US20110303410A1 - Systems and methods for producing oil and/or gas - Google Patents

Systems and methods for producing oil and/or gas Download PDF

Info

Publication number
US20110303410A1
US20110303410A1 US13/144,747 US201013144747A US2011303410A1 US 20110303410 A1 US20110303410 A1 US 20110303410A1 US 201013144747 A US201013144747 A US 201013144747A US 2011303410 A1 US2011303410 A1 US 2011303410A1
Authority
US
United States
Prior art keywords
formation
formulation
carbon disulfide
well
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/144,747
Inventor
Jemei Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Shell USA Inc
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to US13/144,747 priority Critical patent/US20110303410A1/en
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, JEMEI
Publication of US20110303410A1 publication Critical patent/US20110303410A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/592Compositions used in combination with generated heat, e.g. by steam injection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/594Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means

Definitions

  • the present disclosure relates to systems and methods for producing oil and/or gas.
  • EOR Enhanced Oil Recovery
  • thermal thermal
  • chemical/polymer chemical/polymer
  • gas injection gas injection
  • Thermal enhanced recovery works by adding heat to the reservoir.
  • the most widely practiced form is a steamdrive, which reduces oil viscosity so that it can flow to the producing wells.
  • Chemical flooding increases recovery by reducing the capillary forces that trap residual oil.
  • Polymer flooding improves the sweep efficiency of injected water.
  • Miscible injection works in a similar way to chemical flooding. By injecting a fluid that is miscible with the oil, trapped residual oil can be recovered.
  • System 100 includes underground formation 102 , underground formation 104 , underground formation 106 , and underground formation 108 .
  • Production facility 110 is provided at the surface.
  • Well 112 traverses formations 102 and 104 , and terminates in formation 106 .
  • the portion of formation 106 is shown at 114 .
  • Oil and gas are produced from formation 106 through well 112 , to production facility 110 .
  • Gas and liquid are separated from each other, gas is stored in gas storage 116 and liquid is stored in liquid storage 118 .
  • U.S. Pat. No. 4,026,583 discloses an oil well pipe incorporating a corrosion-resistant, metallic liner which is intimately metallurgically bonded to the pipe bore.
  • a non-metallic annular seal may be provided in an annular groove to seal off between the tapered interfitting surfaces between the liner box and pin sections; for example, the seal may consist of polytetrafluoroethylene material, as for example TEFLON or VITON, and may comprise an O-ring having a radial thickness of between 0.025 and 0.225 inches.
  • U.S. Pat. No. 4,026,583 is herein incorporated by reference in its entirety.
  • U.S. Patent Application Publication Number 2006/0048941 discloses an apparatus and method for controlling and/or minimizing the formation or accumulation of unwanted deposits on the inside of fluid flow paths by employing at various locations along the path an assembly of permanent magnets oriented such that the fluid flow is preferably from the North magnetic pole to the South magnetic pole.
  • Suitable materials for use as seals include but are not limited to fluorocarbon rubber (FKM)-type seals and O-rings, including KEL-F and FLUOREL (both available from 3M, St. Paul, Minn.), VITON and KALREZ (both available from E.I.
  • seals are fluorocarbon rubber-type seals, such as VITON.
  • the invention provides a system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a fluorinated polymer, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation.
  • the invention provides a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and installing a seal in the first well, the seal comprising a fluorinated polymer.
  • FIG. 1 illustrates an oil and/or gas production system.
  • FIG. 2 illustrates an oil and/or gas production system.
  • FIGS. 3 a - 3 c illustrate oil and/or gas production systems.
  • FIG. 4 illustrates an oil and/or gas production system.
  • FIGS. 5 a and 5 b illustrate an oil and/or gas production system with a concentric tubular arrangement.
  • FIG. 6 illustrates a threaded tubular connection
  • FIG. 2
  • System 200 includes underground formation 202 , underground formation 204 , underground formation 206 , and underground formation 208 .
  • Facility 210 may be provided at the surface.
  • Well 212 traverses formations 202 and 204 , and has multiple openings in formation 206 .
  • Portions 214 of formation 206 may be optionally fractured and/or perforated.
  • oil and gas from formation 206 may be produced into portions 214 , into well 212 , and travels up to facility 210 .
  • Facility 210 then separates gas, which may be sent to gas processing 216 , and liquid, which may be sent to liquid storage 218 .
  • Facility 210 also includes miscible enhanced oil recovery formulation storage 230 .
  • miscible enhanced oil recovery formulation may be pumped down well 212 that is shown by the down arrow and pumped into formation 206 .
  • Miscible enhanced oil recovery formulation and oil and/or gas may be then produced back up well 212 to facility 210 , as shown by up arrow.
  • Facility 210 may be adapted to separate and/or recycle miscible enhanced oil recovery formulation, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 212 .
  • miscible enhanced oil recovery formulation may be pumped into formation 206 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
  • the recovery of oil and/or gas with one or more wells (such as well 212 ) from underground formation 206 may be accomplished by any known method. Suitable methods include subsea production, surface production, primary, secondary, or tertiary production. The selection of the method used to recover the oil and/or gas from underground formation 206 is not critical.
  • FIGS. 3 a and 3 b are identical to FIGS. 3 a and 3 b:
  • System 200 includes underground formation 202 , underground formation 204 , underground formation 206 , and underground formation 208 .
  • Facility 210 may be provided at the surface.
  • Well 212 traverses formations 202 and 204 , and has openings in formation 206 .
  • Portions 214 of formation 206 may be optionally fractured and/or perforated.
  • oil and gas from formation 206 may be produced into portions 214 , into well 212 , and travels up to facility 210 .
  • Facility 210 then separates gas, which may be sent to gas processing 216 , and liquid, which may be sent to liquid storage 218 .
  • Facility 210 also includes miscible enhanced oil recovery formulation storage 230 .
  • miscible enhanced oil recovery formulation may be pumped down well 212 that is shown by the down arrow and pumped into formation 206 .
  • Miscible enhanced oil recovery formulation may be left to soak in formation for a period of time from about 1 hour to about 15 days, for example from about 5 to about 50 hours.
  • miscible enhanced oil recovery formulation and oil and/or gas may be then produced back up well 212 to facility 210 .
  • Facility 210 may be adapted to separate and/or recycle miscible enhanced oil recovery formulation, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 212 , for example by repeating the soaking cycle shown in FIGS. 3 a and 3 b from about 2 to about 5 times.
  • miscible enhanced oil recovery formulation may be pumped into formation 206 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
  • FIG. 3 c
  • System 300 includes underground formation 302 , formation 304 , formation 306 , and formation 308 .
  • Production facility 310 may be provided at the surface.
  • Well 312 traverses formation 302 and 304 has openings at formation 306 .
  • Portions of formation 314 may be optionally fractured and/or perforated.
  • oil and gas is produced from formation 306 it enters portions 314 , and travels up well 312 to production facility 310 .
  • Gas and liquid may be separated, and gas may be sent to gas storage 316 , and liquid may be sent to liquid storage 318 .
  • Production facility 310 may be able to produce and/or store miscible enhanced oil recovery formulation, which may be produced and stored in production/storage 330 .
  • Hydrogen sulfide and/or other sulfur containing compounds from well 312 may be sent to miscible enhanced oil recovery formulation production/storage 330 .
  • Miscible enhanced oil recovery formulation may be pumped down well 332 , to portions 334 of formation 306 .
  • Miscible enhanced oil recovery formulation traverses formation 306 to aid in the production of oil and gas, and then the miscible enhanced oil recovery formulation, oil and/or gas may all be produced to well 312 , to production facility 310 .
  • Miscible enhanced oil recovery formulation may then be recycled, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 332 .
  • a quantity of miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components may be injected into well 332 , followed by another component to force miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components across formation 306 , for example air; water in gas or liquid form; water mixed with one or more salts, polymers, and/or surfactants; carbon dioxide; other gases; other liquids; and/or mixtures thereof.
  • FIG. 4
  • System 700 includes underground formation 702 , formation 704 , formation 706 , and formation 708 ; and underground formation 802 , formation 804 , formation 806 , and formation 808 .
  • Production facility 710 is provided at the surface.
  • Well 712 traverses formation 702 and 704 has openings at formation 706 .
  • Portions of formation 714 may be optionally fractured and/or perforated.
  • As oil and gas is produced from formation 706 it enters portions 714 , and travels up well 712 to production facility 710 . Gas and liquid may be separated, and gas may be sent to gas storage 716 , and liquid may be sent to liquid storage 718 .
  • Production facility 710 is able to produce carbon disulfide and/or carbon oxysulfide formulation, which may be produced and stored in carbon disulfide formulation production 730 .
  • Hydrogen sulfide and/or other sulfur containing compounds from well 712 may be sent to carbon disulfide formulation production 730 .
  • Carbon disulfide formulation is transported to well 732 by pipe 734 and pumped down well 732 , to formation 806 .
  • Carbon disulfide formulation may be used in formation 806 to aid in the production of oil and gas from formation 806 .
  • distance d 740 is from about 1 to about 1000 kilometers, for example from about 5 to about 250 kilometers, or for example from about 10 to about 100 kilometers, or for example about 50 to 75 kilometers.
  • FIGS. 5 a & 5 b
  • Tubular 900 is illustrated traversing formations 802 and 804 , and ending in formation 806 .
  • Tubular 900 may be used as an observation well, a peripheral containment well, an injection well, and/or a production well.
  • Tubular 900 includes internal tubular 902 located within external tubular 904 .
  • Internal tubular 902 is made up of multiple sections, connected at joints 908 .
  • External tubular 904 is made up of multiple sections, connected at joints 910 .
  • Packer 906 may be provided between the exterior of tubular 902 and the interior of tubular 904 . Packer may seal off an upper annular space between the exterior of tubular 902 and the interior of tubular 904 from a lower annular space, for example a production or injection zone.
  • Packer 906 may have one or more sealing elements on its interior surface adjacent tubular 902 and/or one or more sealing elements on its exterior surface adjacent tubular 904 .
  • FIG. 6 is a diagrammatic representation of FIG. 6 :
  • tubular system 1000 with threaded tubular connection 1008 is illustrated.
  • Tubular 1030 having pin end 1012 is threadingly engaged with tubular 1020 having box end 1010 .
  • Pin end 1012 is the male connection which fits within box end 1010 which is the female connection.
  • seals 1014 and/or 1016 may be provided adjacent the threaded connections. Seals 1014 and/or 1016 may be o-rings or other seal configurations as are known in the art. Seals 1014 and/or 1016 may be fitted into grooves on tubulars 1020 and/or 1030 . Seals 1014 and/or 1016 may be used to provide a seal between an interior and exterior of tubulars 1020 and 1030 , for example to contain fluids within tubulars 1020 and 1030 and/or to keep fluids out of tubulars 1020 and 1030 .
  • Tubular system 1000 may be representative of one or more parts of well 212 , 312 , 332 , 712 , 732 , and/or tubular 900 , 902 , and/or 904 .
  • seals 1014 and/or 1016 and packer 906 may be made of fluorinated polymers such as PTFE (polytetrafluoroethylene), fluorinated ethylene-propylene copolymers, commercially available as TeflonTM from Du Pont; fluoroelastomers such as a copolymer of vinylidene fluoride and hexafluoropropylene, commercially available as VitonTM from Du Pont, for example Viton A; or perfluoroelastomers such as a copolymer of vinylidene fluoride and hexafluoropropylene, commercially available as KalrezTM from Du Pont, for example Kalrez AS-568 3018-1.
  • fluorinated polymers such as PTFE (polytetrafluoroethylene), fluorinated ethylene-propylene copolymers, commercially available as TeflonTM from Du Pont
  • fluoroelastomers such as a copolymer of vinylidene fluor
  • seals 1014 and/or 1016 and packer 906 may be made of fluorocarbon polymers, perfluorocarbon polymers, fluoroelastomers, or perfluoroelastomers.
  • seals 1014 and/or 1016 and packer 906 may be made of a fluorinated polymer, where at least about 25% of the hydrogens attached to a carbon have been replaced with a fluorine or chlorine, for example replacing at least about 50% of the hydrogens, at least about 75% of the hydrogens, or at least about 90% of the hydrogens.
  • oil and/or gas may be recovered from a formation into a well, and flow through the well and flowline to a facility.
  • enhanced oil recovery with the use of an agent for example steam, water, a surfactant, a polymer flood, and/or a miscible agent such as a carbon disulfide formulation, a carbon oxysulfide formulation, and/or carbon dioxide, may be used to increase the flow of oil and/or gas from the formation.
  • oil and/or gas recovered from a formation may include a sulfur compound.
  • the sulfur compound may include hydrogen sulfide, mercaptans, sulfides and disulfides other than hydrogen disulfide, or heterocyclic sulfur compounds for example thiophenes, benzothiophenes, or substituted and condensed ring dibenzothiophenes, or mixtures thereof.
  • a sulfur compound from the formation may be converted into a carbon disulfide formulation or a carbon oxysulfide formulation.
  • the conversion of at least a portion of the sulfur compound into a carbon disulfide formulation may be accomplished by any known method. Suitable methods may include oxidation reaction of the sulfur compound to sulfur and/or sulfur dioxides, and by reaction of sulfur and/or sulfur dioxide with carbon and/or a carbon containing compound to form the carbon disulfide formulation.
  • the selection of the method used to convert at least a portion of the sulfur compound into a carbon disulfide formulation is not critical.
  • a suitable miscible enhanced oil recovery agent may be a carbon disulfide formulation.
  • the carbon disulfide formulation may include carbon disulfide and/or carbon disulfide derivatives for example, thiocarbonates, xanthates and mixtures thereof; and optionally one or more of the following: hydrogen sulfide, sulfur, carbon dioxide, hydrocarbons, and mixtures thereof.
  • a suitable method of producing a carbon disulfide formulation is disclosed in copending U.S. patent application Ser. No. 11/409,436, filed on Apr. 19, 2006, having attorney docket number TH2616.
  • U.S. patent application Ser. No. 11/409,436 is herein incorporated by reference in its entirety.
  • suitable miscible enhanced oil recovery agents include carbon disulfide, carbon oxysulfide, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, or mixtures of two or more of the preceding, or other miscible enhanced oil recovery agents as are known in the art.
  • suitable miscible enhanced oil recovery agents are first contact miscible or multiple contact miscible with oil in the formation.
  • suitable immiscible enhanced oil recovery agents include water in gas or liquid form, air, mixtures of two or more of the preceding, or other immiscible enhanced oil recovery agents as are known in the art. In some embodiments, suitable immiscible enhanced oil recovery agents are not first contact miscible or multiple contact miscible with oil in the formation.
  • immiscible and/or miscible enhanced oil recovery agents injected into the formation may be recovered from the produced oil and/or gas and re-injected into the formation.
  • oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of at least about 100 centipoise, or at least about 500 centipoise, or at least about 1000 centipoise, or at least about 2000 centipoise, or at least about 5000 centipoise, or at least about 10,000 centipoise. In some embodiments, oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of up to about 5,000,000 centipoise, or up to about 2,000,000 centipoise, or up to about 1,000,000 centipoise, or up to about 500,000 centipoise.
  • Releasing at least a portion of the miscible enhanced oil recovery agent and/or other liquids and/or gases may be accomplished by any known method.
  • One suitable method is injecting the miscible enhanced oil recovery formulation into a single conduit in a single well, allowing carbon disulfide formulation to soak, and then pumping out at least a portion of the carbon disulfide formulation with gas and/or liquids.
  • Another suitable method is injecting the miscible enhanced oil recovery formulation into a first well, and pumping out at least a portion of the miscible enhanced oil recovery formulation with gas and/or liquids through a second well.
  • the selection of the method used to inject at least a portion of the miscible enhanced oil recovery formulation and/or other liquids and/or gases is not critical.
  • the miscible enhanced oil recovery formulation and/or other liquids and/or gases may be pumped into a formation at a pressure up to the fracture pressure of the formation.
  • the miscible enhanced oil recovery formulation may be mixed in with oil and/or gas in a formation to form a mixture which may be recovered from a well.
  • a quantity of the miscible enhanced oil recovery formulation may be injected into a well, followed by another component to force carbon the formulation across the formation.
  • air, water in liquid or vapor form, carbon dioxide, other gases, other liquids, and/or mixtures thereof may be used to force the miscible enhanced oil recovery formulation across the formation.
  • the miscible enhanced oil recovery formulation may be heated prior to being injected into the formation to lower the viscosity of fluids in the formation, for example heavy oils, paraffins, asphaltenes, etc.
  • the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heated fluid or a heater, to lower the viscosity of fluids in the formation.
  • heated water and/or steam may be used to heat and/or vaporize the miscible enhanced oil recovery formulation in the formation.
  • the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heater.
  • a heater is disclosed in copending U.S. patent application Ser. No. 10/693,816, filed on Oct. 24, 2003, and having attorney docket number TH2557.
  • U.S. patent application Ser. No. 10/693,816 is herein incorporated by reference in its entirety.
  • oil and/or gas produced may be transported to a refinery and/or a treatment facility.
  • the oil and/or gas may be processed to produced to produce commercial products such as transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers.
  • Processing may include distilling and/or fractionally distilling the oil and/or gas to produce one or more distillate fractions.
  • the oil and/or gas, and/or the one or more distillate fractions may be subjected to a process of one or more of the following: catalytic cracking, hydrocracking, hydrotreating, coking, thermal cracking, distilling, reforming, polymerization, isomerization, alkylation, blending, and dewaxing.
  • a system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a fluorinated polymer, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation.
  • the first well is at a distance of 10 meters to 1 kilometer from the second well.
  • the underground formation is beneath a body of water.
  • the system also includes a mechanism for injecting an immiscible enhanced oil recovery formulation into the formation, after the miscible enhanced oil recovery formulation has been released into the formation.
  • the system also includes a miscible enhanced oil recovery formulation selected from the group consisting of a carbon disulfide formulation, a carbon oxysulfide formulation, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, and mixtures thereof.
  • the miscible enhanced oil recovery formulation comprises a carbon disulfide formulation, a carbon oxysulfide formulation, or mixtures thereof.
  • the system also includes an immiscible enhanced oil recovery formulation selected from the group consisting of water in gas or liquid form, air, and mixtures thereof.
  • the system also includes a miscible enhanced oil recovery formulation comprising a carbon disulfide formulation.
  • the system also includes a mechanism for producing a carbon disulfide formulation.
  • the underground formation comprises an oil having a viscosity from 100 to 5,000,000 centipoise.
  • a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and installing a seal in the first well, the seal comprising a fluorinated polymer.
  • the method also includes recovering carbon disulfide formulation from the oil and/or gas, if present, and then injecting at least a portion of the recovered carbon disulfide formulation into the formation.
  • injecting the carbon disulfide formulation comprises injecting at least a portion of the carbon disulfide formulation into the formation in a mixture with one or more of hydrocarbons; sulfur compounds other than carbon disulfide; carbon dioxide; carbon monoxide; or mixtures thereof.
  • the method also includes heating the carbon disulfide formulation prior to injecting the carbon disulfide formulation into the formation, or while within the formation.
  • the carbon disulfide formulation is injected at a pressure from 0 to 37,000 kilopascals above the initial reservoir pressure, measured prior to when carbon disulfide injection begins.
  • the underground formation comprises a permeability from 0.0001 to 15 Darcies, for example a permeability from 0.001 to 1 Darcy.
  • any oil, as present in the underground formation prior to the injecting the carbon disulfide formulation has a sulfur content from 0.5% to 5%, for example from 1% to 3%.
  • the method also includes converting at least a portion of the recovered oil and/or gas into a material selected from the group consisting of transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers.
  • the fluorinated polymer is at least 40% fluorinated. In some embodiments, the fluorinated polymer is at least 80% fluorinated.
  • the fluorinated polymer is selected from the group consisting of polytetrafluoroethylene, fluorinated ethylene-propylene copolymers, fluoroelastomers, copolymers of vinylidene fluoride and hexafluoropropylene, or perfluoroelastomers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

A system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a fluorinated polymer, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation.

Description

    FIELD OF THE INVENTION
  • The present disclosure relates to systems and methods for producing oil and/or gas.
  • BACKGROUND OF THE INVENTION
  • Enhanced Oil Recovery (EOR) may be used to increase oil recovery in fields worldwide. There are three main types of EOR, thermal, chemical/polymer and gas injection, which may be used to increase oil recovery from a reservoir, beyond what can be achieved by conventional means—possibly extending the life of a field and boosting the oil recovery factor.
  • Thermal enhanced recovery works by adding heat to the reservoir. The most widely practiced form is a steamdrive, which reduces oil viscosity so that it can flow to the producing wells. Chemical flooding increases recovery by reducing the capillary forces that trap residual oil. Polymer flooding improves the sweep efficiency of injected water. Miscible injection works in a similar way to chemical flooding. By injecting a fluid that is miscible with the oil, trapped residual oil can be recovered.
  • Referring to FIG. 1, there is illustrated prior art system 100. System 100 includes underground formation 102, underground formation 104, underground formation 106, and underground formation 108. Production facility 110 is provided at the surface. Well 112 traverses formations 102 and 104, and terminates in formation 106. The portion of formation 106 is shown at 114. Oil and gas are produced from formation 106 through well 112, to production facility 110. Gas and liquid are separated from each other, gas is stored in gas storage 116 and liquid is stored in liquid storage 118.
  • U.S. Pat. No. 4,026,583 discloses an oil well pipe incorporating a corrosion-resistant, metallic liner which is intimately metallurgically bonded to the pipe bore. A non-metallic annular seal may be provided in an annular groove to seal off between the tapered interfitting surfaces between the liner box and pin sections; for example, the seal may consist of polytetrafluoroethylene material, as for example TEFLON or VITON, and may comprise an O-ring having a radial thickness of between 0.025 and 0.225 inches. U.S. Pat. No. 4,026,583 is herein incorporated by reference in its entirety.
  • U.S. Patent Application Publication Number 2006/0048941 discloses an apparatus and method for controlling and/or minimizing the formation or accumulation of unwanted deposits on the inside of fluid flow paths by employing at various locations along the path an assembly of permanent magnets oriented such that the fluid flow is preferably from the North magnetic pole to the South magnetic pole. Suitable materials for use as seals include but are not limited to fluorocarbon rubber (FKM)-type seals and O-rings, including KEL-F and FLUOREL (both available from 3M, St. Paul, Minn.), VITON and KALREZ (both available from E.I. DuPont de Nemours Co.); chlorosulfonated polyethylenes, such as HYPHALON (available from DuPont Dow Elastomers); PTFE (TEFLON) and filled PTFE such as FLUOROSINT (available from Quadrant DSM Engineering Plastic Products, Reading, Pa.); copolymers of butadiene and acrylonitrile, known as Buna-N (nitrile; NBR), such as HYVCAR (available from Goodrich Chemical Co.); and silicone or silicone rubber. Typically, seals are fluorocarbon rubber-type seals, such as VITON. U.S. Patent Application Publication Number 2006/0048941 is herein incorporated by reference in its entirety.
  • Co-pending U.S. Patent Application Publication Number 2006/0254769, published Nov. 16, 2006, and having attorney docket number TH2616, discloses a system including a mechanism for recovering oil and/or gas from an underground formation, the oil and/or gas comprising one or more sulfur compounds; a mechanism for converting at least a portion of the sulfur compounds from the recovered oil and/or gas into a carbon disulfide formulation; and a mechanism for releasing at least a portion of the carbon disulfide formulation into a formation. U.S. Patent Application Publication Number 2006/0254769 is herein incorporated by reference in its entirety.
  • There is a need in the art for improved systems and methods for enhanced oil recovery. There is a further need in the art for improved systems and methods for enhanced oil recovery using a solvent, for example through viscosity reduction, chemical effects, and miscible flooding. There is a further need in the art for improved systems and methods for solvent miscible flooding. There is a further need in the art for improved systems and methods for transporting a miscible solvent in a pipe during an enhanced oil recovery operation. There is a need in the art for improved seals to be used with a miscible solvent in a pipe during an enhanced oil recovery operation.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides a system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a fluorinated polymer, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation.
  • In another aspect, the invention provides a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and installing a seal in the first well, the seal comprising a fluorinated polymer.
  • Advantages of the invention include one or more of the following:
  • Improved systems and methods for enhanced recovery of hydrocarbons from a formation with a solvent.
  • Improved systems and methods for enhanced recovery of hydrocarbons from a formation with a fluid containing a miscible solvent.
  • Improved systems and methods for secondary recovery of hydrocarbons.
  • Improved systems and methods for enhanced oil recovery.
  • Improved systems and methods for enhanced oil recovery using a miscible solvent.
  • Improved systems and methods for enhanced oil recovery using a compound which may be miscible with oil in place.
  • Improved systems and methods for transporting and/or containing a compound in a pipe which may be miscible with oil in place.
  • Improved systems and methods for sealing a compound in a pipe which may be miscible with oil in place.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an oil and/or gas production system.
  • FIG. 2 illustrates an oil and/or gas production system.
  • FIGS. 3 a-3 c illustrate oil and/or gas production systems.
  • FIG. 4 illustrates an oil and/or gas production system.
  • FIGS. 5 a and 5 b illustrate an oil and/or gas production system with a concentric tubular arrangement.
  • FIG. 6 illustrates a threaded tubular connection.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2:
  • Referring now to FIG. 2, in some embodiments system 200 is illustrated. System 200 includes underground formation 202, underground formation 204, underground formation 206, and underground formation 208. Facility 210 may be provided at the surface. Well 212 traverses formations 202 and 204, and has multiple openings in formation 206. Portions 214 of formation 206 may be optionally fractured and/or perforated. During primary production, oil and gas from formation 206 may be produced into portions 214, into well 212, and travels up to facility 210. Facility 210 then separates gas, which may be sent to gas processing 216, and liquid, which may be sent to liquid storage 218. Facility 210 also includes miscible enhanced oil recovery formulation storage 230.
  • As shown in FIG. 2, miscible enhanced oil recovery formulation may be pumped down well 212 that is shown by the down arrow and pumped into formation 206. Miscible enhanced oil recovery formulation and oil and/or gas may be then produced back up well 212 to facility 210, as shown by up arrow. Facility 210 may be adapted to separate and/or recycle miscible enhanced oil recovery formulation, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 212.
  • In some embodiments, miscible enhanced oil recovery formulation may be pumped into formation 206 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
  • The recovery of oil and/or gas with one or more wells (such as well 212) from underground formation 206 may be accomplished by any known method. Suitable methods include subsea production, surface production, primary, secondary, or tertiary production. The selection of the method used to recover the oil and/or gas from underground formation 206 is not critical.
  • FIGS. 3 a and 3 b:
  • Referring now to FIGS. 3 a and 3 b, in some embodiments of the invention, system 200 is illustrated. System 200 includes underground formation 202, underground formation 204, underground formation 206, and underground formation 208. Facility 210 may be provided at the surface. Well 212 traverses formations 202 and 204, and has openings in formation 206. Portions 214 of formation 206 may be optionally fractured and/or perforated. During primary production, oil and gas from formation 206 may be produced into portions 214, into well 212, and travels up to facility 210. Facility 210 then separates gas, which may be sent to gas processing 216, and liquid, which may be sent to liquid storage 218. Facility 210 also includes miscible enhanced oil recovery formulation storage 230.
  • As shown in FIG. 3 a, miscible enhanced oil recovery formulation may be pumped down well 212 that is shown by the down arrow and pumped into formation 206. Miscible enhanced oil recovery formulation may be left to soak in formation for a period of time from about 1 hour to about 15 days, for example from about 5 to about 50 hours.
  • After the soaking period, as shown in FIG. 3 b, miscible enhanced oil recovery formulation and oil and/or gas may be then produced back up well 212 to facility 210. Facility 210 may be adapted to separate and/or recycle miscible enhanced oil recovery formulation, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 212, for example by repeating the soaking cycle shown in FIGS. 3 a and 3 b from about 2 to about 5 times.
  • In some embodiments, miscible enhanced oil recovery formulation may be pumped into formation 206 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
  • FIG. 3 c:
  • Referring now to FIG. 3 c, in some embodiments of the invention, system 300 is illustrated. System 300 includes underground formation 302, formation 304, formation 306, and formation 308. Production facility 310 may be provided at the surface. Well 312 traverses formation 302 and 304 has openings at formation 306.
  • Portions of formation 314 may be optionally fractured and/or perforated. As oil and gas is produced from formation 306 it enters portions 314, and travels up well 312 to production facility 310. Gas and liquid may be separated, and gas may be sent to gas storage 316, and liquid may be sent to liquid storage 318. Production facility 310 may be able to produce and/or store miscible enhanced oil recovery formulation, which may be produced and stored in production/storage 330. Hydrogen sulfide and/or other sulfur containing compounds from well 312 may be sent to miscible enhanced oil recovery formulation production/storage 330. Miscible enhanced oil recovery formulation may be pumped down well 332, to portions 334 of formation 306. Miscible enhanced oil recovery formulation traverses formation 306 to aid in the production of oil and gas, and then the miscible enhanced oil recovery formulation, oil and/or gas may all be produced to well 312, to production facility 310. Miscible enhanced oil recovery formulation may then be recycled, for example by boiling the formulation, condensing it or filtering or reacting it, then re-injecting the formulation into well 332.
  • In some embodiments, a quantity of miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components may be injected into well 332, followed by another component to force miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components across formation 306, for example air; water in gas or liquid form; water mixed with one or more salts, polymers, and/or surfactants; carbon dioxide; other gases; other liquids; and/or mixtures thereof.
  • FIG. 4:
  • Referring now to FIG. 4, in some embodiments of the invention, system 700 is illustrated. System 700 includes underground formation 702, formation 704, formation 706, and formation 708; and underground formation 802, formation 804, formation 806, and formation 808. Production facility 710 is provided at the surface. Well 712 traverses formation 702 and 704 has openings at formation 706. Portions of formation 714 may be optionally fractured and/or perforated. As oil and gas is produced from formation 706 it enters portions 714, and travels up well 712 to production facility 710. Gas and liquid may be separated, and gas may be sent to gas storage 716, and liquid may be sent to liquid storage 718. Production facility 710 is able to produce carbon disulfide and/or carbon oxysulfide formulation, which may be produced and stored in carbon disulfide formulation production 730. Hydrogen sulfide and/or other sulfur containing compounds from well 712 may be sent to carbon disulfide formulation production 730. Carbon disulfide formulation is transported to well 732 by pipe 734 and pumped down well 732, to formation 806. Carbon disulfide formulation may be used in formation 806 to aid in the production of oil and gas from formation 806.
  • Well 732 is separated from well 712 by a distance d 740. In some embodiments, distance d 740 is from about 1 to about 1000 kilometers, for example from about 5 to about 250 kilometers, or for example from about 10 to about 100 kilometers, or for example about 50 to 75 kilometers.
  • FIGS. 5 a & 5 b:
  • Referring now to FIG. 5 a, a tubular 900 is illustrated traversing formations 802 and 804, and ending in formation 806. Tubular 900 may be used as an observation well, a peripheral containment well, an injection well, and/or a production well.
  • Referring now to FIG. 5 b, tubular 900 is shown in more detail. Tubular 900 includes internal tubular 902 located within external tubular 904. Internal tubular 902 is made up of multiple sections, connected at joints 908. External tubular 904 is made up of multiple sections, connected at joints 910. Packer 906 may be provided between the exterior of tubular 902 and the interior of tubular 904. Packer may seal off an upper annular space between the exterior of tubular 902 and the interior of tubular 904 from a lower annular space, for example a production or injection zone.
  • Packer 906 may have one or more sealing elements on its interior surface adjacent tubular 902 and/or one or more sealing elements on its exterior surface adjacent tubular 904.
  • FIG. 6:
  • Referring now to FIG. 6, tubular system 1000 with threaded tubular connection 1008 is illustrated. Tubular 1030 having pin end 1012 is threadingly engaged with tubular 1020 having box end 1010. Pin end 1012 is the male connection which fits within box end 1010 which is the female connection.
  • One or more seals 1014 and/or 1016 may be provided adjacent the threaded connections. Seals 1014 and/or 1016 may be o-rings or other seal configurations as are known in the art. Seals 1014 and/or 1016 may be fitted into grooves on tubulars 1020 and/or 1030. Seals 1014 and/or 1016 may be used to provide a seal between an interior and exterior of tubulars 1020 and 1030, for example to contain fluids within tubulars 1020 and 1030 and/or to keep fluids out of tubulars 1020 and 1030. Tubular system 1000 may be representative of one or more parts of well 212, 312, 332, 712, 732, and/or tubular 900, 902, and/or 904.
  • Seal Materials:
  • In some embodiments, seals 1014 and/or 1016 and packer 906 may be made of fluorinated polymers such as PTFE (polytetrafluoroethylene), fluorinated ethylene-propylene copolymers, commercially available as Teflon™ from Du Pont; fluoroelastomers such as a copolymer of vinylidene fluoride and hexafluoropropylene, commercially available as Viton™ from Du Pont, for example Viton A; or perfluoroelastomers such as a copolymer of vinylidene fluoride and hexafluoropropylene, commercially available as Kalrez™ from Du Pont, for example Kalrez AS-568 3018-1.
  • In some embodiments, seals 1014 and/or 1016 and packer 906 may be made of fluorocarbon polymers, perfluorocarbon polymers, fluoroelastomers, or perfluoroelastomers.
  • In some embodiments, seals 1014 and/or 1016 and packer 906 may be made of a fluorinated polymer, where at least about 25% of the hydrogens attached to a carbon have been replaced with a fluorine or chlorine, for example replacing at least about 50% of the hydrogens, at least about 75% of the hydrogens, or at least about 90% of the hydrogens.
  • ALTERNATIVE EMBODIMENTS
  • In some embodiments, oil and/or gas may be recovered from a formation into a well, and flow through the well and flowline to a facility. In some embodiments, enhanced oil recovery, with the use of an agent for example steam, water, a surfactant, a polymer flood, and/or a miscible agent such as a carbon disulfide formulation, a carbon oxysulfide formulation, and/or carbon dioxide, may be used to increase the flow of oil and/or gas from the formation.
  • In some embodiments, oil and/or gas recovered from a formation may include a sulfur compound. The sulfur compound may include hydrogen sulfide, mercaptans, sulfides and disulfides other than hydrogen disulfide, or heterocyclic sulfur compounds for example thiophenes, benzothiophenes, or substituted and condensed ring dibenzothiophenes, or mixtures thereof.
  • In some embodiments, a sulfur compound from the formation may be converted into a carbon disulfide formulation or a carbon oxysulfide formulation. The conversion of at least a portion of the sulfur compound into a carbon disulfide formulation may be accomplished by any known method. Suitable methods may include oxidation reaction of the sulfur compound to sulfur and/or sulfur dioxides, and by reaction of sulfur and/or sulfur dioxide with carbon and/or a carbon containing compound to form the carbon disulfide formulation. The selection of the method used to convert at least a portion of the sulfur compound into a carbon disulfide formulation is not critical.
  • In some embodiments, a suitable miscible enhanced oil recovery agent may be a carbon disulfide formulation. The carbon disulfide formulation may include carbon disulfide and/or carbon disulfide derivatives for example, thiocarbonates, xanthates and mixtures thereof; and optionally one or more of the following: hydrogen sulfide, sulfur, carbon dioxide, hydrocarbons, and mixtures thereof.
  • In some embodiments, a suitable method of producing a carbon disulfide formulation is disclosed in copending U.S. patent application Ser. No. 11/409,436, filed on Apr. 19, 2006, having attorney docket number TH2616. U.S. patent application Ser. No. 11/409,436 is herein incorporated by reference in its entirety.
  • In some embodiments, suitable miscible enhanced oil recovery agents include carbon disulfide, carbon oxysulfide, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, or mixtures of two or more of the preceding, or other miscible enhanced oil recovery agents as are known in the art. In some embodiments, suitable miscible enhanced oil recovery agents are first contact miscible or multiple contact miscible with oil in the formation.
  • In some embodiments, suitable immiscible enhanced oil recovery agents include water in gas or liquid form, air, mixtures of two or more of the preceding, or other immiscible enhanced oil recovery agents as are known in the art. In some embodiments, suitable immiscible enhanced oil recovery agents are not first contact miscible or multiple contact miscible with oil in the formation.
  • In some embodiments, immiscible and/or miscible enhanced oil recovery agents injected into the formation may be recovered from the produced oil and/or gas and re-injected into the formation.
  • In some embodiments, oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of at least about 100 centipoise, or at least about 500 centipoise, or at least about 1000 centipoise, or at least about 2000 centipoise, or at least about 5000 centipoise, or at least about 10,000 centipoise. In some embodiments, oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of up to about 5,000,000 centipoise, or up to about 2,000,000 centipoise, or up to about 1,000,000 centipoise, or up to about 500,000 centipoise.
  • Releasing at least a portion of the miscible enhanced oil recovery agent and/or other liquids and/or gases may be accomplished by any known method. One suitable method is injecting the miscible enhanced oil recovery formulation into a single conduit in a single well, allowing carbon disulfide formulation to soak, and then pumping out at least a portion of the carbon disulfide formulation with gas and/or liquids. Another suitable method is injecting the miscible enhanced oil recovery formulation into a first well, and pumping out at least a portion of the miscible enhanced oil recovery formulation with gas and/or liquids through a second well. The selection of the method used to inject at least a portion of the miscible enhanced oil recovery formulation and/or other liquids and/or gases is not critical.
  • In some embodiments, the miscible enhanced oil recovery formulation and/or other liquids and/or gases may be pumped into a formation at a pressure up to the fracture pressure of the formation.
  • In some embodiments, the miscible enhanced oil recovery formulation may be mixed in with oil and/or gas in a formation to form a mixture which may be recovered from a well. In some embodiments, a quantity of the miscible enhanced oil recovery formulation may be injected into a well, followed by another component to force carbon the formulation across the formation. For example air, water in liquid or vapor form, carbon dioxide, other gases, other liquids, and/or mixtures thereof may be used to force the miscible enhanced oil recovery formulation across the formation.
  • In some embodiments, the miscible enhanced oil recovery formulation may be heated prior to being injected into the formation to lower the viscosity of fluids in the formation, for example heavy oils, paraffins, asphaltenes, etc.
  • In some embodiments, the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heated fluid or a heater, to lower the viscosity of fluids in the formation. In some embodiments, heated water and/or steam may be used to heat and/or vaporize the miscible enhanced oil recovery formulation in the formation.
  • In some embodiments, the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heater. One suitable heater is disclosed in copending U.S. patent application Ser. No. 10/693,816, filed on Oct. 24, 2003, and having attorney docket number TH2557. U.S. patent application Ser. No. 10/693,816 is herein incorporated by reference in its entirety.
  • In some embodiments, oil and/or gas produced may be transported to a refinery and/or a treatment facility. The oil and/or gas may be processed to produced to produce commercial products such as transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers. Processing may include distilling and/or fractionally distilling the oil and/or gas to produce one or more distillate fractions. In some embodiments, the oil and/or gas, and/or the one or more distillate fractions may be subjected to a process of one or more of the following: catalytic cracking, hydrocracking, hydrotreating, coking, thermal cracking, distilling, reforming, polymerization, isomerization, alkylation, blending, and dewaxing.
  • ILLUSTRATIVE EMBODIMENTS
  • In one embodiment of the invention, there is disclosed a system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a fluorinated polymer, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation. In some embodiments, the first well is at a distance of 10 meters to 1 kilometer from the second well. In some embodiments, the underground formation is beneath a body of water. In some embodiments, the system also includes a mechanism for injecting an immiscible enhanced oil recovery formulation into the formation, after the miscible enhanced oil recovery formulation has been released into the formation. In some embodiments, the system also includes a miscible enhanced oil recovery formulation selected from the group consisting of a carbon disulfide formulation, a carbon oxysulfide formulation, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, and mixtures thereof. In some embodiments, the miscible enhanced oil recovery formulation comprises a carbon disulfide formulation, a carbon oxysulfide formulation, or mixtures thereof. In some embodiments, the system also includes an immiscible enhanced oil recovery formulation selected from the group consisting of water in gas or liquid form, air, and mixtures thereof. In some embodiments, the system also includes a miscible enhanced oil recovery formulation comprising a carbon disulfide formulation. In some embodiments, the system also includes a mechanism for producing a carbon disulfide formulation. In some embodiments, the underground formation comprises an oil having a viscosity from 100 to 5,000,000 centipoise.
  • In one embodiment of the invention, there is disclosed a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and installing a seal in the first well, the seal comprising a fluorinated polymer. In some embodiments, the method also includes recovering carbon disulfide formulation from the oil and/or gas, if present, and then injecting at least a portion of the recovered carbon disulfide formulation into the formation. In some embodiments, injecting the carbon disulfide formulation comprises injecting at least a portion of the carbon disulfide formulation into the formation in a mixture with one or more of hydrocarbons; sulfur compounds other than carbon disulfide; carbon dioxide; carbon monoxide; or mixtures thereof. In some embodiments, the method also includes heating the carbon disulfide formulation prior to injecting the carbon disulfide formulation into the formation, or while within the formation. In some embodiments, the carbon disulfide formulation is injected at a pressure from 0 to 37,000 kilopascals above the initial reservoir pressure, measured prior to when carbon disulfide injection begins. In some embodiments, the underground formation comprises a permeability from 0.0001 to 15 Darcies, for example a permeability from 0.001 to 1 Darcy. In some embodiments, any oil, as present in the underground formation prior to the injecting the carbon disulfide formulation, has a sulfur content from 0.5% to 5%, for example from 1% to 3%. In some embodiments, the method also includes converting at least a portion of the recovered oil and/or gas into a material selected from the group consisting of transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers. In some embodiments, the fluorinated polymer is at least 40% fluorinated. In some embodiments, the fluorinated polymer is at least 80% fluorinated. In some embodiments, the fluorinated polymer is selected from the group consisting of polytetrafluoroethylene, fluorinated ethylene-propylene copolymers, fluoroelastomers, copolymers of vinylidene fluoride and hexafluoropropylene, or perfluoroelastomers.
  • Those of skill in the art will appreciate that many modifications and variations are possible in terms of the disclosed embodiments of the invention, configurations, materials and methods without departing from their spirit and scope. Accordingly, the scope of the claims appended hereafter and their functional equivalents should not be limited by particular embodiments described and illustrated herein, as these are merely exemplary in nature.

Claims (21)

1. A system for producing oil and/or gas from an underground formation comprising:
a first well above the formation;
a second well above the formation;
the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation;
the first well comprises a seal comprising a fluorinated polymer, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and
the second well comprises a mechanism to produce oil and/or gas from the formation.
2. The system of claim 1, wherein the first well is at a distance of 10 meters to 1 kilometer from the second well.
3. The system of claim 1, wherein the underground formation is beneath a body of water.
4. The system of claim 1, further comprising a mechanism for injecting an immiscible enhanced oil recovery formulation into the formation after the miscible enhanced oil recovery formulation has been released into the formation.
5. The system of claim 1, further comprising a miscible enhanced oil recovery formulation selected from the group consisting of a carbon disulfide formulation, a carbon oxysulfide formulation, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, and mixtures thereof.
6. The system of claim 5, wherein the miscible enhanced oil recovery formulation is selected from the group consisting of a carbon disulfide formulation, a carbon oxysulfide formulation, and mixtures thereof.
7. The system of claim 1, further comprising an immiscible enhanced oil recovery formulation selected from the group consisting of water in gas or liquid form, air, and mixtures thereof.
8. The system of claim 1, further comprising a miscible enhanced oil recovery formulation comprising a carbon disulfide formulation.
9. The system of claim 1, further comprising a mechanism for producing a carbon disulfide formulation.
10. The system of claim 1, wherein the underground formation comprises an oil having a viscosity from 100 to 5,000,000 centipoise.
11. A method for producing oil and/or gas comprising:
injecting a carbon disulfide formulation into a formation from a first well;
producing oil and/or gas from the formation from a second well; and
installing a seal in the first well, the seal comprising a fluorinated polymer.
12. The method of claim 11, further comprising recovering carbon disulfide formulation from the oil and/or gas and then injecting at least a portion of the recovered carbon disulfide formulation into the formation.
13. The method of claim 11, wherein injecting the carbon disulfide formulation comprises injecting at least a portion of the carbon disulfide formulation into the formation in a mixture with one or more of hydrocarbons; sulfur compounds other than carbon disulfide; carbon dioxide; carbon monoxide; or mixtures thereof.
14. The methods of claim 11, further comprising heating the carbon disulfide formulation prior to injecting the carbon disulfide formulation into the formation, or while within the formation.
15. The method of claim 11, wherein the carbon disulfide formulation is injected at a pressure from 0 to 37,000 kilopascals above the initial reservoir pressure, where the initial reservoir pressure is measured prior to when carbon disulfide injection begins.
16. The method of claim 11, wherein the underground formation comprises a permeability from 0.0001 to 15 Darcies.
17. The method of claim 11, wherein any oil, as present in the underground formation prior to the injecting the carbon disulfide formulation, has a sulfur content from 0.5% to 5%.
18. The method of claim 11, further comprising converting at least a portion of the recovered oil and/or gas into a transportation fuel.
19. The method of claim 11, wherein the fluorinated polymer is at least 40% fluorinated.
20. The method of claim 11, wherein the fluorinated polymer is at least 80% fluorinated.
21. The method of claim 11, wherein the fluorinated polymer is selected from the group consisting of polytetrafluoroethylene, fluorinated ethylene-propylene copolymers, fluoroelastomers, copolymers of vinylidene fluoride and hexafluoropropylene, and perfluoroelastomers.
US13/144,747 2009-01-16 2010-01-08 Systems and methods for producing oil and/or gas Abandoned US20110303410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/144,747 US20110303410A1 (en) 2009-01-16 2010-01-08 Systems and methods for producing oil and/or gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14518709P 2009-01-16 2009-01-16
US13/144,747 US20110303410A1 (en) 2009-01-16 2010-01-08 Systems and methods for producing oil and/or gas
PCT/US2010/020422 WO2010083096A2 (en) 2009-01-16 2010-01-08 Systems and methods for producing oil and/or gas

Publications (1)

Publication Number Publication Date
US20110303410A1 true US20110303410A1 (en) 2011-12-15

Family

ID=42340261

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/144,747 Abandoned US20110303410A1 (en) 2009-01-16 2010-01-08 Systems and methods for producing oil and/or gas

Country Status (5)

Country Link
US (1) US20110303410A1 (en)
CN (1) CN102325961A (en)
CA (1) CA2749330A1 (en)
RU (1) RU2011134248A (en)
WO (1) WO2010083096A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110139463A1 (en) * 2008-02-27 2011-06-16 Claudia Van Den Berg Systems and methods for producing oil and/or gas
US10711176B2 (en) * 2018-10-03 2020-07-14 David O. Trahan Method, process, apparatus and chemicals to produce and inject paraffin treating compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531236A (en) * 1969-02-17 1970-09-29 Texas Iron Works Methods and apparatus for completing oil and gas wells
US3822748A (en) * 1973-05-04 1974-07-09 Texaco Inc Petroleum recovery process
US3837399A (en) * 1973-05-04 1974-09-24 Texaco Inc Combined multiple solvent miscible flooding water injection technique for use in petroleum formations
US4332401A (en) * 1979-12-20 1982-06-01 General Electric Company Insulated casing assembly
US4986511A (en) * 1989-12-14 1991-01-22 Dresser Industries, Inc. Seal structure for elevated temperature service

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203857C2 (en) * 1982-02-03 1984-08-02 Mannesmann AG, 4000 Düsseldorf Oil field pipe connection and method of connecting oil field pipes
NL8500469A (en) * 1985-02-19 1986-09-16 Emex Techniek Bv THREADED LUBRICANT, METHOD FOR PREPARING IT AND USE OF SUCH LUBRICANT.
BR9404096A (en) * 1994-10-14 1996-12-24 Petroleo Brasileiro Sa Method and apparatus for intermittent oil production with mechanical interface
US20050109502A1 (en) * 2003-11-20 2005-05-26 Jeremy Buc Slay Downhole seal element formed from a nanocomposite material
DE102005036343A1 (en) * 2005-07-29 2007-02-01 Viega Gmbh & Co. Kg Connecting element for producing a fluid-tight screw connection and method for its production
US8136590B2 (en) * 2006-05-22 2012-03-20 Shell Oil Company Systems and methods for producing oil and/or gas
EP2049767A1 (en) * 2006-08-10 2009-04-22 Shell Internationale Research Maatschappij B.V. Methods for producing oil and/or gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531236A (en) * 1969-02-17 1970-09-29 Texas Iron Works Methods and apparatus for completing oil and gas wells
US3822748A (en) * 1973-05-04 1974-07-09 Texaco Inc Petroleum recovery process
US3837399A (en) * 1973-05-04 1974-09-24 Texaco Inc Combined multiple solvent miscible flooding water injection technique for use in petroleum formations
US4332401A (en) * 1979-12-20 1982-06-01 General Electric Company Insulated casing assembly
US4986511A (en) * 1989-12-14 1991-01-22 Dresser Industries, Inc. Seal structure for elevated temperature service

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110139463A1 (en) * 2008-02-27 2011-06-16 Claudia Van Den Berg Systems and methods for producing oil and/or gas
US8528645B2 (en) * 2008-02-27 2013-09-10 Shell Oil Company Systems and methods for producing oil and/or gas
US10711176B2 (en) * 2018-10-03 2020-07-14 David O. Trahan Method, process, apparatus and chemicals to produce and inject paraffin treating compounds

Also Published As

Publication number Publication date
CA2749330A1 (en) 2010-07-22
RU2011134248A (en) 2013-02-27
WO2010083096A2 (en) 2010-07-22
WO2010083096A3 (en) 2010-10-07
CN102325961A (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CA2693942C (en) Methods for producing oil and/or gas
CA2652401C (en) Systems and methods for producing oil and/or gas
US8596371B2 (en) Methods for producing oil and/or gas
US20110108269A1 (en) Systems and methods for producing oil and/or gas
US20100307759A1 (en) Systems and methods for producing oil and/or gas
US20110303410A1 (en) Systems and methods for producing oil and/or gas
US20110308798A1 (en) Systems and methods for producing oil and/or gas
US20110290484A1 (en) Systems and methods for producing oil and/or gas
AU2009271072B2 (en) Systems and methods for producing oil and/or gas
NISHINO Necessity of GPI Standard
Maitland Refining in the reservoir.
Ruschau Considerations For Polymers In Enhanced Oil Recovery Operations

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANG, JEMEI;REEL/FRAME:026770/0899

Effective date: 20110721

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION