATGATCAGCTGGGCCAAGACAGTGAATT miR-183RP T+AT+GGCACTGGTAG −0.2774 9.9254 1.95 19.51
    SEQ ID NO: 235 SEQ ID NO: 236
    miR-184 miR-184GSP2 CATGATCAGCTGGGCCAAGAACCCTTATC miR-184RP T+GG+ACGGAGAACTG −0.2906 7.9585 0.05 0.49
    SEQ ID NO: 237 SEQ ID NO: 238
    miR-186 miR-186GSP9# CATGATCAGCTGGGCCAAGAAAGCCCAAA miR- CA+AA+GAATT+CTCCTTTTGG −0.2861 8.6152 0.32 3.18
    SEQ ID NO: 239 186RP3# SEQ ID NO: 240
    miR-187 miR-187GSP CATGATCAGCTGGGCCAAGACGGCTGCAAC miR-187RP T+CG+TGTCTTGTGTT −0.2953 7.9329 1.23 12.31
    SEQ ID NO: 241 SEQ ID NO: 242
    miR-188 miR-188GSP CATGATCAGCTGGGCCAAGAACCCTCCACC miR-188RP C+AT+CCCTTGCATGG −0.2925 8.0782 8.49 84.92
    SEQ ID NO: 243 SEQ ID NO: 244
    miR-189 miR-189GSP2 CATGATCAGCTGGGCCAAGAACTGATATC miR-189RP G+TG+CCTACTGAGCT −0.2981 8.8964 0.21 2.08
    SEQ ID NO: 245 SEQ ID NO: 246
    miR-190 miR-190GSP9# CATGATCAGCTGGGCCAAGAACCTAATAT miR- T+GA+TA+TGTTTGATATATT −0.3317 9.8766 0.43 4.34
    SEQ ID NO: 247 190RP4# AG
    SEQ ID NO: 248
    miR-191 miR-191GSP2 CATGATCAGCTGGGCCAAGAAGCTGCTTT miR-191RP2 C+AA+CGGAATCCCAAAAG −0.299 9.0317 0.41 4.07
    SEQ ID NO: 249 SEQ ID NO: 250
    miR-192 miR-192GSP2 CATGATCAGCTGGGCCAAGAGGCTGTCAA miR-192RP C+TGA+CCTATGAATTGAC −0.2924 9.5012 1.10 10.98
    SEQ ID NO: 251 SEQ ID NO: 252
    miR-193 miR-193GSP9# CATGATCAGCTGGGCCAAGACTGGGACTT miR- AA+CT+GGCCTACAAAG −0.3183 8.9942 0.17 1.72
    SEQ ID NO: 253 193RP2# SEQ ID NO: 254
    miR-194 mir194GSP8# CATGATCAGCTGGGCCAAGATCCACATG mir194RP# TG+TAA+CAGCAACTCCA −0.3078 8.8045 0.37 3.69
    SEQ ID NO: 255 SEQ ID NO: 256
    miR-195 miR-195GSP9# CATGATCAGCTGGGCCAAGAGCCAATATT miR- T+AG+CAG+CACAGAAATA −0.2955 10.213 0.76 7.58
    SEQ ID NO: 257 195RP3# SEQ ID NO: 258
    miR-196b miR-196bGSP CATGATCAGCTGGGCCAAGACCAACAACAG miR-196bRP TA+GGT+AGTTTCCTGT −0.301 8.1641 1.47 14.66
    SEQ ID NO: 259 SEQ ID NO: 260
    miR-196a miR-196aGSP CATGATCAGCTGGGCCAAGACCAACAACAT miR-196aRP TA+GG+TAGTTTCATGTTG −0.2932 8.0448 8.04 80.37
    SEQ ID NO: 261 SEQ ID NO: 262
    miR-197 miR-197GSP2 CATGATCAGCTGGGCCAAGAGCTGGGTGG miR-197RP TT+CA+CCACCTTCTC −0.289 8.2822 0.71 7.10
    SEQ ID NO: 263 SEQ ID NO: 264
    miR-198 miR-198GSP3 CATGATCAGCTGGGCCAAGACCTATCTC miR-198RP G+GT+CCAGAGGGGAG −0.2986 8.1359 0.31 3.15
    SEQ ID NO: 265 SEQ ID NO: 266
    miR- miR- CATGATCAGCTGGGCCAAGAAACCAATGT miR- T+AC+AGTAGTCTGCAC −0.3029 9.0509 0.25 2.52
    199a* 199a*GSP2 SEQ ID NO: 267 199a*RP SEQ ID NO: 268
    miR-199a miR-199aGSP2 CATGATCAGCTGGGCCAAGAGAACAGGTA miR-199aRP C+CC+AGTGTTCAGAC −0.3187 9.2268 0.12 1.16
    SEQ ID NO: 269 SEQ ID NO: 270
    miR-199b miR-199bGSP CATGATCAGCTGGGCCAAGAGAACAGATAG miR-199bRP C+CC+AGTGTTTAGAC −0.3165 9.3935 2.00 20.04
    SEQ ID NO: 271 SEQ ID NO: 272
    miR-200a miR-200aGSP2 CATGATCAGCTGGGCCAAGAACATCGTTA miR-200aRP TAA+CAC+TGTCTGGT −0.2754 9.1227 0.08 0.78
    SEQ ID NO: 273 SEQ ID NO: 274
    miR-200b miR-200bGSP2 CATGATCAGCTGGGCCAAGAGTCATCATT miR-200bRP TAATA+CTG+CCTGGTAAT −0.2935 8.5461 0.08 0.85
    SEQ ID NO: 275 SEQ ID NO: 276
    miR-202 miR-202 CATGATCAGCTGGGCCAAGATTTTCCCATG miR-202RP# A+GA+GGTATA+GGGCAT −0.2684 9.056 0.25 2.48
    GSP10# SEQ ID NO: 277 SEQ ID NO: 278
    miR-203 miR-203GSP2 CATGATCAGCTGGGCCAAGACTAGTGGTC miR-203RP G+TG+AAATGTTTAGGACC −0.2852 8.1279 1.60 16.03
    SEQ ID NO: 279 SEQ ID NO: 280
    miR-204 miR-204GSP2 CATGATCAGCTGGGCCAAGAAGGCATAGG miR-204RP T+TC+CCTTTGTCATCC −0.2925 8.7648 0.16 1.59
    SEQ ID NO: 281 SEQ ID NO: 282
    miR-205 miR-205GSP CATGATCAGCTGGGCCAAGACAGACTCCGG miR-205RP T+CCTT+CATTCCACC −0.304 8.2407 9.21 92.15
    SEQ ID NO: 283 SEQ ID NO: 284
    miR-206 mir206GSP7# CATGATCAGCTGGGCCAAGACCACACA miR-206RP# T+G+GAA+TGTAAGGAAGTGT −0.2815 8.2206 0.29 2.86
    SEQ ID NO: 285 SEQ ID NO: 286
    miR-208 miR- CATGATCAGCTGGGCCAAGAACAAGCTTTTTGC miR- ATAA+GA+CG+AGCAAAAAG −0.2072 7.9097 57.75 577.52
    208_GSP13# SEQ ID NO: 287 208_RP4# SEQ ID NO: 288
    miR-210 miR-210GSP CATGATCAGCTGGGCCAAGATCAGCCGCTG miR-210RP C+TG+TGCGTGTGACA −0.2717 8.249 0.18 1.77
    SEQ ID NO: 289 SEQ ID NO: 290
    miR-211 miR-211GSP2 CATGATCAGCTGGGCCAAGAAGGCGAAGG miR-211RP T+TC+CCTTTGTCATCC −0.2926 8.3106 0.10 1.00
    SEQ ID NO: 291 SEQ ID NO: 292
    miR-212 miR-212GSP9# CATGATCAGCTGGGCCAAGAGGCCGTGAC miR- T+AA+CAGTCTCCAGTCA −0.2916 8.0745 0.59 5.86
    SEQ ID NO: 293 212RP2# SEQ ID NO: 294
    miR-213 miR-213GSP CATGATCAGCTGGGCCAAGAGGTACAATCA miR-213RP A+CC+ATCGACCGTTG −0.2934 8.1848 2.96 29.59
    SEQ ID NO: 295 SEQ ID NO: 296
    miR-214 miR-214GSP CATGATCAGCTGGGCCAAGACTGCCTGTCT miR-214RP A+CA+GCAGGCACAGA −0.2947 7.82 0.84 8.44
    SEQ ID NO: 297 SEQ ID NO: 298
    miR-215 miR-215GSP2 CATGATCAGCTGGGCCAAGAGTCTGTCAA miR-215RP A+TGA+CCTATGAATTGAC −0.2932 8.9273 1.51 15.05
    SEQ ID NO: 299 SEQ ID NO: 300
    miR-216 miR-216GSP9# CATGATCAGCTGGGCCAAGACACAGTTGC mir216RP# TAA+TCT+CAGCTGGCA −0.273 8.5829 0.95 9.50
    SEQ ID NO: 301 SEQ ID NO: 302
    miR-217 miR-217GSP2 CATGATCAGCTGGGCCAAGAATCCAATCA miR-217RP2 T+AC+TGCATCAGGAACTGA −0.3089 9.6502 0.07 0.71
    SEQ ID NO: 303 SEQ ID NO: 304
    miR-218 miR-218GSP2 CATGATCAGCTGGGCCAAGAACATGGTTA miR-218RP TTG+TGCTT+GATCTAAC −0.2778 8.4363 1.00 10.05
    SEQ ID NO: 305 SEQ ID NO: 306
    miR-220 miR-220GSP CATGATCAGCTGGGCCAAGAAAAGTGTCAG miR-220RP C+CA+CACCGTATCTG −0.2755 9.0728 8.88 88.75
    SEQ ID NO: 307 SEQ ID NO: 308
    miR-221 miR-221GSP9# CATGATCAGCTGGGCCAAGAGAAACCCAG miR-221RP# A+GC+TACATTGTCTGC −0.2886 8.5743 0.12 1.17
    SEQ ID NO: 309 SEQ ID NO: 310
    miR-222 miR-222GSP8# CATGATCAGCTGGGCCAAGAGAGACCCA miR-222RP# A+GC+TACATCTGGCT −0.283 8.91 1.64 16.41
    SEQ ID NO: 311 SEQ ID NO: 312
    miR-223 miR-223GSP CATGATCAGCTGGGCCAAGAGGGGTATTTG miR-223RP TG+TC+AGTTTGTCAAA −0.2998 8.6669 0.94 9.44
    SEQ ID NO: 313 SEQ ID NO: 314
    miR-224 miR-224GSP8# CATGATCAGCTGGGCCAAGATAAACGGA miR- C+AAG+TCACTAGTGGTT −0.2802 7.5575 0.56 5.63
    SEQ ID NO: 315 224RP2# SEQ ID NO: 316
    miR-296 miR-296GSP9# CATGATCAGCTGGGCCAAGAACAGGATTG miR- A+GG+GCCCCCCCTCAA −0.3178 8.3856 0.10 0.96
    SEQ ID NO: 317 296RP2# SEQ ID NO: 318
    miR-299 miR-299GSP9# CATGATCAGCTGGGCCAAGAATGTATGTG miR-299RP# T+GG+TTTACCGTCCC −0.3155 7.9383 1.30 12.96
    SEQ ID NO: 319 SEQ ID NO: 320
    miR-301 miR-301GSP CATGATCAGCTGGGCCAAGAGCTTTGACAA miR-301RP C+AG+TGCAATAGTATTGT −0.2839 8.314 2.55 25.52
    SEQ ID NO: 321 SEQ ID NO: 322
    miR- miR-302a*GSP CATGATCAGCTGGGCCAAGAAAAGCAAGTA miR- TAAA+CG+TGGATGTAC −0.2608 8.3921 0.04 0.41
    302a* SEQ ID NO: 323 302a*RP SEQ ID NO: 324
    miR-302a miR-302aGSP CATGATCAGCTGGGCCAAGATCACCAAAAC miR-302aRP T+AAG+TGCTTCCATGT −0.2577 9.6657 2.17 21.67
    SEQ ID NO: 325 SEQ ID NO: 326
    miR- miR-302b*GSP CATGATCAGCTGGGCCAAGAAGAAAGCACT miR- A+CTTTAA+CATGGAAGTG −0.2702 8.5153 0.02 0.24
    302b* SEQ ID NO: 327 302b*RP SEQ ID NO: 328
    miR-302b miR-302bGSP CATGATCAGCTGGGCCAAGACTACTAAAAC miR-302bRP T+AAG+TGCTTCCATGT −0.2398 9.1459 5.11 51.11
    SEQ ID NO: 329 SEQ ID NO: 330
    miR-302d miR-302dGSP CATGATCAGCTGGGCCAAGAACACTCAAAC miR-302dRP T+AAG+TGCTTCCATGT −0.2368 8.5602 5.98 59.78
    SEQ ID NO: 331 SEQ ID NO: 332
    miR- miR- CATGATCAGCTGGGCCAAGACAGCAGGTA miR- TT+TAA+CAT+GGGGGTACC −0.312 8.2904 0.33 3.28
    302c* 302c*_GSP9# SEQ ID NO: 333 302c*_RP2# SEQ ID NO: 334
    miR-302c miR- CATGATCAGCTGGGCCAAGACCACTGAAA miR- T+AAG+TGCTTCCATGTTTCA −0.2945 8.381 14.28 142.76
    302cGSP9# SEQ ID NO: 335 302cRP5# SEQ ID NO: 336
    miR-320 miR- CATGATCAGCTGGGCCAAGATTCGCCCT miR- AAAA+GCT+GGGTTGAGAGG −0.2677 7.8956 6.73 67.29
    320_GSP8# SEQ ID NO: 337 320_RP3# SEQ ID NO: 338
    miR-323 miR-323GSP CATGATCAGCTGGGCCAAGAAGAGGTCGAC miR-323RP G+CA+CATTACACGGT −0.2878 8.2546 0.19 1.92
    SEQ ID NO: 339 SEQ ID NO: 340
    miR-324- miR-324- CATGATCAGCTGGGCCAAGACCAGCAGCAC miR-324- C+CA+CTGCCCCAGGT −0.2698 8.5223 2.54 25.41
    3p 3pGSP SEQ ID NO: 341 3pRP SEQ ID NO: 342
    miR-324- miR-324- CATGATCAGCTGGGCCAAGAACACCAATGC miR-324- C+GC+ATCCCCTAGGG −0.2861 7.6865 0.06 0.62
    5p 5pGSP SEQ ID NO: 343 5pRP SEQ ID NO: 344
    miR-325 miR-325GSP CATGATCAGCTGGGCCAAGAACACTTACTG miR-325RP C+CT+AGTAGGTGTCC −0.2976 8.1925 0.01 0.14
    SEQ ID NO: 345 SEQ ID NO: 346
    miR-326 miR-326GSP CATGATCAGCTGGGCCAAGACTGGAGGAAG miR-326RP C+CT+CTGGGCCCTTC −0.2806 7.897 0.59 5.87
    SEQ ID NO: 347 SEQ ID NO: 348
    miR-328 miR-328GSP CATGATCAGCTGGGCCAAGAACGGAAGGGC miR-328RP C+TG+GCCCTCTCTGC −0.293 7.929 3.17 31.69
    SEQ ID NO: 349 SEQ ID NO: 350
    miR-330 miR-330GSP CATGATCAGCTGGGCCAAGATCTCTGCAGG miR-330RP G+CA+AAGCACACGGC −0.3009 7.7999 0.13 1.30
    SEQ ID NO: 351 SEQ ID NO: 352
    miR-331 miR-331GSP CATGATCAGCTGGGCCAAGATTCTAGGATA miR-331RP G+CC+CCTGGGCCTAT −0.2816 8.1643 0.45 4.54
    SEQ ID NO: 353 SEQ ID NO: 354
    miR-337 miR-337GSP CATGATCAGCTGGGCCAAGAAAAGGCATCA miR-337RP T+CC+AGCTCCTATATG −0.2968 8.7313 0.10 1.02
    SEQ ID NO: 355 SEQ ID NO: 356
    miR-338 miR-338GSP CATGATCAGCTGGGCCAAGATCAACAAAAT miR-338RP2 T+CC+AGCATCAGTGATTT −0.2768 8.5618 0.52 5.17
    SEQ ID NO: 357 SEQ ID NO: 358
    miR-339 miR-339GSP9# CATGATCAGCTGGGCCAAGATGAGCTCCT miR- T+CC+CTGTCCTCCAGG −0.303 8.4873 0.27 2.72
    SEQ ID NO: 359 339RP2# SEQ ID NO: 360
    miR-340 miR-340GSP CATGATCAGCTGGGCCAAGAGGCTATAAAG miR-340RP TC+CG+TCTCAGTTAC −0.2846 9.6673 0.15 1.45
    SEQ ID NO: 361 SEQ ID NO: 362
    miR-342 miR-342GSP3 CATGATCAGCTGGGCCAAGAGACGGGTG miR-342RP T+CT+CACACAGAAATCG −0.293 8.1553 4.69 46.85
    SEQ ID NO: 363 SEQ ID NO: 364
    miR-345 miR-345GSP CATGATCAGCTGGGCCAAGAGCCCTGGACT miR-345RP T+GC+TGACTCCTAGT −0.2909 8.468 0.04 0.40
    SEQ ID NO: 365 SEQ ID NO: 366
    miR-346 miR-346GSP CATGATCAGCTGGGCCAAGAAGAGGCAGGC miR-346RP T+GT+CTGCCCGCATG −0.2959 8.1958 0.25 2.54
    SEQ ID NO: 367 SEQ ID NO: 368
    miR-363 miR-363 CATGATCAGCTGGGCCAAGATACAGATGGA miR-363RP# AAT+TG+CAC+GGTATCC −0.2362 8.9762 0.44 4.36
    GSP10# SEQ ID NO: 369 SEQ ID NO: 370
    miR-367 miR-367GSP CATGATCAGCTGGGCCAAGATCACCATTGC miR-367RP AAT+TG+CACTTTAGCAAT −0.2819 8.6711 0.00 0.03
    SEQ ID NO: 371 SEQ ID NO: 372
    miR-368 miR-368GSP CATGATCAGCTGGGCCAAGAAAACGTGGAA miR-368RP2 A+CATAGA+GGAAATTCCAC −0.2953 8.0067 6.01 60.11
    SEQ ID NO: 373 SEQ ID NO: 374
    miR-370 miR-370GSP CATGATCAGCTGGGCCAAGACCAGGTTCCA miR-370RP G+CC+TGCTGGGGTGG −0.2825 8.3162 1.45 14.55
    SEQ ID NO: 375 SEQ ID NO: 376
    miR-371 miR-371GSP CATGATCAGCTGGGCCAAGAACACTCAAAA miR-371RP G+TG+CCGCCATCTTT −0.295 7.8812 2.51 25.12
    SEQ ID NO: 377 SEQ ID NO: 378
    miR-372 miR-372GSP CATGATCAGCTGGGCCAAGAACGCTCAAAT miR-372RP A+AA+GTGCTGCGACA −0.2984 8.9183 0.05 0.53
    SEQ ID NO: 379 SEQ ID NO: 380
    miR-373* miR-373*GSP CATGATCAGCTGGGCCAAGAGGAAAGCGCC miR-373*RP A+CT+CAAAATGGGGG −0.2705 8.4513 0.20 1.99
    SEQ ID NO: 381 SEQ ID NO: 382
    miR-373 miR-373GSP CATGATCAGCTGGGCCAAGAACACCCCAAA miR-373RP2 GA+AG+TGCTTCGATTTTGG −0.307 7.9056 9.13 91.32
    SEQ ID NO: 383 SEQ ID NO: 384
    miR-374 miR-374GSP2 CATGATCAGCTGGGCCAAGACACTTATCA miR-374RP TT+AT+AATA+CAACCTGATA −0.2655 9.3795 9.16 91.60
    SEQ ID NO: 385 AG
    SEQ ID NO: 386
    miR-375 miR-375GSP CATGATCAGCTGGGCCAAGATCACGCGAGC miR-375RP TT+TG+TTCGTTCGGC −0.3041 8.1181 0.09 0.90
    SEQ ID NO: 387 SEQ ID NO: 388
    miR-376b miR-376b CATGATCAGCTGGGCCAAGAAACATGGA miR- AT+CAT+AGA+GGAAAATCCA −0.2934 9.0188 1.07 10.74
    GSP8# SEQ ID NO: 389 376bRP# SEQ ID NO: 390
    miR-378 miR-378GSP CATGATCAGCTGGGCCAAGAACACAGGACC miR-378RP C+TC+CTGACTCCAGG −0.2899 8.1467 0.07 0.73
    SEQ ID NO: 391 SEQ ID NO: 392
    miR-379 miR- CATGATCAGCTGGGCCAAGATACGTTC miR- T+GGT+AGACTATGGAACG −0.2902 8.2149 10.89 108.86
    379_GSP7# SEQ ID NO: 393 379RP2# SEQ ID NO: 394
    miR-380- miR-380- CATGATCAGCTGGGCCAAGAGCGCATGTTC miR-380- T+GGT+TGACCATAGA −0.2462 9.4324 1.30 13.04
    5p 5pGSP SEQ ID NO: 395 5pRP SEQ ID NO: 396
    miR-380- miR-380- CATGATCAGCTGGGCCAAGAAAGATGTGGA miR-380- TA+TG+TAATATGGTCCACA −0.3037 8.0356 3.69 36.89
    3p 3pGSP SEQ ID NO: 397 3pRP SEQ ID NO: 398
    miR-381 miR-381GSP2 CATGATCAGCTGGGCCAAGAACAGAGAGC miR-381RP2 TATA+CAA+GGGCAAGCT −0.3064 8.8704 1.72 17.16
    SEQ ID NO: 399 SEQ ID NO: 400
    miR-382 miR-382GSP CATGATCAGCTGGGCCAAGACGAATCCACC miR-382RP G+AA+GTTGTTCGTGGT −0.2803 7.6738 0.66 6.57
    SEQ ID NO: 401 SEQ ID NO: 402
    miR-383 miR-383GSP CATGATCAGCTGGGCCAAGAAGCCACAATC miR-383RP2 A+GATC+AGAAGGTGATTGT −0.2866 8.1463 0.54 5.45
    SEQ ID NO: 403 SEQ ID NO: 404
    miR-410 miR-410 CATGATCAGCTGGGCCAAGAACAGGCCAT miR-410RP# AA+TA+TAA+CA+CAGATGGC −0.2297 8.5166 4.27 42.71
    GSP9# SEQ ID NO: 405 SEQ ID NO: 406
    miR-412 miR-412 CATGATCAGCTGGGCCAAGAACGGCTAGTG miR-412RP# A+CTT+CACCTGGTCCACTA −0.3001 7.9099 4.24 42.37
    GSP10# SEQ ID NO: 407 SEQ ID NO: 408
    miR-422a miR-422aGSP CATGATCAGCTGGGCCAAGAGGCCTTCTGA miR-422aRP C+TG+GACTTAGGGTC −0.3079 9.3108 5.95 59.54
    SEQ ID NO: 409 SEQ ID NO: 410
    miR-422b miR-422bGSP CATGATCAGCTGGGCCAAGAGGCCTTCTGA miR-422bRP C+TG+GACTTGGAGTC −0.2993 8.9437 4.86 48.56
    SEQ ID NO: 411 SEQ ID NO: 412
    miR-423 miR-423GSP CATGATCAGCTGGGCCAAGACTGAGGGGCC miR-423RP A+GC+TCGGTCTGAGG −0.3408 9.2274 6.06 60.62
    SEQ ID NO: 413 SEQ ID NO: 414
    miR-424 miR-424GSP# CATGATCAGCTGGGCCAAGATTCAAAACAT miR- C+AG+CAGCAATTCATGTTTT −0.3569 9.3419 10.78 107.85
    SEQ ID NO: 415 424RP2# SEQ ID NO: 416
    miR-425 miR-425GSP CATGATCAGCTGGGCCAAGAGGCGGACACG miR-425RP A+TC+GGGAATGTCGT −0.2932 7.9786 0.39 3.93
    SEQ ID NO: 417 SEQ ID NO: 418
    miR-429 miR- CATGATCAGCTGGGCCAAGAACGGTTTTACC miR- T+AATAC+TG+TCTGGTAAAA −0.2458 8.2805 16.21 162.12
    429_GSP11# SEQ ID NO: 419 429RP5# SEQ ID NO: 420
    miR-431 miR-431 CATGATCAGCTGGGCCAAGATGCATGACGG miR-431RP# T+GT+CTTGCAGGCCG −0.3107 7.7127 7.00 70.05
    GSP10# SEQ ID NO: 421 SEQ ID NO: 422
    miR-448 miR-448GSP CATGATCAGCTGGGCCAAGAATGGGACATC miR-448RP TTG+CATA+TGTAGGATG −0.3001 8.4969 0.12 1.16
    SEQ ID NO: 423 SEQ ID NO: 424
    miR-449 miR- CATGATCAGCTGGGCCAAGAACCAGCTAAC miR- T+GG+CAGTGTATTGTTAGC −0.3225 8.4953 2.57 25.70
    449GSP10# SEQ ID NO: 425 449RP2# SEQ ID NO: 426
    miR-450 miR-450GSP CATGATCAGCTGGGCCAAGATATTAGGAAC miR-450RP TTTT+TG+CGATGTGTT −0.2906 8.1404 0.48 4.82
    SEQ ID NO: 427 SEQ ID NO: 428
    miR-451 miR-451 CATGATCAGCTGGGCCAAGAAAACTCAGTA miR-451RP# AAA+CCG+TTA+CCATTACTGA −0.2544 8.0291 1.73 17.35
    GSP10# SEQ ID NO: 429 SEQ ID NO: 430
    let7a let7a-GSP2# CATGATCAGCTGGGCCAAGAAACTATAC let7a-RP# T+GA+GGTAGTAGGTTG −0.3089 9.458 0.04 0.38
    SEQ ID NO: 431 SEQ ID NO: 432
    let7b let7b-GSP2# CATGATCAGCTGGGCCAAGAAACCACAC let7b-RP# T+GA+GGTAGTAGGTTG −0.2978 7.9144 0.05 0.54
    SEQ ID NO: 433 SEQ ID NO: 432
    let7c let7c-GSP2# CATGATCAGCTGGGCCAAGAAACCATAC let7c-RP# T+GA+GGTAGTAGGTTG −0.308 7.9854 0.01 0.14
    SEQ ID NO: 434 SEQ ID NO: 432
    let7d let7d-GSP2# CATGATCAGCTGGGCCAAGAACTATGCA let7d-RP# A+GA+GGTAGTAGGTTG −0.3238 8.3359 0.06 0.57
    SEQ ID NO: 435 SEQ ID NO: 436
    let7e let7e-GSP2# CATGATCAGCTGGGCCAAGAACTATACA let7e-RP# T+GA+GGTAGGAGGTTG −0.3284 9.7594 0.22 2.20
    SEQ ID NO: 437 SEQ ID NO: 438
    let7f let7f-GSP2# CATGATCAGCTGGGCCAAGAAACTATAC let7f-RP# T+GA+GGTAGTAGATTG −0.2901 11.107 0.32 3.18
    SEQ ID NO: 439 SEQ ID NO: 440
    let7g let7g-GSP2# CATGATCAGCTGGGCCAAGAACTGTACA let7g-RP# T+GA+GGTAGTAGTTTG −0.3469 9.8235 0.16 1.64
    SEQ ID NO: 441 SEQ ID NO: 442
    let7i let7i-GSP2# CATGATCAGCTGGGCCAAGAACAGCACA let7i-RP# T+GA+GGTAGTAGTTTG −0.321 10.82 0.20 1.99
    SEQ ID NO: 443 SEQ ID NO: 444
    miR-377 miR-377GSP CATGATCAGCTGGGCCAAGAACAAAAGTTG miR-377RP2 AT+CA+CACAAAGGCAAC −0.2979 10.612 13.45 134.48
    SEQ ID NO: 445 SEQ ID NO: 446
    miR-376a miR- CATGATCAGCTGGGCCAAGAACGTGGA miR- AT+CAT+AGA+GGAAAATCC −0.2938 10.045 63.00 630.00
    376a_GSP7 SEQ ID NO: 447 376a_RP5 SEQ ID NO: 448
    miR-22 miR-22GSP CATGATCAGCTGGGCCAAGAACAGTTCTTC miR-22RP A+AG+CTGCCAGTTGA −0.2862 8.883 20.46 204.58
    SEQ ID NO: 449 SEQ ID NO: 450
    miR-200c miR-200cGSP2 CATGATCAGCTGGGCCAAGACCATCATTA miR-200cRP T+AA+TACTGCCGGGT −0.3094 11.5 15.99 159.91
    SEQ ID NO: 451 SEQ ID NO: 452
    miR-24 miR-24GSP CATGATCAGCTGGGCCAAGACTGTTCCTGC miR-24RP T+GG+CTCAGTTCAGC −0.3123 8.6824 24.34 243.38
    SEQ ID NO: 453 SEQ ID NO: 454
    miR- miR-29cGSP10 CATGATCAGCTGGGCCAAGAACCGATTTCA miR-29cRP T+AG+CACCATTTGAAAT −0.2975 8.8441 23.22 232.17
    29cDNA SEQ ID NO: 455 SEQ ID NO: 456
    miR-18 miR-18GSP CATGATCAGCTGGGCCAAGATATCTGCACT miR-18RP T+AA+GGTGCATCTAGT −0.3209 9.0999 14.90 149.01
    SEQ ID NO: 457 SEQ ID NO: 458
    miR-185 miR-185GSP CATGATCAGCTGGGCCAAGAGAACTGCCTT miR-185RP T+GG+AGAGAAAGGCA −0.3081 8.9289 15.73 157.32
    SEQ ID NO: 459 SEQ ID NO: 460
    miR-181b miR- CATGATCAGCTGGGCCAAGACCCACCGA miR- AA+CATT+CATTGCTGTC −0.3115 10.846 15.87 158.67
    181bGSP8# SEQ ID NO: 461 181bRP2# SEQ ID NO: 462
    miR-128a miR-128aGSP CATGATCAGCTGGGCCAAGAAAAAGAGACC miR- TCACAGTGAACCGGT approx. approx. approx. approx.
    SEQ ID NO: 161 128anLRP SEQ ID NO: 494 −0.2866 8.0867 0.16 1.60
    miR-138 miR-138GSP2 CATGATCAGCTGGGCCAAGACGGCCTGAT miR- AGCTGGTGTTGTGAA approx. approx. approx. approx.
    SEQ ID NO: 187 138nLRP SEQ ID NO: 495 −0.3023 9.0814 0.22 2.19
    miR-143 miR-143GSP8# CATGATCAGCTGGGCCAAGATGAGCTAC miR- TGAGATGAAGCACTGT approx. approx. approx. approx.
    SEQ ID NO: 197 143nLRP SEQ ID NO: 496 −0.3008 9.2675 0.37 3.71
    miR-150 miR-150GSP3 CATGATCAGCTGGGCCAAGACACTGGTA miR- TCTCCCAACCCTTGTA approx. approx. approx. approx.
    SEQ ID NO: 213 150nLRP SEQ ID NO: 497 −0.2943 8.3945 0.06 0.56
    miR-181a miR- CATGATCAGCTGGGCCAAGAACTCACCGA miR- AACATTCAACGCTGT approx. approx. approx. approx.
    181aGSP9# SEQ ID NO: 227 181anLRP SEQ ID NO: 498 −0.2919 7.968 1.70 17.05
    miR-194 mir194GSP8# CATGATCAGCTGGGCCAAGATCCACATG miR- TGTAACAGCAACTCCA approx. approx. approx. approx.
    SEQ ID NO: 255 194nLRP SEQ ID NO: 499 −0.3078 8.8045 0.37 3.69
    #denotes primers for assays that required extensive testing and primer design modification to achieve optimal assay results including high sensitivity and high dynamic range.
  • Example 4
  • This Example describes assays and primers designed for quantitative analysis of murine miRNA expression patterns.
  • Methods: The representative murine microRNA target templates described in TABLE 7 are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144. As indicated below in TABLE 7, the murine microRNA templates are either totally identical to the corresponding human microRNA templates, identical in the overlapping sequence with differing ends, or contain one or more base pair changes as compared to the human microRNA sequence. The murine microRNA templates that are identical or that have identical overlapping sequence to the corresponding human templates can be assayed using the same primer sets designed for the human microRNA templates, as indicated in TABLE 7. For the murine microRNA templates with one or more base pair changes in comparison to the corresponding human templates, primer sets have been designed specifically for detection of the murine microRNA, and these primers are provided in TABLE 7. The extension primer reaction and quantitative PCR reactions for detection of the murine microRNA templates may be carried out as described in EXAMPLE 3.
  • TABLE 7
    PRIMERS TO DETECT MURINE MICRORNA TARGET TEMPLATES
    Mouse Target Mouse microRNA as compared
    microRNA: Extension Primer Name Extension Primer Sequence Reverse Primer Name Reverse Primer Sequence to Human microRNA
    miR-1 miR1GSP10 CATGATCAGCTGGGCCAAGATACATACTTC miR-1RP T+G+GAA+TG+TAAAGAAGT Identical
    SEQ ID NO: 47 SEQ ID NO: 48
    miR-7 miR-7GSP10 CATGATCAGCTGGGCCAAGAAACAAAATC miR-7_RP6 T+GGAA+GACTTGTGATTTT one or more base pairs differ
    SEQ ID NO: 486 SEQ ID NO: 487
    miR-9* miR-9*GSP CATGATCAGCTGGGCCAAGAACTTTCGGTT miR-9*RP TAAA+GCT+AGATAACCG Identical overlapping sequence,
    SEQ ID NO: 51 SEQ ID NO: 52 ends differ
    miR-10a miR-10aGSP CATGATCAGCTGGGCCAAGACACAAATTCG miR-10aRP T+AC+CCTGTAGATCCG Identical
    SEQ ID NO: 53 SEQ ID NO: 54
    miR-10b miR-10b_GSP11 CATGATCAGCTGGGCCAAGAACACAAATTCG miR-10b_RP2 C+CC+TGT+AGAACCGAAT one or more base pairs differ
    SEQ ID NO: 492 SEQ ID NO: 493
    miR-15a miR-15aGSP CATGATCAGCTGGGCCAAGACACAAACCAT miR-15aRP T+AG+CAGCACATAATG Identical
    SEQ ID NO: 57 SEQ ID NO: 58
    miR-15b miR-15bGSP2 CATGATCAGCTGGGCCAAGATGTAAACCA miR-15bRP T+AG+CAGCACATCAT Identical
    SEQ ID NO: 59 SEQ ID NO: 60
    miR-16 miR-16GSP2 CATGATCAGCTGGGCCAAGACGCCAATAT miR-16RP T+AG+CAGCACGTAAA Identical
    SEQ ID NO: 61 SEQ ID NO: 62
    miR-17-3p miR-17-3pGSP CATGATCAGCTGGGCCAAGAACAAGTGCCC miR-17-3pRP A+CT+GCAGTGAGGGC one or more base pairs differ
    SEQ ID NO: 463 SEQ ID NO: 464
    miR-17-5p miR-17-5pGSP2 CATGATCAGCTGGGCCAAGAACTACCTGC miR-17-5pRP C+AA+AGTGCTTACAGTG Identical
    SEQ ID NO: 65 SEQ ID NO: 66
    miR-19a miR-19aGSP2 CATGATCAGCTGGGCCAAGATCAGTTTTG miR-19aRP TG+TG+CAAATCTATGC Identical
    SEQ ID NO: 67 SEQ ID NO: 68
    miR-19b miR-19bGSP CATGATCAGCTGGGCCAAGATCAGTTTTGC miR-19bRP TG+TG+CAAATCCATG Identical
    SEQ ID NO: 69 SEQ ID NO: 70
    miR-20 miR-20GSP3 CATGATCAGCTGGGCCAAGACTACCTGC miR-20RP T+AA+AGTGCTTATAGTGCA Identical
    SEQ ID NO: 71 SEQ ID NO: 72
    miR-21 miR-21GSP2 CATGATCAGCTGGGCCAAGATCAACATCA miR-21RP T+AG+CTTATCAGACTGATG Identical
    SEQ ID NO: 73 SEQ ID NO: 74
    miR-23a miR-23aGSP CATGATCAGCTGGGCCAAGAGGAAATCCCT miR-23aRP A+TC+ACATTGCCAGG Identical
    SEQ ID NO: 75 SEQ ID NO: 76
    miR-23b miR-23bGSP CATGATCAGCTGGGCCAAGAGGTAATCCCT miR-23bRP A+TC+ACATTGCCAGG Identical
    SEQ ID NO: 77 SEQ ID NO: 78
    miR-24 miR-24P5 CATGATCAGCTGGGCCAAGACTGTTCCTGC miR24-1,2R TGG+CTCAGTTCAGC Identical
    TG SEQ ID NO: 19
    SEQ ID NO: 7
    miR-25 miR-25GSP CATGATCAGCTGGGCCAAGATCAGACCGAG miR-25RP C+AT+TGCACTTGTCTC Identical
    SEQ ID NO: 79 SEQ ID NO: 80
    miR-26a miR-26aGSP9 CATGATCAGCTGGGCCAAGAGCCTATCCT miR-26aRP2 TT+CA+AGTAATCCAGGAT Identical
    SEQ ID NO: 81 SEQ ID NO: 82
    miR-26b miR-26bGSP9 CATGATCAGCTGGGCCAAGAAACCTATCC miR-26bRP2 TT+CA+AGT+AATTCAGGAT Identical
    SEQ ID NO: 83 SEQ ID NO: 84
    miR-27a miR-27aGSP CATGATCAGCTGGGCCAAGAGCGGAACTTA miR-27aRP TT+CA+CAGTGGCTAA Identical
    SEQ ID NO: 85 SEQ ID NO: 86
    miR-27b miR-27bGSP CATGATCAGCTGGGCCAAGAGCAGAACTTA miR-27bRP TT+CA+CAGTGGCTAA Identical
    SEQ ID NO: 87 SEQ ID NO: 88
    miR-28 miR-28GSP CATGATCAGCTGGGCCAAGACTCAATAGAC miR-28RP A+AG+GAGCTCACAGT Identical
    SEQ ID NO: 89 SEQ ID NO: 90
    miR-29a miR-29aGSP8 CATGATCAGCTGGGCCAAGAAACCGATT miR-29aRP2 T+AG+CACCATCTGAAAT Identical
    SEQ ID NO: 91 SEQ ID NO: 92
    miR-29b miR-29bGSP2 CATGATCAGCTGGGCCAAGAAACACTGAT miR-29bRP2 T+AG+CACCATTTGAAATCAG Identical
    SEQ ID NO: 93 SEQ ID NO: 94
    miR-30a-5p miR-30a-5pGSP CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30a-5pRP T+GT+AAACATCCTCGAC Identical
    SEQ ID NO: 95 SEQ ID NO: 96
    miR-30b miR-30bGSP CATGATCAGCTGGGCCAAGAAGCTGAGTGT miR-30bRP TGT+AAA+CATCCTACACT Identical
    SEQ ID NO: 97 SEQ ID NO: 98
    miR-30c miR-30cGSP CATGATCAGCTGGGCCAAGAGCTGAGAGTG miR-30cRP TGT+AAA+CATCCTACACT Identical
    SEQ ID NO: 99 SEQ ID NO: 100
    miR-30d miR-30dGSP CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30dRP T+GTAAA+CATCCCCG Identical
    SEQ ID NO: 101 SEQ ID NO: 102
    miR-30e-3p miR-30e-3pGSP9 CATGATCAGCTGGGCCAAGAGCTGTAAAC miR-30e-3pRP5 CTTT+CAGT+CGGATGTTT Identical
    SEQ ID NO: 103 SEQ ID NO: 104
    miR-31 miR-31GSP CATGATCAGCTGGGCCAAGACAGCTATGCC miR-31RP G+GC+AAGATGCTGGC Identical overlapping sequence,
    SEQ ID NO: 107 SEQ ID NO: 108 ends differ
    miR-32 miR-32GSP CATGATCAGCTGGGCCAAGAGCAACTTAGT miR-32RP TATTG+CA+CATTACTAAG Identical
    SEQ ID NO: 109 SEQ ID NO: 110
    miR-33 miR-33GSP2 CATGATCAGCTGGGCCAAGACAATGCAAC miR-33RP G+TG+CATTGTAGTTGC Identical
    SEQ ID NO: 111 SEQ ID NO: 112
    miR-34a miR-34aGSP CATGATCAGCTGGGCCAAGAAACAACCAGC miR-34aRP T+GG+CAGTGTCTTAG Identical
    SEQ ID NO: 113 SEQ ID NO: 114
    miR-34b miR-34bGSP CATGATCAGCTGGGCCAAGACAATCAGCTA miR-34bRP TA+GG+CAGTGTAATT one or more base pairs differ
    SEQ ID NO: 115 SEQ ID NO: 482
    miR-34c miR-34cGSP CATGATCAGCTGGGCCAAGAGCAATCAGCT miR-34cRP A+GG+CAGTGTAGTTA Identical
    SEQ ID NO: 117 SEQ ID NO: 118
    miR-92 miR-92GSP CATGATCAGCTGGGCCAAGACAGGCCGGGA miR-92RP T+AT+TGCACTTGTCCC Identical
    SEQ ID NO: 119 SEQ ID NO: 120
    miR-93 miR-93GSP CATGATCAGCTGGGCCAAGACTACCTGCAC miR-93RP AA+AG+TGCTGTTCGT Identical overlapping sequence,
    SEQ ID NO: 121 SEQ ID NO: 122 ends differ
    miR-96 miR-96GSP CATGATCAGCTGGGCCAAGAGCAAAAATGT miR-96RP T+TT+GGCACTAGCAC Identical overlapping sequence,
    SEQ ID NO: 125 SEQ ID NO: 126 ends differ
    miR-98 miR-98GSP CATGATCAGCTGGGCCAAGAAACAATACAA miR-98RP TGA+GGT+AGTAAGTTG Identical
    SEQ ID NO: 127 SEQ ID NO: 128
    miR-99a miR-99aGSP CATGATCAGCTGGGCCAAGACACAAGATCG miR-99aRP A+AC+CCGTAGATCCG Identical overlapping sequence,
    SEQ ID NO: 129 SEQ ID NO: 130 ends differ
    miR-99b miR-99bGSP CATGATCAGCTGGGCCAAGACGCAAGGTCG miR-99bRP C+AC+CCGTAGAACCG Identical
    SEQ ID NO: 131 SEQ ID NO: 132
    miR-100 miR-100GSP CATGATCAGCTGGGCCAAGACACAAGTTCG miR-100RP A+AC+CCGTAGATCCG Identical
    SEQ ID NO: 133 SEQ ID NO: 134
    miR-101 miR-101GSP CATGATCAGCTGGGCCAAGACTTCAGTTAT miR-101RP TA+CAG+TACTGTGATAACT Identical
    SEQ ID NO: 135 SEQ ID NO: 136
    miR-103 miR-103GSP CATGATCAGCTGGGCCAAGATCATAGCCCT miR-103RP A+GC+AGCATTGTACA Identical
    SEQ ID NO: 137 SEQ ID NO: 138
    miR-106a miR-106aGSP CATGATCAGCTGGGCCAAGATACCTGCAC miR-106aRP CAA+AG+TGCTAACAGTG one or more base pairs differ
    SEQ ID NO: 472 SEQ ID NO: 473
    miR-106b miR-106bGSP CATGATCAGCTGGGCCAAGAATCTGCACTG miR-106bRP T+AAAG+TGCTGACAGT Identical
    SEQ ID NO: 143 SEQ ID NO: 144
    miR-107 miR-107GSP8 CATGATCAGCTGGGCCAAGATGATAGCC miR-107RP2 A+GC+AGCATTGTACAG Identical
    SEQ ID NO: 145 SEQ ID NO: 146
    miR-122a miR-122aGSP CATGATCAGCTGGGCCAAGAACAAACACCA miR-122aRP T+GG+AGTGTGACAAT Identical
    SEQ ID NO: 147 SEQ ID NO: 148
    miR-124a miR-124aGSP CATGATCAGCTGGGCCAAGATGGCATTCAC miR-124aRP T+TA+AGGCACGCGGT Identical overlapping sequence,
    SEQ ID NO: 149 SEQ ID NO: 150 ends differ
    miR-125a miR-125aGSP CATGATCAGCTGGGCCAAGACACAGGTTAA miR-125aRP T+CC+CTGAGACCCTT Identical
    SEQ ID NO: 151 SEQ ID NO: 152
    miR-125b miR-125bGSP CATGATCAGCTGGGCCAAGATCACAAGTTA miR-125bRP T+CC+CTGAGACCCTA Identical
    SEQ ID NO: 153 SEQ ID NO: 154
    miR-126 miR-126GSP CATGATCAGCTGGGCCAAGAGCATTATTAC miR-126RP T+CG+TACCGTGAGTA Identical
    SEQ ID NO: 155 SEQ ID NO: 156
    miR-126* miR-126*GSP3 CATGATCAGCTGGGCCAAGACGCGTACC miR-126*RP C+ATT+ATTA+CTTTTGGTACG Identical
    SEQ ID NO: 157 SEQ ID NO: 158
    miR-127 miR-127GSP CATGATCAGCTGGGCCAAGAAGCCAAGCTC miR-127RP T+CG+GATCCGTCTGA Identical overlapping sequence,
    SEQ ID NO: 159 SEQ ID NO: 160 ends differ
    miR-128a miR-128aGSP CATGATCAGCTGGGCCAAGAAAAAGAGACC miR-128aRP T+CA+CAGTGAACCGG Identical
    SEQ ID NO: 161 SEQ ID NO: 162
    miR-128b miR-128bGSP CATGATCAGCTGGGCCAAGAGAAAGAGACC miR-128bRP T+CA+CAGTGAACCGG Identical
    SEQ ID NO: 163 SEQ ID NO: 164
    miR-130a miR-130aGSP CATGATCAGCTGGGCCAAGAATGCCCTTTT miR-130aRP C+AG+TGCAATGTTAAAAG Identical
    SEQ ID NO: 167 SEQ ID NO: 168
    miR-130b miR-130bGSP CATGATCAGCTGGGCCAAGAATGCCCTTTC miR-130bRP C+AG+TGCAATGATGA Identical
    SEQ ID NO: 169 SEQ ID NO: 170
    miR-132 miR-132GSP CATGATCAGCTGGGCCAAGACGACCATGGC miR-132RP T+AA+CAGTCTACAGCC Identical
    SEQ ID NO: 171 SEQ ID NO: 172
    miR-133a miR-133aGSP CATGATCAGCTGGGCCAAGAACAGCTGGTT miR-133aRP T+TG+GTCCCCTTCAA Identical
    SEQ ID NO: 173 SEQ ID NO: 174
    miR-133b miR-133bGSP CATGATCAGCTGGGCCAAGATAGCTGGTTG miR-133bRP T+TG+GTCCCCTTCAA Identical
    SEQ ID NO: 175 SEQ ID NO: 176
    miR-134 miR-134GSP CATGATCAGCTGGGCCAAGACCCTCTGGTC miR-134RP T+GT+GACTGGTTGAC Identical overlapping sequence,
    SEQ ID NO: 177 SEQ ID NO: 178 ends differ
    miR-135a miR-135aGSP CATGATCAGCTGGGCCAAGATCACATAGGA miR-135aRP T+AT+GGCTTTTTATTCCT Identical
    SEQ ID NO: 179 SEQ ID NO: 180
    miR-135b miR-135bGSP CATGATCAGCTGGGCCAAGACACATAGGAA miR-135bRP T+AT+GGCTTTTCATTCC Identical
    SEQ ID NO: 181 SEQ ID NO: 182
    miR-136 miR-136GSP CATGATCAGCTGGGCCAAGATCCATCATCA miR-136RP A+CT+CCATTTGTTTTGATG Identical
    SEQ ID NO: 183 SEQ ID NO: 184
    miR-137 miR-137GSP CATGATCAGCTGGGCCAAGACTACGCGTAT miR-137RP T+AT+TGCTTAAGAATACGC Identical overlapping sequence,
    SEQ ID NO: 185 SEQ ID NO: 186 ends differ
    miR-138 miR-138GSP2 CATGATCAGCTGGGCCAAGACGGCCTGAT miR-138RP A+GC+TGGTGTTGTGA Identical
    SEQ ID NO: 187 SEQ ID NO: 188
    miR-139 miR-139GSP CATGATCAGCTGGGCCAAGAAGACACGTGC miR-139RP T+CT+ACAGTGCACGT Identical
    SEQ ID NO: 189 SEQ ID NO: 190
    miR-140 miR-140GSP CATGATCAGCTGGGCCAAGACTACCATAGG miR-140RP A+GT+GGTTTTACCCT Identical overlapping sequence,
    SEQ ID NO: 191 SEQ ID NO: 192 ends differ
    miR-141 miR-141GSP9 CATGATCAGCTGGGCCAAGACCATCTTTA miR-141RP2 TAA+CAC+TGTCTGGTAA Identical
    SEQ ID NO: 193 SEQ ID NO: 194
    miR-142-3p miR-142-3pGSP3 CATGATCAGCTGGGCCAAGATCCATAAA miR-142-3pRP TGT+AG+TGTTTCCTACT Identical overlapping sequence,
    SEQ ID NO: 195 SEQ ID NO: 196 ends differ
    miR-143 miR-143GSP8 CATGATCAGCTGGGCCAAGATGAGCTAC miR-143RP2 T+GA+GATGAAGCACTG Identical
    SEQ ID NO: 197 SEQ ID NO: 198
    miR-144 miR-144GSP2 CATGATCAGCTGGGCCAAGACTAGTACAT miR-144RP TA+CA+GTAT+AGATGATG Identical
    SEQ ID NO: 199 SEQ ID NO: 200
    miR-145 miR-145GSP2 CATGATCAGCTGGGCCAAGAAAGGGATTC miR-145RP G+TC+CAGTTTTCCCA Identical
    SEQ ID NO: 201 SEQ ID NO: 202
    miR-146 miR-146GSP3 CATGATCAGCTGGGCCAAGAAACCCATG miR-146RP T+GA+GAACTGAATTCCA Identical
    SEQ ID NO: 203 SEQ ID NO: 204
    miR-148a miR-148aGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR-148aRP2 T+CA+GTGCACTACAGAACT Identical
    SEQ ID NO: 207 SEQ ID NO: 208
    miR-148b miR-148bGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR-148bRP T+CA+GTGCATCACAG Identical
    SEQ ID NO: 209 SEQ ID NO: 210
    miR-149 miR-149GSP2 CATGATCAGCTGGGCCAAGAGGAGTGAAG miR-149RP T+CT+GGCTCCGTGTC Identical
    SEQ ID NO: 211 SEQ ID NO: 212
    miR-150 miR-150GSP3 CATGATCAGCTGGGCCAAGACACTGGTA miR-150RP T+CT+CCCAACCCTTG Identical
    SEQ ID NO: 213 SEQ ID NO: 214
    miR-151 miR-151GSP2 CATGATCAGCTGGGCCAAGACCTCAAGGA miR-151RP A+CT+AGACTGAGGCTC one or more base pairs differ
    SEQ ID NO: 215 SEQ ID NO: 477
    miR-152 miR-152GSP2 CATGATCAGCTGGGCCAAGACCCAAGTTC miR-152RP T+CA+GTGCATGACAG Identical
    SEQ ID NO: 217 SEQ ID NO: 218
    miR-153 miR-153GSP2 CATGATCAGCTGGGCCAAGATCACTTTTG miR-153RP TTG+CAT+AGTCACAAAA Identical overlapping sequence,
    SEQ ID NO: 219 SEQ ID NO: 220 ends differ
    miR-154 miR-154GSP9 CATGATCAGCTGGGCCAAGACGAAGGCAA miR-154RP3 TA+GGTTA+TCCGTGTT Identical
    SEQ ID NO: 223 SEQ ID NO: 224
    miR-155 miR-155GSP8 CATGATCAGCTGGGCCAAGACCCCTATC miR-155RP2 TT+AA+TGCTAATTGTGATAGG one or more base pairs differ
    SEQ ID NO: 225 SEQ ID NO: 489
    miR-181a miR-181aGSP9 CATGATCAGCTGGGCCAAGAACTCACCGA miR-181aRP2 AA+CATT+CAACGCTGTC Identical
    SEQ ID NO: 227 SEQ ID NO: 228
    miR-181c miR-181cGSP9 CATGATCAGCTGGGCCAAGAACTCACCGA miR-181cRP2 AA+CATT+CAACCTGTCG Identical
    SEQ ID NO: 229 SEQ ID NO: 230
    miR-182 miR-182*GSP CATGATCAGCTGGGCCAAGATAGTTGGCAA miR-182*RP T+GG+TTCTAGACTTGC Identical
    SEQ ID NO: 231 SEQ ID NO: 232
    miR-183 miR-183GSP2 CATGATCAGCTGGGCCAAGACAGTGAATT miR-183RP T+AT+GGCACTGGTAG Identical
    SEQ ID NO: 235 SEQ ID NO: 236
    miR-184 miR-184GSP2 CATGATCAGCTGGGCCAAGAACCCTTATC miR-184RP T+GG+ACGGAGAACTG Identical
    SEQ ID NO: 237 SEQ ID NO: 238
    miR-186 miR-186GSP9 CATGATCAGCTGGGCCAAGAAAGCCCAAA miR-186RP3 CA+AA+GAATT+CTCCTTTTGG Identical
    SEQ ID NO: 239 SEQ ID NO: 240
    miR-187 miR-187GSP CATGATCAGCTGGGCCAAGACGGCTGCAAC miR-187RP T+CG+TGTCTTGTGTT Identical overlapping sequence,
    SEQ ID NO: 241 SEQ ID NO: 242 ends differ
    miR-188 miR-188GSP CATGATCAGCTGGGCCAAGAACCCTCCACC miR-188RP C+AT+CCCTTGCATGG Identical
    SEQ ID NO: 243 SEQ ID NO: 244
    miR-189 miR-189GSP2 CATGATCAGCTGGGCCAAGAACTGATATC miR-189RP G+TG+CCTACTGAGCT Identical
    SEQ ID NO: 245 SEQ ID NO: 246
    miR-190 miR-190GSP9 CATGATCAGCTGGGCCAAGAACCTAATAT miR-190RP4 T+GA+TA+TGTTTGATATATTAG Identical
    SEQ ID NO: 247 SEQ ID NO: 248
    miR-191 miR-191GSP2 CATGATCAGCTGGGCCAAGAAGCTGCTTT miR-191RP2 C+AA+CGGAATCCCAAAAG Identical
    SEQ ID NO: 249 SEQ ID NO: 250
    miR-192 miR-192GSP2 CATGATCAGCTGGGCCAAGAGGCTGTCAA miR-192RP C+TGA+CCTATGAATTGAC Identical overlapping sequence,
    SEQ ID NO: 251 SEQ ID NO: 252 ends differ
    miR-193 miR-193GSP9 CATGATCAGCTGGGCCAAGACTGGGACTT miR-193RP2 AA+CT+GGCCTACAAAG Identical
    SEQ ID NO: 253 SEQ ID NO: 254
    miR-194 mir194GSP8 CATGATCAGCTGGGCCAAGATCCACATG mir194RP TG+TAA+CAGCAACTCCA Identical
    SEQ ID NO: 255 SEQ ID NO: 256
    miR-195 miR-195GSP9 CATGATCAGCTGGGCCAAGAGCCAATATT miR-195RP3 T+AG+CAG+CACAGAAATA Identical
    SEQ ID NO: 257 SEQ ID NO: 258
    miR-196a miR-196aGSP CATGATCAGCTGGGCCAAGACCAACAACAT miR-196aRP TA+GG+TAGTTTCATGTTG Identical
    SEQ ID NO: 261 SEQ ID NO: 262
    miR-196b miR-196bGSP CATGATCAGCTGGGCCAAGACCAACAACAG miR-196bRP TA+GGT+AGTTTCCTGT Identical
    SEQ ID NO: 259 SEQ ID NO: 260
    miR-199a* miR-199a*GSP2 CATGATCAGCTGGGCCAAGAAACCAATGT miR-199a*RP T+AC+AGTAGTCTGCAC Identical
    SEQ ID NO: 267 SEQ ID NO: 268
    miR-199a miR-199aGSP2 CATGATCAGCTGGGCCAAGAGAACAGGTA miR-199aRP C+CC+AGTGTTCAGAC Identical
    SEQ ID NO: 269 SEQ ID NO: 270
    miR-199b miR-199bGSP CATGATCAGCTGGGCCAAGAGAACAGGTAG miR-199bRP C+CC+AGTGTTTAGAC one or more base pairs differ
    SEQ ID NO: 475 SEQ ID NO: 272
    miR-200a miR-200aGSP2 CATGATCAGCTGGGCCAAGAACATCGTTA miR-200aRP TAA+CAC+TGTCTGGT Identical
    SEQ ID NO: 273 SEQ ID NO: 274
    miR-200b miR-200bGSP2 CATGATCAGCTGGGCCAAGAGTCATCATT miR-200bRP TAATA+CTG+CCTGGTAAT Identical
    SEQ ID NO: 275 SEQ ID NO: 276
    miR-203 miR-203GSP2 CATGATCAGCTGGGCCAAGACTAGTGGTC miR-203RP G+TG+AAATGTTTAGGACC Identical overlapping sequence,
    SEQ ID NO: 279 SEQ ID NO: 280 ends differ
    miR-204 miR-204GSP2 CATGATCAGCTGGGCCAAGAAGGCATAGG miR-204RP T+TC+CCTTTGTCATCC Identical overlapping sequence,
    SEQ ID NO: 281 SEQ ID NO: 282 ends differ
    miR-205 miR-205GSP CATGATCAGCTGGGCCAAGACAGACTCCGG miR-205RP T+CCTT+CATTCCACC Identical
    SEQ ID NO: 283 SEQ ID NO: 284
    miR-206 mir206GSP7 CATGATCAGCTGGGCCAAGACCACACA miR-206RP T+G+GAA+TGTAAGGAAGTGT Identical
    SEQ ID NO: 285 SEQ ID NO: 286
    miR-208 miR-208_GSP13 CATGATCAGCTGGGCCAAGAACAAGCTTTT miR-208_RP4 ATAA+GA+CG+AGCAAAAAG Identical
    TGC SEQ ID NO: 288
    SEQ ID NO: 287
    miR-210 miR-210GSP CATGATCAGCTGGGCCAAGATCAGCCGCTG miR-210RP C+TG+TGCGTGTGACA Identical
    SEQ ID NO: 289 SEQ ID NO: 290
    miR-211 miR-211GSP2 CATGATCAGCTGGGCCAAGAAGGCAAAGG miR-211RP T+TC+CCTTTGTCATCC one or more base pairs differ
    SEQ ID NO: 491 SEQ ID NO: 292
    miR-212 miR-212GSP9 CATGATCAGCTGGGCCAAGAGGCCGTGAC miR-212RP2 T+AA+CAGTCTCCAGTCA Identical
    SEQ ID NO: 293 SEQ ID NO: 294
    miR-213 miR-213GSP CATGATCAGCTGGGCCAAGAGGTACAATCA miR-213RP A+CC+ATCGACCGTTG Identical
    SEQ ID NO: 295 SEQ ID NO: 296
    miR-214 miR-214GSP CATGATCAGCTGGGCCAAGACTGCCTGTCT miR-214RP A+CA+GCAGGCACAGA Identical
    SEQ ID NO: 297 SEQ ID NO: 298
    miR-215 miR-215GSP2 CATGATCAGCTGGGCCAAGAGTCTGTCAA miR-215RP A+TGA+CCTATGATTTGAC one or more base pairs differ
    SEQ ID NO: 299 SEQ ID NO: 469
    miR-216 miR-216GSP9 CATGATCAGCTGGGCCAAGACACAGTTGC mir216RP TAA+TCT+CAGCTGGCA Identical
    SEQ ID NO: 301 SEQ ID NO: 302
    miR-217 miR-217GSP2 CATGATCAGCTGGGCCAAGAATCCAGTCA miR-217RP2 T+AC+TGCATCAGGAACTGA one or more base pairs differ
    SEQ ID NO: 481 SEQ ID NO: 304
    miR-218 miR-218GSP2 CATGATCAGCTGGGCCAAGAACATGGTTA miR-218RP TTG+TGCTT+GATCTAAC Identical
    SEQ ID NO: 305 SEQ ID NO: 306
    miR-221 miR-221GSP9 CATGATCAGCTGGGCCAAGAGAAACCCAG miR-221RP A+GC+TACATTGTCTGC Identical overlapping sequence,
    SEQ ID NO: 309 SEQ ID NO: 310 ends differ
    miR-222 miR-222GSP8 CATGATCAGCTGGGCCAAGAGAGACCCA miR-222RP A+GC+TACATCTGGCT Identical
    SEQ ID NO: 311 SEQ ID NO: 312
    miR-223 miR-223GSP CATGATCAGCTGGGCCAAGAGGGGTATTTG miR-223RP TG+TC+AGTTTGTCAAA Identical
    SEQ ID NO: 313 SEQ ID NO: 314
    miR-224 miR-224GSP8 CATGATCAGCTGGGCCAAGATAAACGGA miR-224RP2 C+AAG+TCACTAGTGGTT Identical overlapping sequence,
    SEQ ID NO: 315 SEQ ID NO: 316 ends differ
    miR-296 miR-296GSP9 CATGATCAGCTGGGCCAAGAACAGGATTG miR-296RP2 A+GG+GCCCCCCCTCAA Identical
    SEQ ID NO: 317 SEQ ID NO: 318
    miR-299 miR-299GSP9 CATGATCAGCTGGGCCAAGAATGTATGTG miR-299RP T+GG+TTTACCGTCCC Identical
    SEQ ID NO: 319 SEQ ID NO: 320
    miR-301 miR-301GSP CATGATCAGCTGGGCCAAGAGCTTTGACAA miR-301RP C+AG+TGCAATAGTATTGT Identical
    SEQ ID NO: 321 SEQ ID NO: 322
    miR-302a miR-302aGSP CATGATCAGCTGGGCCAAGATCACCAAAAC miR-302aRP T+AAG+TGCTTCCATGT Identical
    SEQ ID NO: 325 SEQ ID NO: 326
    miR-320 miR-320_GSP8 CATGATCAGCTGGGCCAAGATTCGCCCT miR-320_RP3 AAAA+GCT+GGGTTGAGAGG Identical
    SEQ ID NO: 337 SEQ ID NO: 338
    miR-323 miR-323GSP CATGATCAGCTGGGCCAAGAAGAGGTCGAC miR-323RP G+CA+CATTACACGGT Identical
    SEQ ID NO: 339 SEQ ID NO: 340
    miR-324-3p miR-324-3pGSP CATGATCAGCTGGGCCAAGACCAGCAGCAC miR-324-3pRP C+CA+CTGCCCCAGGT Identical
    SEQ ID NO: 341 SEQ ID NO: 342
    miR-324-5p miR-324-5pGSP CATGATCAGCTGGGCCAAGAACACCAATGC miR-324-5pRP C+GC+ATCCCCTAGGG Identical overlapping sequence,
    SEQ ID NO: 343 SEQ ID NO: 344 ends differ
    miR-325 miR-325GSP CATGATCAGCTGGGCCAAGAACACTTACTG miR-325RP C+CT+AGTAGGTGCTC one or more base pairs differ
    SEQ ID NO: 345 SEQ ID NO: 476
    miR-326 miR-326GSP CATGATCAGCTGGGCCAAGACTGGAGGAAG miR-326RP C+CT+CTGGGCCCTTC Identical overlapping sequence,
    SEQ ID NO: 347 SEQ ID NO: 348 ends differ
    miR-328 miR-328GSP CATGATCAGCTGGGCCAAGAACGGAAGGGC miR-328RP C+TG+GCCCTCTCTGC Identical
    SEQ ID NO: 349 SEQ ID NO: 350
    miR-330 miR-330GSP CATGATCAGCTGGGCCAAGATCTCTGCAGG miR-330RP G+CA+AAGCACAGGGC one or more base pairs differ
    SEQ ID NO: 351 SEQ ID NO: 478
    miR-331 miR-331GSP CATGATCAGCTGGGCCAAGATTCTAGGATA miR-331RP G+CC+CCTGGGCCTAT Identical
    SEQ ID NO: 353 SEQ ID NO: 354
    miR-337 miR-337GSP CATGATCAGCTGGGCCAAGAAAAGGCATCA miR-337RP T+TC+AGCTCCTATATG one or more base pairs differ
    SEQ ID NO: 355 SEQ ID NO: 490
    miR-338 miR-338GSP CATGATCAGCTGGGCCAAGATCAACAAAAT miR-338RP2 T+CC+AGCATCAGTGATTT Identical
    SEQ ID NO: 357 SEQ ID NO: 358
    miR-339 miR-339GSP9 CATGATCAGCTGGGCCAAGATGAGCTCCT miR-339RP2 T+CC+CTGTCCTCCAGG Identical
    SEQ ID NO: 359 SEQ ID NO: 360
    miR-340 miR-340GSP CATGATCAGCTGGGCCAAGAGGCTATAAAG miR-340RP TC+CG+TCTCAGTTAC Identical
    SEQ ID NO: 361 SEQ ID NO: 362
    miR-342 miR-342GSP3 CATGATCAGCTGGGCCAAGAGACGGGTG miR-342RP T+CT+CACACAGAAATCG Identical
    SEQ ID NO: 363 SEQ ID NO: 364
    miR-345 miR-345GSP CATGATCAGCTGGGCCAAGAGCACTGGACT miR-345RP T+GC+TGACCCCTAGT one or more base pairs differ
    SEQ ID NO: 484 SEQ ID NO: 485
    miR-346 miR-346GSP CATGATCAGCTGGGCCAAGAAGAGGCAGGC miR-346RP T+GT+CTGCCCGAGTG one or more base pairs differ
    SEQ ID NO: 367 SEQ ID NO: 488
    miR-363 miR-363 GSP10 CATGATCAGCTGGGCCAAGATACAGATGGA miR-363RP AAT+TG+CAC+GGTATCC Identical
    SEQ ID NO: 369 SEQ ID NO: 370
    miR-370 miR-370GSP CATGATCAGCTGGGCCAAGACCAGGTTCCA miR-370RP G+CC+TGCTGGGGTGG Identical overlapping sequence,
    SEQ ID NO: 375 SEQ ID NO: 376 ends differ
    miR-375 miR-375GSP CATGATCAGCTGGGCCAAGATCACGCGAGC miR-375RP TT+TG+TTCGTTCGGC Identical
    SEQ ID NO: 387 SEQ ID NO: 388
    miR-376a miR-376aGSP3 CATGATCAGCTGGGCCAAGAACGTGGAT miR-376aRP2 A+TCGTAGA+GGAAAATCCAC one or more base pairs differ
    SEQ ID NO: 467 SEQ ID NO: 468
    miR-378 miR-378GSP CATGATCAGCTGGGCCAAGAACACAGGACC miR-378RP C+TC+CTGACTCCAGG Identical
    SEQ ID NO: 391 SEQ ID NO: 392
    miR-379 miR-379_GSP7 CATGATCAGCTGGGCCAAGATACGTTC miR-379RP2 T+GGT+AGACTATGGAACG Identical overlapping sequence,
    SEQ ID NO: 393 SEQ ID NO: 394 ends differ
    miR-380-5p miR-380-5pGSP CATGATCAGCTGGGCCAAGAGCGCATGTTC miR-380-5pRP T+GGT+TGACCATAGA Identical
    SEQ ID NO: 395 SEQ ID NO: 396
    miR-380-3p miR-380-3pGSP CATGATCAGCTGGGCCAAGAAAGATGTGGA miR-380-3pRP TA+TG+TAGTATGGTCCACA one or more base pairs differ
    SEQ ID NO: 395 SEQ ID NO: 483
    miR-381 miR-381GSP2 CATGATCAGCTGGGCCAAGAACAGAGAGC miR-381RP2 TATA+CAA+GGGCAAGCT Identical
    SEQ ID NO: 399 SEQ ID NO: 400
    miR-382 miR-382GSP CATGATCAGCTGGGCCAAGACGAATCCACC miR-382RP G+AA+GTTGTTCGTGGT Identical
    SEQ ID NO: 401 SEQ ID NO: 402
    miR-383 miR-383GSP CATGATCAGCTGGGCCAAGAAGCCACAGTC miR-383RP2 A+GATC+AGAAGGTGACTGT one or more base pairs differ
    SEQ ID NO: 465 SEQ ID NO: 466
    miR-384 miR-384_GSP9 CATGATCAGCTGGGCCAAGATGTGAACAA miR-384_RP5 ATT+CCT+AG+AAATTGTTC one or more base pairs differ
    SEQ ID NO: 470 SEQ ID NO: 471
    miR-410 miR-410 GSP9 CATGATCAGCTGGGCCAAGAACAGGCCAT miR-410RP AA+TA+TAA+CA+CAGATGGC Identical
    SEQ ID NO: 405 SEQ ID NO: 406
    miR-412 miR-412 GSP10 CATGATCAGCTGGGCCAAGAACGGCTAGTG miR-412RP A+CTT+CACCTGGTCCACTA Identical
    SEQ ID NO: 407 SEQ ID NO: 408
    miR-424 miR-424GSP CATGATCAGCTGGGCCAAGATCCAAAACAT miR-424RP2 C+AG+CAGCAATTCATGTTTT one or more base pairs differ
    SEQ ID NO: 474 SEQ ID NO: 414
    miR-425 miR-425GSP CATGATCAGCTGGGCCAAGAGGCGGACACG miR-425RP A+TC+GGGAATGTCGT Identical
    SEQ ID NO: 417 SEQ ID NO: 418
    miR-429 miR-429_GSP11 CATGATCAGCTGGGCCAAGAACGGCATTACC miR-429RP5 T+AATAC+TG+TCTGGTAATG one or more base pairs differ
    SEQ ID NO: 479 SEQ ID NO: 480
    miR-431 miR-431 GSP10 CATGATCAGCTGGGCCAAGATGCATGACGG miR-431RP T+GT+CTTGCAGGCCG Identical overlapping sequence,
    SEQ ID NO: 421 SEQ ID NO: 422 ends differ
    miR-448 miR-448GSP CATGATCAGCTGGGCCAAGAATGGGACATC miR-448RP TTG+CATA+TGTAGGATG Identical
    SEQ ID NO: 423 SEQ ID NO: 424
    miR-449 miR-449GSP10 CATGATCAGCTGGGCCAAGAACCAGCTAAC miR-449RP2 T+GG+CAGTGTATTGTTAGC Identical
    SEQ ID NO: 425 SEQ ID NO: 426
    miR-450 miR-450GSP CATGATCAGCTGGGCCAAGATATTAGGAAC miR-450RP TTTT+TG+CGATGTGTT Identical
    SEQ ID NO: 427 SEQ ID NO: 428
    miR-451 miR-451 GSP10 CATGATCAGCTGGGCCAAGAAAACTCAGTA miR-451RP AAA+CCG+TTA+CCATTACTGA Identical overlapping sequence,
    SEQ ID NO: 429 SEQ ID NO: 430 ends differ
    let7a let7a-GSP2 CATGATCAGCTGGGCCAAGAAACTATAC let7a-RP T+GA+GGTAGTAGGTTG Identical overlapping sequence,
    SEQ ID NO: 431 SEQ ID NO: 432 ends differ
    let7b let7b-GSP2 CATGATCAGCTGGGCCAAGAAACCACAC let7b-RP T+GA+GGTAGTAGGTTG Identical
    SEQ ID NO: 433 SEQ ID NO: 432
    let7c let7c-GSP2 CATGATCAGCTGGGCCAAGAAACCATAC let7c-RP T+GA+GGTAGTAGGTTG Identical
    SEQ ID NO: 434 SEQ ID NO: 432
    let7d let7d-GSP2 CATGATCAGCTGGGCCAAGAACTATGCA let7d-RP A+GA+GGTAGTAGGTTG Identical
    SEQ ID NO: 435 SEQ ID NO: 436
    let7e let7e-GSP2 CATGATCAGCTGGGCCAAGAACTATACA let7e-RP T+GA+GGTAGGAGGTTG Identical
    SEQ ID NO: 437 SEQ ID NO: 438
    let7f let7f-GSP2 CATGATCAGCTGGGCCAAGAAACTATAC let7f-RP T+GA+GGTAGTAGATTG Identical overlapping sequence,
    SEQ ID NO: 439 SEQ ID NO: 440 ends differ
    let7g let7g-GSP2 CATGATCAGCTGGGCCAAGAACTGTACA let7g-RP T+GA+GGTAGTAGTTTG Identical
    SEQ ID NO: 441 SEQ ID NO: 442
    let7i let7i-GSP2 CATGATCAGCTGGGCCAAGAACAGCACA let7i-RP T+GA+GGTAGTAGTTTG Identical
    SEQ ID NO: 443 SEQ ID NO: 444
  • Example 5
  • This Example describes the detection and analysis of expression profiles for three microRNAs in total RNA isolated from twelve different tissues using methods in accordance with an embodiment of the present invention.
  • Methods: Quantitative analysis of miR-1, miR-124 and miR-150 microRNA templates was determined using 0.5 μg of First Choice total RNA (Ambion, Inc.) per 10 μl primer extension reaction isolated from the following tissues: brain, heart, intestine, kidney, liver, lung, lymph, ovary, skeletal muscle, spleen, thymus and uterus. The primer extension enzyme and quantitative PCR reactions were carried out as described above in EXAMPLE 3, using the following PCR primers:
  • miR-1 Template:
  • extension primer:
    (SEQ ID NO: 47)
    CATGATCAGCTGGGCCAAGATACATACTTC
    reverse primer:
    (SEQ ID NO: 48)
    T+G+GAA+TG+TAAAGAAGT
    forward primer:
    (SEQ ID NO: 13)
    CATGATCAGCTGGGCCAAGA

    miR-124 Template:
  • extension primer:
    (SEQ ID NO: 149)
    CATGATCAGCTGGGCCAAGATGGCATTCAC
    reverse primer:
    (SEQ ID NO: 150)
    T+TA+AGGCACGCGGT
    forward primer:
    (SEQ ID NO: 13)
    CATGATCAGCTGGGCCAAGA

    miR-150 template:
  • extension primer:
    (SEQ ID NO: 213)
    CATGATCAGCTGGGCCAAGACACTGGTA
    reverse primer:
    (SEQ ID NO: 214)
    T+CT+CCCAACCCTTG
    forward primer:
    (SEQ ID NO: 13)
    CATGATCAGCTGGGCCAAGA
  • Results. The expression profiles for miR-1, miR-124 and miR-150 are shown in FIGS. 3A, 3B, and 3C, respectively. The data in FIGS. 3A-3C are presented in units of microRNA copies per 10 pg of total RNA (y-axis). These units were chosen since human cell lines typically yield ≦10 pg of total RNA per cell. Hence the data shown are estimates of microRNA copies per cell. The numbers on the x-axis correspond to the following tissues: (1) brain, (2) heart, (3) intestine, (4) kidney, (5) liver, (6) lung, (7) lymph, (8) ovary, (9) skeletal muscle, (10) spleen, (11) thymus and (12) uterus.
  • Consistent with previous reports, very high levels of striated muscle-specific expression were found for miR-1 (as shown in FIG. 3A), and high levels of brain expression were found for miR-124 (as shown in FIG. 3B) (see Lagos-Quintana et al., RNA 9:175-179, 2003). Quantitative analysis reveals that these microRNAs are present at tens to hundreds of thousands of copies per cell. These data are in agreement with quantitative Northern blot estimates of miR-1 and miR-124 levels (see Lim et al., Nature 433:769-773, 2005). As shown in FIG. 3C, miR-150 was found to be highly expressed in the immune-related lymph node, thymus and spleen samples which is also consistent with previous findings (see Baskerville et al., RNA 11:241-247, 2005).
  • Example 6
  • This Example describes the selection and validation of primers for detecting mammalian microRNAs of interest.
  • Rationale: In order to perform multiple assays to detect a plurality of microRNA targets in a single sample (i.e., multiplex PCR), it is important that the assays work under uniform reverse transcriptase and PCR cycling conditions in a common buffer system with a single universal primer. The following primer design principles and high throughput assays were utilized to identify useful primer sets for desired microRNA targets that work well under the designated reaction conditions.
  • Primer Design:
  • As described in Example 2, the sensitivity of an assay to detect mammalian microRNA targets using the methods of the invention may be measured by the cycle threshold (Ct) value. The lower the Ct value (e.g., the fewer number of cycles), the more sensitive is the assay. The ΔCt value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) (preferably in the range of from about 5 to about 25, such as from about 10 to about 20), and broad dynamic range (preferably in the range of from about 10 and 35, such as ΔCt≧12) between the signal of a sample containing target template and a no template background control sample.
  • microRNA Target Templates: Representative mammalian microRNA target templates (h=human, r=rat, m=mouse) are provided in Table 9 (SEQ ID NO:966 to SEQ ID NO:1043) which are publicly available and accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.
  • Extension Primers:
  • Empirical data generated as described in Examples 1-5 suggests that gene specific (GS) extension primers are primarily responsible for the dynamic range of the assays for detecting mammalian microRNA targets using the methods described herein. As described in Example 2, it was determined that the dynamic range (ΔCt) and specificity of the assays tested decreased for extension primers having gene specific regions below 6 to 7 nucleotides. Therefore, in order to optimize microRNA detection assays, extension primers were designed that have 7 to 10 nucleotide overlap with the microRNA target of interest. Exemplary extension primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8 (SEQ ID NO:500 to SEQ ID NO:965). These exemplary extension primers have a gene specific (GS) region from 7 to 10 nucleotide overlap with the microRNA target of interest.
  • Reverse Primers:
  • Unmodified and locked nucleic acid (LNA)-containing reverse primers were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). Based on the data generated as described in Examples 1-5, it was determined that the design of the reverse primers contributes to the efficiency of the PCR reactions, with the observation that the longer the reverse primer, the better the PCR performance. However, it was also observed that the longer the overlap with the extension primer, the higher the background. Therefore, the reverse primers were designed to be as long as possible while minimizing the overlap with the gene specific portion of the extension primer, in order to reduce the non-specific background signal.
  • In addition, as described in Example 3, LNA base substitutions may be selected to raise the predicted Tm of the primer, with two or three LNA base substitutions typically substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide. Exemplary reverse primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8. While these exemplary reverse primers contain LNA base substitutions (the “+” symbol preceding a nucleotide designates an LNA substitution), this feature is optional and not required.
  • Selection and validation of primers for a desired target:
  • Assay oligonucleotide selection is made in two steps as follows:
  • 1) Primer designs were determined using the principles described above. Typically, 4 extension primer candidates and 2 reverse primer candidates were designed for each microRNA target of interest. The extension primers in each set overlap the gene specific region by 7, 8, 9 and 10 nucleotides, respectively, at the 3′ end. Exemplary primers designed according to these design principles are provided in TABLE 8 for the microRNA targets listed in TABLE 9.
  • Assay design to validate the candidate primer sets (Assay #1)
  • microRNA Target:
  • Exemplary target microRNA miR-495 has an RNA target sequence (SEQ ID NO:966) that is conserved across human (h), mouse (m) and rat (r), as indicated by the designation “hmr”-miR-495 in TABLE 9. Therefore, the primer designed for this target sequence would be expected to be useful to detect miR-495 in samples obtained from human, mouse, and rat.
  • microRNA miR-495 target RNA sequence: 5′ AAACAAACAUGGUGCACUUCUU 3′ (SEQ ID NO:966)
  • Extension Primers (4 candidates)
    (SEQ ID NO: 500)
    hmr-miR-495GS10: 5′ CATGATCAGCTGGGCCAAGAAAGAAGTGCA
    3′
    (SEQ ID NO: 501)
    hmr-miR-495GS9: 5′ CATGATCAGCTGGGCCAAGAAAGAAGTGC
    3′
    (SEQ ID NO: 502)
    hmr-miR-495GS8: 5′ CATGATCAGCTGGGCCAAGAAAGAAGTG  3′
    (SEQ ID NO: 503)
    hmr-miR-495GS7: 5′ CATGATCAGCTGGGCCAAGAAAGAAGT
    Reverse Primers (2 candidates)
    (SEQ ID NO: 504)
    hmr-miR-495RP1: 5′ AAA+CAAA+CA+TGGTGCAC 3′
    (SEQ ID NO: 505)
    hmr-miR-495RP2: 5′ AAA+C+AAA+CATGGTGC 3′
  • 2) The primers designed as described above were tested to find pairs that showed both high sensitivity and high dynamic range in quantitative PCR assays, using the assay methods described in Example 2. The optimal combination of extension primer and reverse primer was determined for the target microRNA by testing all combinations of primers in the presence or absence of DNA template. It is preferable to use DNA rather than RNA template to test the oligo pairs because it is less likely to degrade than RNA. Degraded templates result in misleading assay data. Therefore, HPLC purified DNA template molecules are preferred.
  • TABLE 8 shows exemplary primer sets for use in detection assays for 78 microRNA targets (shown in TABLE 9). The candidate primers for use in these assays were designed to specifically detect human (h), mouse (m) and rat (r) microRNAs, or microRNAs from one or more species. For example, assays with the “hmr” prefix are designed to detect a perfectly conserved microRNA in all three species, whereas a “mr” prefix means the assay is designed to detect a microRNA conserved between mouse and rat, but not human. Nucleotides preceded by a plus (+) sign may be optionally locked (LNA). TABLE 9 shows the microRNA target sequence for each assay.
  • TABLE 8
    EXEMPLARY PRIMER SETS FOR DETECTING MAMMALIAN MICRORNA TARGETS
    Extension Reverse
    Assay Number Target microRNA Primer Name Extension Primer Sequence Primer Name Reverse Primer Sequence Comments
    1 hmr-miR-495 Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGTGCA Hmr-miR- AAA+CAAA+CA+TGGTGCAC Conserved across all
    495GS10 SEQ ID NO: 500 495RP1 SEQ ID NO: 504 three species
    Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGTGC Hmr-miR- AAA+C+AAA+CATGGTGC
    495GS9 SEQ ID NO: 501 495RP2 SEQ ID NO: 505
    Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGTG
    495GS8 SEQ ID NO: 502
    Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGT
    495GS7 SEQ ID NO: 503
    2 mr-miR-291a- mr-mIR- CATGATCAGCTGGGCCAAGAGGCACACAAA mr-mIR-291a- AA+AG+TGCTTCCACTTTGT Mouse/rat specific; seed
    3p 291a- SEQ ID NO: 506 3pRP1 SEQ ID NO: 510 region ortholog to human
    3pGS10 miR-371/2
    mr-mIR- CATGATCAGCTGGGCCAAGAGGCACACAA mr-mIR-291a- AA+AG+TG+CTTCCACTTT
    291a-3pGS9 SEQ ID NO: 507 3pRP2 SEQ ID NO: 511
    mr-mIR- CATGATCAGCTGGGCCAAGAGGCACACA
    291a-3pGS8 SEQ ID NO: 508
    mr-mIR- CATGATCAGCTGGGCCAAGAGGCACAC
    291a-3pGS7 SEQ ID NO: 509
    3 m-miR-291b- m-mIR- CATGATCAGCTGGGCCAAGAGACAAACAAA m-mIR-291b- AA+AG+TG+CAT+CCATTTTGT Mouse specific; seed
    3p 291b- SEQ ID NO: 512 3pRP1 SEQ ID NO: 516 region ortholog to human
    3pGS10 miR-371/2
    m-mIR- CATGATCAGCTGGGCCAAGAGACAAACAA m-mIR-291b- AA+AG+TG+CATCCATTTT
    291b-3pGS9 SEQ ID NO: 513 3pRP2 SEQ ID NO: 517
    m-mIR- CATGATCAGCTGGGCCAAGAGACAAACA
    291b-3pGS8 SEQ ID NO: 514
    m-mIR- CATGATCAGCTGGGCCAAGAGACAAAC
    291b-3pGS7 SEQ ID NO: 515
    4 h-miR-519a h-miR- CATGATCAGCTGGGCCAAGAGTAACACTCT h-miR- AA+AG+TG+CATCCTTTTAGAGT Human specific;
    519aGS10 SEQ ID NO: 518 519aRP1 SEQ ID NO: 522 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAGTAACACTC h-miR- AA+AG+TG+CATCCTTTTAGA
    519aGS9 SEQ ID NO: 519 519aRP2 SEQ ID NO: 523
    h-miR- CATGATCAGCTGGGCCAAGAGTAACACT
    519aGS8 SEQ ID NO: 520
    h-miR- CATGATCAGCTGGGCCAAGAGTAACAC
    519aGS7 SEQ ID NO: 521
    5 h-miR-519b h-miR- CATGATCAGCTGGGCCAAGAAAACCTCTAA h-miR- AA+AG+TG+CATCCTTTTAG Human specific;
    519bGS10 SEQ ID NO: 524 519bRP1 SEQ ID NO: 528 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAAAACCTCTA h-miR- AA+AG+TG+CATCCTTTT
    519bGS9 SEQ ID NO: 525 519bRP2 SEQ ID NO: 529
    h-miR- CATGATCAGCTGGGCCAAGAAAACCTCT
    519bGS8 SEQ ID NO: 526
    h-miR- CATGATCAGCTGGGCCAAGAAAACCTC
    519bGS7 SEQ ID NO: 527
    6 h-miR-519c h-miR- CATGATCAGCTGGGCCAAGAATCCTCTAAA h-miR- AA+AG+TG+CATCTTTTTAGA Human specific;
    519cGS10 SEQ ID NO: 530 519cRP1 SEQ ID NO: 534 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAATCCTCTAA h-miR- AA+AG+TG+CATCTTTTTA
    519cGS9 SEQ ID NO: 531 519cRP2 SEQ ID NO: 535
    h-miR- CATGATCAGCTGGGCCAAGAATCCTCTA
    519cGS8 SEQ ID NO: 532
    h-miR- CATGATCAGCTGGGCCAAGAATCCTCT
    519cGS7 SEQ ID NO: 533
    7 h-miR-519d h-miR- CATGATCAGCTGGGCCAAGAACACTCTAAA h-miR- C+AAAG+TGCCTCCCTTTAG Human specific;
    519dGS10 SEQ ID NO: 536 519dRP1 SEQ ID NO: 540 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAACACTCTAA h-miR- C+AA+AG+TGCCTCCCTTT
    519dGS9 SEQ ID NO: 537 519dRP2 SEQ ID NO: 541
    h-miR- CATGATCAGCTGGGCCAAGAACACTCTA
    519dGS8 SEQ ID NO: 538
    h-miR- CATGATCAGCTGGGCCAAGAACACTCT
    519dGS7 SEQ ID NO: 539
    8 h-miR-520a h-miR- CATGATCAGCTGGGCCAAGAACAGTCCAAA h-miR- AA+AG+TGCTTCCCTTTGG Human specific;
    520aGS10 SEQ ID NO: 542 520aRP1 SEQ ID NO: 546 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAACAGTCCAA h-miR- AA+AG+T+GCTTCCCTTT
    520aGS9 SEQ ID NO: 543 520aRP2 SEQ ID NO: 547
    h-miR- CATGATCAGCTGGGCCAAGAACAGTCCA
    520aGS8 SEQ ID NO: 544
    h-miR- CATGATCAGCTGGGCCAAGAACAGTCC
    520aGS7 SEQ ID NO: 545
    9 h-miR-520b h-miR- CATGATCAGCTGGGCCAAGACCCTCTAAAA h-miR- AA+AG+T+GCTTCCTTTTAG Human specific;
    520bGS10 SEQ ID NO: 548 520bRP1 SEQ ID NO: 552 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGACCCTCTAAA h-miR- AA+AG+TG+CTTCCTTTTA
    520bGS9 SEQ ID NO: 549 520bRP2 SEQ ID NO: 553
    h-miR- CATGATCAGCTGGGCCAAGACCCTCTAA
    520bGS8 SEQ ID NO: 550
    h-miR- CATGATCAGCTGGGCCAAGACCCTCTA
    520bGS7 SEQ ID NO: 551
    10 h-miR-520d h-miR- CATGATCAGCTGGGCCAAGAAACCCACCAA h-miR- AA+AG+TGCTTCTCTTTGGT Human specific;
    520dGS10 SEQ ID NO: 554 520dRP1 SEQ ID NO: 558 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAAACCCACCA h-miR- AA+AG+TG+CTTCTCTTTG
    520dGS9 SEQ ID NO: 555 520dRP2 SEQ ID NO: 559
    h-miR- CATGATCAGCTGGGCCAAGAAACCCACC
    520dGS8 SEQ ID NO: 556
    h-miR- CATGATCAGCTGGGCCAAGAAACCCAC
    520dGS7 SEQ ID NO: 557
    11 h-miR-520e h-miR- CATGATCAGCTGGGCCAAGACCCTCAAAAA h-miR- AA+AG+TGCTTCCTTTTTG Human specific;
    520eGS10 SEQ ID NO: 560 520eRP1 SEQ ID NO: 564 implicated in
    oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGACCCTCAAAA h-miR- AA+AG+T+GCTTCCTTTTT
    520eGS9 SEQ ID NO: 561 520eRP2 SEQ ID NO: 565
    h-miR- CATGATCAGCTGGGCCAAGACCCTCAAA
    520eGS8 SEQ ID NO: 562
    h-miR- CATGATCAGCTGGGCCAAGACCCTCAA
    520eGS7 SEQ ID NO: 563
    12 h-miR-520f h-miR- CATGATCAGCTGGGCCAAGAAACCCTCTAA h-miR- A+AG+TGCTTCCTTTTAGA Human specific;
    520fGS10 SEQ ID NO: 566 520fRP1 SEQ ID NO: 570 implicated in oncogenesis
    h-miR- CATGATCAGCTGGGCCAAGAAACCCTCTA h-miR- A+AG+T+GCTTCCTTTTA
    520fGS9 SEQ ID NO: 567 520fRP2 SEQ ID NO: 571
    h-miR- CATGATCAGCTGGGCCAAGAAACCCTCT
    520fGS8 SEQ ID NO: 568
    h-miR- CATGATCAGCTGGGCCAAGAAACCCTC
    520fGS7 SEQ ID NO: 569
    13 mr-miR-329 mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGGTTA mr-miR- AA+CA+CACCCAGCTAACC Specific for mouse/rat
    329G510 SEQ ID NO: 572 329RP1 SEQ ID NO: 576 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGGTT mr-miR- AA+CA+CACCCAGCTAA
    329GS9 SEQ ID NO: 573 329RP2 SEQ ID NO: 577
    mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGGT
    329GS8 SEQ ID NO: 574
    mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGG
    329GS7 SEQ ID NO: 575
    14 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAACCCACCGA hmr-miR- AA+CATT+CATTGTTGTCGGT Conserved across all
    181d 181dGS10 SEQ ID NO: 578 181dRP1 SEQ ID NO: 582 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAACCCACCG hmr-miR- AA+CA+TT+CATTGTTGTCG
    181dGS9 SEQ ID NO: 579 181dRP2 SEQ ID NO: 583
    hmr-miR- CATGATCAGCTGGGCCAAGAAACCCACC
    181dGS8 SEQ ID NO: 580
    hmr-miR- CATGATCAGCTGGGCCAAGAAACCCAC
    181dGS7 SEQ ID NO: 581
    15 has-miR-193b hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGGGAC hmr-miR- AA+CT+GGCCCTCAAAGTCCC Conserved across all
    193bGS10 SEQ ID NO: 584 193bRP1 SEQ ID NO: 588 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGGGA hmr-miR- AA+CT+GGCCCTCAAAGTC
    193bGS9 SEQ ID NO: 585 193bRP2 SEQ ID NO: 589
    hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGGG
    193bGS8 SEQ ID NO: 586
    hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGG
    193bGS7 SEQ ID NO: 587
    16 h-miR-362 h-miR- CATGATCAGCTGGGCCAAGAACTCACACCT h-miR-362RP1 AAT+CCTT+GGAACCTAGGTG Assay specific for human
    362GS10 SEQ ID NO: 590 SEQ ID NO: 594 ortholog
    h-miR- CATGATCAGCTGGGCCAAGAACTCACACC h-miR-362RP2 AA+TC+CTT+GGAACCTAGG
    362GS9 SEQ ID NO: 591 SEQ ID NO: 595
    h-miR- CATGATCAGCTGGGCCAAGAACTCACAC
    362GS8 SEQ ID NO: 592
    h-miR- CATGATCAGCTGGGCCAAGAACTCACA
    362GS7 SEQ ID NO: 593
    17 mr-miR-362 mr-mIR- CATGATCAGCTGGGCCAAGATTCACACCTA mr-mIR-362- AA+TCCTT+GGAACCTAGGT Assay specific for rodent
    362-3pGS10 SEQ ID NO: 596 3pRP1 SEQ ID NO: 600 ortholog
    mr-mIR- CATGATCAGCTGGGCCAAGATTCACACCT mr-mIR-362- AA+TC+CTT+GGAACCTAG
    362-3pGS9 SEQ ID NO: 597 3pRP2 SEQ ID NO: 601
    mr-mIR- CATGATCAGCTGGGCCAAGATTCACACC
    362-3pGS8 SEQ ID NO: 598
    mr-mIR- CATGATCAGCTGGGCCAAGATTCACAC
    362-3pGS7 SEQ ID NO: 599
    18 h-miR-500 h-miR- CATGATCAGCTGGGCCAAGACAGAATCCTT h-miR-500RP1 A+TG+CACCTGGGCAAGGA Assay specific for human
    500GS10 SEQ ID NO: 602 SEQ ID NO: 606 ortholog
    h-miR- CATGATCAGCTGGGCCAAGACAGAATCCT h-miR-500RP2 A+TG+CACCTGGGCAAG
    500GS9 SEQ ID NO: 603 SEQ ID NO: 607
    h-miR- CATGATCAGCTGGGCCAAGACAGAATCC
    500GS8 SEQ ID NO: 604
    h-miR- CATGATCAGCTGGGCCAAGACAGAATC
    500GS7 SEQ ID NO: 605
    19 mmu-miR- mr-miR- CATGATCAGCTGGGCCAAGACTGAACCCTT mr-miR- A+TGCA+CCTGGGCAAGGG Assay specific for rodent
    500 500GS10 SEQ ID NO: 608 500RP1 SEQ ID NO: 612 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGACTGAACCCT mr-miR- A+TGCA+CCTGGGCAAG
    500GS9 SEQ ID NO: 609 500RP2 SEQ ID NO: 613
    mr-miR- CATGATCAGCTGGGCCAAGACTGAACCC
    500GS8 SEQ ID NO: 610
    mr-miR- CATGATCAGCTGGGCCAAGACTGAACC
    500GS7 SEQ ID NO: 611
    20 h-miR-501 h-miR- CATGATCAGCTGGGCCAAGATCTCACCCAG h-miR-501RP1 AA+T+CCTT+TGTCCCTGGG Assay specific for human
    501GS10 SEQ ID NO: 614 SEQ ID NO: 618 ortholog
    h-miR- CATGATCAGCTGGGCCAAGATCTCACCCA h-miR-501RP2 AAT+CCTT+TGTCCCTGG
    501GS9 SEQ ID NO: 615 SEQ ID NO: 619
    h-miR- CATGATCAGCTGGGCCAAGATCTCACCC
    501GS8 SEQ ID NO: 616
    h-miR- CATGATCAGCTGGGCCAAGATCTCACC
    501GS7 SEQ ID NO: 617
    21 mr-miR-501 mr-miR- CATGATCAGCTGGGCCAAGATTTCACCCAG mr-miR- AA+T+CC+TTTGTCCCTGGG Assay specific for rodent
    501GS10 SEQ ID NO: 620 501RP1 SEQ ID NO: 624 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGATTTCACCCA mr-miR- AA+T+CC+TTTGTCCCTG
    501GS9 SEQ ID NO: 621 501RP2 SEQ ID NO: 625
    mr-miR- CATGATCAGCTGGGCCAAGATTTCACCC
    501GS8 SEQ ID NO: 622
    mr-miR- CATGATCAGCTGGGCCAAGATTTCACC
    501GS7 SEQ ID NO: 623
    22 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGATGAC hmr-miR- AAT+CG+TACAGGGTCAT Conserved across all
    487b 487bGS10 SEQ ID NO: 626 487bRP1 SEQ ID NO: 630 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGATGA hmr-miR- A+AT+CG+TACAGGGTC
    487bGS9 SEQ ID NO: 627 487bRP2 SEQ ID NO: 631
    hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGATG
    487bGS8 SEQ ID NO: 628
    hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGAT
    487bGS7 SEQ ID NO: 629
    23 h-miR-489 h-miR- CATGATCAGCTGGGCCAAGAGCTGCCGTAT h-miR-489RP1 AG+TGA+CATCACATATACG Assay specific for human
    489GS10 SEQ ID NO: 632 SEQ ID NO: 636 ortholog
    h-miR- CATGATCAGCTGGGCCAAGAGCTGCCGTA h-miR-489RP2 A+G+TGA+CATCACATATAC
    489GS9 SEQ ID NO: 633 SEQ ID NO: 637
    h-miR- CATGATCAGCTGGGCCAAGAGCTGCCGT
    489GS8 SEQ ID NO: 634
    h-miR- CATGATCAGCTGGGCCAAGAGCTGCCG
    489GS7 SEQ ID NO: 635
    24 m-miR-489 m-miR- CATGATCAGCTGGGCCAAGAGCTGCCATAT m-miR-489RP1 AATGA+CA+CCACATATATG Assay specific for mouse
    489GS10 SEQ ID NO: 638 SEQ ID NO: 642 ortholog
    m-miR- CATGATCAGCTGGGCCAAGAGCTGCCATA m-miR-489RP2 AA+TGA+CA+CCACATAT
    489GS9 SEQ ID NO: 639 SEQ ID NO: 643
    m-miR- CATGATCAGCTGGGCCAAGAGCTGCCAT
    489GS8 SEQ ID NO: 640
    m-miR- CATGATCAGCTGGGCCAAGAGCTGCCA
    489GS7 SEQ ID NO: 641
    25 r-miR-489 r-miR- CATGATCAGCTGGGCCAAGAGCTGCCATAT r-miR-489RP1 AA+TGA+CA+TCACATATATG Assay specific for rat
    489GS10 SEQ ID NO: 644 SEQ ID NO: 648 ortholog
    r-miR- CATGATCAGCTGGGCCAAGAGCTGCCATA r-miR-489RP2 AAT+GA+CA+TCACATATAT
    489GS9 SEQ ID NO: 645 SEQ ID NO: 649
    r-miR- CATGATCAGCTGGGCCAAGAGCTGCCAT
    489GS8 SEQ ID NO: 646
    r-miR- CATGATCAGCTGGGCCAAGAGCTGCCA
    489GS7 SEQ ID NO: 647
    26 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGATCAACGGGAG hmr-miR-425- AA+TGA+CACGATCACTCCC Conserved across all
    425-5p 425-5pGS10 SEQ ID NO: 650 5pRP1 SEQ ID NO: 654 three species
    hmr-miR- CATGATCAGCTGGGCCAAGATCAACGGGA hmr-miR-425- AA+T+GA+CACGATCACTC
    425-5pGS9 SEQ ID NO: 651 5pRP2 SEQ ID NO: 655
    hmr-miR- CATGATCAGCTGGGCCAAGATCAACGGG
    425-5pGS8 SEQ ID NO: 652
    hmr-miR- CATGATCAGCTGGGCCAAGATCAACGG
    425-5pGS7 SEQ ID NO: 653
    27 hmr-miR-652 hmr-miR- CATGATCAGCTGGGCCAAGATGCACAACCC hmr-miR- AAT+GGCGCCACTAGGGTT Conserved across all
    652GS10 SEQ ID NO: 656 652RP1 SEQ ID NO: 660 three species
    hmr-miR- CATGATCAGCTGGGCCAAGATGCACAACC hmr-miR- AAT+GG+CGCCACTAGGG
    652GS9 SEQ ID NO: 657 652RP2 SEQ ID NO: 661
    hmr-miR- CATGATCAGCTGGGCCAAGATGCACAAC
    652GS8 SEQ ID NO: 658
    hmr-miR- CATGATCAGCTGGGCCAAGATGCACAA
    652GS7 SEQ ID NO: 659
    28 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCATCA hmr-miR-485- AGA+GGCTGGCCGTGATG Conserved across all
    485-5p 485-5pGS10 SEQ ID NO: 662 5pRP1 SEQ ID NO: 666 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCATC hmr-miR-485- AGA+GGCTGGCCGTGA
    485-5pGS9 SEQ ID NO: 663 5pRP2 SEQ ID NO: 667
    hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCAT
    485-5pGS8 SEQ ID NO: 664
    hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCA
    485-5pGS7 SEQ ID NO: 665
    29 has-miR-485- hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGGAGA hmr-miR-485- AG+TCATA+CACGGCTCTCC Conserved across all
    3p 485-3pGS10 SEQ ID NO: 668 3pRP1 SEQ ID NO: 672 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGGAG hmr-miR-485- AG+TC+ATACACGGCTCT
    485-3pGS9 SEQ ID NO: 669 3pRP2 SEQ ID NO: 673
    hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGGA
    485-3pGS8 SEQ ID NO: 670
    hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGG
    485-3pGS7 SEQ ID NO: 671
    30 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACGAATATAAC hmr-miR-369- A+GA+TC+GACCGTGTTAT Conserved across all
    369-5p 369-5pGS10 SEQ ID NO: 674 5pRP1 SEQ ID NO: 678 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACGAATATAA hmr-miR-369- A+GA+TCGACCGTGTT
    369-5pGS9 SEQ ID NO: 675 5pRP2 SEQ ID NO: 679
    hmr-miR- CATGATCAGCTGGGCCAAGACGAATATA
    369-5pGS8 SEQ ID NO: 676
    hmr-miR- CATGATCAGCTGGGCCAAGACGAATAT
    369-5pGS7 SEQ ID NO: 677
    31 hmr-miR-671 hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAGCCC hmr-miR- A+GGAAGCCCTGGAGGGGCT Conserved across all
    671GS10 SEQ ID NO: 680 671RP1 SEQ ID NO: 684 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAGCC hmr-miR- A+GGAAGCCCTGGAGGGG
    671GS9 SEQ ID NO: 681 671RP2 SEQ ID NO: 685
    hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAGC
    671GS8 SEQ ID NO: 682
    hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAG
    671GS7 SEQ ID NO: 683
    32 h-miR-449b h-miR- CATGATCAGCTGGGCCAAGAGCCAGCTAAC h-miR- A+GGC+AGTGTATTGTTAG Assay specific for human
    449bGS10 SEQ ID NO: 686 449bRP1 SEQ ID NO: 690 ortholog
    h-miR- CATGATCAGCTGGGCCAAGAGCCAGCTAA h-miR- AG+GC+AG+TGTATTGTT
    449bGS9 SEQ ID NO: 687 449bRP2 SEQ ID NO: 691
    h-miR- CATGATCAGCTGGGCCAAGAGCCAGCTA
    449bGS8 SEQ ID NO: 688
    h-miR- CATGATCAGCTGGGCCAAGAGCCAGCT
    449bGS7 SEQ ID NO: 689
    33 mr-miR-449b mr-miR- CATGATCAGCTGGGCCAAGACCAGCTAGCA mr-miR- A+GGC+AGTGCATTGCTA Assay specific for rodent
    449bGS10 SEQ ID NO: 692 449bRP1 SEQ ID NO: 696 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGACCAGCTAGC mr-miR- A+GG+CAGTGCATTGC
    449bGS9 SEQ ID NO: 693 449bRP2 SEQ ID NO: 697
    mr-miR- CATGATCAGCTGGGCCAAGACCAGCTAG
    449bGS8 SEQ ID NO: 694
    mr-miR- CATGATCAGCTGGGCCAAGACCAGCTA
    449bGS7 SEQ ID NO: 695
    34 m-miR-699 m-miR- CATGATCAGCTGGGCCAAGACGAGCCAGGT m-miR-699RP1 A+GGCAGTGCGACCTG Mouse specific; ortholog
    699GS10 SEQ ID NO: 698 SEQ ID NO: 702 to miR-34c
    m-miR- CATGATCAGCTGGGCCAAGACGAGCCAGG m-miR-699RP2 A+GG+CAGTGCGACC
    699GS9 SEQ ID NO: 699 SEQ ID NO: 703
    m-miR- CATGATCAGCTGGGCCAAGACGAGCCAG
    699GS8 SEQ ID NO: 700
    m-miR- CATGATCAGCTGGGCCAAGACGAGCCA
    699GS7 SEQ ID NO: 701
    35 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTTGCT hmr-miR-409- A+GGT+TACCCGAGCAACT Conserved across all
    409-5p 409-5pGS10 SEQ ID NO: 704 5pRP1 SEQ ID NO: 708 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTTGC hmr-miR-409- A+GG+TTACCCGAGCAA
    409-5pGS9 SEQ ID NO: 705 5pRP2 SEQ ID NO: 709
    hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTTG
    409-5pGS8 SEQ ID NO: 706
    hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTT
    409-5pGS7 SEQ ID NO: 707
    36 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGTTCA hmr-miR-409- G+AA+TGTTGCTCGGTGAAC Conserved across all
    409-3p 409-3pGS10 SEQ ID NO: 710 3pRP1 SEQ ID NO: 714 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGTTC hmr-miR-409- G+AA+TGTTGCTCGGTGA
    409-3pGS9 SEQ ID NO: 711 3pRP2 SEQ ID NO: 715
    hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGTT
    409-3pGS8 SEQ ID NO: 712
    hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGT
    409-3pGS7 SEQ ID NO: 713
    37 hmr-miR-491 hmr-miR- CATGATCAGCTGGGCCAAGACCTCATGGAA hmr-miR- AG+TGG+GGAACCCTTCCA Conserved across all
    491GS10 SEQ ID NO: 716 491RP1 SEQ ID NO: 720 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACCTCATGGA hmr-miR- AG+TG+GGGAACCCTTC
    491GS9 SEQ ID NO: 717 491RP2 SEQ ID NO: 721
    hmr-miR- CATGATCAGCTGGGCCAAGACCTCATGG
    491GS8 SEQ ID NO: 718
    hmr-miR- CATGATCAGCTGGGCCAAGACCTCATG
    491GS7 SEQ ID NO: 719
    38 h-miR-384 h-miR- CATGATCAGCTGGGCCAAGATATGAACAAT h-miR-384RP1 A+TT+CCT+AGAAATTGTTC Assay specific for human
    384GS10 SEQ ID NO: 722 SEQ ID NO: 726 ortholog
    h-miR- CATGATCAGCTGGGCCAAGATATGAACAA h-miR-384RP2 A+TT+CCT+AG+AAATTGT
    384GS9 SEQ ID NO: 723 SEQ ID NO: 727
    h-miR- CATGATCAGCTGGGCCAAGATATGAACA
    384GS8 SEQ ID NO: 724
    h-miR- CATGATCAGCTGGGCCAAGATATGAAC
    384GS7 SEQ ID NO: 725
    39 mr-miR-384 mr-miR- CATGATCAGCTGGGCCAAGATGTGAACAAT mr-miR- A+TT+CCT+AGAAATTGTT Assay specific for rodent
    384GS10 SEQ ID NO: 728 384RP1 SEQ ID NO: 732 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGATGTGAACAA mr-miR- A+TT+CCT+AG+AAATTGTT
    384GS9 SEQ ID NO: 729 384RP2 SEQ ID NO: 733
    mr-miR- CATGATCAGCTGGGCCAAGATGTGAACA
    384GS8 SEQ ID NO: 730
    mr-miR- CATGATCAGCTGGGCCAAGATGTGAAC
    384GS7 SEQ ID NO: 731
    40 hmr-miR-20b hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCACTA hmr-miR- C+AA+AG+TGCTCATAGTGCA Conserved across all
    20bGS10 SEQ ID NO: 734 20bRP1 SEQ ID NO: 738 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCACT hmr-miR- CAA+AG+TG+CTCATAGTG
    20bGS9 SEQ ID NO: 735 20bRP2 SEQ ID NO: 739
    hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCAC
    20bGS8 SEQ ID NO: 736
    hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCA
    20bGS7 SEQ ID NO: 737
    41 hmr-miR-490 hmr-miR- CATGATCAGCTGGGCCAAGACAGCATGGAG hmr-miR- C+AA+CCTGGAGGACTCCA Conserved across all
    490GS10 SEQ ID NO: 740 490RP1 SEQ ID NO: 744 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACAGCATGGA hmr-miR- CAA+CCT+GGAGGACTC
    490GS9 SEQ ID NO: 741 490RP2 SEQ ID NO: 745
    hmr-miR- CATGATCAGCTGGGCCAAGACAGCATGG
    490GS8 SEQ ID NO: 742
    hmr-miR- CATGATCAGCTGGGCCAAGACAGCATG
    490GS7 SEQ ID NO: 743
    42 hmr-miR-497 hmr-miR- CATGATCAGCTGGGCCAAGAACAAACCACA hmr-miR- C+AG+CAGCACACTGTGG Conserved across all
    497GS10 SEQ ID NO: 746 497RP1 SEQ ID NO: 750 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAACAAACCAC hmr-miR- C+AG+CAGCACACTGTG
    497GS9 SEQ ID NO: 747 497RP2 SEQ ID NO: 751
    hmr-miR- CATGATCAGCTGGGCCAAGAACAAACCA
    497GS8 SEQ ID NO: 748
    hmr-miR- CATGATCAGCTGGGCCAAGAACAAACC
    497GS7 SEQ ID NO: 749
    43 h-miR-301b h-miR- CATGATCAGCTGGGCCAAGATGCTTTGACA h-miR- C+AG+TG+CAATGATATTGTCA Assay specific for human
    301bGS10 SEQ ID NO: 752 301bRP1 SEQ ID NO: 756 ortholog
    h-miR- CATGATCAGCTGGGCCAAGATGCTTTGAC h-miR- C+AG+TG+CAATGATATTGT
    301bGS9 SEQ ID NO: 753 301bRP2 SEQ ID NO: 757
    h-miR- CATGATCAGCTGGGCCAAGATGCTTTGA
    301bGS8 SEQ ID NO: 754
    h-miR- CATGATCAGCTGGGCCAAGATGCTTTG
    301bGS7 SEQ ID NO: 755
    44 mr-miR-301b mr-miR- CATGATCAGCTGGGCCAAGATGCTTTGACA mr-miR- C+AG+TG+CAATGGTATTGTCA Assay specific for rodent
    301bGS10 SEQ ID NO: 758 301bRP1 SEQ ID NO: 762 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGATGCTTTGAC mr-miR- C+AG+TG+CAATGGTATTGT
    301bGS9 SEQ ID NO: 759 301bRP2 SEQ ID NO: 763
    mr-miR- CATGATCAGCTGGGCCAAGATGCTTTGA
    301bGS8 SEQ ID NO: 760
    mr-miR- CATGATCAGCTGGGCCAAGATGCTTTG
    301bGS7 SEQ ID NO: 761
    45 hmr-miR-721 hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCCTTT hmr-miR- C+AG+TG+CAATTAAAAGGG Conserved across all
    721GS10 SEQ ID NO: 764 721RP1 SEQ ID NO: 768 three species
    hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCCTT hmr-miR- C+AG+TG+CAATTAAAAG
    721GS9 SEQ ID NO: 765 721RP2 SEQ ID NO: 769
    hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCCT
    721GS8 SEQ ID NO: 766
    hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCC
    721GS7 SEQ ID NO: 767
    46 hmr-miR-532 hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCCTAC hmr-miR- CA+TG+CCTTGAGTGTAGG Conserved across all
    532GS10 SEQ ID NO: 770 532RP1 SEQ ID NO: 774 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCCTA hmr-miR- CA+TG+CCTTGAGTGTA
    532GS9 SEQ ID NO: 771 532RP2 SEQ ID NO: 775
    hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCCT
    532GS8 SEQ ID NO: 772
    hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCC
    532GS7 SEQ ID NO: 773
    47 h-miR-488 h-miR- CATGATCAGCTGGGCCAAGATTGAGAGTGC h-miR-488RP1 C+CCA+GATAATGGCACT Assay specific for human
    488GS10 SEQ ID NO: 776 SEQ ID NO: 780 ortholog
    h-miR- CATGATCAGCTGGGCCAAGATTGAGAGTG h-miR-488RP2 C+CC+A+GATAATGGCA
    488GS9 SEQ ID NO: 777 SEQ ID NO: 781
    h-miR- CATGATCAGCTGGGCCAAGATTGAGAGT
    488GS8 SEQ ID NO: 778
    h-miR- CATGATCAGCTGGGCCAAGATTGAGAG
    488GS7 SEQ ID NO: 779
    48 mr-miR-488 mr-miR- CATGATCAGCTGGGCCAAGATTGAGAGTGC mr-miR- C+CCA+GATAATAGCACT Assay specific for rodent
    488GS10 SEQ ID NO: 782 488RP1 SEQ ID NO: 786 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGATTGAGAGTG mr-miR- C+CC+A+GATAATAGCA
    488GS9 SEQ ID NO: 783 488RP2 SEQ ID NO: 787
    mr-miR- CATGATCAGCTGGGCCAAGATTGAGAGT
    488GS8 SEQ ID NO: 784
    mr-miR- CATGATCAGCTGGGCCAAGATTGAGAG
    488GS7 SEQ ID NO: 785
    49 hmr-miR-539 hmr-miR- CATGATCAGCTGGGCCAAGAACACACCAAG hmr-miR- GG+AG+AAATTATCCTTGGT Conserved across all
    539GS10 SEQ ID NO: 788 539RP1 SEQ ID NO: 792 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAACACACCAA hmr-miR- G+GA+G+AAATTATCCTTGG
    539GS9 SEQ ID NO: 789 539RP2 SEQ ID NO: 793
    hmr-miR- CATGATCAGCTGGGCCAAGAACACACCA
    539GS8 SEQ ID NO: 790
    hmr-miR- CATGATCAGCTGGGCCAAGAACACACC
    539GS7 SEQ ID NO: 791
    50 h-miR-505 h-miR- CATGATCAGCTGGGCCAAGAGAGGAAACCA h-miR-505RP1 GT+CAA+CACTTGCTGGTT Assay specific for human
    505GS10 SEQ ID NO: 794 SEQ ID NO: 798 ortholog
    h-miR- CATGATCAGCTGGGCCAAGAGAGGAAACC h-miR-505RP2 G+T+CAA+CACTTGCTGG
    505GS9 SEQ ID NO: 795 SEQ ID NO: 799
    h-miR- CATGATCAGCTGGGCCAAGAGAGGAAAC
    505GS8 SEQ ID NO: 796
    h-miR- CATGATCAGCTGGGCCAAGAGAGGAAA
    505GS7 SEQ ID NO: 797
    51 mr-miR-505 mr-miR- CATGATCAGCTGGGCCAAGAGGAAACCAGC mr-miR- CG+T+CAA+CA+CTTGCTGGT Assay specific for rodent
    505GS10 SEQ ID NO: 800 505RP1 SEQ ID NO: 804 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGAGGAAACCAG mr-miR- CG+T+CAA+CA+CTTGCTG
    505GS9 SEQ ID NO: 801 505RP2 SEQ ID NO: 805
    mr-miR- CATGATCAGCTGGGCCAAGAGGAAACCA
    505GS8 SEQ ID NO: 802
    mr-miR- CATGATCAGCTGGGCCAAGAGGAAACC
    505GS7 SEQ ID NO: 803
    52 h-miR-18b h-miR- CATGATCAGCTGGGCCAAGATAACTGCACT h-miR-18bRP1 TAA+GG+TGCATCTAGTGC Assay specific for human
    18bGS10 SEQ ID NO: 806 SEQ ID NO: 810 ortholog
    h-miR- CATGATCAGCTGGGCCAAGATAACTGCAC h-miR-18bRP2 T+AA+GG+TGCATCTAGT
    18bGS9 SEQ ID NO: 807 SEQ ID NO: 811
    h-miR- CATGATCAGCTGGGCCAAGATAACTGCA
    18bGS8 SEQ ID NO: 808
    h-miR- CATGATCAGCTGGGCCAAGATAACTGC
    18bGS7 SEQ ID NO: 809
    53 mr-miR-18b mr-miR- CATGATCAGCTGGGCCAAGATAACAGCACT mr-miR- T+AA+GG+TGCATCTAGTGC Assay specific for rodent
    18bGS10 SEQ ID NO: 812 18bRP1 SEQ ID NO: 816 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGATAACAGCAC mr-miR- TAA+GG+TG+CATCTAGT
    18bGS9 SEQ ID NO: 813 18bRP2 SEQ ID NO: 817
    mr-miR- CATGATCAGCTGGGCCAAGATAACAGCA
    18bGS8 SEQ ID NO: 814
    mr-miR- CATGATCAGCTGGGCCAAGATAACAGC
    18bGS7 SEQ ID NO: 815
    54 hmr-miR-503 hmr-miR- CATGATCAGCTGGGCCAAGACAGTACTGTT hmr-miR- T+AGC+AGCGGGAACAGT Conserved across all
    503GS10 SEQ ID NO: 818 503RP1 SEQ ID NO: 822 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACAGTACTGT hmr-miR- T+AGC+AGCGGGAACA
    503GS9 SEQ ID NO: 819 503RP2 SEQ ID NO: 823
    hmr-miR- CATGATCAGCTGGGCCAAGACAGTACTG
    503GS8 SEQ ID NO: 820
    hmr-miR- CATGATCAGCTGGGCCAAGACAGTACT
    503GS7 SEQ ID NO: 821
    55 hmr-miR-455 hmr-miR- CATGATCAGCTGGGCCAAGACGATGTAGTC hmr-miR- TA+TG+TGCCTTTGGACTA Conserved across all
    455GS10 SEQ ID NO: 824 455RP1 SEQ ID NO: 828 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACGATGTAGT hmr-miR- TA+TG+TGCCTTTGGAC
    455GS9 SEQ ID NO: 825 455RP2 SEQ ID NO: 829
    hmr-miR- CATGATCAGCTGGGCCAAGACGATGTAG
    455GS8 SEQ ID NO: 826
    hmr-miR- CATGATCAGCTGGGCCAAGACGATGTA
    455GS7 SEQ ID NO: 827
    56 hmr-miR-92b hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCGGGA hmr-miR- TAT+TG+CACTCGTCCCG Conserved across all
    92bGS10 SEQ ID NO: 830 92bRP1 SEQ ID NO: 834 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCGGG hmr-miR- TAT+TG+CACTCGTCCC
    92bGS9 SEQ ID NO: 831 92bRP2 SEQ ID NO: 835
    hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCGG
    92bGS8 SEQ ID NO: 832
    hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCG
    92bGS7 SEQ ID NO: 833
    57 h-miR-483 h-miR- CATGATCAGCTGGGCCAAGAAGAAGACGGG h-miR-483RP1 T+CAC+TCCTCTCCTCCCGT Assay specific for human
    483GS10 SEQ ID NO: 836 SEQ ID NO: 840 ortholog
    h-miR- CATGATCAGCTGGGCCAAGAAGAAGACGG h-miR-483RP2 T+CAC+TCCTCTCCTCCC
    483GS9 SEQ ID NO: 837 SEQ ID NO: 841
    h-miR- CATGATCAGCTGGGCCAAGAAGAAGACG
    483GS8 SEQ ID NO: 838
    h-miR- CATGATCAGCTGGGCCAAGAAGAAGAC
    483GS7 SEQ ID NO: 839
    58 mr-miR-483 mr-miR- CATGATCAGCTGGGCCAAGAACAAGACGGG mr-miR- TC+ACTCCTCCCCTCCCGT Assay specific for rodent
    483GS10 SEQ ID NO: 842 483RP1 SEQ ID NO: 846 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGAACAAGACGG mr-miR- TC+ACTCCTCCCCTCCC
    483GS9 SEQ ID NO: 843 483RP2 SEQ ID NO: 847
    mr-miR- CATGATCAGCTGGGCCAAGAACAAGACG
    483GS8 SEQ ID NO: 844
    mr-miR- CATGATCAGCTGGGCCAAGAACAAGAC
    483GS7 SEQ ID NO: 845
    59 hmr-miR-484 hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGAGGG hmr-miR- TCA+GGCTCAGTCCCCTC Conserved across all
    484GS10 SEQ ID NO: 848 484RP1 SEQ ID NO: 852 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGAGG hmr-miR- TC+AGGCTCAGTCCCC
    484GS9 SEQ ID NO: 849 484RP2 SEQ ID NO: 853
    hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGAG
    484GS8 SEQ ID NO: 850
    hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGA
    484GS7 SEQ ID NO: 851
    60 mmu-miR- hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTCAAA hmr-miR- TC+CCTGAGGAGCCCTTTGA Rodent specific; ortholog
    351 351GS10 SEQ ID NO: 854 351RP1 SEQ ID NO: 858 to human miR-125
    hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTCAA hmr-miR- TC+CCTGAGGAGCCCTTT
    351GS9 SEQ ID NO: 855 351RP2 SEQ ID NO: 859
    hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTCA
    351GS8 SEQ ID NO: 856
    hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTC
    351GS7 SEQ ID NO: 857
    61 hmr-miR-615 hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGAGAC hmr-miR- TC+CGAGCCTGGGTCTC Conserved across all
    615GS10 SEQ ID NO: 860 615RP1 SEQ ID NO: 864 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGAGA hmr-miR- TC+CGAGCCTGGGTC
    615GS9 SEQ ID NO: 861 615RP2 SEQ ID NO: 865
    hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGAG
    615GS8 SEQ ID NO: 862
    hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGA
    615GS7 SEQ ID NO: 863
    62 hmr-miR-486 hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGGCAG hmr-miR- T+CC+TGTACTGAGCTGCC Conserved across all
    486GS10 SEQ ID NO: 866 486RP1 SEQ ID NO: 870 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGGCA hmr-miR- T+CC+TGTACTGAGCTG
    486GS9 SEQ ID NO: 867 486RP2 SEQ ID NO: 871
    hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGGC
    486GS8 SEQ ID NO: 868
    hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGG
    486GS7 SEQ ID NO: 869
    63 hmr-miR-494 hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTCCCG hmr-miR- T+GA+AA+CATACACGGGA Conserved across all
    494GS10 SEQ ID NO: 872 494RP1 SEQ ID NO: 876 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTCCC hmr-miR- T+GA+AA+CATACACGG
    494GS9 SEQ ID NO: 873 494RP2 SEQ ID NO: 877
    hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTCC
    494GS8 SEQ ID NO: 874
    hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTC
    494GS7 SEQ ID NO: 875
    64 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACTGGCACACA hmr-miR-493- T+GAA+GGTCTACTGTG Conserved across all
    493-3p 493-3pGS10 SEQ ID NO: 878 3pRP1 SEQ ID NO: 882 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACTGGCACAC hmr-miR-493- T+GAA+GGTCTACTGT
    493-3pGS9 SEQ ID NO: 879 3pRP2 SEQ ID NO: 883
    hmr-miR- CATGATCAGCTGGGCCAAGACTGGCACA
    493-3pGS8 SEQ ID NO: 880
    hmr-miR- CATGATCAGCTGGGCCAAGACTGGCAC
    493-3pGS7 SEQ ID NO: 881
    65 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTATGGA hmr-miR- T+GA+GAAC+TGAATTCCATA Conserved across all
    146b 146bGS10 SEQ ID NO: 884 146bRP1 SEQ ID NO: 888 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTATGG hmr-miR- T+GA+GAAC+TGAATTCCA
    146bGS9 SEQ ID NO: 885 146bRP2 SEQ ID NO: 889
    hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTATG
    146bGS8 SEQ ID NO: 886
    hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTAT
    146bGS7 SEQ ID NO: 887
    66 r-miR-1 r-miR- CATGATCAGCTGGGCCAAGATACACACTTC r-miR-1RP1 T+G+GAA+TGTAAAGAAGTG Assay specific for rat
    1GS10 SEQ ID NO: 890 SEQ ID NO: 894 ortholog
    r-miR-1GS9 CATGATCAGCTGGGCCAAGATACACACTT r-miR-1RP2 T+G+GAA+TGTAAAGAAG
    SEQ ID NO: 891 SEQ ID NO: 895
    r-miR-1GS8 CATGATCAGCTGGGCCAAGATACACACT
    SEQ ID NO: 892
    r-miR-1GS7 CATGATCAGCTGGGCCAAGATACACAC
    SEQ ID NO: 893
    67 h-miR-675-5p h-miR-675- CATGATCAGCTGGGCCAAGACACTGTGGGC h-miR-675- T+GGTGCGGAGAGGGCCCA Assay specific for human
    5pGS10 SEQ ID NO: 896 5pRP1 SEQ ID NO: 900 ortholog
    h-miR-675- CATGATCAGCTGGGCCAAGACACTGTGGG h-miR-675- T+GGTGCGGAGAGGGC
    5pGS9 SEQ ID NO: 897 5pRP2 SEQ ID NO: 901
    h-miR-675- CATGATCAGCTGGGCCAAGACACTGTGG
    5pGS8 SEQ ID NO: 898
    h-miR-675- CATGATCAGCTGGGCCAAGACACTGTG
    5pGS7 SEQ ID NO: 899
    68 mr-miR-675- mr-miR- CATGATCAGCTGGGCCAAGAACTGTGGGCC mr-miR-675- T+GGTGCGGAAAGGGCC Assay specific for rodent
    5p 675-5pGS10 SEQ ID NO: 902 5pRP1 SEQ ID NO: 906 ortholog
    mr-miR- CATGATCAGCTGGGCCAAGAACTGTGGGC mr-miR-675- T+GGTGCGGAAAGGG
    675-5pGS9 SEQ ID NO: 903 5pRP2 SEQ ID NO: 907
    mr-miR- CATGATCAGCTGGGCCAAGAACTGTGGG
    675-5pGS8 SEQ ID NO: 904
    mr-miR- CATGATCAGCTGGGCCAAGAACTGTGG
    675-5pGS7 SEQ ID NO: 905
    69 hmr-miR-668 hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGGGCC hmr-miR- TG+TCACTCGGCTCGGCC Conserved across all
    668GS10 SEQ ID NO: 908 668RP1 SEQ ID NO: 912 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGGGC hmr-miR- TG+TCACTCGGCTCGG
    668GS9 SEQ ID NO: 909 668RP2 SEQ ID NO: 913
    hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGGG
    668GS8 SEQ ID NO: 910
    hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGG
    668GS7 SEQ ID NO: 911
    70 r-miR-346 r-miR- CATGATCAGCTGGGCCAAGAAGAGGCAGGC r-miR-346RP1 TGTC+TGCCTGAGTGCCTG Assay specific for rat
    346GS10 SEQ ID NO: 914 SEQ ID NO: 918 ortholog
    r-miR- CATGATCAGCTGGGCCAAGAAGAGGCAGG r-miR-346RP2 TGTC+TGCCTGAGTGCC
    346GS9 SEQ ID NO: 915 SEQ ID NO: 919
    r-miR- CATGATCAGCTGGGCCAAGAAGAGGCAG
    346GS8 SEQ ID NO: 916
    r-miR- CATGATCAGCTGGGCCAAGAAGAGGCA
    346GS7 SEQ ID NO: 917
    71 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTTATC hmr-miR-542- TG+TGA+CAGATTGATAACT Conserved across all
    542-3p 542-3pGS10 SEQ ID NO: 920 3pRP1 SEQ ID NO: 924 three species
    hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTTAT hmr-miR-542- TG+T+GA+CAGATTGATAA
    542-3pGS9 SEQ ID NO: 921 3pRP2 SEQ ID NO: 925
    hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTTA
    542-3pGS8 SEQ ID NO: 922
    hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTT
    542-3pGS7 SEQ ID NO: 923
    72 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACGTGACATGATG hmr-miR-542- CTC+GG+GGATCATCATG Conserved across all
    542-5p 542-5pGS10 SEQ ID NO: 926 5pRP1 SEQ ID NO: 930 three species
    hmr-miR- CATGATCAGCTGGGCCAAGACGTGACATG hmr-miR-542- C+TC+GGGGATCATCAT
    542-5pGS9 SEQ ID NO: 927 5pRP2 SEQ ID NO: 931
    hmr-miR- CATGATCAGCTGGGCCAAGACGTGACAT
    542-5pGS8 SEQ ID NO: 928
    hmr-miR- CATGATCAGCTGGGCCAAGACGTGACA
    542-5pGS7 SEQ ID NO: 929
    73 hmr-miR-499 hmr-miR- CATGATCAGCTGGGCCAAGAAAACATCACT hmr-miR- T+TAA+GA+CTTGCAGTGAT Conserved across all
    499G510 SEQ ID NO: 932 499RP1 SEQ ID NO: 936 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAAAACATCAC hmr-miR- T+TAA+GA+CTTGCAGTG
    499GS9 SEQ ID NO: 933 499RP2 SEQ ID NO: 937
    hmr-miR- CATGATCAGCTGGGCCAAGAAAACATCA
    499GS8 SEQ ID NO: 934
    hmr-miR- CATGATCAGCTGGGCCAAGAAAACATC
    499GS7 SEQ ID NO: 935
    74 hmr-miR-758 hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTGGAC hmr-miR- TT+TG+TGACCTGGTCCAC Conserved across all
    758GS10 SEQ ID NO: 938 758RP1 SEQ ID NO: 942 three species
    hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTGGA hmr-miR- TT+TG+T+GACCTGGTCC
    758GS9 SEQ ID NO: 939 758RP2 SEQ ID NO: 943
    hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTGG
    758GS8 SEQ ID NO: 940
    hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTG
    758GS7 SEQ ID NO: 941
    75 hmr-miR-194 miR- CATGATCAGCTGGGCCAAGATCCACATGGA miR-194RP1 TG+TAA+CAGCAACTCCA Conserved across all
    194GSP10 SEQ ID NO: 944 SEQ ID NO: 948 three species
    miR- CATGATCAGCTGGGCCAAGATCCACATGG miR-RP2 TG+TAA+CA+GCAACTCCAT
    194GSP9 SEQ ID NO: 945 SEQ ID NO: 949
    miR- CATGATCAGCTGGGCCAAGATCCACATG
    194GSP8 SEQ ID NO: 946
    miR- CATGATCAGCTGGGCCAAGATCCACAT
    194GSP7 SEQ ID NO: 947
    76 hmr-miR-206 mir- CATGATCAGCTGGGCCAAGACCACACACTT mir-206RP1 T+GGAA+TGTAAGGAAGT Conserved across all
    206GSP10 SEQ ID NO: 950 SEQ ID NO: 954 three species
    mir- CATGATCAGCTGGGCCAAGACCACACACT miR-206RP2 T+G+GAA+TGTAAGGAAGTGT
    206GSP9 SEQ ID NO: 951 SEQ ID NO: 955
    mir- CATGATCAGCTGGGCCAAGACCACACAC
    206GSP8 SEQ ID NO: 952
    mir- CATGATCAGCTGGGCCAAGACCACACA
    206GSP7 SEQ ID NO: 953
    77 hmr-miR-1 miR-1GS10 CATGATCAGCTGGGCCAAGATACATACTTC miR-1RP1 TG+GAA+TG+TAAAGAAGTA Conserved across all
    (SEQ ID NO: 47) (SEQ ID NO: 959) three species
    miR-1GS9 CATGATCAGCTGGGCCAAGATACATACTT (SEQ miR-1RP2 T+G+GAA+TG+TAAAGAAGT
    ID NO: 956) (SEQ ID NO: 48)
    miR-1GS8 CATGATCAGCTGGGCCAAGATACATACT (SEQ
    ID NO: 957)
    miR-1GS7 CATGATCAGCTGGGCCAAGATACATAC (SEQ ID
    NO: 958)
    78 hmr-miR-9 miR-9GS10 CATGATCAGCTGGGCCAAGATCATACAGCT miR-9RP1 T+CTTT+GGTTATCTAGCT (SEQ Conserved across all
    (SEQ ID NO: 960) ID NO: 964) three species
    miR-9G59 CATGATCAGCTGGGCCAAGATCATACAGC (SEQ miR-9RP2 TC+TTT+GGTT+ATCTAGCTGTA
    ID NO: 961) (SEQ ID NO: 965)
    miR-9G58 CATGATCAGCTGGGCCAAGATCATACAG (SEQ
    ID NO: 962)
    miR-9G57 CATGATCAGCTGGGCCAAGATCATACA (SEQ ID
    NO: 963)
  • TABLE 9
    SEQ
    Assay Target ID
    Number MicroRNA Name RNA target sequence NO:
    1. hmr-miR-495 AAACAAACAUGGUGCACUUCUU 966
    2. mr-miR-291a- AAAGUGCUUCCACUUUGUGUGCC 967
    3p
    3. m-mIR-291b-3p AAAGUGCAUCCAUUUUGUUUGUC 968
    4. h-miR-519a AAAGUGCAUCCUUUUAGAGUGUUAC 969
    5. h-miR-519b AAAGUGCAUCCUUUUAGAGGUUU 970
    6. h-miR-519c AAAGUGCAUCUUUUUAGAGGAU 971
    7. h-miR-519d CAAAGUGCCUCCCUUUAGAGUGU 972
    8. h-miR-520a AAAGUGCUUCCCUUUGGACUGU 973
    9. h-miR-520b AAAGUGCUUCCUUUUAGAGGG 974
    10. h-miR-520d AAAGUGCUUCUCUUUGGUGGGUU 975
    11. h-miR-520e AAAGUGCUUCCUUUUUGAGGG 976
    12. h-miR-520f AAGUGCUUCCUUUUAGAGGGUU 977
    13. mr-miR-329 AACACACCCAGCUAACCUUUUU 978
    14. hmr-miR-181d AACAUUCAUUGUUGUCGGUGGGUU 979
    15. hmr-miR-193b AACUGGCCCUCAAAGUCCCGCUUU 980
    16. h-miR-362 AAUCCUUGGAACCUAGGUGUGAGU 981
    17. mr-mIR-362-3p AAUCCUUGGAACCUAGGUGUGAA 982
    18. h-miR-500 AUGCACCUGGGCAAGGAUUCUG 983
    19. mr-miR-500 AUGCACCUGGGCAAGGGUUCAG 984
    20. h-miR-501 AAUCCUUUGUCCCUGGGUGAGA 985
    21. mr-miR-501 AAUCCUUUGUCCCUGGGUGAAA 986
    22. hmr-miR-487b AAUCGUACAGGGUCAUCCACU 987
    23. h-miR-489 AGUGACAUCACAUAUACGGCAGC 988
    24. m-miR-489 AAUGACACCACAUAUAUGGCAGC 989
    25. r-miR-489 AAUGACAUCACAUAUAUGGCAGC 990
    26. hmr-miR-425- AAUGACACGAUCACUCCCGUUGA 991
    5p
    27. hmr-miR-652 AAUGGCGCCACUAGGGUUGUGCA 992
    28. hmr-miR-485 AGAGGCUGGCCGUGAUGAAUUC 993
    -5p
    29. hmr-miR-485 AGUCAUACACGGCUCUCCUCUCU 994
    -3p
    30. hmr-miR-369 AGAUCGACCGUGUUAUAUUCG 995
    -5p
    31. hmr-miR-671 AGGAAGCCCUGGAGGGGCUGGAGG 996
    32. h-miR-449b AGGCAGUGUAUUGUUAGCUGGC 997
    33. mr-miR-449b AGGCAGUGCAUUGCUAGCUGG 998
    34. m-miR-699 AGGCAGUGCGACCUGGCUCG 999
    35. hmr-miR-409- AGGUUACCCGAGCAACUUUGCA 1000
    5p
    36. hmr-miR-409- GAAUGUUGCUCGGUGAACCCCUU 1001
    3p
    37. hmr-miR-491 AGUGGGGAACCCUUCCAUGAGG 1002
    38. h-miR-384 AUUCCUAGAAAUUGUUCAUA 1003
    39. mr-miR-384 AUUCCUAGAAAUUGUUCACA 1004
    40. hmr-miR-20b CAAAGUGCUCAUAGUGCAGGUAG 1005
    41. hmr-miR-490 CAACCUGGAGGACUCCAUGCUG 1006
    42. hmr-miR-497 CAGCAGCACACUGUGGUUUGU 1007
    43. h-miR-301b CAGUGCAAUGAUAUUGUCAAAGCA 1008
    44. mr-miR-301b CAGUGCAAUGGUAUUGUCAAAGCA 1009
    45. hmr-miR-721 CAGUGCAAUUAAAAGGGGGAA 1010
    46. hmr-miR-532 CAUGCCUUGAGUGUAGGACCGU 1011
    47. h-miR-488 CCCAGAUAAUGGCACUCUCAA 1012
    48. mr-miR-488 CCCAGAUAAUAGCACUCUCAA 1013
    49. hmr-miR-539 GGAGAAAUUAUCCUUGGUGUGU 1014
    50. h-miR-505 GUCAACACUUGCUGGUUUCCUC 1015
    51. mr-miR-505 CGUCAACACUUGCUGGUUUUCU 1016
    52. h-miR-18b UAAGGUGCAUCUAGUGCAGUUA 1017
    53. mr-miR-18b UAAGGUGCAUCUAGUGCUGUUA 1018
    54. hmr-miR-503 UAGCAGCGGGAACAGUACUGC 1019
    55. hmr-miR-455 UAUGUGCCUUUGGACUACAUCG 1020
    56. hmr-miR-92b UAUUGCACUCGUCCCGGCCUC 1021
    57. h-miR-483 UCACUCCUCUCCUCCCGUCUUCU 1022
    58. mr-miR-483 UCACUCCUCCCCUCCCGUCUUGU 1023
    59. hmr-miR-484 UCAGGCUCAGUCCCCUCCCGAU 1024
    60. hmr-miR-351 UCCCUGAGGAGCCCUUUGAGCCUG 1025
    61. hmr-miR-615 UCCGAGCCUGGGUCUCCCUCU 1026
    62. hmr-miR-486 UCCUGUACUGAGCUGCCCCGAG 1027
    63. hmr-miR-494 UGAAACAUACACGGGAAACCU 1028
    64. hmr-miR-493- UGAAGGUCUACUGUGUGCCAG 1029
    3p
    65. hmr-miR-146b UGAGAACUGAAUUCCAUAGGCU 1030
    66. r-miR-1 UGGAAUGUAAAGAAGUGUGUA 1031
    67. h-miR-675-5p UGGUGCGGAGAGGGCCCACAGUG 1032
    68. mr-miR-675-5p UGGUGCGGAAAGGGCCCACAGU 1033
    69. hmr-miR-668 UGUCACUCGGCUCGGCCCACUAC 1034
    70. r-miR-346 UGUCUGCCUGAGUGCCUGCCUCU 1035
    71. hmr-miR-542- UGUGACAGAUUGAUAACUGAAA 1036
    3p
    72. hmr-miR-542- CUCGGGGAUCAUCAUGUCACG 1037
    5p
    73. hmr-miR-499 UUAAGACUUGCAGUGAUGUUU 1038
    74. hmr-miR-758 UUUGUGACCUGGUCCACUAACC 1039
    75. hmiR-194 UGUAACAGCAACUCCAUGUGGA 1040
    76. hmiR-206 UGGAAUGUAAGGAAGUGUGUGG 1041
    77. hmiR-1 UGGAAUGUAAAGAAGUAUGUA 1042
    78. hmiR-9 UCUUUGGUUAUCUAGCUGUAUGA 1043
  • Assay Format:
  • Several candidate primer sets shown above in TABLE 8 were tested in a high-throughput assay testing format as follows:
  • Each test assay (e.g., assay #75, #76, #77 and #78 listed in TABLE 8) was run in 4×4 wells of a 96 well plate, with 6 assays per 96 well plate, thereby allowing for rapid determination of the optimal primer pair for each target.
  • For each assay, each of the 4 candidate extension (GS) primers were tested in a separate row of the 96 well plate. Each of the 2 reverse primers were tested plus (1 nM DNA) or minus template (10 mM Tris pH 7.6, 0.1 mM EDTA, 100 ng/ul yeast total RNA).
  • Following reverse transcription, one set of duplicate non-template control and template samples was tested against reverse primer 1 (RP1) and the other against reverse primer 2 (RP2).
  • Reverse Transcriptase Assay Conditions:
      • 6 μl of RT master mix was added to all 96 wells
      • 2 μl of 0.5 μM GS primers was added to four successive wells
      • yeast RNA in TE (10 mM Tris pH 7.6, 0.1 mM EDTA) was added to all odd-numbered wells and pre-diluted DNA templates was added to even-numbered wells
  • Samples were mixed well and the reverse transcriptase step was carried out, followed by dilution with 80 μl TE (10 mM Tris pH 7.6, 0.1 mM EDTA).
  • 2 μl of the reverse transcription mixture was transferred into quadruplicate wells of a 384 well PCR plate preloaded with 80 PCR mix per well containing universal primer plus the appropriate reverse primers.
  • The quantitative PCR reaction results were evaluated on a real-time PCR instrument compatible with 384 well plates.
  • Ct values for the PCR reactions were determined based on a baseline threshold of 0.01. The sensitivity (Ct value of 1 nM template) and dynamic range (Ct of no-template control minus the Ct of the 1 nM template) were determined for each primer pair in each assay. The results of exemplary assays #75, #76, #77 and #78, listed in TABLE 8, are shown in TABLE 10 below.
  • TABLE 10
    ASSAY RESULTS USING CANDIDATE PRIMER SETS FOR
    DETECTING MIR-1, MIR-9; MIR-194 AND MIR-206
    Selected
    microRNA Dynamic for use in
    target Extension primer Reverse primer Sensitivity Range profiling
    miR-9 miR-9GS10 miR-9 RP1 13 9
    (SEQ ID NO: 1043) (SEQ ID NO: 960) (SEQ ID NO: 964)
    miR-9GS9 miR-9 RP1 13 4
    (SEQ ID NO: 961) (SEQ ID NO: 964)
    miR-9GS8 miR-9 RP1 10 0
    (SEQ ID NO:962) (SEQ ID NO: 964)
    miR-9GS7 miR-9 RP1 16 8
    (SEQ ID NO: 963) (SEQ ID NO: 964)
    miR-9GS10 miR-9 RP2 13 5
    (SEQ ID NO: 960) (SEQ ID NO: 965)
    miR-9GS9 miR-9 RP2 14 4
    (SEQ ID NO: 961) (SEQ ID NO: 965)
    miR-9GS8 miR-9 RP2 10 0
    (SEQ ID NO: 962) (SEQ ID NO: 965)
    miR-9GS7 miR-9 RP2 17 8
    (SEQ ID NO: 963) (SEQ ID NO: 965)
    miR-194 miR-194GS10 miR-194RP1 9 6
    (SEQ ID NO: 1040) (SEQ ID NO: 944) (SEQ ID NO: 948)
    miR-194GS9 miR-194RP1 11 5
    (SEQ ID NO: 945) (SEQ ID NO: 948)
    miR-194GS8 miR-194RP1 13 17 +
    (SEQ ID NO: 946) (SEQ ID NO: 948)
    miR-194GS7 miR-194RP1 15 17
    (SEQ ID NO: 947) (SEQ ID NO: 948)
    miR-194GS10 miR-194RP2 10 6
    (SEQ ID NO: 944) (SEQ ID NO: 949)
    miR-194GS9 miR-194RP2 11 6
    (SEQ ID NO: 945) (SEQ ID NO: 949)
    miR-194GS8 miR-194RP2 13 16
    (SEQ ID NO: 946) (SEQ ID NO: 949)
    miR-194GS7 miR-194RP2 17 16
    (SEQ ID NO: 947) (SEQ ID NO: 949)
    miR-1 miR-1 GS10 miR-1 RP1 15 15
    (SEQ ID NO: 1042) (SEQ ID NO: 47) (SEQ ID NO: 959)
    miR-1 GS9 miR-1 RP1 17 8
    (SEQ ID NO: 956) (SEQ ID NO: 959)
    miR-1 GS8 miR-1 RP1 19 11
    (SEQ ID NO: 957) (SEQ ID NO: 959)
    miR-1 GS7 miR-1 RP1 22 11
    (SEQ ID NO: 958) (SEQ ID NO: 959)
    miR-1 GS10 miR-1 RP2 13 15 +
    (SEQ ID NO: 47) (SEQ ID NO: 48)
    miR-1 GS9 miR-1 RP2 15 8
    (SEQ ID NO: 956) (SEQ ID NO: 48)
    miR-1 GS8 miR-1 RP2 17 11
    (SEQ ID NO: 957) (SEQ ID NO: 48)
    miR-1 GS7 miR-1 RP2 19 10
    (SEQ ID NO: 958) (SEQ ID NO: 48)
    miR-206 miR-206 GS10 miR-206RP1 15 10
    (SEQ ID NO: 1041) (SEQ ID NO: 950) (SEQ ID NO: 954)
    miR-206 GS9 miR-206RP1 16 10
    (SEQ ID NO: 951) (SEQ ID NO: 954)
    miR-206 GS8 miR-206RP1 17 14
    (SEQ ID NO: 952) (SEQ ID NO: 954)
    miR-206 GS7 miR-206RP1 20 20
    (SEQ ID NO: 953) (SEQ ID NO: 954)
    miR-206 GS10 miR-206RP2 10 8
    (SEQ ID NO: 950) (SEQ ID NO: 955)
    miR-206 GS9 miR-206RP2 11 9
    (SEQ ID NO: 951) (SEQ ID NO: 955)
    miR-206 GS8 miR-206RP2 11 11
    (SEQ ID NO: 952) (SEQ ID NO: 955)
    miR-206 GS7 miR-206RP2 13 20 +
    (SEQ ID NO: 953) (SEQ ID NO: 955)
  • Optimal primer pairs were identified based on superior sensitivity (e.g., a preferred range between 5 and 25) and dynamic range (e.g., a preferred range between 10 and 35) characteristics. As shown above in TABLE 10, an optimal primer pair was identified for miR-194: GS8 (SEQ ID NO:946) and RP1 (SEQ ID NO:948) with a sensitivity of 13 and a dynamic range of 17. An optimal primer pair was identified for miR-1: GS10 (SEQ ID NO:47) and RP2 (SEQ ID NO:48) with a sensitivity of 13 and a dynamic range of 15. An optimal primer pair was identified for miR-206: GS7 (SEQ ID NO:953) and RP2 (SEQ ID NO:955) with a sensitivity of 13 and a dynamic range of 20. As also shown in TABLE 10, the GS primers control specificity, as shown by the significant increase in dynamic range (driven by a decrease in background) in going from GS9 to GS8 (see, e.g., miR-194).
  • Candidate primers designed based on the principles described above, such as the additional exemplary primers listed in TABLE 8, or other candidate primers designed using the design principles described herein, may be tested using the screening methods described above. The assays may be further optimized by using HPLC purified templates to avoid problems associated with degraded templates.
  • It has also been determined that microRNAs that differ from each other in sequence by only 1, 2 or 3 nucleotide changes can be readily distinguished from one another through the use of the primers designed according to the design principles and methods described herein.
  • While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (10)

1. A kit for detecting at least one human microRNA selected from the group consisting of miR-21, miR-22, miR-33, miR-34a, miR-34b, miR-34c, miR-122, and miR-122a, the kit comprising at least one or more oligonucleotide primers selected from the group consisting of SEQ ID NO:6, SEQ ID NO:18, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO: 113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:8; SEQ ID NO:20, SEQ ID NO:147 and SEQ ID NO:148.
2. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:6, SEQ ID NO:18, SEQ ID NO:73 and SEQ ID NO:74 for detecting miR-21.
3. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:449 and SEQ ID NO:450 for detecting miR-22.
4. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:111 and SEQ ID NO:112 for detecting miR-33.
5. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO: 113,and SEQ ID NO:114 for detecting miR-34a.
6. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:115 and SEQ ID NO:116 for detecting miR-34b.
7. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:117 and SEQ ID NO:118 for detecting miR-34c.
8. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:8 and SEQ ID NO:20 for detecting miR-122.
9. The kit according to claim 1, comprising at least one primer selected from the group consisting of SEQ ID NO:147 and 148 for detecting miR-122a.
10. An oligonucleotide primer for detecting a human microRNA selected from the group consisting of SEQ ID NO:6, SEQ ID NO:18, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO: 113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:8; SEQ ID NO:20, SEQ ID NO:147 and SEQ ID NO:148.
US13/240,847 2005-01-25 2011-09-22 Methods for quantitating small rna molecules Abandoned US20120009580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/240,847 US20120009580A1 (en) 2005-01-25 2011-09-22 Methods for quantitating small rna molecules

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US64717805P 2005-01-25 2005-01-25
PCT/US2006/002591 WO2006081284A2 (en) 2005-01-25 2006-01-25 Methods for quantitating small rna molecules
US11/779,759 US8071306B2 (en) 2005-01-25 2007-07-18 Methods for quantitating small RNA molecules
US57902908A 2008-11-19 2008-11-19
US13/240,847 US20120009580A1 (en) 2005-01-25 2011-09-22 Methods for quantitating small rna molecules

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/779,759 Continuation US8071306B2 (en) 2005-01-25 2007-07-18 Methods for quantitating small RNA molecules

Publications (1)

Publication Number Publication Date
US20120009580A1 true US20120009580A1 (en) 2012-01-12

Family

ID=39737109

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/779,759 Active 2026-05-17 US8071306B2 (en) 2005-01-25 2007-07-18 Methods for quantitating small RNA molecules
US13/240,847 Abandoned US20120009580A1 (en) 2005-01-25 2011-09-22 Methods for quantitating small rna molecules

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/779,759 Active 2026-05-17 US8071306B2 (en) 2005-01-25 2007-07-18 Methods for quantitating small RNA molecules

Country Status (6)

Country Link
US (2) US8071306B2 (en)
EP (2) EP2173907A1 (en)
JP (1) JP2010533501A (en)
AU (1) AU2008275930A1 (en)
CA (1) CA2693974A1 (en)
WO (1) WO2009012433A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219565A1 (en) 2002-10-21 2004-11-04 Sakari Kauppinen Oligonucleotides useful for detecting and analyzing nucleic acids of interest
US8192937B2 (en) * 2004-04-07 2012-06-05 Exiqon A/S Methods for quantification of microRNAs and small interfering RNAs
US20090186353A1 (en) * 2004-10-04 2009-07-23 Rosetta Genomics Ltd. Cancer-related nucleic acids
US7825229B2 (en) * 2005-03-25 2010-11-02 Rosetta Genomics Ltd. Lung cancer-related nucleic acids
CA2617581A1 (en) 2005-08-01 2007-02-08 The Ohio State University Research Foundation Microrna-based methods for the diagnosis of breast cancer
EP1937280B1 (en) 2005-09-12 2014-08-27 The Ohio State University Research Foundation Compositions for the therapy of bcl2-associated cancers
EP2468899B1 (en) 2006-01-05 2015-03-11 The Ohio State University Research Foundation MicroRNA-based methods for the diagnosis of stomach cancers
CN102943108B (en) 2006-01-05 2014-05-21 俄亥俄州立大学研究基金会 Microrna-based methods and compositions for the diagnosis, prognosis and treatment of lung cancer
AU2007205257B2 (en) 2006-01-05 2013-07-25 The Ohio State University Research Foundation MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors
AU2007227423B2 (en) 2006-03-20 2013-11-07 The Ohio State University Research Foundation MicroRNA fingerprints during human megakaryocytopoiesis
EP2369017B8 (en) 2006-07-13 2014-03-12 The Ohio State University Research Foundation Micro-RNA-based methods and compositions for the diagnosis and treatment of colon related diseases
AU2007281261B2 (en) * 2006-08-01 2013-03-21 Board Of Regents Of The University Of Texas System Identification of a micro-RNA that activates expression of beta-myosin heavy chain
WO2008029790A1 (en) * 2006-09-04 2008-03-13 Kyowa Hakko Kirin Co., Ltd. Novel nucleic acid
CN101535505A (en) 2006-09-19 2009-09-16 俄亥俄州立大学研究基金会 TCL1 expression in chronic lymphocytic leukemia (CLL) regulated by miR-29 and miR-181
WO2008054828A2 (en) 2006-11-01 2008-05-08 The Ohio State University Research Foundation Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma
US20100099746A1 (en) * 2006-12-18 2010-04-22 Kyowa Hakko Kirin Co., Ltd. Novel nucleic acid
CN103555825B (en) 2007-01-31 2015-09-30 俄亥俄州立大学研究基金会 For the method and composition based on microRNA of the diagnosis of acute myelocytic leukemia (AML), prognosis and treatment
ES2537349T3 (en) 2007-06-08 2015-06-05 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods to determine a subtype of hepatocellular carcinoma
EP2719773A3 (en) 2007-06-15 2014-07-30 The Ohio State University Research Foundation miRNA as marker for acute lamphomic leucemia
WO2009018492A2 (en) * 2007-07-31 2009-02-05 The Board Of Regents Of The University Of Texas System Micro-rnas that control myosin expression and myofiber identity
WO2009018303A2 (en) 2007-07-31 2009-02-05 The Ohio State University Research Foundation Methods for reverting methylation by targeting dnmt3a and dnmt3b
CN103866008B (en) 2007-08-03 2016-06-29 俄亥俄州立大学研究基金会 The super conservative region of coding NCRNA
CA2696887C (en) 2007-08-22 2016-06-28 The Ohio State University Research Foundation Methods and compositions for inducing deregulation of epha7 and erk phosphorylation in human acute leukemias
AU2008316577B2 (en) 2007-10-26 2014-04-10 The Ohio State University Research Foundation Methods for identifying fragile histidine triad (FHIT) interaction and uses thereof
BRPI0818901A2 (en) * 2007-11-09 2015-05-12 Univ Texas Mir-15 family micro-rna modulate cardiomyocyte survival and cardiac repair
US20110034538A1 (en) * 2008-02-28 2011-02-10 The Ohio State University Research Foundation MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Gastric Cancer
WO2009148137A1 (en) * 2008-06-04 2009-12-10 協和発酵キリン株式会社 Nucleic acid capable of controlling degranulation of mast cell
EP2307028B1 (en) 2008-06-11 2013-10-02 The Government of the United States of America as represented by The Secretary of the Department of Health and Human Services Use of mir-26 family as a predictive marker of hepatocellular carcinoma and responsiveness to therapy
CN102301002A (en) 2008-11-12 2011-12-28 卡里斯生命科学卢森堡控股有限责任公司 Methods and systems of using exosomes for determining phenotypes
CA2750029C (en) * 2009-02-02 2019-05-21 Exiqon A/S Method for quantification of small rna species
NZ594365A (en) 2009-02-04 2013-03-28 Univ Texas Dual targeting of miR-208a or miR-208b and miR-499 in the treatment of cardiac disorders or musculoskeletal disorders
US20110086348A1 (en) * 2009-02-19 2011-04-14 The Cleveland Clinic Foundation Method for assessing heart disease
US8962253B2 (en) 2009-04-13 2015-02-24 Somagenics Inc. Methods and compositions for detection of small RNAs
US8962583B2 (en) 2009-06-25 2015-02-24 The Brigham And Women's Hospital, Inc. Treatment of inflammatory diseases using miR-124
WO2011012136A1 (en) * 2009-07-28 2011-02-03 Exiqon A/S A method for classifying a human cell sample as cancerous
CN102803511A (en) 2009-11-23 2012-11-28 俄亥俄州立大学 Materials and methods useful for affecting tumor cell growth, migration and invasion
US20130203061A1 (en) 2009-11-30 2013-08-08 Michael KLASS Methods and systems for isolating, storing, and analyzing vesicles
EP2341145A1 (en) * 2009-12-30 2011-07-06 febit holding GmbH miRNA fingerprint in the diagnosis of diseases
CA2787027A1 (en) 2010-01-13 2011-07-21 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Detection of gastrointestinal disorders
JP5808349B2 (en) 2010-03-01 2015-11-10 カリス ライフ サイエンシズ スウィッツァーランド ホールディングスゲーエムベーハー Biomarkers for theranosis
JP2013526852A (en) 2010-04-06 2013-06-27 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Circulating biomarkers for disease
US8642342B2 (en) 2010-08-19 2014-02-04 Regents Of The University Of Michigan Methods for regulating neural differentiation
AU2011326032B2 (en) 2010-11-12 2016-10-06 The Ohio State University Research Foundation Materials and methods related to microRNA-21, mismatch repair, and colorectal cancer
BR112013011942A2 (en) 2010-11-15 2016-11-01 Univ Michigan formulation, drug dosage form for oral transmucosal administration, transmucosal drug delivery system, method of treatment and prophylaxis of a disease or disorder, method of treatment, formulation, method for treatment or prevention of head and neck squamous cell carcinoma (hnscc), method for chemoprevention of an oral cancer or precancerous condition, method for increasing the concentration of a retinide composition, method of treatment and prophylaxis of a disease or condition, ratification method of a subject presenting a symptomatic medical condition , method of treating an oral cancer or precancerous condition in a patient, method for making an oral drug delivery system, method for increasing the release and permeation of a retinide composition.
AR084319A1 (en) 2010-12-15 2013-05-08 Miragen Therapeutics MicroRNA INHIBITORS (miRNA OR miR) THAT INCLUDE BLOCKED NUCLEOTIDES
JP2014509852A (en) 2011-03-07 2014-04-24 ジ・オハイオ・ステート・ユニバーシティ Mutagenic activity induced by microRNA-155 (miR-155) links inflammation and cancer
AU2012308092A1 (en) 2011-09-13 2014-04-17 Commonwealth Scientific And Industrial Research Organisation Detection of viral infection
US9428749B2 (en) 2011-10-06 2016-08-30 The Board Of Regents, The University Of Texas System Control of whole body energy homeostasis by microRNA regulation
AU2012323924A1 (en) 2011-10-14 2014-05-29 The Ohio State University Methods and materials related to ovarian cancer
CN104619353A (en) 2011-12-13 2015-05-13 俄亥俄州国家创新基金会 Methods and compositions related to miR-21 and miR-29a, exosome inhibition, and cancer metastasis
US9816130B2 (en) 2011-12-22 2017-11-14 Somagenics, Inc. Methods of constructing small RNA libraries and their use for expression profiling of target RNAs
AU2013209477B2 (en) 2012-01-20 2016-12-08 The Ohio State University Breast cancer biomarker signatures for invasiveness and prognosis
EP2653559A1 (en) 2012-04-20 2013-10-23 Samsung Electronics Co., Ltd Polynucleotide and use thereof
CA2876180C (en) 2012-06-21 2019-11-19 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9163235B2 (en) 2012-06-21 2015-10-20 MiRagen Therapeutics, Inc. Inhibitors of the miR-15 family of micro-RNAs
DE102014106908A1 (en) 2014-05-16 2015-11-19 Hettich-Oni Gmbh & Co. Kg Hinge for furniture or household appliances
SG10201906716QA (en) 2015-01-20 2019-08-27 Miragen Therapeutics Inc Mir-92 inhibitors and uses thereof
RU2718534C2 (en) 2015-06-05 2020-04-08 Мираджен Терапьютикс, Инк. Mir-155 inhibitors for treatment of cutaneous t-cell lymphoma (ctcl)
EP3394292B1 (en) 2015-12-21 2021-04-28 RealSeq Biosciences, Inc. Methods of library construction for polynucleotide sequencing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2433330A1 (en) 2000-12-27 2002-07-25 Invitrogen Corporation Primers and methods for the detection and discrimination of nucleic acids
JP2005514005A (en) 2001-09-04 2005-05-19 エクシコン エ/エス Novel LNA compositions and uses thereof
AU2002351077A1 (en) 2001-11-05 2003-05-19 Exiqon A/S Oligonucleotides modified with novel alpha-l-rna analogues
US7141372B2 (en) * 2002-01-18 2006-11-28 Health Research Incorporated Universal RT-coupled PCR method for the specific amplification of mRNA
ES2290448T3 (en) 2002-05-08 2008-02-16 Santaris Pharma A/S SYSTEM OF BLOCKED NUCLEIC ACID DERIVATIVES.
DK1735459T3 (en) 2004-04-07 2012-05-29 Exiqon As Methods for Quantification of MicroRNAs and Small Interfering RNAs
US20050277139A1 (en) 2004-04-26 2005-12-15 Itzhak Bentwich Methods and apparatus for the detection and validation of microRNAs
AU2005248149A1 (en) 2004-05-26 2005-12-08 Rosetta Genomics Ltd. Viral and viral associated miRNAs and uses thereof
EP1959012A3 (en) 2004-12-29 2009-12-30 Exiqon A/S Novel oligonucleotide compositions and probe sequences useful for detection and analysis of microRNAs and their target mRNAs
CA2595716A1 (en) 2005-01-25 2006-08-03 Rosetta Inpharmatics Llc Methods for quantitating small rna molecules

Also Published As

Publication number Publication date
EP2173907A1 (en) 2010-04-14
CA2693974A1 (en) 2009-01-22
WO2009012433A1 (en) 2009-01-22
US8071306B2 (en) 2011-12-06
JP2010533501A (en) 2010-10-28
AU2008275930A1 (en) 2009-01-22
EP2514839A1 (en) 2012-10-24
US20070292878A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
US8071306B2 (en) Methods for quantitating small RNA molecules
EP1851336B1 (en) Methods for quantitating small rna molecules
US10011880B2 (en) Serum/plasma MicroRNAs and uses thereof
US20180230546A1 (en) Reagents and Methods for miRNA Expression Analysis and Identification of Cancer Biomarkers
US7811759B2 (en) Method for detecting ncRNA
US20230129799A1 (en) Methods and Compositions for Nucleic Acid Detection
US20110111416A1 (en) Peptide Nucleic Acid Probes, Kits and Methods for Expression Profiling of Micrornas

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION