US20110308889A1 - Lift Truck Safety System With Pivoting Fork - Google Patents

Lift Truck Safety System With Pivoting Fork Download PDF

Info

Publication number
US20110308889A1
US20110308889A1 US13/221,526 US201113221526A US2011308889A1 US 20110308889 A1 US20110308889 A1 US 20110308889A1 US 201113221526 A US201113221526 A US 201113221526A US 2011308889 A1 US2011308889 A1 US 2011308889A1
Authority
US
United States
Prior art keywords
end assembly
lift truck
horizontal member
configuration
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/221,526
Inventor
Walter D. Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/221,526 priority Critical patent/US20110308889A1/en
Publication of US20110308889A1 publication Critical patent/US20110308889A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/125Platforms; Forks; Other load supporting or gripping members rotatable about a longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors

Definitions

  • Embodiments disclosed herein generally relate to a fail-safe system whereby a load-bearing portion of a lift truck is placed in a safe position, and/or the lift truck is inoperable when a load is not present on the load-bearing portion.
  • Other embodiments pertain to a safety system that defaults a configuration of a lift truck to a safety configuration.
  • lift truck e.g., a forklift
  • Forklift a lift truck
  • lift trucks are available in a multitude of sizes, types, and configurations, nearly all are characterized by a movable assembly and/or “mast” upon which an attached fork or other load-bearing member is supported. Elevational movement of the assembly is often achieved by controlled operation of an hydraulic ram and/or a piston-cylinder mechanism.
  • typical use of a lift truck not only includes movement of loads between various locations, but various heights as well.
  • the lift truck 100 includes a frame or body 136 connected with a motorized mover 102 , and there is an operator's workspace 152 that may include features such as a seat and steering wheel.
  • a plurality of rails or guides 138 are usually connected to the frame 136 and/or motorized mover 102 , with a corresponding front-end assembly 103 movably connected to the rails 138 in such a way that the front-end assembly 103 may move up, down, sideways, etc.
  • the front-end assembly 103 may include a mast 103 a , as well as a lifter element 118 .
  • the lifter element 118 may take a number of configurations, but typically includes L-shaped forks 139 (i.e., tines, etc.) that are coupled to the mast 103 a .
  • the fork usually has a vertical portion 113 that abuts and/or is attached to the mast 103 a .
  • the fork 139 also includes a forwardly extending, generally horizontal leg 112 that constitutes the load-bearing portion of a lifter element 118 . Together the forwardly extending forks 139 are used to lift load(s) 140 vertically relative to the motorized mover 102 .
  • a typical lift truck 100 has at least one ram cylinder-piston mechanism 146 for lifting and lowering a fork and/or the mast assembly, such that movement of the front-end assembly 103 may be controlled by the ram cylinder-piston mechanism 146 .
  • the lift truck has a working configuration 105 , whereby the forks 139 may be inserted within a pallet 144 which supports the load 140 and/or 144 , and the forks 139 may thereafter be lifted to raise the pallet 144 and load 140 for movement.
  • the front-end assembly 103 may move, for example, up or down with respect to the motorized mover 102 .
  • lift truck may be problematic and inherently dangerous.
  • fork(s) or other lifter members extend awkwardly outward into open space. This is extremely dangerous and has resulted in serious injury and death as a result of impact with operators, other workers, passersby, etc.
  • the danger of the forks is exacerbated by the fact that the forks can be elevated.
  • the extended forks also require a wide turn radius in order to not inadvertently run into people and objects.
  • the need for improved safety in lift truck operation(s) is exemplified by the following description.
  • Lift trucks are an essential part of most industrial and supply chains around the world. However, statistics indicate that lift trucks also present significant hazards to people occupying the same workspace, and lift truck induced injuries may be severe or fatal. While lift trucks are a major cause of industrial deaths and accidents, little has changed in lift truck operations to reduce the rate of incidents that occur as a result of lift truck usage.
  • inventions disclosed herein relate to a method of operating a lift vehicle that can include providing a lift truck.
  • the lift truck can include a motorized mover and a front end assembly movably attached to the motorized mover.
  • the front end assembly can include at least one vertical member and at least one horizontal member pivotally coupled to the vertical member at a pivot point.
  • the horizontal member can be capable of carrying a load.
  • the method also can include pivoting the horizontal member about the pivot point to position the front end assembly in a safety configuration.
  • the method also can include pivoting the horizontal member about the pivot point to position the front end assembly in a working configuration. When the front end assembly is in the working configuration, the horizontal member can be oriented substantially perpendicularly with respect to the vertical member and can be extending in a direction away from the motorized mover.
  • a lift truck safety system can include a motorized mover and a front end assembly movably attached to the motorized mover.
  • the front end assembly can include at least one vertical member and at least one horizontal member.
  • Each vertical member can include a top end and a bottom end. The top end can be positioned elevationally higher than the bottom end.
  • Each horizontal member can include a first end and a second end. The first end can be pivotally coupled to the bottom end at a pivot point.
  • the horizontal member can be pivotally moveable to position the front end assembly between a safety configuration and a working configuration. When the front end assembly is in the working configuration, the horizontal member can be oriented substantially perpendicularly with respect to the vertical member and can be extending in a direction away from the motorized mover.
  • embodiments of the present disclosure also relate to a front end assembly for a motorized mover that can include at least one support member movably coupled to the motorized mover and at least one lifter element.
  • Each support member can include a top end and a bottom end. The top end can be positioned elevationally higher than the bottom end.
  • Each lifter element can include a first end and a second end. The first end can be pivotally coupled to the bottom end of the support member at a pivot point.
  • the lifter element can be pivotally moveable to position the lifter element between a safety configuration and a working configuration.
  • FIG. 1 shows a perspective view of a conventional lift truck.
  • FIGS. 2A and 2B show a perspective view of a lift truck in a working configuration, and a corresponding operator workspace, in accordance with embodiments of the present disclosure.
  • FIGS. 3A , 3 B, 3 C, 3 D, 3 E, 3 F, 3 G, 3 H, 3 J, and 3 K show multiple perspective views of several lift trucks comparable to each other positioned in various safety configurations, in accordance with embodiments of the present disclosure.
  • FIGS. 4A , 4 B, and 4 C show multiple views of a front-end assembly in various positions, in accordance with embodiments of the present disclosure.
  • FIG. 5A and 5B show various functional block diagrams of a safety system, in accordance with embodiments of the present disclosure.
  • FIG. 6 shows a comparison of a turn radius of a lift truck, in accordance with embodiments of the present disclosure.
  • FIGS. 2A and 2B a perspective view of a lift truck 200 in a working configuration according to embodiments of the present disclosure, is shown.
  • the lift truck 200 which may resemble the previously described lift truck 100 , may include standard features, such as a motorized mover 202 with one or more wheels 232 operatively attached thereto. Instead of wheels 232 , lift truck 200 may have tracks, rollers, etc.
  • the mover 202 may use a combustion engine (not shown) to provide mechanical motion of the mover 202 , the engine does not have to require gasoline.
  • the engine may run on natural gas or propane.
  • the motorized mover 202 may also use a pneumatic or hydraulic motor; however, the type of motor and motorized motion is not meant to be limited for the embodiments of the disclosure described herein.
  • the lift truck 200 may include other movers, such as an electrically powered mover.
  • FIGS. 2A and 2B together show a safety system 201 of the present disclosure may include one or more of the following operatively connected to the lift truck 200 .
  • There may be various sensors, such as a load sensor 204 and a position sensor 207 , as well as an interactive display panel 248 .
  • Any of the sensors of the present disclosure may include a number of well known sensor types, such as a tape reel, a Murphy-type switch, a rotary encoder, or Hall-effect transistors, the description and operation of which are all known to one of skill in the art.
  • the safety system 201 may include appropriate electrical wiring and/or other operatively connectable (e.g., hydraulic pressurized lines) devices 206 to provide the system 201 with power and/or other utilities as may be needed.
  • the interactive display panel 248 may allow an operator to interact (i.e., interface, etc.) with systems (automated or otherwise) of the present disclosure. For example, the operator may touch the panel 248 to actuate a cylinder-piston mechanism 246 , which in turn may lift the front-end assembly 203 to a desired position.
  • the operator may touch the panel 248 to actuate an override device 210 .
  • Actuation of the override device 210 may, for example, allow the lift truck 200 to operate even though the lift truck 200 may be moved into a safety configuration 308 (e.g., 308 a , FIG. 3A ).
  • the override 210 may include, but is not meant to be limited by, a switch, a key, a lever, etc., or any other kind of device known to one of ordinary skill in the art used to provide override capability.
  • the override 210 may be enabled and/or disabled, as may be necessary. For example, once the override 210 is enabled, the lift truck 200 may be moved to the working configuration 205 . Once in the working configuration 205 and a load is detected (not shown), the override 210 may be disabled, such that when the load is removed and/or no longer detected, the safety system 201 may automatically move the front end assembly 203 to a safety configuration (not shown here).
  • the sensors 204 , 207 and display panel 248 may be in operative communication with a controller (not shown), which may include a CPU, a processor, a memory, etc., the operation of which is known to one of skill in the art.
  • the controller may be used to control any of the lift truck 200 operations, such as operating, moving, driving, lifting, etc.
  • FIGS. 3A , 3 B, 3 C, 3 D, 3 E, 3 F, 3 G, 3 H, 3 J, and 3 K multiple perspective views of a lift truck 300 in various safety configurations according to embodiments of the present disclosure, are shown.
  • the lift truck 300 which may resemble the aforementioned lift truck 200 , may include a motorized mover 302 with one or more wheels 332 attached thereto.
  • Embodiments of lift truck 300 shown in FIGS. 3A , 3 B, and/or 3 C may each include a safety system 301 like that of the safety system 201 that was previously described.
  • the safety system 301 may include a controller (not shown) configured to receive signals from sensors 304 and/or 307 . If a certain signal is not detected and/or the signal is associated with a ‘NOGO’ situation (e.g., the lack of a load on lifter element 318 ), the safety system 301 may configure the lift truck 300 into a safety configuration 308 . In one embodiment, the safety system 301 may automatically default the configuration of the lift truck 300 into the safety configuration 308 .
  • the presence of the load may be detected by load (i.e., weight, etc.) sensor 304 , and the sensor 304 may send a signal to the controller, which may communicate with an interlock circuit 320 .
  • the interlock circuit 320 of the safety system 301 may be used for automatic lock-out to ensure safe operation of the lift truck 300 .
  • FIGS. 5A and 5B these functional block diagrams illustrate the operational relationship between the sensor(s), the controller, the interlock, and the lift truck 300 .
  • the safety system 301 may be used configure the lift truck 300 accordingly.
  • the safety system 301 may affect the configuration of the lift truck 300 ignition & gear system, or the safety system 301 may affect the overall position of the lift truck 300 and/or front-end assembly 303 .
  • whether the load sensor 304 detects the presence of a load (or lack thereof) may have a direct impact on the configuration of the lift truck 300 .
  • the load sensor(s) 304 may be located in other areas of the lift truck 300 , such as the mast 303 a , the vertical member 312 , etc.
  • the sensor(s) 304 may be electrically connected to the controller (not shown) and/or the interlock circuit 320 .
  • the controller operation may, for example, compare the measured sensor signal with a pre-determined and/or programmed threshold value thereby judging whether the presence of the load is detected.
  • the safety system 301 may include the load sensor 304 connected to the front-end assembly 303 , such that the load sensor 304 may detect whether the load on one or more of the forks 339 is greater than a predetermined threshold value.
  • the safety system 301 may automatically move the lift truck 300 into a safety configuration 308 . If the load exceeds the threshold value, the safety system 301 may maintain the lift truck 300 in a working configuration ( 205 , FIG. 2A ).
  • the threshold value may be one pound, such that when a load of more than one pound is detected, the lift truck 300 may operate in the working configuration 305 without the need to use the override device 310 . If one pound or more is not detected, the safety system 301 , without actuation of the override 310 and/or if the override 310 is disabled, may automatically default the lift truck 300 to any of the safety configurations as desired.
  • the safety system 301 may also include the use of other sensors, such as position sensors, which may communicate with the controller and/or control panel to display or indicate whether the front-end assembly 303 is at a proper/desired height, position, configuration, etc.
  • the position sensor may be a tilt sensor 399 , which may be mounted upon the cylinder-piston mechanism 346 a in order to provide sensor information related to the tilt/position of the front-end assembly 303 , the operation of which would be known to one of ordinary skill in the art.
  • the configuration or position of the lift truck 300 may readily be seen by indicators provided on the control panel ( 248 , FIG. 2B ). Additionally, there may be a number of other visual and/or audible indicators, such as blinking lights and buzzers, any of which may be located in the work space or on the control panel.
  • an interlock circuit 320 between the front-end assembly 303 , the controller, and/or the ignition & gear system is beneficial. If the interlock 320 receives a GO signal that corresponds to the presence of the load, the front-end assembly 303 may be maintained in, and/or automatically moved to, the working configuration ( 205 , FIG. 2A ).
  • the controller and/or interlock 320 may function to place the lift truck 300 into a safety configuration 308 .
  • the safety system 301 may default the configuration of the lift truck 300 to a safety configuration 308 .
  • the safety system 301 may default the configuration of the lift truck 300 to the safety configuration 308 until the load is detected and/or until the actuation of an override 310 .
  • the override circuit 310 may require actuation or enabling. This may be accomplished, for example, by the turn of a key, the push of a button, the movement of a lever, etc.
  • FIGS. 3A-3H illustrate one embodiment of the safety configuration 308 that includes retraction of the load-bearing members 318 into sleeves 351 that may be disposed within the lift truck 300 or under the lift truck 300 .
  • sleeves 351 may not be necessary, and the members 318 may simply be retracted by mechanical and/or hydraulic linkage 380 .
  • the linkage 380 and/or sleeve(s) 351 may also include, for example, rollers 381 or other comparable devices (not shown) that engage the members 318 in order to further facilitate the retraction, extension, and/or movement of the member(s) 318 .
  • This may also include other forms of power operated lift members 318 with, for example, a particular mechanical linkage and hydraulic cylinder means to effect the extension/retraction of the members 318 , such as, for example, a gear assembly (e.g., worm gear (not shown)).
  • a gear assembly e.g., worm gear (not shown)
  • the mechanism 350 may be an electronic locking mechanism that may be configured to raise and lower a fastener 355 , such as a pin or a latch.
  • the fastener 355 may be facilitated by an energized spring/coil 352 .
  • the locking mechanism 350 may be configured to provide sufficient support between the members 318 and the front-end assembly 303 , such that the assembly 303 may lift any sized loads, as may be necessary.
  • the clearance or space 353 between the sleeve 351 and the members 318 is not meant to be limited, a tighter clearance may provide for stronger lifting capability.
  • the sleeves/tubes 351 and thus the load-bearing member 318 , may be movable along a horizontal 356 , such that the distance (e.g., width) between at least two of the load-bearing members 318 may be adjusted.
  • a hydraulic ram cylinder-piston mechanism 346 may be mounted between the motorized mover 302 and the front end assembly 303 .
  • the cylinder-piston mechanism 346 may be operable in a conventional fashion to raise, lower, and/or otherwise maneuver the front-end assembly 303 in any desired manner.
  • the operation of the cylinder-piston mechanism 346 is not meant to be limited, and mechanism 346 may be configured to place the front-end assembly 303 into other positions and configurations, which may include various “out-of-the-way” positions.
  • FIG. 3J illustrates the cylinder-piston mechanism 346 may be configured to lift the front-end assembly 303 , at least partially, to an elevation greater than the top of the frame 336 .
  • the reverse facing direction of the forks 339 may reduce the footprint of the lift truck 300 , and may also provide a safety configuration 308 b that keeps the forks 339 from impacting people and/or other items that may be in the vicinity of the lift truck 300 .
  • the lift truck 300 in safety configuration 308 may be compared to lift truck 300 in a working configuration.
  • the working configuration 305 includes a larger footprint, as well as a larger turn radius represented by overall length L 1 .
  • the safety configuration 308 which may include any of the safety configurations described herein, has a smaller footprint, and a smaller turn radius, as represented by the smaller overall length L 2 .
  • FIG. 3K represents an example of how the cylinder-piston mechanism 346 may be configured to move the front-end assembly 303 rotationally away from a forward position associated with the working configuration 305 .
  • the front-end assembly 303 may be rotated at least 25 degrees from the position associated with the working configuration ( 205 , FIG. 2A ).
  • the front-end assembly 303 may just as easily be rotated at least 25 degrees to the right. In embodiment, the rotation may be between 75 and 90 degrees to the right and/or left.
  • the lift truck 300 may be configured with additional rails or guides 338 a disposed in a horizontal fashion along the front and/or the side of the lift truck 300 .
  • the guides or rails 338 a may enable the front end 303 to move laterally, horizontally, sideways, rotatively, etc. in a comparable manner as to how vertical guides/rails ( 138 , FIG. 1 ) facilitate vertical movement.
  • the hydraulic actuator 346 may be configured to move the front end assembly 303 along the rails 338 a .
  • the front end assembly 303 may have features (not shown), such as connectors, etc., operatively and/or movingly engaged with the rails 338 a . These features may be telescopingly, or otherwise slidingly engaged, and may include, for example, rollers, or any other mechanism or device that may allow the front end assembly 303 to be moved along rails 338 a .
  • the front end assembly 303 and the rails 338 a may be configured to allow the front end assembly 303 and mast 303 a to rotate at least a portion of the front end assembly 303 at least 75 degrees from a position associated with the working configuration 305 .
  • the power operator may be powered by electricity, hydraulics, or air pressure to extend and/or retract the piston element (not shown) movably disposed within the mechanism 346 .
  • the operation and/or actuation of the mechanism 346 may cause the front-end assembly 303 to move.
  • the safety configuration 308 may include a number of other arrangements, features, etc., not otherwise mentioned and is not meant to be limited by the description here.
  • the safety configuration 308 may include, for example, the prevention of the motorized mover 302 from starting and/or the prevention of the motorized mover 302 to switch into a drive gear.
  • the safety configuration 308 may include an inoperable lift truck 300 .
  • the safety configuration 308 may include the front-end assembly 303 moved to a safe position or an ‘out-of-the-way’ position like that of the embodiments previously described.
  • the safety system 301 may further comprise a sensor whereby the lift truck 300 will not be capable of shifting out of park and into a moving gear (e.g., drive or reverse) until the forks/blades are placed in a safe position.
  • a moving gear e.g., drive or reverse
  • any safety configuration of the lift truck 300 may include other arrangements and features not otherwise illustrated or described herein that would be apparent to one of skill in the art.
  • FIGS. 4A , 4 B, and 4 C multiple views of a front-end assembly 403 in various positions according to embodiments of the present disclosure, are shown.
  • FIGS. 4A , 4 B, and 4 C together show a close-up view of a front-assembly 403 , which may be operatively connected with a lift truck (not shown), as previously described.
  • lifter element 418 may include at least one tine or fork 439 . In one embodiment, there may be a plurality of forks 439 .
  • the working configuration of the lifter element 418 may include a general L-shape that includes a vertical member 412 and a load-bearing or otherwise horizontal member 413 .
  • the lifter element 418 may include the vertical member 412 pivotably connected with the load-bearing member 413 .
  • the load-bearing member 413 may pivot with respect to the vertical member 412 around pivot point 416 .
  • front-end assembly 403 and/or mast may pivot with respect to the motorized mover (not shown) about a pivot point 417 .
  • the pivoting may be controlled by a cylinder-piston mechanism 446 , the operation of which may be comparable to the previously described mechanism 346 .
  • the hydraulically operable cylinder-piston mechanism 446 may be movably attached to the mast 403 a and/or other portion of the front-end assembly 403 by connector 440 .
  • the cylinder-piston mechanism 446 may also be movably connected to a portion of the front-send assembly 403 by connector 441 .
  • the connector 441 may be fixedly attached to a horizontal member 414 .
  • the connectors 440 and 441 may be any connector known in the art, such as a pivotable bracket assembly. One of the connectors 440 or 441 may be connected to a horizontal member 414 .
  • the cylinder-piston mechanism 446 may be, for example, a two-way cylinder in which a piston disposed within the cylinder may be pushed, or otherwise moved, one way or the other as may be desired in order to increase or decrease the overall length of the cylinder-piston mechanism and corresponding connector rods 443 to their connectors 440 , 441 .
  • the safety system may thus include forks or blades that are capable of pivotally folding inward, upwards, or away from each other or into the sides of the lift truck for safe storage during non-load bearing travel.
  • there may be a set of forks whereby the forks are adjoined by a plate with a piston in order to elevate and/or rotate the forks above the cab and/or operator and away from pedestrians.
  • Another aspect of the system may include the capability of the forks to retract into the body of the lift truck for safe storage.
  • Embodiments of the disclosure may provide for a method of operating a lift truck.
  • the method may include various steps, such as actuating an override to move the lift truck from a safety configuration into a working configuration, positioning a load onto a front end assembly movably attached to the lift vehicle, and automatically moving the lift truck into the safety configuration once the load is removed from the front end assembly.
  • the step of automatically moving to the safety configuration may further include moving the front end assembly to an out-of-the-way position, rendering an engine of the lift truck inoperable, preventing a gear assembly of the lift truck from changing between gears, and combinations thereof.
  • the out-of-the-way position may include at least one of moving the front end assembly to a height at least partially above the fork lift, retracting at least a portion of the front end assembly underneath the lift truck, rotating at least a portion of the front end assembly at least 75 degrees from a position associated with the working configuration, and combinations thereof.
  • Embodiments disclosed herein may provide for one or more of the following advantages.
  • the safety system of the disclosure may prevent injures and the loss of life.
  • the safety system may also prevent the loss of material and property damage.
  • embodiments disclosed herein may provide for a smaller turning radius.
  • the smaller turn radius means that more space may be used to store more material, or that more aisles may be used to provide goods to a consumer.
  • the “footprint” of the lift truck may be considerably smaller than current existing models during transit and non-transit (e.g., storage, etc.).
  • Additional advantages include a safety system that may expeditiously and conveniently be installed on lift trucks and material handlers of any type.
  • the ability to retrofit may be beneficial because there will not be a need to purchase a new lift truck.
  • the safety system may beneficially default the configuration of the lift truck to a safety configuration, whereby the safety feature requires a specific act or event to occur in order to place the lift truck in a working configuration. Without the act or event, the system beneficially prevents the lift truck from going into the working configuration.
  • the safety system of the present disclosure may advantageously be applied to any number of other types of vehicles or movers, and is not limited to lift trucks, forklifts, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

A lift truck that includes a motorized mover and a front end assembly movably coupled to the motorized mover. The front end assembly is positionable in a safety configuration and a working configuration. The front end assembly includes at least one vertical member having a bottom end and a top end and at least one horizontal member having a first end and a second end. The first end is pivotally coupled to the bottom end and is moveable between a safety configuration and a working configuration. When the front end assembly is positioned in the working configuration, the horizontal member is oriented substantially perpendicularly with respect to the vertical member and extends in a direction away from the motorized mover.

Description

    RELATED APPLICATIONS
  • This application is a divisional application of U.S. Non-Provisional Patent Application No. 12/949,550, entitled “Lift Truck Safety System,” filed Nov. 18, 2010, which is a divisional application of U.S. Non-Provisional Patent Application No. 12/799,721, entitled “Lift Truck Safety System,” filed May 1, 2010, the entirety of both is incorporated by reference herein.
  • BACKGROUND OF DISCLOSURE
  • 1. Field of the Disclosure
  • The present disclosure relates in general to lift trucks, forklifts, front-end loaders, pallet jacks, and the like, that use a movable assembly to maneuver a load. Embodiments disclosed herein generally relate to a fail-safe system whereby a load-bearing portion of a lift truck is placed in a safe position, and/or the lift truck is inoperable when a load is not present on the load-bearing portion. Other embodiments pertain to a safety system that defaults a configuration of a lift truck to a safety configuration.
  • 2. Background Art
  • It has long been known to employ a lift truck (e.g., a forklift), for the movement of loads and other objects found in industrial locations, warehouse settings, and other various applications. Although lift trucks are available in a multitude of sizes, types, and configurations, nearly all are characterized by a movable assembly and/or “mast” upon which an attached fork or other load-bearing member is supported. Elevational movement of the assembly is often achieved by controlled operation of an hydraulic ram and/or a piston-cylinder mechanism. Thus, typical use of a lift truck not only includes movement of loads between various locations, but various heights as well.
  • Referring to FIG. 1, a perspective view of a conventional lift truck 100 is shown. The lift truck 100 includes a frame or body 136 connected with a motorized mover 102, and there is an operator's workspace 152 that may include features such as a seat and steering wheel. A plurality of rails or guides 138 are usually connected to the frame 136 and/or motorized mover 102, with a corresponding front-end assembly 103 movably connected to the rails 138 in such a way that the front-end assembly 103 may move up, down, sideways, etc.
  • The front-end assembly 103 may include a mast 103 a, as well as a lifter element 118. The lifter element 118 may take a number of configurations, but typically includes L-shaped forks 139 (i.e., tines, etc.) that are coupled to the mast 103 a. The fork usually has a vertical portion 113 that abuts and/or is attached to the mast 103 a. The fork 139 also includes a forwardly extending, generally horizontal leg 112 that constitutes the load-bearing portion of a lifter element 118. Together the forwardly extending forks 139 are used to lift load(s) 140 vertically relative to the motorized mover 102.
  • A typical lift truck 100 has at least one ram cylinder-piston mechanism 146 for lifting and lowering a fork and/or the mast assembly, such that movement of the front-end assembly 103 may be controlled by the ram cylinder-piston mechanism 146. As is known in the art, the lift truck has a working configuration 105, whereby the forks 139 may be inserted within a pallet 144 which supports the load 140 and/or 144, and the forks 139 may thereafter be lifted to raise the pallet 144 and load 140 for movement. Hence, as the mast 103 a moves, so may the load 140 disposed on the lifting element 118. The front-end assembly 103 may move, for example, up or down with respect to the motorized mover 102.
  • However, the use of the lift truck may be problematic and inherently dangerous. For example, whether stationary or in transit, fork(s) or other lifter members extend awkwardly outward into open space. This is extremely dangerous and has resulted in serious injury and death as a result of impact with operators, other workers, passersby, etc. The danger of the forks is exacerbated by the fact that the forks can be elevated. The extended forks also require a wide turn radius in order to not inadvertently run into people and objects. The need for improved safety in lift truck operation(s) is exemplified by the following description.
  • Even more problematic is that an operator has to focus on the task of operating and driving the lift truck (with or without load) often forgetting about, or losing track of, the elevation of the forks, such that the forks impact people or other items. Lift trucks are an essential part of most industrial and supply chains around the world. However, statistics indicate that lift trucks also present significant hazards to people occupying the same workspace, and lift truck induced injuries may be severe or fatal. While lift trucks are a major cause of industrial deaths and accidents, little has changed in lift truck operations to reduce the rate of incidents that occur as a result of lift truck usage.
  • As presented by a National Institute for Occupational Safety and Health (NIOSH) report, lift trucks strike people everyday, resulting in 100 deaths and over 20,000 injuries annually in the United States Alone. The NIOSH report shows that approximately every 3 days, someone in the US is killed in a lift truck related accident. Each year, an additional 94,750 injuries related to forklift accidents are reported. Besides workman's compensation and/or lost time at the job, there are huge lawsuits awarded for lift truck accidents. The costs incurred as a result of lift truck accidents are estimated to be in excess of $100 million dollars US annually.
  • Additionally, lift trucks cause damage to material. Recent events include the shut down of a busy North Carolina port after a lift truck operator accidentally punctured containers of pentaerythritol tetranitrate (PETN), the same chemical used in a Christmas Day airline bombing attempt. Not only is there an expenditure of a massive amount of resources to clean up spilled materials, but accidents such as these cause concern about acts of domestic terrorism. This leads to additional expenditure of resources, like involvement by the Department of Homeland Security, increased security at airports, etc., each of which having an unrelenting domino effect on an entire portion of the national economy.
  • The use of conventional lift trucks is problematic, and as a consequence, the use of lift trucks, especially in small or tight spaces, is difficult, inconvenient, and dangerous. As such, there has long been a chronic need in the use of lift trucks (or other comparable material handling equipment) for a safety system that can be used to reduce or eliminate the risk of serious injury and death to people. There is a need for a safety system that may be employed rapidly and dependably, and even automatically, that includes moving the front-end assembly to an out-of-the-way position. These needs are prevalent on new and existing lift trucks, such that there is a need to retrofit existing lift trucks with a safety system.
  • There are additional needs for a lift truck capable of a smaller turning radius that results from the forks/blades being retracted/stored/moved to an out-of-the-way position. There is also a need for a lift truck that has a considerably smaller “footprint” during storage and non-load bearing travel. There is a chronic need for the prevention of injuries and loss of life associated with load and non-load bearing travel. There is a comparable need for the prevention of loss of material and property damage associated with non-load bearing travel.
  • SUMMARY OF DISCLOSURE
  • In one aspect, embodiments disclosed herein relate to a method of operating a lift vehicle that can include providing a lift truck. The lift truck can include a motorized mover and a front end assembly movably attached to the motorized mover. The front end assembly can include at least one vertical member and at least one horizontal member pivotally coupled to the vertical member at a pivot point. The horizontal member can be capable of carrying a load. The method also can include pivoting the horizontal member about the pivot point to position the front end assembly in a safety configuration. The method also can include pivoting the horizontal member about the pivot point to position the front end assembly in a working configuration. When the front end assembly is in the working configuration, the horizontal member can be oriented substantially perpendicularly with respect to the vertical member and can be extending in a direction away from the motorized mover.
  • In other aspects, embodiments disclosed herein relate to a lift truck safety system that can include a motorized mover and a front end assembly movably attached to the motorized mover. The front end assembly can include at least one vertical member and at least one horizontal member. Each vertical member can include a top end and a bottom end. The top end can be positioned elevationally higher than the bottom end. Each horizontal member can include a first end and a second end. The first end can be pivotally coupled to the bottom end at a pivot point. The horizontal member can be pivotally moveable to position the front end assembly between a safety configuration and a working configuration. When the front end assembly is in the working configuration, the horizontal member can be oriented substantially perpendicularly with respect to the vertical member and can be extending in a direction away from the motorized mover.
  • In yet further aspects, embodiments of the present disclosure also relate to a front end assembly for a motorized mover that can include at least one support member movably coupled to the motorized mover and at least one lifter element. Each support member can include a top end and a bottom end. The top end can be positioned elevationally higher than the bottom end. Each lifter element can include a first end and a second end. The first end can be pivotally coupled to the bottom end of the support member at a pivot point. The lifter element can be pivotally moveable to position the lifter element between a safety configuration and a working configuration. When the front end assembly is coupled to the motorized mover and is in the working configuration, the lifter element can be oriented substantially perpendicularly with respect to the support member and can be extending in a direction away from the motorized mover.
  • Other aspects and advantages of the disclosure will be apparent from the following description and the appended claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a perspective view of a conventional lift truck.
  • FIGS. 2A and 2B show a perspective view of a lift truck in a working configuration, and a corresponding operator workspace, in accordance with embodiments of the present disclosure.
  • FIGS. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3J, and 3K show multiple perspective views of several lift trucks comparable to each other positioned in various safety configurations, in accordance with embodiments of the present disclosure.
  • FIGS. 4A, 4B, and 4C show multiple views of a front-end assembly in various positions, in accordance with embodiments of the present disclosure.
  • FIG. 5A and 5B show various functional block diagrams of a safety system, in accordance with embodiments of the present disclosure.
  • FIG. 6 shows a comparison of a turn radius of a lift truck, in accordance with embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • Specific embodiments of the present disclosure will now be described in detail with reference to the accompanying Figures. Like elements in the various figures may be denoted by like reference numerals for consistency. Further, in the following detailed description of embodiments of the present disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the embodiments disclosed herein may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
  • Referring now to FIGS. 2A and 2B, a perspective view of a lift truck 200 in a working configuration according to embodiments of the present disclosure, is shown. The lift truck 200, which may resemble the previously described lift truck 100, may include standard features, such as a motorized mover 202 with one or more wheels 232 operatively attached thereto. Instead of wheels 232, lift truck 200 may have tracks, rollers, etc.
  • Although the mover 202 may use a combustion engine (not shown) to provide mechanical motion of the mover 202, the engine does not have to require gasoline. For example, the engine may run on natural gas or propane. Alternatively, the motorized mover 202 may also use a pneumatic or hydraulic motor; however, the type of motor and motorized motion is not meant to be limited for the embodiments of the disclosure described herein. For example, the lift truck 200 may include other movers, such as an electrically powered mover.
  • FIGS. 2A and 2B together show a safety system 201 of the present disclosure may include one or more of the following operatively connected to the lift truck 200. There may be various sensors, such as a load sensor 204 and a position sensor 207, as well as an interactive display panel 248. Any of the sensors of the present disclosure may include a number of well known sensor types, such as a tape reel, a Murphy-type switch, a rotary encoder, or Hall-effect transistors, the description and operation of which are all known to one of skill in the art.
  • The safety system 201 may include appropriate electrical wiring and/or other operatively connectable (e.g., hydraulic pressurized lines) devices 206 to provide the system 201 with power and/or other utilities as may be needed. The interactive display panel 248 may allow an operator to interact (i.e., interface, etc.) with systems (automated or otherwise) of the present disclosure. For example, the operator may touch the panel 248 to actuate a cylinder-piston mechanism 246, which in turn may lift the front-end assembly 203 to a desired position.
  • As another example, the operator may touch the panel 248 to actuate an override device 210. Actuation of the override device 210 may, for example, allow the lift truck 200 to operate even though the lift truck 200 may be moved into a safety configuration 308 (e.g., 308 a, FIG. 3A). There may be corresponding indicators on the panel 248 to indicate various statuses of the lift truck 200, such as the presence of a load (not shown), the position of the front-end assembly 203, and/or the configuration of the lift truck 200. The override 210 may include, but is not meant to be limited by, a switch, a key, a lever, etc., or any other kind of device known to one of ordinary skill in the art used to provide override capability.
  • The override 210 may be enabled and/or disabled, as may be necessary. For example, once the override 210 is enabled, the lift truck 200 may be moved to the working configuration 205. Once in the working configuration 205 and a load is detected (not shown), the override 210 may be disabled, such that when the load is removed and/or no longer detected, the safety system 201 may automatically move the front end assembly 203 to a safety configuration (not shown here).
  • The sensors 204, 207 and display panel 248 may be in operative communication with a controller (not shown), which may include a CPU, a processor, a memory, etc., the operation of which is known to one of skill in the art. The controller may be used to control any of the lift truck 200 operations, such as operating, moving, driving, lifting, etc.
  • Referring now to FIGS. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3J, and 3K, multiple perspective views of a lift truck 300 in various safety configurations according to embodiments of the present disclosure, are shown. The lift truck 300, which may resemble the aforementioned lift truck 200, may include a motorized mover 302 with one or more wheels 332 attached thereto.
  • Embodiments of lift truck 300 shown in FIGS. 3A, 3B, and/or 3C may each include a safety system 301 like that of the safety system 201 that was previously described. As such, the safety system 301 may include a controller (not shown) configured to receive signals from sensors 304 and/or 307. If a certain signal is not detected and/or the signal is associated with a ‘NOGO’ situation (e.g., the lack of a load on lifter element 318), the safety system 301 may configure the lift truck 300 into a safety configuration 308. In one embodiment, the safety system 301 may automatically default the configuration of the lift truck 300 into the safety configuration 308.
  • As an example of the safety system 301 operation, the presence of the load (not shown) may be detected by load (i.e., weight, etc.) sensor 304, and the sensor 304 may send a signal to the controller, which may communicate with an interlock circuit 320. The interlock circuit 320 of the safety system 301 may be used for automatic lock-out to ensure safe operation of the lift truck 300.
  • Referring briefly to FIGS. 5A and 5B, these functional block diagrams illustrate the operational relationship between the sensor(s), the controller, the interlock, and the lift truck 300.
  • The safety system 301 may be used configure the lift truck 300 accordingly. For example, the safety system 301 may affect the configuration of the lift truck 300 ignition & gear system, or the safety system 301 may affect the overall position of the lift truck 300 and/or front-end assembly 303. Hence, whether the load sensor 304 detects the presence of a load (or lack thereof) may have a direct impact on the configuration of the lift truck 300.
  • Referring again to FIG. 3A, although illustrated as being disposed in (or on) one of the forks 339, the load sensor(s) 304 may be located in other areas of the lift truck 300, such as the mast 303 a, the vertical member 312, etc. The sensor(s) 304 may be electrically connected to the controller (not shown) and/or the interlock circuit 320. The controller operation may, for example, compare the measured sensor signal with a pre-determined and/or programmed threshold value thereby judging whether the presence of the load is detected.
  • When the sensor(s) 304 sends the applicable signal to the controller, movement and/or operation of the front-end assembly 303 and/or the lift truck 300 may be controlled. This is especially important in places where people are present, spatial constraints exist, and/or damageable goods are in the vicinity. In an exemplary embodiment, the safety system 301 may include the load sensor 304 connected to the front-end assembly 303, such that the load sensor 304 may detect whether the load on one or more of the forks 339 is greater than a predetermined threshold value.
  • If the load does not exceed the threshold value, the safety system 301 may automatically move the lift truck 300 into a safety configuration 308. If the load exceeds the threshold value, the safety system 301 may maintain the lift truck 300 in a working configuration (205, FIG. 2A). In an embodiment, the threshold value may be one pound, such that when a load of more than one pound is detected, the lift truck 300 may operate in the working configuration 305 without the need to use the override device 310. If one pound or more is not detected, the safety system 301, without actuation of the override 310 and/or if the override 310 is disabled, may automatically default the lift truck 300 to any of the safety configurations as desired.
  • The safety system 301 may also include the use of other sensors, such as position sensors, which may communicate with the controller and/or control panel to display or indicate whether the front-end assembly 303 is at a proper/desired height, position, configuration, etc. For example, the position sensor may be a tilt sensor 399, which may be mounted upon the cylinder-piston mechanism 346 a in order to provide sensor information related to the tilt/position of the front-end assembly 303, the operation of which would be known to one of ordinary skill in the art.
  • The configuration or position of the lift truck 300 may readily be seen by indicators provided on the control panel (248, FIG. 2B). Additionally, there may be a number of other visual and/or audible indicators, such as blinking lights and buzzers, any of which may be located in the work space or on the control panel.
  • The provision of an interlock circuit 320 between the front-end assembly 303, the controller, and/or the ignition & gear system is beneficial. If the interlock 320 receives a GO signal that corresponds to the presence of the load, the front-end assembly 303 may be maintained in, and/or automatically moved to, the working configuration (205, FIG. 2A).
  • However, if the controller and/or interlock receive a NOGO signal, which may correspond to a lack of a load (i.e., no load is detected by load sensor 304), the controller and interlock 320 may function to place the lift truck 300 into a safety configuration 308. In one embodiment, the safety system 301 may default the configuration of the lift truck 300 to a safety configuration 308. In a further embodiment, the safety system 301 may default the configuration of the lift truck 300 to the safety configuration 308 until the load is detected and/or until the actuation of an override 310. In order to move to a working configuration 305, the override circuit 310 may require actuation or enabling. This may be accomplished, for example, by the turn of a key, the push of a button, the movement of a lever, etc.
  • Referring to FIGS. 3A-3H together, which illustrate one embodiment of the safety configuration 308 that includes retraction of the load-bearing members 318 into sleeves 351 that may be disposed within the lift truck 300 or under the lift truck 300. Alternatively, sleeves 351 may not be necessary, and the members 318 may simply be retracted by mechanical and/or hydraulic linkage 380. The linkage 380 and/or sleeve(s) 351 may also include, for example, rollers 381 or other comparable devices (not shown) that engage the members 318 in order to further facilitate the retraction, extension, and/or movement of the member(s) 318. This may also include other forms of power operated lift members 318 with, for example, a particular mechanical linkage and hydraulic cylinder means to effect the extension/retraction of the members 318, such as, for example, a gear assembly (e.g., worm gear (not shown)).
  • There may be a locking mechanism 350 used to securely fasten the members 318 to the front-end assembly 303 after the members 318 are extended outward. The mechanism 350 may be an electronic locking mechanism that may be configured to raise and lower a fastener 355, such as a pin or a latch. The fastener 355 may be facilitated by an energized spring/coil 352. The locking mechanism 350 may be configured to provide sufficient support between the members 318 and the front-end assembly 303, such that the assembly 303 may lift any sized loads, as may be necessary. Although the clearance or space 353 between the sleeve 351 and the members 318 is not meant to be limited, a tighter clearance may provide for stronger lifting capability.
  • The sleeves/tubes 351, and thus the load-bearing member 318, may be movable along a horizontal 356, such that the distance (e.g., width) between at least two of the load-bearing members 318 may be adjusted.
  • A hydraulic ram cylinder-piston mechanism 346 may be mounted between the motorized mover 302 and the front end assembly 303. The cylinder-piston mechanism 346 may be operable in a conventional fashion to raise, lower, and/or otherwise maneuver the front-end assembly 303 in any desired manner. The operation of the cylinder-piston mechanism 346 is not meant to be limited, and mechanism 346 may be configured to place the front-end assembly 303 into other positions and configurations, which may include various “out-of-the-way” positions.
  • For example, FIG. 3J illustrates the cylinder-piston mechanism 346 may be configured to lift the front-end assembly 303, at least partially, to an elevation greater than the top of the frame 336. The reverse facing direction of the forks 339 may reduce the footprint of the lift truck 300, and may also provide a safety configuration 308 b that keeps the forks 339 from impacting people and/or other items that may be in the vicinity of the lift truck 300.
  • Referring briefly to FIG. 6, the lift truck 300 in safety configuration 308 may be compared to lift truck 300 in a working configuration. As illustrated, the working configuration 305 includes a larger footprint, as well as a larger turn radius represented by overall length L1. In contrast, the safety configuration 308, which may include any of the safety configurations described herein, has a smaller footprint, and a smaller turn radius, as represented by the smaller overall length L2.
  • FIG. 3K represents an example of how the cylinder-piston mechanism 346 may be configured to move the front-end assembly 303 rotationally away from a forward position associated with the working configuration 305. For example, the front-end assembly 303 may be rotated at least 25 degrees from the position associated with the working configuration (205, FIG. 2A). Although shown as rotated to the left, the front-end assembly 303 may just as easily be rotated at least 25 degrees to the right. In embodiment, the rotation may be between 75 and 90 degrees to the right and/or left.
  • To move the front end assembly 303 to the side, the lift truck 300 may be configured with additional rails or guides 338 a disposed in a horizontal fashion along the front and/or the side of the lift truck 300. As would be apparent to one of skill in the art, the guides or rails 338 a may enable the front end 303 to move laterally, horizontally, sideways, rotatively, etc. in a comparable manner as to how vertical guides/rails (138, FIG. 1) facilitate vertical movement. As such, the hydraulic actuator 346 may be configured to move the front end assembly 303 along the rails 338 a. In an embodiment, there may be more than one hydraulic actuator 346 disposed on the lift truck 300 in order to move and/or rotate the front end assembly 303 from away from the working configuration 305.
  • Thus, the front end assembly 303 may have features (not shown), such as connectors, etc., operatively and/or movingly engaged with the rails 338 a. These features may be telescopingly, or otherwise slidingly engaged, and may include, for example, rollers, or any other mechanism or device that may allow the front end assembly 303 to be moved along rails 338 a. In one embodiment, the front end assembly 303 and the rails 338 a may be configured to allow the front end assembly 303 and mast 303 a to rotate at least a portion of the front end assembly 303 at least 75 degrees from a position associated with the working configuration 305.
  • There may be a conventional power operator (not shown), as known to one of skill in the art, that provides the actuation of the cylinder-piston mechanism 346. The power operator may be powered by electricity, hydraulics, or air pressure to extend and/or retract the piston element (not shown) movably disposed within the mechanism 346. When these components of mechanism 346 extend, move, etc., the operation and/or actuation of the mechanism 346 may cause the front-end assembly 303 to move.
  • Although a number of configurations are described, the safety configuration 308 may include a number of other arrangements, features, etc., not otherwise mentioned and is not meant to be limited by the description here. The safety configuration 308 may include, for example, the prevention of the motorized mover 302 from starting and/or the prevention of the motorized mover 302 to switch into a drive gear. In one embodiment, the safety configuration 308 may include an inoperable lift truck 300. In another embodiment, the safety configuration 308 may include the front-end assembly 303 moved to a safe position or an ‘out-of-the-way’ position like that of the embodiments previously described.
  • The safety system 301 may further comprise a sensor whereby the lift truck 300 will not be capable of shifting out of park and into a moving gear (e.g., drive or reverse) until the forks/blades are placed in a safe position. Thus, any safety configuration of the lift truck 300 may include other arrangements and features not otherwise illustrated or described herein that would be apparent to one of skill in the art.
  • Referring now to FIGS. 4A, 4B, and 4C, multiple views of a front-end assembly 403 in various positions according to embodiments of the present disclosure, are shown. FIGS. 4A, 4B, and 4C together show a close-up view of a front-assembly 403, which may be operatively connected with a lift truck (not shown), as previously described. As shown, lifter element 418 may include at least one tine or fork 439. In one embodiment, there may be a plurality of forks 439. The working configuration of the lifter element 418 may include a general L-shape that includes a vertical member 412 and a load-bearing or otherwise horizontal member 413.
  • In an embodiment, the lifter element 418 may include the vertical member 412 pivotably connected with the load-bearing member 413. Thus, as shown by FIG. 4C, the load-bearing member 413 may pivot with respect to the vertical member 412 around pivot point 416. Additionally, front-end assembly 403 and/or mast (not shown) may pivot with respect to the motorized mover (not shown) about a pivot point 417. The pivoting may be controlled by a cylinder-piston mechanism 446, the operation of which may be comparable to the previously described mechanism 346.
  • The hydraulically operable cylinder-piston mechanism 446 may be movably attached to the mast 403 a and/or other portion of the front-end assembly 403 by connector 440. The cylinder-piston mechanism 446 may also be movably connected to a portion of the front-send assembly 403 by connector 441. The connector 441 may be fixedly attached to a horizontal member 414. The connectors 440 and 441 may be any connector known in the art, such as a pivotable bracket assembly. One of the connectors 440 or 441 may be connected to a horizontal member 414.
  • The cylinder-piston mechanism 446 may be, for example, a two-way cylinder in which a piston disposed within the cylinder may be pushed, or otherwise moved, one way or the other as may be desired in order to increase or decrease the overall length of the cylinder-piston mechanism and corresponding connector rods 443 to their connectors 440, 441.
  • The safety system may thus include forks or blades that are capable of pivotally folding inward, upwards, or away from each other or into the sides of the lift truck for safe storage during non-load bearing travel. In one embodiment, there may be a set of forks whereby the forks are adjoined by a plate with a piston in order to elevate and/or rotate the forks above the cab and/or operator and away from pedestrians. Another aspect of the system may include the capability of the forks to retract into the body of the lift truck for safe storage.
  • Embodiments of the disclosure may provide for a method of operating a lift truck. The method may include various steps, such as actuating an override to move the lift truck from a safety configuration into a working configuration, positioning a load onto a front end assembly movably attached to the lift vehicle, and automatically moving the lift truck into the safety configuration once the load is removed from the front end assembly.
  • In addition, the step of automatically moving to the safety configuration may further include moving the front end assembly to an out-of-the-way position, rendering an engine of the lift truck inoperable, preventing a gear assembly of the lift truck from changing between gears, and combinations thereof.
  • The out-of-the-way position may include at least one of moving the front end assembly to a height at least partially above the fork lift, retracting at least a portion of the front end assembly underneath the lift truck, rotating at least a portion of the front end assembly at least 75 degrees from a position associated with the working configuration, and combinations thereof.
  • Embodiments disclosed herein may provide for one or more of the following advantages. Of significant importance, the safety system of the disclosure may prevent injures and the loss of life. The safety system may also prevent the loss of material and property damage. Second, embodiments disclosed herein may provide for a smaller turning radius. The smaller turn radius means that more space may be used to store more material, or that more aisles may be used to provide goods to a consumer. Additionally, the “footprint” of the lift truck may be considerably smaller than current existing models during transit and non-transit (e.g., storage, etc.).
  • Additional advantages include a safety system that may expeditiously and conveniently be installed on lift trucks and material handlers of any type. The ability to retrofit may be beneficial because there will not be a need to purchase a new lift truck. The safety system may beneficially default the configuration of the lift truck to a safety configuration, whereby the safety feature requires a specific act or event to occur in order to place the lift truck in a working configuration. Without the act or event, the system beneficially prevents the lift truck from going into the working configuration. The safety system of the present disclosure may advantageously be applied to any number of other types of vehicles or movers, and is not limited to lift trucks, forklifts, etc.
  • While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.

Claims (26)

1. A lift truck safety system, comprising:
a motorized mover; and
a front end assembly movably attached to the motorized mover, wherein the front end assembly comprises:
at least one vertical member having a top end and a bottom end, the top end positioned elevationally higher than the bottom end; and
at least one horizontal member having a first end and a second end, the first end being pivotally coupled to the bottom end at a pivot point, the horizontal member being pivotally movable to position the front end assembly between a safety configuration and a working configuration,
wherein the horizontal member is oriented substantially perpendicularly with respect to the vertical member and extending in a direction away from the motorized mover when in the working configuration.
2. The lift truck safety system of claim 1, further comprising a load sensor coupled to the front end assembly, wherein the load sensor detects the presence of a load on the front end assembly.
3. The lift truck safety system of claim 2, wherein the front end assembly automatically moves to the safety configuration when the presence of the load on the front end assembly is not detected by the load sensor.
4. The lift truck safety system of claim 3, further comprising an override device in operative communication with the front end assembly, wherein activation of the override device allows the front end assembly to move from the safety configuration to the working configuration when the presence of the load on the front end assembly is not detected by the load sensor.
5. The lift truck safety system of claim 2, wherein the load sensor determines that there is a presence of the load on the front end assembly when the weight of the load exceeds a predetermined threshold value.
6. The lift truck safety system of claim 2, wherein the load sensor is coupled to the horizontal member.
7. The lift truck safety system of claim 1, wherein the horizontal member pivots about the pivot point when the front end assembly moves into the safety configuration.
8. The lift truck safety system of claim 7, wherein the horizontal member pivots upwardly about the pivot point, wherein the second end of the horizontal member moves towards the top end of the vertical member when the front end assembly moves into the safety configuration.
9. The lift truck safety system of claim 8, wherein the horizontal member is positioned adjacent and substantially parallel to the vertical member when the front end assembly is positioned in the safety configuration.
10. The lift truck safety system of claim 7,
wherein the at least one vertical member comprises a first vertical member and a second vertical member, the second vertical member being substantially parallel with respect to the first vertical member; and
wherein the at least one horizontal member comprises a first horizontal member and a second horizontal member, the first horizontal member being pivotally coupled to the first vertical member at a first pivot point, the second horizontal member being pivotally coupled to the second vertical member at a second pivot point.
11. The lift truck safety system of claim 10, wherein the first horizontal member and the second horizontal member pivot sideways away from one another about the first pivot point and the second pivot point respectively when the front end assembly moves into the safety configuration.
12. The lift truck safety system of claim 11, wherein each of the first horizontal member and the second horizontal member is positioned near opposing sides of the motorized mover when the front end assembly is positioned in the safety configuration.
13. The lift truck safety system of claim 2, further comprising an interlock that maintains the front end assembly in the working configuration until the presence of the load on the front end assembly is no longer detected by the load sensor.
14. The lift truck safety system of claim 13, wherein the interlock is configured to prevent the motorized mover from moving out of a first gear position.
15. The lift truck safety system of claim 13, wherein the interlock is configured to prevent the motorized mover from starting.
16. A front end assembly for a motorized mover, the front end assembly, comprising:
at least one support member movably coupled to the motorized mover, each support member having a top end and a bottom end, the top end positioned elevationally higher than the bottom end; and
at least one lifter element having a first end and a second end, the first end being pivotally coupled to the bottom end of the support member at a pivot point, the lifter element being pivotally movable to position the lifter element between a safety configuration and a working configuration,
wherein once the front end assembly is coupled to the motorized mover, the lifter element is oriented substantially perpendicularly with respect to the support member and extending in a direction away from the motorized mover when in the working configuration.
17. The front end assembly of claim 16, further comprising at least one load sensor coupled to the at least one lifter element, the load sensor capable of detecting the presence of a load on the lifter element.
18. The front end assembly of claim 17, wherein the front end assembly is configured to move between the safety configuration and the working configuration in response to a signal detected by the at least one load sensor, wherein the signal pertains to the presence of the load on the at least one lifter element.
19. The front end assembly of claim 17, wherein the front end assembly automatically moves to the safety configuration when the load is not detected by the load sensor.
20. The front end assembly of claim 16, wherein the lifter element pivots upwardly about the pivot point, wherein the second end of the lifter element moves towards the top end of the support member when the lifter element moves into the safety configuration.
21. The front end assembly of claim 20, wherein the lifter element is positioned adjacent and substantially parallel to the support member when the lifter element is positioned in the safety configuration.
22. A method of operating a lift truck, the method comprising:
providing a lift truck, comprising,
a motorized mover; and
a front end assembly movably attached to the motorized mover, wherein the front end assembly comprises at least one vertical member and at least one horizontal member pivotally coupled to the vertical member at a pivot point, the horizontal member capable of carrying a load;
pivoting the horizontal member about the pivot point to position the front end assembly in a safety configuration, and
pivoting the horizontal member about the pivot point to position the front end assembly in a working configuration,
wherein the horizontal member is oriented substantially perpendicularly with respect to the vertical member and extending in a direction away from the motorized mover when in the working configuration.
23. The method of claim 22, wherein the safety configuration comprises the horizontal member being oriented substantially parallel and adjacent to the vertical member.
24. The method of claim 22, wherein the front end assembly further comprises at least one load sensor, the load sensor detecting when the load is on the front end assembly.
25. The method of claim 24, wherein pivoting the horizontal member into the safety configuration occurs automatically when the load sensor does not detect the load on the front end assembly.
26. The method of claim 22, wherein pivoting the horizontal member about the pivot point to position the front end assembly in a safety configuration comprises pivoting the horizontal member upwardly about the pivot point, wherein a distal end of the horizontal member moves towards a top end of the vertical member when the front end assembly moves into the safety configuration.
US13/221,526 2010-05-01 2011-08-30 Lift Truck Safety System With Pivoting Fork Abandoned US20110308889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/221,526 US20110308889A1 (en) 2010-05-01 2011-08-30 Lift Truck Safety System With Pivoting Fork

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/799,721 US7865286B1 (en) 2010-05-01 2010-05-01 Lift truck safety system
US12/949,550 US20110270496A1 (en) 2010-05-01 2010-11-18 Lift Truck Safety System
US13/221,526 US20110308889A1 (en) 2010-05-01 2011-08-30 Lift Truck Safety System With Pivoting Fork

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/949,550 Division US20110270496A1 (en) 2010-05-01 2010-11-18 Lift Truck Safety System

Publications (1)

Publication Number Publication Date
US20110308889A1 true US20110308889A1 (en) 2011-12-22

Family

ID=43385048

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/799,721 Expired - Fee Related US7865286B1 (en) 2010-05-01 2010-05-01 Lift truck safety system
US12/949,521 Expired - Fee Related US8078368B2 (en) 2010-05-01 2010-11-18 Lift truck safety system
US12/949,550 Abandoned US20110270496A1 (en) 2010-05-01 2010-11-18 Lift Truck Safety System
US13/221,526 Abandoned US20110308889A1 (en) 2010-05-01 2011-08-30 Lift Truck Safety System With Pivoting Fork

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/799,721 Expired - Fee Related US7865286B1 (en) 2010-05-01 2010-05-01 Lift truck safety system
US12/949,521 Expired - Fee Related US8078368B2 (en) 2010-05-01 2010-11-18 Lift truck safety system
US12/949,550 Abandoned US20110270496A1 (en) 2010-05-01 2010-11-18 Lift Truck Safety System

Country Status (2)

Country Link
US (4) US7865286B1 (en)
WO (1) WO2011139260A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130239405A1 (en) * 2012-03-16 2013-09-19 Trevor C. Griffith Track remover / assembler
US20150142278A1 (en) * 2013-11-19 2015-05-21 Nacco Materials Handling Group, Inc. Reverse Drive Handle For Lift Truck
WO2018067127A1 (en) * 2016-10-04 2018-04-12 Ford Global Technologies, Llc Dolly with automated height adjustment
CN108751043A (en) * 2018-05-09 2018-11-06 王历鑫 Loading machine lifting device and loading machine
SE544583C2 (en) * 2019-02-20 2022-07-26 Pmc Attachment Ab Electrically operated lifting unit for a working vehicle
WO2023187769A3 (en) * 2021-11-17 2023-11-16 Nhon Hoa Nguyen Fork assembly for forklifts

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8473167B2 (en) * 2008-07-03 2013-06-25 Rs Drawings, Llc Lift gate control system
EP2447203B1 (en) * 2010-11-01 2013-04-17 BT Products AB Industrial truck, method and computer program for controlling an industrial truck
US8632082B2 (en) * 2011-05-13 2014-01-21 Chep Technology Pty Limited Pallet truck with lift indicator assembly and associated methods
CN103350977B (en) * 2013-07-11 2015-06-10 浙江诺力机械股份有限公司 Method and device for automatically lifting fork to correct good storing-taking position during goods taking and storing
US9868621B2 (en) 2014-02-20 2018-01-16 Gray Manufacturing Company, Inc. Combustion-powered lift system
US9457999B2 (en) * 2014-09-25 2016-10-04 Magline, Inc. Collapsible pallet picking adapter
US9840350B2 (en) 2014-11-05 2017-12-12 Crown Equipment Corporation Pallet truck with integrated half-size pallet support
DE102016207523A1 (en) 2016-05-02 2017-11-02 Jungheinrich Aktiengesellschaft Industrial truck with a device for reducing transverse vibrations
DE102016207526A1 (en) 2016-05-02 2017-11-02 Jungheinrich Aktiengesellschaft Industrial truck with a device for reducing vibrations
DE102016208205A1 (en) * 2016-05-12 2017-11-16 Jungheinrich Aktiengesellschaft Industrial truck with a device for reducing vibrations
DE102016209893A1 (en) 2016-06-06 2017-12-07 Jungheinrich Aktiengesellschaft Industrial truck with a device for reducing vibrations
DE102016211390A1 (en) 2016-06-24 2017-12-28 Jungheinrich Aktiengesellschaft Industrial truck with means for suppressing or reducing vibrations
DE102016211603A1 (en) 2016-06-28 2017-12-28 Jungheinrich Aktiengesellschaft Support device with a device for reducing vibrations
US10435284B1 (en) * 2016-07-22 2019-10-08 Fozi Androus Load laser guidance system for forklift
JP6952873B2 (en) * 2017-08-15 2021-10-27 シーグリッド コーポレーション Load handling device that operates in the lateral direction
US11560678B2 (en) 2018-04-13 2023-01-24 Montserrat Llobet Forklift safety device and method
CN113195394B (en) * 2018-12-14 2022-07-15 卡斯卡特公司 Telescopic/weighing fork combination
CA3122702A1 (en) * 2018-12-14 2020-06-18 Cascade Corporation Telescoping/weighing fork combination

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023919A (en) * 1960-02-15 1962-03-06 Lloyd L Hobson Lift truck attachment
US3232380A (en) * 1963-11-22 1966-02-01 Elmer K Hansen Fork and carriage assembly for lift vehicles
US3477600A (en) * 1967-02-06 1969-11-11 Edward C Sawyer Hinged fork for fork-lift trucks
US3825139A (en) * 1973-06-11 1974-07-23 Koehring Co Means for locking forklift truck forks in stored position
US4395190A (en) * 1981-03-03 1983-06-26 Spyder Sales & Service, Inc. Power operated extensions for forks of a fork lift truck
US5230600A (en) * 1991-12-12 1993-07-27 Salvatore Marino Attachment for lift trucks
US5249911A (en) * 1991-03-15 1993-10-05 Tru-Hitch, Incorporated Truck towing boom
US5582502A (en) * 1994-07-06 1996-12-10 Herin; Larry L. Fork lift attachment for a vehicle
US6068086A (en) * 1997-05-02 2000-05-30 Southland Sod Farms Automated mechanism to fold and unfold lift truck forks and related process
US20050220588A1 (en) * 2003-11-17 2005-10-06 Kevin Turnbull Forklifts
US20070041820A1 (en) * 2005-08-01 2007-02-22 Simons Gerald S Fork cover having weighing capability
US20090159371A1 (en) * 2007-12-21 2009-06-25 Still Sas Industrial Truck With A Lifting Device And A Towing Device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167201A (en) * 1960-10-11 1965-01-26 Yale & Towne Inc Lift truck with laterally movable load support members that is mounted for vertical movement in guide means which serves as a counter-weight for the load
US3458069A (en) 1967-09-21 1969-07-29 Wickberg & Sturn Construction Conversion to forklift
US3485391A (en) 1968-03-04 1969-12-23 Raymond Johns Lift truck with extendable and retractable load supporting means
US3666052A (en) 1970-06-29 1972-05-30 Crown Controls Corp Lift truck safety control
US3941213A (en) * 1974-02-07 1976-03-02 Crown Controls Corporation Fork lift with limit switch controlled retractable guard
US4240526A (en) 1979-08-06 1980-12-23 Sanders Gloria L Safety device for forklifts and the like
US4402644A (en) 1981-03-03 1983-09-06 Spyder Sales & Service, Inc. Power operated fork extensions and pallet unloading attachment for a fork lift truck
US4422819A (en) 1981-04-21 1983-12-27 Guest Industries, Inc. Fold-away fork lift for loaders
US4497606A (en) 1982-07-19 1985-02-05 Hobson Lloyd L Fork lift truck attachment
US4498838A (en) 1983-04-04 1985-02-12 Towmotor Corporation Retention device for a load engaging member
US4598797A (en) * 1984-04-13 1986-07-08 Clark Equipment Company Travel/lift inhibit control
US4826474A (en) * 1987-12-14 1989-05-02 Butterworth Jetting Systems, Inc. Forklift apparatus for unloading articles from an elevated surface
US5011363A (en) 1989-12-05 1991-04-30 Crown Equipment Corporation Extend and retract control for fork lifts
DE69101355D1 (en) 1990-09-04 1994-04-14 Lift And Go Products Ab Angere Side loader with extendable load carrier relative to the lifting carriage.
US5174415A (en) 1991-12-16 1992-12-29 Teledyne Princeton, Inc. Walk behind fork lift truck
US5749696A (en) 1992-07-23 1998-05-12 Scott Westlake Height and tilt indicator for forklift truck
IT1259441B (en) * 1992-10-28 1996-03-18 Gd Spa TROLLEY FOR HANDLING OF PALLETS.
USRE39477E1 (en) 1992-12-04 2007-01-23 Jlg Omniquip, Inc. Forklift stabilizing apparatus
GB9317628D0 (en) 1993-08-25 1993-10-13 Wilson Frederick G Improved demountable forklift truck for vehicles
US5748097A (en) 1997-02-28 1998-05-05 Case Corporation Method and apparatus for storing the boom of a work vehicle
AT2602U1 (en) 1997-06-16 1999-01-25 Palfinger Crayler Staplertechn FORKLIFT
JPH11292499A (en) 1998-04-10 1999-10-26 Toyota Autom Loom Works Ltd Lift cylinder and mast device for forklift
DE10323641A1 (en) 2003-05-26 2005-01-05 Daimlerchrysler Ag Movable sensor device on the load means of a forklift
US20050186057A1 (en) 2004-02-19 2005-08-25 L&R Manufacturing, L.L.C. Vehicle sideloading elevator platform
GB2412902B (en) * 2004-04-07 2008-04-09 Linde Ag Industrial truck having increased static or quasi-static tipping stability
US7344000B2 (en) 2004-09-23 2008-03-18 Crown Equipment Corporation Electronically controlled valve for a materials handling vehicle
AU2005333108A1 (en) 2005-06-16 2006-12-21 S.M Metal Co. Ltd Automatic folding fork device for forklift trucks
JP4609390B2 (en) 2005-09-30 2011-01-12 株式会社豊田自動織機 Forklift travel control device
JP4793134B2 (en) 2005-09-30 2011-10-12 株式会社豊田自動織機 Forklift travel control device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023919A (en) * 1960-02-15 1962-03-06 Lloyd L Hobson Lift truck attachment
US3232380A (en) * 1963-11-22 1966-02-01 Elmer K Hansen Fork and carriage assembly for lift vehicles
US3477600A (en) * 1967-02-06 1969-11-11 Edward C Sawyer Hinged fork for fork-lift trucks
US3825139A (en) * 1973-06-11 1974-07-23 Koehring Co Means for locking forklift truck forks in stored position
US4395190A (en) * 1981-03-03 1983-06-26 Spyder Sales & Service, Inc. Power operated extensions for forks of a fork lift truck
US5249911A (en) * 1991-03-15 1993-10-05 Tru-Hitch, Incorporated Truck towing boom
US5230600A (en) * 1991-12-12 1993-07-27 Salvatore Marino Attachment for lift trucks
US5582502A (en) * 1994-07-06 1996-12-10 Herin; Larry L. Fork lift attachment for a vehicle
US6068086A (en) * 1997-05-02 2000-05-30 Southland Sod Farms Automated mechanism to fold and unfold lift truck forks and related process
US20050220588A1 (en) * 2003-11-17 2005-10-06 Kevin Turnbull Forklifts
US20070041820A1 (en) * 2005-08-01 2007-02-22 Simons Gerald S Fork cover having weighing capability
US20090159371A1 (en) * 2007-12-21 2009-06-25 Still Sas Industrial Truck With A Lifting Device And A Towing Device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130239405A1 (en) * 2012-03-16 2013-09-19 Trevor C. Griffith Track remover / assembler
US20150142278A1 (en) * 2013-11-19 2015-05-21 Nacco Materials Handling Group, Inc. Reverse Drive Handle For Lift Truck
US9561944B2 (en) * 2013-11-19 2017-02-07 Hyster-Yale Group, Inc. Reverse drive handle for lift truck
WO2018067127A1 (en) * 2016-10-04 2018-04-12 Ford Global Technologies, Llc Dolly with automated height adjustment
CN109843780A (en) * 2016-10-04 2019-06-04 福特汽车公司 Platform truck with automation height adjustment
CN108751043A (en) * 2018-05-09 2018-11-06 王历鑫 Loading machine lifting device and loading machine
SE544583C2 (en) * 2019-02-20 2022-07-26 Pmc Attachment Ab Electrically operated lifting unit for a working vehicle
WO2023187769A3 (en) * 2021-11-17 2023-11-16 Nhon Hoa Nguyen Fork assembly for forklifts

Also Published As

Publication number Publication date
US20110266094A1 (en) 2011-11-03
US7865286B1 (en) 2011-01-04
US20110270496A1 (en) 2011-11-03
WO2011139260A1 (en) 2011-11-10
US8078368B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
US7865286B1 (en) Lift truck safety system
EP2263965B9 (en) Method of Operating a Working Machine
US8974169B2 (en) Fork lift attachment tools and methods
US3259211A (en) Retractable overhead guard
US11214471B2 (en) Pallet truck with brake release and lower brake zone detection mechanism
EP2805911B1 (en) Industrial truck, in particular picking truck with a driver's cab that can be raised and lowered
EP2407414B1 (en) Lifting frame for an industrial truck
EP1913206B1 (en) Boom uplock arrangement
JP2010510923A (en) Partition device for an aircraft loader
CA2820695A1 (en) Pallet truck assembly
EP2694407B1 (en) Lifting device for a container
US20080135341A1 (en) Lifting Apparatus
CA2843472C (en) Remote activation of scissor lift cylinder prop
EP2514708B1 (en) Picking truck with a driver's cab that can be raised and lowered
CA2844850C (en) Narrow aisle load handler for a vehicle
KR102188659B1 (en) Apparatus for preventing from falldown for hand pallet truck
KR200322579Y1 (en) Crane Lift Truck
KR20080011736A (en) Forklift having member to prevent collision
JP4991132B2 (en) Work vehicle safety device
EP3638613A1 (en) A clamping device for a forklift and a forklift having such a clamping device
EP3957551B1 (en) Mobile platform transport system with extensible arm
EP1293472A2 (en) Industrial truck with a safety device
DE102004059699A1 (en) Truck with a height-adjustable load-carrying device
JP7049099B2 (en) The floor structure of the pit and the vehicle lift device used for this.
JPH0511745Y2 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION