US20120004138A1 - Electrophoresis apparatus for simultaneous loading of multiple samples - Google Patents

Electrophoresis apparatus for simultaneous loading of multiple samples Download PDF

Info

Publication number
US20120004138A1
US20120004138A1 US13/174,400 US201113174400A US2012004138A1 US 20120004138 A1 US20120004138 A1 US 20120004138A1 US 201113174400 A US201113174400 A US 201113174400A US 2012004138 A1 US2012004138 A1 US 2012004138A1
Authority
US
United States
Prior art keywords
loading
electrophoresis
wells
separation
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/174,400
Inventor
Shmuel Cabilly
Uri Yogev
Ilana Margalit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Technologies Corp
Original Assignee
Life Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Technologies Corp filed Critical Life Technologies Corp
Priority to US13/174,400 priority Critical patent/US20120004138A1/en
Publication of US20120004138A1 publication Critical patent/US20120004138A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44713Particularly adapted electric power supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44782Apparatus specially adapted therefor of a plurality of samples

Definitions

  • the present invention provides an apparatus for simultaneously loading multiple samples for conducting an electrophoresis test.
  • electrophoresis is used to analyze DNA molecules according to their resultant size after being digested by restriction enzymes. It is also used to analyze the products of a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • molecules are driven toward a capture layer, which has part of a molecular recognition pair e.g. antibody-antigen, DNA-DNA probe, biotin-avidin, ligand-receptor, lectin-carbohydrate or others. Only specific parts of each pair of molecules that move through the capture layer are captured (e.g., an antigen when the capture layer contains a specific antibody), while the non-specific molecules pass through the layer unimpeded.
  • a capture layer which has part of a molecular recognition pair e.g. antibody-antigen, DNA-DNA probe, biotin-avidin, ligand-receptor, lectin-carbohydrate or others. Only specific parts of each pair of molecules that move through the capture layer are captured (e.g., an antigen when the capture layer contains a specific antibody), while the non-specific molecules pass through the layer unimpeded.
  • Electrophoresis separation is carried out in a separation medium, such as a gel of agarose or acrylamide or a combination of the two.
  • a separation medium such as a gel of agarose or acrylamide or a combination of the two.
  • Agarose gels are cast in open trays and form a horizontal slab whereas acrylamide gels are vertically cast between two glass plates.
  • wells Prior to electrophoresis separation, wells are introduced into the gel for sample deposition by applying a comb-like structure prior to the solidification or polymerization of the gel matrix. A row of approximately 8-15 wells is formed across one end of the gel.
  • Ethidium bromide is a hazardous chemical due to its mutagenic activity and therefore, exposure to ethidium bromide may induce malignant tumors.
  • PCR is an extremely sensitive method to the extent that a single molecule of DNA product from one PCR (out of the trillions of molecules being produced) may interfere with the subsequent PCR such that it will produce incorrect results.
  • U.S. Pat. No. 5,656,145 provides a needle guide for loading samples into a vertical slab gel.
  • U.S. Pat. No. 5,843,295 is directed towards a combination comb/loading guide unit. In both of these designs, the loading sites are positioned directly on top of the wells so as to allow for simple, direct loading of samples.
  • This invention provides, in accordance with an embodiment of the present invention, an apparatus for simultaneous loading of multiple samples for molecular separation, including a separation area with walls wherein at least one of the walls has multiple apertures with loading sites, a gel located within the separation area, and a plurality of wells within the gel.
  • the apertures are connected to the plurality of wells by channels structurally configured to convey samples from the apertures to the wells.
  • the loading sites are spaced at predetermined intervals so as to conform with intervals between tips on a loader.
  • the plurality of wells is arranged in rows, and the rows are arranged in stagger format, providing a running distance for molecular separation which is longer than the distance between two adjacent rows.
  • an apparatus for electrophoresis separation having a substantially closed electrophoresis area, an electrophoresis gel located within the electrophoresis area, and multiple rows of wells within the electrophoresis gel, wherein the rows are arranged in a stagger format.
  • a gel layer for molecular separation having a plurality of wells within the gel layer.
  • the wells are arranged in a plurality of rows, and wells of one row are horizontally shifted from wells of a neighboring row by a predetermined distance.
  • the horizontal shift is alternated from left to right, so as to form a staggered format of wells within the gel layer.
  • a device for delivering samples into wells for molecular separation having a flat surface with a top side and a bottom side, multiple loading sites on the top side arranged in standard format, multiple apertures on the bottom side arranged in stagger format and leading to the wells, and a channel through the flat surface connecting the loading sites to the apertures.
  • an electrophoresis apparatus for non-weighted sample deposition including a substantially closed area, an electrophoresis gel with wells located within the electrophoresis area, and a non-liquid ion source located within the gel, eliminating the need for weighting samples before deposition into the wells.
  • a system for conducting electrophoresis separation including an electrical power source, a substantially closed disposable cassette for conducting an electrophoresis separation therein and having conductive elements therein, and a support for supporting the substantially closed cassette and for connecting the electrical power source to the conductive elements of the cassette, where one or more gels may be connected simultaneously.
  • the cassette includes a body of gel for carrying therein the electrophoresis separation, a plurality of wells in the body of gel arranged in a stagger format and a plurality of apertures having loading sites leading to the plurality of wells.
  • a method for treating water-absorbent plastic used for electrophoresis devices including the steps of placing the water-absorbent plastic in a humidified environment and saturating the water-absorbent plastic by leaving it in a humidified environment for a predetermined period of time.
  • a method for simultaneous loading of multiple samples into an electrophoresis apparatus including the steps of providing an electrophoresis apparatus having an area with walls defining the area and a gel within the area having multiple wells arranged in stagger format, wherein the walls include apertures having loading sites and channels structurally configured to direct samples into the wells, loading the samples into the openings with a standard multiple loading mechanism, and directing the samples from the apertures to the wells.
  • FIGS. 1 and 2 are schematic illustrations of an electrophoresis apparatus in accordance with an embodiment of the present invention
  • FIGS. 3A-3D are geometric illustrations of configurations of wells and apertures and loading sites according to one embodiment of the present invention.
  • FIGS. 4A-4C are geometric illustrations of configurations of wells and apertures and loading sites according to another embodiment of the present invention.
  • FIG. 5 is a schematic illustration of a channel configuration in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic illustration of a channel configuration in accordance with another embodiment of the present invention.
  • FIGS. 7A and 7B are schematic illustrations of channel configurations in accordance with further embodiments of the present invention.
  • FIGS. 1 and 2 illustrate an electrophoresis disposable cassette, generally referenced 10 .
  • FIG. 1 shows an external configuration of cassette 10
  • FIG. 2 shows a cross-sectional view.
  • Cassette 10 is a closed disposable cassette used for a single electrophoresis test, and includes all the chemical compounds required for driving the electrophoresis separation and for enabling visualization of its results when DNA as well as RNA or protein molecules have been separated, as will be described hereinbelow.
  • cassette 10 comprises a three dimensional separation area 11 having bottom wall and side walls, referenced 12 and 14 respectively, and a top wall 16 having a specified thickness.
  • Cassette 10 is substantially closed in that it is enclosed by walls 12 , 14 and 16 , but it also comprises vent holes and apertures as will be described hereinbelow.
  • the thickness ranges from 0.1-10 mm. In another embodiment, the thickness is 1.5 mm.
  • Cassette 10 as shown in FIG. 1 has a specified length, width and height. In one embodiment, the length ranges from 100-200 mm, the width ranges from 50-150 mm and the height ranges from 1-10 mm. In a preferred embodiment, length, width and height are 160 millimeters (mm), 100 mm and 6 mm, respectively. In another preferred embodiment, length, width and height are 130 mm, 130 mm and 6 mm, respectively.
  • Bottom wall 12 and top wall 16 are preferably made of any suitable UV transparent material, such as the TPX plastic commercially available from MITSUI of Japan or the Polymethylmethacrylate (PMMA) plastic commercially available from Repsol Poliver S.P.A. of Rome, Italy.
  • Cassette 10 may include vent holes 32 and 34 to allow for gaseous molecules that might be generated due to the electrochemical reaction (e.g., oxygen and/or hydrogen) to be released.
  • vent holes range in diameter from 0.5-2 mm. In a preferred embodiment, vent holes are 1 mm in diameter.
  • area 11 comprises a gel matrix 18 which may be any suitable gel matrix for electrophoresis, such as an agarose gel or a gel made of acrylamide (available from, for example, Sigma, St. Louis, Mo., USA).
  • a plurality of wells 36 may be introduced into gel 18 , by using a “comb” having a row of protruding teeth positioned so that the teeth project into the gel layer while it sets.
  • the plurality of wells ranges from 1-200 wells.
  • the plurality of wells ranges from 8-12 wells.
  • the plurality of wells includes 96 wells.
  • wells 36 are dimensions of 0.5-5 mm wide, 1-5 mm long, and 3-5 mm deep, and are used to introduce samples of the molecules to undergo molecular separation.
  • One row or several rows may be formed.
  • 12 rows of 8 wells per row are formed, and are arranged in a stagger format, as shown in FIG. 1 and described more fully below.
  • 8 rows of 12 wells per row are formed and may also be arranged in a stagger format.
  • top wall 16 has apertures used as loading sites 41 , as described more fully below.
  • cassette 10 may optionally include a capture layer 37 including part of a molecular recognition pair for separating samples according to binding properties.
  • Capture layer 37 is immobilized within gel 18 , and is fabricated with resins to which the binding site of a molecule of interest will covalently bind. Some examples include avidin on acrylic beads, biotin on cross linked beaded agarose and others. The resins are mixed with agarose or other materials and poured as layers into gel 18 . Alternatively, acryditeTM (available from Mosaic Technologies, Waltham, Mass., USA) may be used.
  • AcryditeTM is a phosphoramide that is capable of copolymerization with acrylamide, and it can be used to introduce copolymerizable groups on the 5′ terminus of any oligonucleotide probe.
  • AcryditeTM oligonucleotide capture probes may be mixed with acrylamide solutions and polymerized into gel layers.
  • the capture electrophoresis technique provides concentrated signals, saves time and saves material.
  • One or multiple capture layers may be used. This technique may be performed on its own, or in combination with a standard size electrophoresis separation.
  • electrophoresis separation of DNA molecules it is desirable to visualize and to document the results of the electrophoresis separation test.
  • electrophoresis separation of DNA molecules this has been done by immersing the gel slab after the electrophoresis separation has been completed in a solution of a fluorescent compound which emits visible light when exposed to an uttra violet (UV) light.
  • the samples or the gel interact with ethidium bromide or other fluorescent dyes. In this way, the results may be viewed in situ, without the need for exposing the samples to contamination by removing the gel from the enclosed area 11 .
  • various types of light sources may be used.
  • a light source of adjustable or non-adjustable wavelengths may be used.
  • the light source may include visible or non-visible light.
  • a colorimetric dye such as Methylene Blue may be added to the samples, the gel, or the ion reservoir and may interact with the molecules undergoing electrophoresis separation, so as to enable visualization of the results without the need for a UV light source.
  • Area 11 also comprises two conductive electrodes referenced 21 and 23 which, when connected to an external direct current (DC) electrical power source, provide the electric field required to drive electrophoresis separation.
  • electrode 21 is the cathode and electrode 23 is the anode.
  • the system may also include a support for connecting conductive elements of cassette 10 to the power source. In one embodiment, the support is configured to connect to one or more gels simultaneously. Further, the system optionally includes a camera for documentation.
  • the gel 18 and the conductive electrodes 21 and 23 are in contact with non-liquid ion sources such as ion exchange matrices as described in U.S. Pat. Nos. 5,582,702 and 5,865,974.
  • plastics used as cassette material are sometimes water absorbent, they may be pre-treated by placement in a humidified environment and saturation by leaving it for a predetermined period of time so as to avoid later water adsorption or uptake of liquid, thereby keeping the gel intact.
  • the period of time ranges from 1-72 hours. In another embodiment, the period of time ranges from 1-20 days. In another embodiment, the period of time is at least 10 days. In a preferred embodiment, the period of time is 10 days.
  • samples must be weighted so that they sink through the buffer to the bottom of the wells. This is generally accomplished by combining a substance such as Glycerol, Sucrose, or Ficoll polymer with the sample. It will be appreciated that in one embodiment of the present invention, there is no liquid buffer present in the vicinity of the wells, and instead, a non-liquid ion source is located within said gel. Thus, the step of weighting samples before deposition into said wells may be eliminated, thereby decreasing the time necessary to perform an experiment.
  • a substance such as Glycerol, Sucrose, or Ficoll polymer
  • FIGS. 3A-3D taken together with 4 A- 4 C, which show embodiments of loading sites 41 and outlet apertures 39 on two sides of wall 16 .
  • wall 16 refers to the top wall, or the cover, of the apparatus. In another embodiment, other walls are used, such as side walls. Wall 16 should be considered as a flat surface with a top side and a bottom side.
  • FIGS. 3A and 4A show views from the top side of wall 16 .
  • FIGS. 3B and 4B show views from the bottom side of wall 16 .
  • FIG. 3C shows a three-dimensional view of a portion of wall 16 .
  • FIGS. 3D and 4D show cross-sectional views of a portion of wall 16 .
  • Stagger format of outlet apertures 39 located on the bottom side of wall 16 , corresponds to stagger format of wells 36 within a layer of gel 18 , as depicted in FIGS. 3B and 4B . That is, wells of one row are horizontally shifted from wells of a neighboring row by a predetermined distance. In one embodiment, the predetermined distance is in the range of 0.05-20 mm. In another embodiment, the predetermined distance is 4.5 mm. The horizontal shift occurs in alternating directions from left to right, so as to form a staggered format.
  • the available running distance between adjacent wells 36 in the direction of electrophoresis separation is from 8-20 mm. In one embodiment, the available running distance is up to 18 mm, as shown by arrow 43 . This amount is double what would be available without stagger formatting, greatly increasing the potential for larger sized molecules to be separated. If wells 36 were arranged according to a standard format, and not a stagger format, samples in each row would have a running distance of less than 1 cm, whereas in the configuration illustrated in FIG. 3B , twice that distance is available since samples can run between wells 36 of the next row.
  • inlet apertures 38 have loading sites 41 located on the edges, all on the top of wall 16 of cassette 10 .
  • Loading sites 41 are configured either linearly (one row), or in a geometrical arrangement of columns and rows, typically in a rectangular arrangement. In one embodiment, loading sites 41 are spaced at predetermined intervals so as to conform with intervals between tips on a loader.
  • “Loader” refers to a mechanism used to load samples, such as a micro-titer pipette, as described hereinbelow. Multiple loading mechanisms allow for many samples to be loaded at once. Thus, the spacing between loading sites can vary, and may be configured to conform with intervals on any type of loader.
  • the predetermined intervals include 0.5-2 mm spacings. In a preferred embodiment, the predetermined intervals include 9 mm spacings, so as to conform with a micro-titer multi-pipette loader for 96 wells. In another embodiment, predetermined intervals include 0.001-1 mm spacings, so as to allow for a micro-scale system.
  • loading sites 41 may vary, but they are typically circular, so as to fit the end of a loader tip.
  • a standard multiple loading mechanism such as a micro-titer multi-pipette loader available from, for example, Eppendorf Scientific, Inc., Westbury, N.Y., USA may be used, thus enabling simultaneous loading of as many samples as can fit in the pipette.
  • loaders are available from, for example, Beckman Coulter, Inc., Fullerton, Calif., USA, that would enable loading of 96 samples all at the same time, or loading of 8 or 12 samples at a time. Similar models might be available for the other formats as well.
  • Loading sites 41 are not directly above outlet apertures 39 , which lead into wells 36 . Therefore, samples must be conveyed to wells 36 , either by use of an incline, or by some other method, as described hereinbelow. Variations of the described embodiments are possible, for example, apertures and loading sites located in walls other than wall 16 , such as side walls which in a vertical gel would form the top wall.
  • channels 40 connect loading sites 41 to outlet apertures 39 .
  • Channels 40 are formed from structural adaptations of wall 20 connecting loading site 41 to outlet aperture 39 so as to allow for the flow of a sample from loading site 41 to outlet aperture 39 .
  • Channels 40 are structurally configured in such a way so as to convey samples into wells 36 .
  • channel 40 comprises an incline.
  • channel 40 comprises another feature to help convey the sample, such as a magnetic or electrical property.
  • FIG. 5 shows an embodiment of the present invention.
  • a wide loading site 41 is portrayed above outlet aperture 39 .
  • the shape and/or size of loading site 41 differs from the shape and/or size of outlet aperture 39 .
  • channel 40 is configured in an irregular shape so as to allow for the sample to be directed into outlet aperture 39 , even though application of the sample may not occur directly in line with outlet aperture 39 .
  • FIG. 6 shows a further embodiment of the present invention.
  • Outlet aperture 39 and loading site 41 are indirectly aligned with one another. Since loading site 41 is not located directly above outlet aperture 39 , an incline in channel 40 provides direction of the sample into outlet aperture 39 , and then into well 36 .
  • FIGS. 7A and 7B are illustrations of further embodiments of the present invention.
  • one loading site 41 leads to multiple outlet apertures 39
  • multiple loading sites 41 lead to one outlet aperture 39 .
  • channel 40 having a branched configuration.
  • multiple amounts may be delivered to one well 36 , as shown in FIG. 7B , without changing the settings on the pipettes. This, too, is accomplished by a structural channel 40 configuration. Many other configurations are possible.
  • gels may be either vertical or horizontal.
  • apertures may be on the side wall of the apparatus, rather than directly on the top cover.
  • the entire system is in a microscale range, in which case all the dimensions described hereinabove are reduced by a factor of 10-100.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrostatic Separation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention includes apparatus for simultaneous loading of multiple samples for molecular separation, including a separation area with walls wherein at least one of the walls has apertures having loading sites, a gel located within the separation area, and a plurality of wells within the gel. The apertures are connected to the plurality of wells by channels structurally configured to convey samples from the apertures to the wells.
The present invention further includes apparatus for electrophoresis separation having a substantially closed electrophoresis area, an electrophoresis gel located within the electrophoresis area, and multiple rows of wells within the electrophoresis gel, wherein the rows are arranged in a stagger format.
A device is provided for delivering samples into wells for molecular separation, having a flat surface with a top side and a bottom side, multiple loading sites on the top side arranged in standard format, multiple apertures on the bottom side arranged in stagger format and leading to the wells, and a channel through the flat surface connecting the loading sites to the apertures.
The present invention provides a method for simultaneous loading of multiple samples into an electrophoresis apparatus, including the steps of providing an electrophoresis apparatus having an area with walls defining the area and a gel within the area having multiple wells arranged in stagger format, wherein the walls include apertures having loading sites and channels structurally configured to direct samples into the wells, loading the samples into the loading sites with a standard multiple loading mechanism, and conveying the samples from the loading sites to the wells.

Description

    FIELD OF THE INVENTION
  • The present invention provides an apparatus for simultaneously loading multiple samples for conducting an electrophoresis test.
  • BACKGROUND OF THE INVENTION
  • A great deal of diagnostic procedures and laboratory research are carried out wherein DNA, RNA or proteins are separated according to their physical and chemical properties via electrophoresis. This process is widely used and has many applications. For example, electrophoresis is used to analyze DNA molecules according to their resultant size after being digested by restriction enzymes. It is also used to analyze the products of a polymerase chain reaction (PCR).
  • In some instances, molecules are driven toward a capture layer, which has part of a molecular recognition pair e.g. antibody-antigen, DNA-DNA probe, biotin-avidin, ligand-receptor, lectin-carbohydrate or others. Only specific parts of each pair of molecules that move through the capture layer are captured (e.g., an antigen when the capture layer contains a specific antibody), while the non-specific molecules pass through the layer unimpeded.
  • Electrophoresis separation is carried out in a separation medium, such as a gel of agarose or acrylamide or a combination of the two. Agarose gels are cast in open trays and form a horizontal slab whereas acrylamide gels are vertically cast between two glass plates.
  • Prior to electrophoresis separation, wells are introduced into the gel for sample deposition by applying a comb-like structure prior to the solidification or polymerization of the gel matrix. A row of approximately 8-15 wells is formed across one end of the gel.
  • In order to effect the electrophoresis separation, two opposite ends of the gel are exposed to a buffered solution which is connected by electrodes, often made of platinum, to an electrical power source. Once the electrical power source is switched on, the electric field forces negatively charged molecules to move towards the anode and positively charged molecules to move towards the cathode. DNA is negatively charged and therefore, in the agarose or acrylamide gels which provide sieving action, DNA molecules move towards the anode at a rate which depends on their size, wherein the smaller the molecules the faster they move. The running distance should be long enough to allow sufficient differentiation between molecules.
  • It is desirable to visualize and to document the results of the electrophoresis separation test. In electrophoresis separation of DNA molecules, this has been done by immersing the gel slab after the electrophoresis separation has been completed in a solution of a fluorescent compound, such as ethidium bromide, which intercalates within DNA molecules and emits visible light when exposed to an ultra-violet (UV) light. In order to document the results, a picture of the gel is taken through one of various photographic means.
  • Prior art electrophoresis systems are potential sources of contamination to the working environment in which the tests are performed. The two major sources of contamination are ethidium bromide and PCR products. Ethidium bromide is a hazardous chemical due to its mutagenic activity and therefore, exposure to ethidium bromide may induce malignant tumors. PCR is an extremely sensitive method to the extent that a single molecule of DNA product from one PCR (out of the trillions of molecules being produced) may interfere with the subsequent PCR such that it will produce incorrect results.
  • Also, conventional electrophoresis is time consuming in terms of preparation and handling. This is particularly true when a large number of samples are to be analyzed, and loading of samples is done one by one.
  • Several inventions have been directed towards eliminating contamination, such as U.S. Pat. No. 5,972,188, which describes the use of a membrane loader for gel electrophoresis; and an electrophoresis apparatus with a cover, in U.S. Pat. Nos. 5,582,702, and 5,865,974 incorporated herein by reference. The apparatus is directed towards the running of electrophoresis separation, as well as detecting and analyzing the results, within a self-contained, disposable unit.
  • Attempts have been made to reduce the time it takes to run an electrophoresis separation as well by loading many samples at once. Further, simultaneous loading of samples could reduce contamination and human error. Standards in cell culture, ELISA and PCR analysis provide different sized plates, with corresponding pipettes for ease in sample loading and analysis. For example, 96-well plates are typically used. Correspondingly, pipettes that fit this configuration are available and are widely used. Use of standard microtiter pipettes would greatly reduce the loading time for electrophoresis.
  • Saito et al., in U.S. Pat. No. 5,785,835, address this issue by providing an apparatus for loading of samples into wells within an exposed gel with standard pipettes. However, the testing apparatus has limited resolution capacity since a running distance of only 0.8 cm is available. In U.S. Pat. No. 6,071,396 a gel-matrix layer is described with wells arranged for loading of samples with standard pipettes. In this patent, the running distance is increased by diagonally offsetting the entire array of wells. U.S. Pat. No. 6,013,166 describes a method for reducing the linear dimension necessary for electrophoresis separation in a micro-gel format.
  • In addition, several needle guide designs have been developed to aid in loading samples directly into wells in a way that would save time and prevent inaccuracies. For example, U.S. Pat. No. 5,656,145 provides a needle guide for loading samples into a vertical slab gel. Similarly, U.S. Pat. No. 5,843,295 is directed towards a combination comb/loading guide unit. In both of these designs, the loading sites are positioned directly on top of the wells so as to allow for simple, direct loading of samples.
  • SUMMARY OF THE INVENTION
  • This invention provides, in accordance with an embodiment of the present invention, an apparatus for simultaneous loading of multiple samples for molecular separation, including a separation area with walls wherein at least one of the walls has multiple apertures with loading sites, a gel located within the separation area, and a plurality of wells within the gel. The apertures are connected to the plurality of wells by channels structurally configured to convey samples from the apertures to the wells. In one embodiment, the loading sites are spaced at predetermined intervals so as to conform with intervals between tips on a loader.
  • In one embodiment, the plurality of wells is arranged in rows, and the rows are arranged in stagger format, providing a running distance for molecular separation which is longer than the distance between two adjacent rows.
  • There is provided, in accordance with another embodiment of the present invention an apparatus for electrophoresis separation having a substantially closed electrophoresis area, an electrophoresis gel located within the electrophoresis area, and multiple rows of wells within the electrophoresis gel, wherein the rows are arranged in a stagger format.
  • There is provided, in accordance with another embodiment of the present invention, a gel layer for molecular separation having a plurality of wells within the gel layer. The wells are arranged in a plurality of rows, and wells of one row are horizontally shifted from wells of a neighboring row by a predetermined distance. The horizontal shift is alternated from left to right, so as to form a staggered format of wells within the gel layer.
  • There is provided, in accordance with another embodiment of the present invention a device for delivering samples into wells for molecular separation, having a flat surface with a top side and a bottom side, multiple loading sites on the top side arranged in standard format, multiple apertures on the bottom side arranged in stagger format and leading to the wells, and a channel through the flat surface connecting the loading sites to the apertures.
  • There is provided, in accordance with another embodiment of the present invention an electrophoresis apparatus for non-weighted sample deposition, including a substantially closed area, an electrophoresis gel with wells located within the electrophoresis area, and a non-liquid ion source located within the gel, eliminating the need for weighting samples before deposition into the wells.
  • There is provided, in accordance with another embodiment of the present invention a system for conducting electrophoresis separation including an electrical power source, a substantially closed disposable cassette for conducting an electrophoresis separation therein and having conductive elements therein, and a support for supporting the substantially closed cassette and for connecting the electrical power source to the conductive elements of the cassette, where one or more gels may be connected simultaneously. The cassette includes a body of gel for carrying therein the electrophoresis separation, a plurality of wells in the body of gel arranged in a stagger format and a plurality of apertures having loading sites leading to the plurality of wells.
  • There is provided, in accordance with another embodiment of the present invention a method for treating water-absorbent plastic used for electrophoresis devices, including the steps of placing the water-absorbent plastic in a humidified environment and saturating the water-absorbent plastic by leaving it in a humidified environment for a predetermined period of time.
  • There is provided, in accordance with another embodiment of the present invention a method for simultaneous loading of multiple samples into an electrophoresis apparatus, including the steps of providing an electrophoresis apparatus having an area with walls defining the area and a gel within the area having multiple wells arranged in stagger format, wherein the walls include apertures having loading sites and channels structurally configured to direct samples into the wells, loading the samples into the openings with a standard multiple loading mechanism, and directing the samples from the apertures to the wells.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the appended drawings in which:
  • FIGS. 1 and 2 are schematic illustrations of an electrophoresis apparatus in accordance with an embodiment of the present invention;
  • FIGS. 3A-3D are geometric illustrations of configurations of wells and apertures and loading sites according to one embodiment of the present invention;
  • FIGS. 4A-4C are geometric illustrations of configurations of wells and apertures and loading sites according to another embodiment of the present invention;
  • FIG. 5 is a schematic illustration of a channel configuration in accordance with one embodiment of the present invention;
  • FIG. 6 is a schematic illustration of a channel configuration in accordance with another embodiment of the present invention;
  • FIGS. 7A and 7B are schematic illustrations of channel configurations in accordance with further embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • Reference is made to FIGS. 1 and 2, which illustrate an electrophoresis disposable cassette, generally referenced 10. FIG. 1 shows an external configuration of cassette 10, while FIG. 2 shows a cross-sectional view. Cassette 10 is a closed disposable cassette used for a single electrophoresis test, and includes all the chemical compounds required for driving the electrophoresis separation and for enabling visualization of its results when DNA as well as RNA or protein molecules have been separated, as will be described hereinbelow.
  • As shown in FIG. 1, cassette 10 comprises a three dimensional separation area 11 having bottom wall and side walls, referenced 12 and 14 respectively, and a top wall 16 having a specified thickness. Cassette 10 is substantially closed in that it is enclosed by walls 12, 14 and 16, but it also comprises vent holes and apertures as will be described hereinbelow. In one is embodiment, the thickness ranges from 0.1-10 mm. In another embodiment, the thickness is 1.5 mm. Cassette 10 as shown in FIG. 1 has a specified length, width and height. In one embodiment, the length ranges from 100-200 mm, the width ranges from 50-150 mm and the height ranges from 1-10 mm. In a preferred embodiment, length, width and height are 160 millimeters (mm), 100 mm and 6 mm, respectively. In another preferred embodiment, length, width and height are 130 mm, 130 mm and 6 mm, respectively.
  • Bottom wall 12 and top wall 16 are preferably made of any suitable UV transparent material, such as the TPX plastic commercially available from MITSUI of Japan or the Polymethylmethacrylate (PMMA) plastic commercially available from Repsol Poliver S.P.A. of Rome, Italy. Cassette 10 may include vent holes 32 and 34 to allow for gaseous molecules that might be generated due to the electrochemical reaction (e.g., oxygen and/or hydrogen) to be released. In one embodiment, vent holes range in diameter from 0.5-2 mm. In a preferred embodiment, vent holes are 1 mm in diameter.
  • As seen in the cross section illustration (IV-IV) of FIG. 2, area 11 comprises a gel matrix 18 which may be any suitable gel matrix for electrophoresis, such as an agarose gel or a gel made of acrylamide (available from, for example, Sigma, St. Louis, Mo., USA). A plurality of wells 36 may be introduced into gel 18, by using a “comb” having a row of protruding teeth positioned so that the teeth project into the gel layer while it sets. In one embodiment, the plurality of wells ranges from 1-200 wells. In another embodiment, the plurality of wells ranges from 8-12 wells. In another embodiment, the plurality of wells includes 96 wells.
  • When the gel has set, the comb is removed to leave a row of wells 36, or holes, in the layer. In one embodiment, wells 36 are dimensions of 0.5-5 mm wide, 1-5 mm long, and 3-5 mm deep, and are used to introduce samples of the molecules to undergo molecular separation. One row or several rows may be formed. In one embodiment of the present invention, 12 rows of 8 wells per row are formed, and are arranged in a stagger format, as shown in FIG. 1 and described more fully below. In another embodiment, 8 rows of 12 wells per row are formed and may also be arranged in a stagger format. For one embodiment of the present invention, top wall 16 has apertures used as loading sites 41, as described more fully below.
  • In addition, cassette 10 may optionally include a capture layer 37 including part of a molecular recognition pair for separating samples according to binding properties. Capture layer 37 is immobilized within gel 18, and is fabricated with resins to which the binding site of a molecule of interest will covalently bind. Some examples include avidin on acrylic beads, biotin on cross linked beaded agarose and others. The resins are mixed with agarose or other materials and poured as layers into gel 18. Alternatively, acrydite™ (available from Mosaic Technologies, Waltham, Mass., USA) may be used. Acrydite™ is a phosphoramide that is capable of copolymerization with acrylamide, and it can be used to introduce copolymerizable groups on the 5′ terminus of any oligonucleotide probe. To make the capture layer, Acrydite™ oligonucleotide capture probes may be mixed with acrylamide solutions and polymerized into gel layers.
  • The capture electrophoresis technique provides concentrated signals, saves time and saves material. One or multiple capture layers may be used. This technique may be performed on its own, or in combination with a standard size electrophoresis separation.
  • It is desirable to visualize and to document the results of the electrophoresis separation test. In electrophoresis separation of DNA molecules, this has been done by immersing the gel slab after the electrophoresis separation has been completed in a solution of a fluorescent compound which emits visible light when exposed to an uttra violet (UV) light. According to one embodiment of the present invention, the samples or the gel interact with ethidium bromide or other fluorescent dyes. In this way, the results may be viewed in situ, without the need for exposing the samples to contamination by removing the gel from the enclosed area 11.
  • According to another embodiment of the present invention, various types of light sources may be used. In one embodiment, a light source of adjustable or non-adjustable wavelengths may be used. The light source may include visible or non-visible light.
  • Alternatively a colorimetric dye, such as Methylene Blue may be added to the samples, the gel, or the ion reservoir and may interact with the molecules undergoing electrophoresis separation, so as to enable visualization of the results without the need for a UV light source.
  • Area 11 also comprises two conductive electrodes referenced 21 and 23 which, when connected to an external direct current (DC) electrical power source, provide the electric field required to drive electrophoresis separation. In the illustrated embodiment, electrode 21 is the cathode and electrode 23 is the anode. The system may also include a support for connecting conductive elements of cassette 10 to the power source. In one embodiment, the support is configured to connect to one or more gels simultaneously. Further, the system optionally includes a camera for documentation.
  • In one embodiment, the gel 18 and the conductive electrodes 21 and 23 are in contact with non-liquid ion sources such as ion exchange matrices as described in U.S. Pat. Nos. 5,582,702 and 5,865,974.
  • It should be noted that since plastics used as cassette material are sometimes water absorbent, they may be pre-treated by placement in a humidified environment and saturation by leaving it for a predetermined period of time so as to avoid later water adsorption or uptake of liquid, thereby keeping the gel intact. In one embodiment, the period of time ranges from 1-72 hours. In another embodiment, the period of time ranges from 1-20 days. In another embodiment, the period of time is at least 10 days. In a preferred embodiment, the period of time is 10 days.
  • It should be noted that in conventional electrophoresis, samples must be weighted so that they sink through the buffer to the bottom of the wells. This is generally accomplished by combining a substance such as Glycerol, Sucrose, or Ficoll polymer with the sample. It will be appreciated that in one embodiment of the present invention, there is no liquid buffer present in the vicinity of the wells, and instead, a non-liquid ion source is located within said gel. Thus, the step of weighting samples before deposition into said wells may be eliminated, thereby decreasing the time necessary to perform an experiment.
  • Reference is now made to FIGS. 3A-3D, taken together with 4A-4C, which show embodiments of loading sites 41 and outlet apertures 39 on two sides of wall 16. It will be appreciated that in one embodiment, wall 16 refers to the top wall, or the cover, of the apparatus. In another embodiment, other walls are used, such as side walls. Wall 16 should be considered as a flat surface with a top side and a bottom side. FIGS. 3A and 4A show views from the top side of wall 16. FIGS. 3B and 4B show views from the bottom side of wall 16. FIG. 3C shows a three-dimensional view of a portion of wall 16. FIGS. 3D and 4D show cross-sectional views of a portion of wall 16.
  • Stagger format of outlet apertures 39, located on the bottom side of wall 16, corresponds to stagger format of wells 36 within a layer of gel 18, as depicted in FIGS. 3B and 4B. That is, wells of one row are horizontally shifted from wells of a neighboring row by a predetermined distance. In one embodiment, the predetermined distance is in the range of 0.05-20 mm. In another embodiment, the predetermined distance is 4.5 mm. The horizontal shift occurs in alternating directions from left to right, so as to form a staggered format.
  • Thus, when electrophoresis separation takes place, the available running distance between adjacent wells 36 in the direction of electrophoresis separation is from 8-20 mm. In one embodiment, the available running distance is up to 18 mm, as shown by arrow 43. This amount is double what would be available without stagger formatting, greatly increasing the potential for larger sized molecules to be separated. If wells 36 were arranged according to a standard format, and not a stagger format, samples in each row would have a running distance of less than 1 cm, whereas in the configuration illustrated in FIG. 3B, twice that distance is available since samples can run between wells 36 of the next row.
  • In the embodiment shown in FIG. 3A, inlet apertures 38 have loading sites 41 located on the edges, all on the top of wall 16 of cassette 10. Loading sites 41 are configured either linearly (one row), or in a geometrical arrangement of columns and rows, typically in a rectangular arrangement. In one embodiment, loading sites 41 are spaced at predetermined intervals so as to conform with intervals between tips on a loader. “Loader” refers to a mechanism used to load samples, such as a micro-titer pipette, as described hereinbelow. Multiple loading mechanisms allow for many samples to be loaded at once. Thus, the spacing between loading sites can vary, and may be configured to conform with intervals on any type of loader. In one embodiment, the predetermined intervals include 0.5-2 mm spacings. In a preferred embodiment, the predetermined intervals include 9 mm spacings, so as to conform with a micro-titer multi-pipette loader for 96 wells. In another embodiment, predetermined intervals include 0.001-1 mm spacings, so as to allow for a micro-scale system.
  • The shape of loading sites 41 may vary, but they are typically circular, so as to fit the end of a loader tip. A standard multiple loading mechanism such as a micro-titer multi-pipette loader available from, for example, Eppendorf Scientific, Inc., Westbury, N.Y., USA may be used, thus enabling simultaneous loading of as many samples as can fit in the pipette. Thus, for a 96-well configuration, loaders are available from, for example, Beckman Coulter, Inc., Fullerton, Calif., USA, that would enable loading of 96 samples all at the same time, or loading of 8 or 12 samples at a time. Similar models might be available for the other formats as well.
  • Loading sites 41, either located on the edges of inlet apertures 38 as in FIG. 3A, or alone, as in FIG. 4A, are not directly above outlet apertures 39, which lead into wells 36. Therefore, samples must be conveyed to wells 36, either by use of an incline, or by some other method, as described hereinbelow. Variations of the described embodiments are possible, for example, apertures and loading sites located in walls other than wall 16, such as side walls which in a vertical gel would form the top wall.
  • As shown in FIGS. 3D and 4C, channels 40 connect loading sites 41 to outlet apertures 39. Channels 40 are formed from structural adaptations of wall 20 connecting loading site 41 to outlet aperture 39 so as to allow for the flow of a sample from loading site 41 to outlet aperture 39. Channels 40 are structurally configured in such a way so as to convey samples into wells 36. In one embodiment, channel 40 comprises an incline. In another embodiment, channel 40 comprises another feature to help convey the sample, such as a magnetic or electrical property.
  • Reference is now made to FIG. 5, which shows an embodiment of the present invention. A wide loading site 41 is portrayed above outlet aperture 39. Thus, the shape and/or size of loading site 41 differs from the shape and/or size of outlet aperture 39. In this example, channel 40 is configured in an irregular shape so as to allow for the sample to be directed into outlet aperture 39, even though application of the sample may not occur directly in line with outlet aperture 39.
  • Reference is now made to FIG. 6, which shows a further embodiment of the present invention. Outlet aperture 39 and loading site 41 are indirectly aligned with one another. Since loading site 41 is not located directly above outlet aperture 39, an incline in channel 40 provides direction of the sample into outlet aperture 39, and then into well 36.
  • Reference is now made to FIGS. 7A and 7B, which are illustrations of further embodiments of the present invention. In FIG. 7A, one loading site 41 leads to multiple outlet apertures 39, and in FIG. 7B, multiple loading sites 41 lead to one outlet aperture 39. Thus, as shown in FIG. 7A, multiple tests can be performed on a sample after a single pipette application, reducing the sample loading time. This is accomplished by channel 40 having a branched configuration. Alternatively, if larger amounts of samples are needed, multiple amounts may be delivered to one well 36, as shown in FIG. 7B, without changing the settings on the pipettes. This, too, is accomplished by a structural channel 40 configuration. Many other configurations are possible.
  • It will be appreciated that the embodiments described hereinabove are described by way of example only and that numerous modifications thereto, all of which fall within the scope of the present invention, exist. For example, gels may be either vertical or horizontal. In addition, apertures may be on the side wall of the apparatus, rather than directly on the top cover. In one embodiment, the entire system is in a microscale range, in which case all the dimensions described hereinabove are reduced by a factor of 10-100.
  • It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention is defined only by the claims that follow:

Claims (21)

1-95. (canceled)
96. An apparatus for electrophoresis separation, the apparatus comprising:
a substantially closed electrophoresis area;
an electrophoresis gel located within the electrophoresis area;
a wall in contact with the electrophoresis gel, wherein the wall comprises a plurality of loading sites and wherein the loading sites are arranged in at least two non-staggered rows; and
a plurality of wells within the electrophoresis gel.
97. The apparatus of claim 96, further comprising at least one ion exchange matrix.
98. The apparatus of claim 96, wherein the plurality of loading sites are configured in a rectangular arrangement.
99. The apparatus of claim 96, wherein the plurality of loading sites are spaced at a predetermined interval.
100. The apparatus of claim 99, wherein, the predetermined intervals comprises loading site spacings in the range of 0.001-20 millimeters.
101. The apparatus of claim 96, wherein the wall forms part of a substantially closed cassette, and wherein the cassette contains the electrophoresis gel therewithin and the cassette comprises electrically conducting electrodes for performing the electrophoresis separation.
102. A system for conducting an electrophoresis separation, the system comprising:
an electrical power source;
a substantially closed, disposable cassette for conducting the electrophoresis separation therein, wherein the cassette contains electrically conductive electrodes and a body of electrophoresis gel;
a plurality of wells in the body of electrophoresis gel;
a plurality of loading sites arranged in at least two non-staggered rows, and
wherein the electrical power source is connected to the electrically conductive electrodes of the cassette.
103. The system of claim 102, further comprising a support for connecting the electrical power source to the conductive electrodes of the substantially closed cassette.
104. The apparatus of claim 102, further comprising at least one ion exchange matrix.
105. The system of claim 101, further comprising a light source, thereby enabling visualization of the electrophoresis separation while said cassette is in situ.
106. The system of claim 102, wherein the support is configured to connect to one or more gels simultaneously.
107. The system of claim 102, wherein the plurality of loading sites are configured in a rectangular arrangement.
108. The system of claim 102, wherein the plurality of loading sites are spaced at a predetermined interval.
109. The system of claim 102, wherein the predetermined interval comprises loading site spacings in the range of 0.001-20 millimeters.
110. A method for molecular separation, the method comprising the steps of:
providing an apparatus having a separation chamber having walls defining the separation chamber and a gel within the chamber, wherein said walls comprise a plurality of loading sites arranged in at least two non-staggered rows;
loading at least one sample into at least one row of the plurality of loading sites;
providing an electrical current through said separation chamber so as to allow for separation of the sample according to predefined properties, wherein the predefined properties are molecular size, binding properties, or a combination of molecular size and binding properties.
111. The method of claim 110, wherein the sample is loaded into the plurality of loading sites wherein the plurality of loading sites are configured in a rectangular arrangement.
112. The method of claim 110, wherein the sample is loaded into the plurality of loading sites wherein the plurality of loading sites are spaced at a predetermined interval.
113. The method of claim 110, wherein the sample is loaded into the plurality of loading sites wherein the predetermined interval comprises loading site spacings in the range of 0.001-20 millimeters.
114. The method of claim 110, further comprising visualizing, the separated sample.
115. The method of claim 110, further comprising visualizing the separated sample in situ.
US13/174,400 2000-08-30 2011-06-30 Electrophoresis apparatus for simultaneous loading of multiple samples Abandoned US20120004138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/174,400 US20120004138A1 (en) 2000-08-30 2011-06-30 Electrophoresis apparatus for simultaneous loading of multiple samples

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/651,087 US6562213B1 (en) 2000-08-30 2000-08-30 Electrophoresis apparatus for simultaneous loading of multiple samples
US10/370,459 US7122104B2 (en) 2000-08-30 2003-02-24 Electrophoresis apparatus for simultaneous loading of multiple samples
US11/470,308 US20070074973A1 (en) 2000-08-30 2006-09-06 Electrophoresis Apparatus For Simultaneous Loading of Multiple Samples
US13/174,400 US20120004138A1 (en) 2000-08-30 2011-06-30 Electrophoresis apparatus for simultaneous loading of multiple samples

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/470,308 Continuation US20070074973A1 (en) 2000-08-30 2006-09-06 Electrophoresis Apparatus For Simultaneous Loading of Multiple Samples

Publications (1)

Publication Number Publication Date
US20120004138A1 true US20120004138A1 (en) 2012-01-05

Family

ID=24611524

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/651,087 Expired - Lifetime US6562213B1 (en) 2000-08-30 2000-08-30 Electrophoresis apparatus for simultaneous loading of multiple samples
US10/370,459 Expired - Lifetime US7122104B2 (en) 2000-08-30 2003-02-24 Electrophoresis apparatus for simultaneous loading of multiple samples
US11/470,308 Abandoned US20070074973A1 (en) 2000-08-30 2006-09-06 Electrophoresis Apparatus For Simultaneous Loading of Multiple Samples
US13/174,400 Abandoned US20120004138A1 (en) 2000-08-30 2011-06-30 Electrophoresis apparatus for simultaneous loading of multiple samples

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/651,087 Expired - Lifetime US6562213B1 (en) 2000-08-30 2000-08-30 Electrophoresis apparatus for simultaneous loading of multiple samples
US10/370,459 Expired - Lifetime US7122104B2 (en) 2000-08-30 2003-02-24 Electrophoresis apparatus for simultaneous loading of multiple samples
US11/470,308 Abandoned US20070074973A1 (en) 2000-08-30 2006-09-06 Electrophoresis Apparatus For Simultaneous Loading of Multiple Samples

Country Status (8)

Country Link
US (4) US6562213B1 (en)
EP (2) EP2202510B1 (en)
JP (1) JP2004507756A (en)
AU (1) AU2001282492A1 (en)
CA (1) CA2420882C (en)
IL (1) IL154643A0 (en)
NZ (1) NZ525038A (en)
WO (1) WO2002018901A2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824532B2 (en) * 1995-04-26 2010-11-02 Life Technologies Corporation Apparatus and method for electrophoresis
DE69839553D1 (en) 1997-01-08 2008-07-10 Invitrogen Corp PROCESS FOR THE PRODUCTION OF PROTEINS
US6562213B1 (en) * 2000-08-30 2003-05-13 Ethrog Biotechnology Ltd. Electrophoresis apparatus for simultaneous loading of multiple samples
DE10127045C2 (en) * 2001-06-02 2003-10-30 November Ag Molekulare Medizin Method for the detection of a substance and microtiter plate
WO2004025259A2 (en) 2002-09-12 2004-03-25 Molecular Probes, Inc. Site-specific labeling of affinity tags in fusion proteins
EP1680665A4 (en) * 2003-09-19 2010-06-16 Life Technologies Corp Composite compositions for electrophoresis
US20050103628A1 (en) * 2003-09-22 2005-05-19 Jackson Thomas R. Apparatus for concurrent electrophoresis in a plurality of gels
US7781173B2 (en) * 2003-09-25 2010-08-24 Life Technologies Corporation Homogeneous populations of molecules
DE602004020484D1 (en) * 2003-09-30 2009-05-20 Molecular Probes Inc
US20070080064A1 (en) * 2005-10-12 2007-04-12 Baylor College Of Medicine Micro-loading device
EP1979410B1 (en) 2005-12-29 2012-08-22 Life Technologies Corporation Compositions and methods for improving resolution of biomolecules separated on polyacrylamide gels
EP2069386A4 (en) 2006-07-21 2009-10-28 Life Technologies Corp Sharply resolving labeled protein molecular weight standards
US20080057557A1 (en) * 2006-08-31 2008-03-06 Invitrogen Corporation Methods, cassettes, gels and apparatuses for isolation and collection of biomolecules from electrophoresis gels
WO2009073632A1 (en) * 2007-11-30 2009-06-11 University Of Chicago Methods and compositions related to microscale sample processing and evaluation
WO2009134768A1 (en) * 2008-05-01 2009-11-05 Massachusetts Institute Of Technology (Mit) Devices and processes for analyzing nucleic acid damage and repair using electrophoresis
US8361299B2 (en) * 2008-10-08 2013-01-29 Sage Science, Inc. Multichannel preparative electrophoresis system
US8361298B2 (en) * 2008-10-08 2013-01-29 Sage Science, Inc. Multichannel preparative electrophoresis system
US8975087B2 (en) 2010-11-24 2015-03-10 Inanovate, Inc. Longitudinal assay
GB201102385D0 (en) 2011-02-10 2011-03-30 Biocule Scotland Ltd Two-dimensional gel electrophoresis apparatus and method
JP6027724B2 (en) * 2011-04-26 2016-11-16 株式会社住化分析センター Inspection method for fine particles
WO2012149180A2 (en) 2011-04-26 2012-11-01 Life Technologies Corporation Fluorescent tracking dye
EP2906935B1 (en) 2012-10-12 2018-04-04 Sage Science, Inc. Side-eluting molecular fractionator
JP6317771B2 (en) * 2013-03-07 2018-04-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrophoretic separation device and method for using the same
EP3094964B9 (en) * 2014-01-17 2020-08-26 Coastal Genomics Inc. Cassettes for use in automated parallel electrophoretic assays and methods for manufacturing and using same
EP3207163B1 (en) 2014-10-15 2020-05-27 Sage Science, Inc. Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation
EP3414255B1 (en) 2015-11-20 2021-09-22 Washington University Preparative electrophoretic method for targeted purification of genomic dna fragments
AU2018250330A1 (en) 2017-04-07 2019-09-19 Sage Science, Inc. Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification
WO2018227426A1 (en) * 2017-06-14 2018-12-20 Coyote Bioscience Co., Ltd. Methods and systems for sample analysis
WO2021151030A1 (en) * 2020-01-24 2021-07-29 Correlia Biosystems, Inc. Automated analyte measurement systems and kits for use therewith
USD919835S1 (en) 2020-02-10 2021-05-18 Thermo Fisher Scientific Baltics Uab Cassette assembly for electrophoresis gel
CN111856055A (en) * 2020-07-27 2020-10-30 长沙开元仪器有限公司 Feeding mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151065A (en) * 1978-01-30 1979-04-24 The Regents Of The University Of California Horizontal slab gel electrophoresis
US4810348A (en) * 1987-03-16 1989-03-07 Helena Laboratories Corporation Automatic electrophoresis apparatus and method
US5865974A (en) * 1995-04-26 1999-02-02 Ethrog Biotechnology Ltd. Apparatus and method for electrophoresis
US6562213B1 (en) * 2000-08-30 2003-05-13 Ethrog Biotechnology Ltd. Electrophoresis apparatus for simultaneous loading of multiple samples

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062731A (en) 1959-11-18 1962-11-06 Beckman Instruments Inc Agar-agar system and additive
US3715295A (en) 1971-09-02 1973-02-06 Tlc Corp Disposable electrophoresis unit
US4219395A (en) 1972-02-28 1980-08-26 Smith Maryanne Electrochemical fractionation process
US3764513A (en) 1972-05-04 1973-10-09 Marine Colloids Inc Electrophoresis chamber
US4018662A (en) 1975-01-03 1977-04-19 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and apparatus for simultaneous quantitative analysis of several constituents in a sample
US4130471A (en) 1977-11-10 1978-12-19 Nasa Microelectrophoretic apparatus and process
DE2929478A1 (en) * 1979-07-20 1981-02-05 Max Planck Gesellschaft METHOD AND DEVICE FOR CARRYING OUT A ONE AND TWO DIMENSIONAL MICROELECTROPHORESIS
US4323439A (en) 1979-12-31 1982-04-06 The Regents Of The University Of California Method and apparatus for dynamic equilibrium electrophoresis
US4443319A (en) 1982-09-30 1984-04-17 E. I. Du Pont De Nemours And Company Device for electrophoresis
JPS6266153A (en) * 1985-09-18 1987-03-25 Fuji Photo Film Co Ltd Medium for electrophoresis
SE452853B (en) 1986-02-13 1987-12-21 Pharmacia Ab WAY TO SUPPLY BUFFER SOLUTIONS FOR ELECTROPHORETIC SEPARATION
EP0287513B1 (en) 1987-04-11 1992-12-02 Ciba-Geigy Ag An isoelectric focusing process and a means for carrying out said process
US4892639A (en) 1987-07-17 1990-01-09 Helena Laboratories Corporation Electrophoresis plate and method of making same
JP2590925B2 (en) * 1987-09-01 1997-03-19 日本電気株式会社 Magneto-optical recording medium
US5006473A (en) 1988-08-09 1991-04-09 Abbott Laboratories Electrophoresis method using vesicles
US5935401A (en) 1996-09-18 1999-08-10 Aclara Biosciences Surface modified electrophoretic chambers
US5217591A (en) * 1990-05-14 1993-06-08 Labintelligence, Inc. Gel electrophoresis sample applicator/retriever
US5045164A (en) 1990-05-23 1991-09-03 Helena Laboratories Corporation Electrophoresis plate for diverting generated fluid
US5106477A (en) 1990-11-06 1992-04-21 Genelex Corporation Electrophoresis buffer circulation apparatus
JP2588059B2 (en) 1990-11-19 1997-03-05 ハイモ株式会社 Method for producing polyacrylamide gel for electrophoresis
WO1992019960A1 (en) 1991-05-09 1992-11-12 Nanophore, Inc. Methods for the electrophoretic separation of nucleic acids and other linear macromolecules in gel media with restrictive pore diameters
US5209831A (en) * 1991-06-14 1993-05-11 Macconnell William P Bufferless electrophoresis system and method
FR2677894B1 (en) 1991-06-20 1993-10-15 Bioprobe Systems ELECTROPHORESIS DEVICE.
US5650323A (en) * 1991-06-26 1997-07-22 Costar Corporation System for growing and manipulating tissue cultures using 96-well format equipment
US5411657A (en) 1993-09-14 1995-05-02 Leka; George T. Molded plastic electrophoresis cassettes
US6129828A (en) * 1996-09-06 2000-10-10 Nanogen, Inc. Apparatus and methods for active biological sample preparation
US5578180A (en) 1994-03-31 1996-11-26 Novel Experimental Technology System for PH-neutral longlife precast electrophoresis gel
US6071396A (en) 1994-12-15 2000-06-06 University College London Gel-matrix electrophoresis
US5464517A (en) 1995-01-30 1995-11-07 Bio-Rad Laboratories Electrophoresis in low conductivity buffers
US5972188A (en) 1995-03-03 1999-10-26 Genetic Biosystems, Inc. Membrane loader for gel electrophoresis
US6379516B1 (en) 1995-04-26 2002-04-30 Ethrog Biotechnology Ltd. Apparatus and method for electrophoresis
US7824532B2 (en) 1995-04-26 2010-11-02 Life Technologies Corporation Apparatus and method for electrophoresis
US5785835A (en) 1996-04-12 1998-07-28 One Lambda Electrophoresis method and devices
US5656145A (en) * 1996-05-20 1997-08-12 Bio-Rad Laboratories, Inc. Needle guide for loading samples into a vertical slab gel
JPH10128129A (en) * 1996-10-28 1998-05-19 Atoo Kk Multiple pipette
US5843295A (en) 1996-12-19 1998-12-01 Pharmacia Biotech Gel electrophoresis well-forming and loading-guide comb
DE19700626A1 (en) * 1997-01-10 1998-07-16 Europ Lab Molekularbiolog Sample feeding
US5972694A (en) * 1997-02-11 1999-10-26 Mathus; Gregory Multi-well plate
KR100351531B1 (en) 1997-04-25 2002-09-11 캘리퍼 테크놀로지스 코포레이션 Microfludic devices incorporating improved channel geometries
AU8062998A (en) 1997-06-09 1998-12-30 Hoeffer Pharmacia Biotech, Inc. Device and method for applying power to gel electrophoresis modules
US6231813B1 (en) * 1997-09-16 2001-05-15 Invitrogen Corporation Gel loading adapter
JP3829491B2 (en) * 1998-08-27 2006-10-04 株式会社日立製作所 Probe tip, probe tip creation method, sample detection method, and sample detection device
GB9819950D0 (en) 1998-09-15 1998-11-04 Univ Southampton Electropherisis wells
US6682641B1 (en) * 1999-04-26 2004-01-27 Mj Research, Inc. Electrophoresis assembly and method of casting electrophoresis gels
US6726821B1 (en) 1999-12-02 2004-04-27 Hymo Corporation Polyacrylamide precast gels for electrophoresis, process for producing the same and electroporesis method by using the gels
US6232076B1 (en) 2000-02-04 2001-05-15 Genaissance Pharmaceuticals, Inc. Stabilizer of dye sequencing products
WO2002071024A2 (en) 2001-03-08 2002-09-12 Ethrog Biotechnology Ltd. Apparatus and method for electrophoresis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151065A (en) * 1978-01-30 1979-04-24 The Regents Of The University Of California Horizontal slab gel electrophoresis
US4810348A (en) * 1987-03-16 1989-03-07 Helena Laboratories Corporation Automatic electrophoresis apparatus and method
US5865974A (en) * 1995-04-26 1999-02-02 Ethrog Biotechnology Ltd. Apparatus and method for electrophoresis
US6562213B1 (en) * 2000-08-30 2003-05-13 Ethrog Biotechnology Ltd. Electrophoresis apparatus for simultaneous loading of multiple samples
US7122104B2 (en) * 2000-08-30 2006-10-17 Ethrog Biotechnology, Ltd. Electrophoresis apparatus for simultaneous loading of multiple samples

Also Published As

Publication number Publication date
EP1325316A2 (en) 2003-07-09
EP2202510A3 (en) 2010-11-17
AU2001282492A1 (en) 2002-03-13
US20070074973A1 (en) 2007-04-05
EP2202510B1 (en) 2018-05-30
US6562213B1 (en) 2003-05-13
EP1325316B1 (en) 2014-10-08
IL154643A0 (en) 2003-09-17
NZ525038A (en) 2005-12-23
US20030121783A1 (en) 2003-07-03
JP2004507756A (en) 2004-03-11
EP2202510A2 (en) 2010-06-30
EP1325316A4 (en) 2004-03-31
CA2420882A1 (en) 2002-03-07
WO2002018901A2 (en) 2002-03-07
US7122104B2 (en) 2006-10-17
WO2002018901A3 (en) 2002-09-12
CA2420882C (en) 2011-01-25

Similar Documents

Publication Publication Date Title
US6562213B1 (en) Electrophoresis apparatus for simultaneous loading of multiple samples
EP1410029B1 (en) Arrays of buffers for analysing biomolecules by their isoelectric point
DE60034347T2 (en) DEVICE AND METHOD FOR HIGH DENSITY ELECTROPHORESIS
AU706048B2 (en) Apparatus and method for electrophoresis
WO2000013007A1 (en) Two dimensional gel electrophoresis system
US10101296B2 (en) Mini-gel comb
Roddy et al. Sample introduction techniques for microfabricated separation devices
US6846398B1 (en) Device and method for miniaturized, highly parallel electrophoretic separation
US5384025A (en) Notched spacer for slab-gel electrophoresis
US6689267B2 (en) Multi-plate electrophoresis system having non-mechanical buffer circulation
JP4044044B2 (en) Electrophoresis device, electrophoresis apparatus, electrophoresis method and specimen detection method
JP2974537B2 (en) Capillary array, electrophoresis method and electrophoresis apparatus
IL154643A (en) Electrophoresis apparatus for simultaneous loading of multiple samples
IL190930A (en) Electrophoresis apparatus for simultaneous loading of multiple samples
JP2007304117A (en) Device for electrophoresis, electrophoretic equipment, electrophoretic method, and specimen detection method
JPH10253591A (en) Sample plate and multi-capillary cataphoresis device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION