US20110301432A1 - Apparatus for supporting and monitoring a person - Google Patents

Apparatus for supporting and monitoring a person Download PDF

Info

Publication number
US20110301432A1
US20110301432A1 US13/153,672 US201113153672A US2011301432A1 US 20110301432 A1 US20110301432 A1 US 20110301432A1 US 201113153672 A US201113153672 A US 201113153672A US 2011301432 A1 US2011301432 A1 US 2011301432A1
Authority
US
United States
Prior art keywords
person
sensors
control
characteristic
condition score
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/153,672
Inventor
Carl W. Riley
Dan R. Tallent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hill Rom Services Inc
Original Assignee
Hill Rom Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hill Rom Services Inc filed Critical Hill Rom Services Inc
Priority to US13/153,672 priority Critical patent/US20110301432A1/en
Assigned to HILL-ROM SERVICES, INC. reassignment HILL-ROM SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Tallent, Dan R., RILEY, CARL W.
Publication of US20110301432A1 publication Critical patent/US20110301432A1/en
Priority to US14/325,535 priority patent/US9552460B2/en
Priority to US14/493,475 priority patent/US20150032384A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1115Monitoring leaving of a patient support, e.g. a bed or a wheelchair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/002Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
    • A61G7/018Control or drive mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/05Parts, details or accessories of beds
    • A61G7/057Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Definitions

  • This disclosure relates to person support apparatuses. More particularly, but not exclusively, the present disclosure relates to person support apparatuses that incorporate or are used with vital signs monitoring devices and movement detection systems, and prediction of the onset of a condition.
  • Person support apparatuses can include beds, chairs, stretchers, seats, mattresses, therapy surfaces, furniture, and the like, or other apparatuses that support a person.
  • Hospital beds and stretchers, hospital mattresses, and wheelchairs are examples of such apparatuses that support persons.
  • Consumer beds, chairs, and furniture are also examples of such person support apparatuses, as are seats for vehicles, businesses, and venues.
  • Vital signs monitors monitor one or more physiological parameters of a person, such as body temperature, pulse rate, heart rate, blood pressure, and respiratory rate, as well as other body signs, such as end-tidal CO2, SpO2 (saturation of oxygen in arterial blood flow, sometimes referred to as pulse oximetry), and other indicators of the person's physiological state.
  • Movement and/or position detection systems monitor the movement of a person to determine if they are attempting to exit the support apparatus. Movement and/or position detection systems are sometimes included as part of a hospital bed.
  • a method may include receiving an input signal from an electronic medical record and configuring a person-support apparatus as a function of the input signal.
  • the input signal may include a fall risk assessment score or a pressure ulcer risk assessment score, for example.
  • a method may include sensing a characteristic of a person supported on a person-support apparatus, calculating a condition score as a function of the characteristic, and configuring a support system as a function of the condition score.
  • the support system may include a person-support apparatus or a person-support surface, for example.
  • a method may include sensing a characteristic of a person supported on a person-support apparatus, calculating a condition score as a function of the characteristic, and configuring a communication system as a function of the condition score.
  • the communication system may include a work-flow process program, for example.
  • a person-support apparatus may include a frame configured to support a person thereon, a sensor configured to sense a characteristic of a person supported on the frame, and a control configured to calculate a condition score as a function of the characteristic of the person.
  • the control may be operable to change a characteristic of the frame as a function of the condition score.
  • the person-support apparatus may further include a communication device configured to receive an input signal corresponding to information in an electronic medical record.
  • the control may calculate the condition score as a function of the characteristic of the person and the input signal.
  • the input signal may include a fall risk assessment score or a pressure ulcer risk assessment score, for example.
  • the frame of the person-support apparatus may include an upper frame portion with a deck movably coupled thereto.
  • the deck may have a head section. The control may cause the head section to rotate between a relatively horizontal position and an inclined position.
  • a person-support apparatus may include a frame configured to support a person thereon, a communication device configured to receive an input signal corresponding to information in an electronic medical record, and a control configured to calculate a condition score as a function of the input signal.
  • the control may be operable to change a characteristic of the frame as a function of the condition score.
  • a person-support surface may be configured to support a person thereon and may include a fluid chamber, a fluid supply configured to supply fluid to the fluid chamber, a communication device configured to receive an input signal corresponding to information in an electronic medical record, and a control configured to calculate a condition score as a function of the input signal.
  • the control may be operable to control the fluid supply as a function of the condition score.
  • a person-support surface may be configured to support a person thereon and may include a fluid chamber, a fluid supply configured to supply gas to the fluid chamber, a sensor configured to sense a characteristic of a person supported on the person-support surface, and a control configured to calculate a condition score as a function of the characteristic of the person.
  • the control may be operable to control the fluid supply as a function of the condition score.
  • the person-support surface may further include a communication device configured to receive an input signal corresponding to information in an electronic medical record.
  • the control may calculate the condition score as a function of the characteristic of the person and the input signal.
  • the input signal may include a fall risk assessment score or a pressure ulcer risk assessment score, as noted previously.
  • the fluid chamber may comprise a temperature and humidity topper.
  • the fluid chamber may include a gas bladder.
  • Some embodiments may include a control system for a person support system configured to receive input signals from at least one of a sensor and an electronic medical record (EMR), generate a condition score as a function of the input that can corresponding to the likelihood of an adverse condition occurring, and alert a caregiver when the condition score exceeds a predetermined threshold.
  • EMR electronic medical record
  • a method may include sensing a characteristic of a person supported on a person-support apparatus, calculating a condition score as a function of the characteristic, and configuring a support system and/or a communication system as a function of the condition score.
  • the support system may include the person-support apparatus, such as a bed frame, and/or a person-support surface.
  • the condition score may include a fall risk assessment score or a pressure ulcer risk assessment score.
  • the support system may further include a fluid supply and the configuring may comprise causing the fluid supply to initiate a therapy.
  • a system may include a person-support structure, a sensor configured to sense a characteristic of a person supported on the person-support structure, and a control configured to calculate a condition score as a function of the characteristic of the person.
  • the control may be operable to change a characteristic of the person-support structure as a function of the condition score.
  • the person-support structure may include a bed frame with a movement mechanism.
  • the control may control the movement mechanism as a function of the condition score to change a characteristic of the bed frame.
  • the frame may include an upper frame portion with a deck movably coupled thereto having a head section. The control may cause the head section to rotate between a relatively horizontal position and an inclined position.
  • the system may further have a fluid supply and the person-support structure may include a fluid chamber configured to receive fluid from the fluid supply.
  • the control may control the fluid supply as a function of the condition score. In some instances, the control may cause the fluid supply to initiate a therapy.
  • the fluid chamber may comprise, for example, at least one of a temperature and humidity topper, a mattress, and a gas bladder.
  • the system may further include a communication device configured to receive an input signal corresponding to information in an electronic medical record.
  • the control may calculate the condition score as a function of the characteristic of the person and the input signal.
  • the input signal may include a fall risk assessment score or a pressure ulcer risk assessment score.
  • the control may calculate the condition score as a function of the status of the person-support structure and the characteristic of the person.
  • the control may calculate the condition score as a function of the status of the person-support structure, an input signal corresponding to information in an electronic medical record, and the characteristic of the person.
  • FIG. 1 is a diagrammatic view of person monitoring system according to one or more principles of the present disclosure
  • FIG. 2 is a perspective side view of the person support apparatus of the person monitoring system of FIG. 1 according to one illustrative embodiment
  • FIG. 3 is a perspective side view of a person support surface that can be supported on the person support apparatus of FIG. 2 according to one illustrative embodiment
  • FIG. 4 is a perspective side view of the upper frame of the person support apparatus of FIG. 2 according to one illustrative embodiment
  • FIG. 5 is diagrammatic view of a control system of the person support apparatus of FIG. 2 according to one illustrative embodiment including a controller and a plurality of sensors;
  • FIG. 6 is a flow chart illustrating a procedure that can be executed by the controller of the control system of FIG. 5 according to one illustrative embodiment.
  • FIG. 7 is a diagrammatic view of a control system of the person support apparatus of FIG. 2 according to one illustrative embodiment including a controller and a plurality of sensors.
  • One illustrative embodiment includes a control system coupled to a person support system configured to receive input signals corresponding to at least one of bed status information, person position, electronic medical record information, and physiological information, generate a condition score corresponding to the likelihood of an adverse condition occurring, and alert a caregiver when the condition score exceeds a predetermined threshold.
  • the person monitor system 3010 includes a signaling and communication system 3012 in communication with a person support apparatus 3014 .
  • the person monitor system 3010 is configured to provide caregivers with information about a person supported on the person support apparatus 3014 through the signaling and communication system 3012 .
  • the signaling and communication system 3012 comprises a patient/nurse call system 3012 that, in some embodiments, includes patient stations capable of generating hospital calls and a remote master station which prioritizes and store the calls.
  • a patient/nurse call system 3012 that, in some embodiments, includes patient stations capable of generating hospital calls and a remote master station which prioritizes and store the calls.
  • the signaling and communication system 3012 includes a system 3012 for transmitting voice and data in packets over a network with any suitable number of intra-room networks that can couple a number of data devices to an audio station, where the audio station couples the respective intra-room network to a packet based network.
  • the signaling and communication system 3012 includes a patient/nurse call system, a nurse call/locating badge, an electronic medical record (EMR) database, and one or more computers programmed with work-flow process software.
  • EMR electronic medical record
  • One example of such a system is disclosed in U.S. Patent Publication No. 2008/0094207 published on Apr. 24, 2008 to Collins, Jr. et al., which is incorporated by reference herein in its entirety.
  • Another example of such a system is disclosed in U.S. Patent Publication No. 2007/0210917 published on Sep. 13, 2007 to Collins, Jr. et al., which is incorporated by reference herein in its entirety.
  • Yet another example of such a system is disclosed in U.S. Pat. No. 7,319,386 published on Jan.
  • the workflow process software can be the NaviCare® software available from Hill-Rom Company, Inc. It should also be appreciated that the workflow process software can be the system disclosed in U.S. Pat. No. 7,443,303 issued on Oct. 28, 2008 to Spear et al., which is incorporated by reference herein in its entirety. It should further be appreciated that the badge can be of the type available as part of the ComLinxTM system from Hill-Rom Company, Inc. It should also be appreciated that the badge can also be of the type available from Vocera Communications, Inc.
  • the remote signaling and communication system 3012 is configured to organize, store, maintain and facilitate retrieval of bed status information, along with the various non-bed calls placed in a hospital wing or ward, and remotely identify and monitor the status and location of the person support apparatus, patients, and caregivers.
  • a hospital wing or ward One example of such a system is disclosed in U.S. Pat. No. 7,242,308 issued on Jul. 10, 2007 to Ulrich et al., which is incorporated by reference herein in its entirety.
  • the remote status and location monitoring can be the system disclosed in U.S. Pat. No. 7,242,306 issued on Jul. 10, 2007 to Wildman et al., which is incorporated by reference herein in its entirety.
  • the remote status and location monitoring can be the system disclosed in U.S. Patent Publication No. 2007/0247316 published on Oct. 25, 2007 to Wildman et al., which is incorporated by reference herein in its entirety.
  • the person support apparatus 3014 according to one illustrative embodiment of the current disclosure is shown in FIG. 2 .
  • the person support apparatus 3014 includes a head section H 1 , where the head and a portion of the torso of a person are to be positioned, and a foot section F 1 , where the feet of a person are to be positioned.
  • the person support apparatus 3014 includes a lower frame 3016 or base 3016 , an upper frame 3018 , a plurality of supports 3020 , and a control system 3022 . It should be appreciated that the person support apparatus 3014 can include only one support 3016 .
  • the lower frame 3016 includes at least one lower frame section supported by casters 3024 .
  • the supports 3020 are lift mechanisms 3020 that define a vertical axis Z 1 which extends through the lower frame 3016 and the upper frame 3018 and are configured to move the upper frame 3018 with respect to the lower frame 3016 . It should be appreciated that the supports 3020 can be at least one fixed column (not shown), if desired. It should also be appreciated that, in some embodiments, the supports 3020 move the upper frame 3018 to a Trendelenburg/reverse Trendelenburg position and/or rotate the upper frame 3014 from side to side with respect to the lower frame 3012 .
  • the person support apparatus 3014 supports a person support surface 3026 on the upper frame 3018 as shown in FIGS. 2 and 3 .
  • the person support surface 3026 is configured to support a person (not shown) in multiple articulated positions.
  • the person support surface 3026 includes a back portion B 1 and a main portion M 1 .
  • the person support surface 3026 includes an outer cover or ticking C 1 that covers one or more support sections and/or layers having foam and/or fluid bladders 3028 .
  • the person support surface 3026 delivers therapy to the person, such as, for example, through sequential inflation/deflation of the fluid bladders 3028 , rapid changes in pressure of the fluid in the fluid bladders 3028 , passing fluid through the person support surface 3026 , and/or various other techniques.
  • one or more portions of the surface 3026 provide alternating pressure therapy, continuous lateral rotation therapy, low air loss therapy, boost assistance, percussion/vibration therapy, and/or other therapies.
  • the person support surface 3026 includes a coverlet (not shown) that overlies another person support surface 3026 and is configured to deliver therapy to a person supported thereon.
  • the person support surface 3026 receives fluid from a fluid supply FS connected to the person support surface 3026 by a connecting tube T 1 .
  • the fluid supply FS is a gas blower and is configured to vary at least one of a rate and a temperature of fluid supplied to the person support surface 3026 .
  • the upper frame 3018 defines a longitudinal axis X 1 that extends at least the length of the person support apparatus 3014 through the head end H 1 and the foot end F 1 along the lateral center of the upper frame 3018 , and a lateral axis Y 1 that is perpendicular to the longitudinal axis X 1 and extends at least the width of the person support apparatus 3014 through the longitudinal center of the upper frame 3018 as shown in FIGS. 2 and 4 .
  • the upper frame 3018 includes a deck 3030 , an intermediate frame 3032 , and an upper frame base 3034 that couples with the supports 3020 and supports the deck 3030 and the intermediate frame 3032 .
  • the upper frame 3018 includes a footboard FB, a head board HB, and/or siderails SR in some embodiments.
  • the deck 3030 is comprised of multiple sections, such as, a head deck section HD, a seat deck section SD, and a foot deck section FD, that are pivotably coupled to one another and/or the intermediate frame 3032 and articulate about the lateral axis Y 1 .
  • the control system 3022 is configured to control various functions of the person support apparatus 3014 and/or communicate with the signaling and communication system 3012 as shown in FIG. 5 . Additionally or alternatively, the control system 3022 can be configured to be controlled through the signaling and communication system 3012 , if desired. In some embodiments, the control system 3022 is configured to articulate the deck 3030 with respect to the intermediate frame 3032 . In some embodiments, the control system 3022 is configured to administer therapy to a person supported on the person support apparatus 3014 . According to some embodiments, the control system 3022 is configured to alert caregivers when a person is exiting the person support apparatus 3014 . According to other embodiments, the control system 3022 is configured to predict the onset of an adverse condition and alert a caregiver.
  • the control system 3022 includes a plurality of sensors 3036 , control modules 3038 , and a display 3040 as shown in FIG. 5 .
  • the sensors 3036 and/or the control modules 3038 are coupled to the upper frame 3018 in some embodiments. It should be appreciated that the sensors 3036 and/or the control modules 3038 can be coupled to the lower frame 3016 , supports 3020 , and/or incorporated within or coupled to the person support surface 3020 in other embodiments, if desired.
  • the sensors 3036 , control modules 3038 , and the display 3040 are directly connected to one another.
  • the sensors 3036 , control modules 3038 , and the display 3040 are operatively connected to one another through a network 3042 .
  • the network 3042 facilitates communication between the various modules 3038 , sensors 3036 , displays 3040 , and/or other equipment operatively connected to the network 3042 .
  • the network 3042 comprises a CAN network on a person support apparatus 3014 .
  • the network 3042 is part of the signaling and communication system 3012 .
  • the network 3042 comprises a Serial Peripheral Interface (SPI) network.
  • SPI Serial Peripheral Interface
  • the network 3042 can be other types of networks or communication protocols that can facilitate communication between two or more devices.
  • the module 3038 can be configured to connect to the network 3042 wirelessly, if desired.
  • control module 3038 negotiates with the network 3042 to be a network node.
  • control modules 3038 can be located at or on any node on the network 3042 and/or distributed across multiple nodes on the network 3042 .
  • the sensors 3036 are operatively connected to the control modules 3038 and include sensors that contact the person (contact sensors 3044 ) and/or sensors that do not contact the person (contact-less sensors 3046 ) as shown in FIG. 5 .
  • the contact sensors 3044 contact a person's tissue to measure the desired parameter.
  • the contact-less sensors 3046 are integrated into the person support surface 3026 . It should be appreciated that the contact-less sensors 3046 can be integrated into the portion of the ticking C 1 contacting the person, if desired.
  • the contact-less sensors 3046 are coupled to at least one of the upper frame 3018 , the supports 3020 , and/or the lower frame 3016 . It should be appreciated that the contact-less sensors 3046 can be coupled to the casters 3024 and/or engaged by the casters 3024 , if desired.
  • the sensors 3036 are configured to sense a variety of parameters, including, but not limited to, for example, a person's physiological information, a position of a person on the person support apparatus 3014 and/or person support surface 3026 , a pressure of the fluid inside the bladders 3028 in the person support surface 3026 , or other various parameters.
  • the contact sensors 3044 include blood pressure sensors 3048 that are configured to sense the person's blood pressure; oxygen saturation level (SpO2) sensors 3050 that are configured to sense the amount of hemoglobin binding sites in the person's bloodstream occupied by oxygen; temperature sensors 3052 that are configured to sense the person's body temperature; heart rate sensors 3054 that are configured to sense the rate at which a person's heart contracts; and respiration rate sensors 3056 that are configured to sense the person's breathing rate as shown in FIG. 5 .
  • the SpO2 sensors 3050 comprise a pulse oximeter device in some embodiments.
  • the contact sensors 3044 are configured to measure other physiological and biochemical parameters in other embodiments.
  • the contact-less sensors 3046 include one or more of the following: force sensors 3058 configured to sense the force profile and/or distribution of a person supported on a person support apparatus 3014 ; pressure sensors 3060 configured to measure the pressure in or among the bladders 3028 ; temperature sensors 3062 configured to sense the person's body temperature; heart rate sensors 3064 configured to sense the rate at which the person's heart contracts; respiration rate sensors 3066 configured to sense the person's breathing rate; and other sensors configured to sense information corresponding to the status of the person-support apparatus 3014 , such as, for example, the angle of the head deck section HD with respect to the longitudinal axis X 1 as shown in FIG. 5 .
  • the force sensors 3058 are load cells 3058 that couple the intermediate frame 3032 to the upper frame base 3034 proximate the corners of the upper frame 3018 and are configured to measure the weight of a person on the person support apparatus 3014 .
  • the force sensors 3058 comprise piezoelectric sensors and/or elongated sensor strips or arrays 3058 in some embodiments.
  • the pressure sensors 3060 are coupled between the bladders 3028 such that they allow communication between adjacent bladders 3028 .
  • pressure sensors 3060 are situated within the bladders 3028 and measure the pressure within the bladder 3028 .
  • the heart rate sensors 3064 and respiration rate sensors 3066 are integrated into the surface 3026 .
  • the heart rate sensors 3064 and respiration rate sensors 3066 are force sensors 3058 and/or pressure sensors 3060 . It will be appreciated that the sensors 3036 are configured to sense various other physiological characteristics.
  • the heart rate sensors 3064 and respiration rate sensors 3066 are pressure-strip sensors disposed on the fluid bladders 3028 along an axis parallel to the lateral axis Yl and/or along an axis parallel to the longitudinal axis X 1 .
  • the control modules 3038 can each be configured to perform different operations, if desired. According to this disclosure, a single control module 3038 can be configured to perform the multiple different operations if desired. Optionally, a single control module 3038 can be configured to perform operations independently or in conjunction with at least one other control module 3038 . In one contemplated embodiment, one control module 3038 , such as, a person position monitor module (not shown) (PPM), is configured to detect the position of a person on the person support apparatus 3014 . Alternatively or additionally, a second control module 3038 , such as a therapy control module (not shown), is configured to sense and/or modify the pressure within the fluid bladders 3028 .
  • PPM person position monitor module
  • a second control module 3038 such as a therapy control module (not shown) is configured to sense and/or modify the pressure within the fluid bladders 3028 .
  • a third control module 3038 such as a physiological parameter monitor (not shown), is configured to detect a person's physiological information.
  • a fourth control module 3038 such as a wake up detector (not shown), is configured to detect when a person is regaining consciousness.
  • a fifth control module 3038 such as, a person-support apparatus configuration module (not shown), configures the person-support apparatus 3014 as a function of an input signal. Additionally or alternatively, the person-support apparatus 3014 streams information to the control system 3022 , such as, the Navicare system, which configures the person-support apparatus 3014 based on the information.
  • the input signal includes information from the EMR, a user input through the interface, i.e., user interface, a physiological characteristic of a person supported on the person-support apparatus 3014 , or other information or combinations thereof.
  • control module 3038 automatically activates alarms, such as, a bed exit alarm, siderail-down alarm, head of bed angle, wheel brake not set, person-support apparatus 3014 not in lowest position, based on information from the EMR, such as, a fall risk assessment score.
  • the control module 3038 prompts the caregiver and asks them if they want to apply the fall risk protocol.
  • the control module 3038 automatically applies the protocol.
  • the control module 3038 configures the person-support apparatus 3014 based on a remote signal, such as, a signal from the EMR or a remote interface, without a caregiver present.
  • the fifth control module 3038 automatically activates therapies, such as, low-air loss therapy, percussion vibration, lateral rotation, microclimate management, heating/cooling, and/or other therapies, based on information from the EMR, such as, a pressure ulcer assessment score.
  • the control module 3038 changes the angle of at least one section of the deck 3030 based on a change in the respiration rate or heart rate of a person.
  • the control module 3038 changes the height of the upper frame 3018 with respect to the lower frame 3016 based on a fall risk protocol.
  • the control module 3014 configures the person-support apparatus 3014 based on the center of gravity of the person.
  • control module 3038 configures the person-support apparatus 3014 based on the person's physiology/morphology (a person having no legs might be more prone to triggering an out of position alarm versus a bed exit alarm). In another example, the control module 3038 configures the person-support apparatus 3014 based on the output from one of the other modules, such as, the person position monitor module, the therapy control module, the physiological parameter monitor, the wake up detector, or other modules. In another example, the control module 3038 configures the person-support apparatus 3014 based on an adverse condition prediction score (described below). In some embodiments, the communication system 3012 configures itself as a function of an input signals described above and can receive data from the person-support apparatus 3014 .
  • the control module 3038 inputs the person-support status information and/or the person's status information into the EMR (or confirm that the recommended action was taken). Alternatively or additionally, the caregiver must acknowledge that a task or function was completed through the interface, i.e., user interface, and the acknowledgement is also input into the EMR by the control module 3038 .
  • the communication system 3012 inputs the person-support status information and/or the person's status information into the EMR.
  • the control modules 3038 are implemented using software or hardware. In some embodiments, the control modules 3038 are implemented in software and are configured to perform one or more operations. In some embodiments, for example, the modules 3038 are configured to communicate via a memory mailbox where information from one module is sent to the memory address of a recipient module. In other embodiments, the software modules are configured to push information in a memory location, such as, a stack, that the control modules 3038 monitor or periodically check for information that the software modules subscribe to.
  • control module 3038 is implemented using hardware.
  • the control module 3038 includes a controller 3074 or processor 3074 and memory 3076 as shown in FIG. 5 .
  • the controller 3074 is provided as a single component or a collection of operatively coupled components; and can be comprised of digital circuitry, analog circuitry, or a hybrid combination of both of these types.
  • controller 3074 has one or more components remotely located relative to the others.
  • the controller 3074 can include multiple processing units arranged to operate independently, in a pipeline processing arrangement, in a parallel processing arrangement, and/or such different arrangement as would occur to those skilled in the art.
  • processor 3074 is a programmable microprocessing device of a solid-state, integrated circuit type that includes one or more processing units and memory.
  • the controller 3074 can include one or more signal conditioners, modulators, demodulators, Arithmetic Logic Units (ALUs), Central Processing Units (CPUs), limiters, oscillators, control clocks, amplifiers, signal conditioners, filters, format converters, communication ports, clamps, delay devices, memory devices, and/or different circuitry or functional components as would occur to those skilled in the art to perform the desired communications.
  • the controller 3074 includes a computer network interface to communicate among various system components and/or components not included in the depicted system, as desired.
  • the listed examples are not intended to be an exhaustive list of structures that are within the scope of controller 3074 , but are instead only a non-exhaustive list of such structures which can have substantial differences in the manner in which they are implemented and/or operate.
  • the controller 3074 is configured to receive input signals corresponding to signals from the sensors 3036 and/or output signals from other modules 3038 via the network 3042 .
  • the information is stored in the memory 3076 , which is operatively coupled to the controller 3074 as shown in FIG. 5 . It should be appreciated that the memory 3076 is integrated into the controller in some embodiments.
  • the controller 3074 is configured to execute operating logic 3078 that defines various control, management, and/or regulation functions.
  • This operating logic 3078 can be in the form of software, firmware, and/or dedicated hardware, such as, a series of programmed instructions, code, electronic files, or commands using general purpose or special purpose programming languages or programs that are executed on one or more general purpose or special purpose computers, processors, other control circuitry, or networks; a hardwired state machine; and/or a different form as would occur to those skilled in the art.
  • the controller 3074 includes operating logic 3078 in the form of procedure 3080 , for example, as shown in the flowchart of FIG. 6 .
  • Procedure 3080 includes operations/conditionals shown at blocks 3082 , 3084 , 3086 , and 3088 .
  • Procedure 3080 is used to generate a condition score corresponding to the condition of a person, which is compared to a threshold in order to predict the onset of an adverse condition.
  • the thresholds are established in accordance with hospital specific standard protocols and/or are generic thresholds that can be modified as desired.
  • the preset thresholds that are set by standard hospital specific protocols, which are automatically selected based on information present in a person's electronic medical record (EMR), in patient profiles, and/or based on the condition score generated by the procedure 3080 .
  • the thresholds are set by a caregiver through an interface (not shown) on the person-support apparatus 3014 by manually selecting the protocols or modifying the generic thresholds.
  • the thresholds are automatically modified based on information in the person's electronic medical record (EMR).
  • EMR electronic medical record
  • the thresholds can be person specific and can be incorporated into the person's EMR.
  • the thresholds can be incorporated into a patient profile that can be used for multiple people with similar characteristics.
  • the thresholds are modified by a caregiver through the signaling and communication system 3012 .
  • Illustrative procedure 3080 begins with operation 3082 where, in one illustrative embodiment, the sensors 3036 post electronic data signals corresponding to at least one of an event and an amount on the network 3042 .
  • the sensors 3036 post electronic data signals to a memory mailbox or register (not shown) where the modules 3038 are implemented in software.
  • sensors 3036 post data signals substantially continuously and, in other embodiments, sensors 3036 post data signals at predetermined intervals.
  • the data signals from sensors 3036 are representative of heart rate, respiration rate, temperature, blood pressure and/or SpO2 as indicated at block 3082 of FIG. 6 .
  • Data signals corresponding to features of the person support apparatus 3014 are also posted to the network such as, for example, signals from force sensors 3044 of a patient position and/or movement monitoring system of apparatus 3014 and are used in a similar manner as signals from sensors 3036 in procedure 3080 .
  • the controller 3074 examines each of the data signals posted by the sensors 3036 on the network 3042 and determines if the associated module 3038 subscribes to the data. If the module 3038 does not subscribe to the data, then the algorithm returns to block 3082 and awaits more incoming data.
  • the algorithm proceeds to the operation of block 3086 and the data is input into an algorithm that is used to predict an adverse event or condition.
  • the data signals can be used to select one or more standard hospital specific protocols, which, in some instances, have predetermined thresholds associated therewith.
  • the data signals can be input into an algorithm that is used to select the hospital specific protocols and/or to set the predetermined thresholds associated with the protocols.
  • the controller 3074 executes the algorithm to generate a condition score corresponding to the condition of the person and/or to generate a graphic representative of the condition of the person.
  • the algorithm receives inputs from the contact-less sensors 3046 corresponding to the heart rate, respiration rate, and temperature of a person, and inputs from the contact sensors 3044 corresponding to the blood pressure and SpO2 of a person. It should be understood that all of the inputs can be from the contact sensors 3044 in other embodiments.
  • the controller 3074 processes the data inputs in accordance with the algorithm to calculate the condition score and/or generate the graphic.
  • the algorithm combines the inputs into a data point, which is used to calculate a condition score constituting a one-dimensional visualization space based on the distance of the data point in a multi-dimensional measurement space, whose coordinates are defined by values of the inputs, from a normal point.
  • the algorithm maps the inputs from an n-dimensional measurement space to an m-dimensional visualization space using a dimensionality reduction mapping technique, and displays the m-dimensional visualization space on the display 3040 .
  • a dimensionality reduction mapping technique maps the inputs from an n-dimensional measurement space to an m-dimensional visualization space using a dimensionality reduction mapping technique, and displays the m-dimensional visualization space on the display 3040 .
  • Visensia® index One condition score in accordance with the teachings of U.S. Pat. No. 7,031,857 is know as a Visensia® index that can be produced by the Visensia® system sold by OBS Medical, for example.
  • the Visensia® index creates a score based on heart rate, respiration rate, blood pressure, temperature, and SpO2 data.
  • the Visensia® index is a condition score that is based on, or a function of, only a person's physiological data.
  • some or all of the physiological data used to calculate the Visensia® index is obtained by one or more sensors included as part of the person support apparatus 3014 . This distinguishes over the known prior art.
  • some of the physiological data needed to calculate a condition score such as the Visensia® index, is obtained by equipment and/or sensors that are not included as part of person support apparatus 3014 , such data is transmitted to controller 3074 in accordance with this disclosure for the purpose of calculating the condition score.
  • controller 3074 For example, data is transmitted to controller 3074 from a person's EMR in some instances as suggested diagrammatically in FIG. 5 .
  • person support apparatus 3014 is communicatively coupled to physiological monitoring equipment that is co-located with apparatus 3014 to obtain the needed data for calculating a condition score.
  • controller 3074 automatically initiates the queries to obtain the needed data from the EMR or co-located equipment and/or picks up the needed data from network transmissions.
  • controller 3074 automatically calculates the condition score without the need for any further actions on the part of caregivers or users.
  • the condition score comprises a modified early warning score (MEWS).
  • MEWS modified early warning score
  • the data needed to calculate the MEWS is obtained from sensors included as part of person support apparatus 3014 , obtained via manual user inputs, obtained from separate monitoring equipment that communicates with controller 3074 of apparatus 3014 , and/or obtained from the person's EMR.
  • the MEWS is a known score calculated based on the following table:
  • the various integers in the column headings are added together based on the various readings for the person of the data corresponding to the rows of the table.
  • a score of 5 or greater indicates a likelihood of death.
  • those pieces of information are obtained using sensors 3036 of person support apparatus 3014 and/or using the other manners of obtaining a person's physiological data as discussed above. It is contemplated by this disclosure that the AVPU portion of the MEWS is obtained using information from the person support apparatus 3014 as discussed below.
  • the AVPU portion of the MEWS indicates whether a person is alert (A), responsive to voice (V), responsive to pain (P), or unresponsive (U).
  • the person support apparatus 3014 in some embodiments comprises a hospital bed having a patient position monitoring system including sensors, such as load cells, piezoelectric sensors, and/or force sensitive resistors (FSR's) which sense a patient's position and/or movement.
  • the patient movement information is used by the controller to automatically assign an appropriate integer corresponding to the A portion or the U portion of the AVPU line of the MEWS depending upon the amount of movement of the patient.
  • the integer associated with the U portion of the AVPU line of the MEWS is assigned automatically by controller 3074 . If the patient has moved by a threshold amount within a particular time period, then the integer associated with the A portion of the AVPU line of the MEWS is assigned automatically by controller 3074 .
  • the controller 3074 initiates a voice query to the person in some embodiments. If the person answers the voice query orally or by engaging a designated user input, such as pressing a particular button mentioned in the voice query, then the controller 3074 automatically assigns an appropriate integer corresponding to the V portion of the MEWS.
  • the voice query is a pre-recorded message in some embodiments.
  • the voice query is initiated by controller 3074 if the person has been inactive for the threshold period of time. In other words, in some embodiments, the voice query is initiated only after the conditions for assigning the U portion of the MEWS has been satisfied. Thus, if the person responds properly to the voice query, the AVPU portion of the MEWS is assigned as V rather than U.
  • Apparatus 3014 therefore, has speakers or similar such sound-producing devices through which the voice query is played and, in some instances, a microphone that picks up the person's oral response.
  • Appropriate interactive voice recognition (IVR) software is provided in such embodiments.
  • apparatus 3014 is operated to inflict some amount of discomfort to the patient and then monitors the person's response, such as an oral response or movement.
  • apparatus 3014 includes an inflatable cuff or sleeve placed on a limb of the person and the controller 3074 controls inflation and deflation of the cuff or sleeve. If the patient movement information indicates sufficient patient movement by the patient in response to inflation of the cuff or sleeve, then the controller automatically assigns the appropriate integer corresponding to the P portion of the AVPU line of the MEWS.
  • a microphone is used to determine if the patient expresses an audible pain or discomfort sound at which point the integer associated with the P portion of the AVPU line of the MEWS is assigned.
  • the steps for determining whether to assign the P integer are performed only after the steps for determining whether to assign the U integer and/or the V integer in some embodiments. That is, operating the person apparatus 3014 so as to cause the patient some discomfort is only done as a last resort.
  • assigning the AVPU integer in the MEWS it will be appreciated that it is the lowest pertinent integer that is assigned.
  • an alert person would also be responsive to voice for example.
  • condition scores are just a couple of examples of condition scores according to this disclosure.
  • teachings of this disclosure are intended to be broadly applicable to all types of condition scores.
  • the controller 3074 compares the calculated condition score (referred to sometimes in FIG. 6 as an “index value” or simply an “index”) with the predetermined thresholds to determine at least one of the likelihood that an adverse condition will occur, an amount of time before an adverse condition will occur, and/or how close the condition score is to the threshold.
  • the calculated condition score (referred to sometimes in FIG. 6 as an “index value” or simply an “index”) with the predetermined thresholds to determine at least one of the likelihood that an adverse condition will occur, an amount of time before an adverse condition will occur, and/or how close the condition score is to the threshold.
  • a status update including the condition score is communicated to a caregiver through the signaling and communication system 3012 and/or is displayed on the display 3040 as indicated at block 3110 . That is, if the condition score exceeds the threshold, then, in some embodiments, at least one of the condition score and an alert signal are communicated to a caregiver. In other embodiments, the alert condition may correspond to the condition score being less than, rather than greater than, a particular threshold.
  • the term “greater than” is intended to cover one or both of a greater than situation and a greater than or equal to situation and the term “less than” is intended to cover one or both of a less than situation and a less than or equal to situation.
  • condition score and/or alert signal are communicated to a caregiver through the signaling and communication system 3012 .
  • condition score and/or alert signal are displayed on the display 3040 .
  • condition score and/or alert signal are communicated to the Visensia® Alert system sold by OBS Medical.
  • the condition score is communicated to and stored in the person's EMR.
  • the display 3040 is any suitable display such as a liquid crystal display, touch screen display, plasma screen, light emitting diode display, cathode ray tube display, or other conventional display.
  • the display 3040 is operable to display multiple parameters thereon along with the condition score in some embodiments.
  • the display 3040 displays physiological and/or biochemical information sensed by contact sensors 3044 along with the condition score.
  • the display 3040 it is within the scope of this disclosure for the display 3040 to display physiological and/or biochemical information on the display 3040 along with the condition score.
  • the display 3040 displays bed status information and/or graphics, for example, a head deck section HD angle or PPM armed indicator, on the display along with the condition score.
  • the display 3040 displays bed status information and/or graphics along with patient condition graphics, such as, pie charts.
  • Other information that is displayable on the display 3040 includes force profile information and/or graphics, person position information and/or graphics, weight, and other physiological information.
  • the sensors 3036 are operatively coupled to the control modules 3038 and are configured to sense various parameters, including, but not limited to, for example, a person's physiological information, a position of a person on the person support apparatus 3014 and/or person support surface 3026 , a pressure of the fluid inside the bladders 3028 in the person support surface 3026 , or other various parameters.
  • the sensors 3036 can be sensors configured to contact the tissue of a person and/or sensors configured to not contact the tissue of a person.
  • the sensors 3036 are force sensors 3044 coupled to the upper frame 3018 and are configured to measure force on the upper frame 3018 as shown in FIGS. 4 and 7 .
  • the sensors 3036 are force sensors 3044 that measure force on the upper frame 3018 and are positioned between the intermediate frame 3032 and the upper frame base 3034 so as to couple the intermediate frame 3032 and deck 3030 to the upper frame base 3034 .
  • the sensors 3036 are force sensors 3044 integrated into the person support surface 3026 and configured to measure changes in force on the person support surface 3026 as shown in FIG. 4 .
  • the force sensors 3044 are coupled to the supports 3020 and/or the lower frame 3016 .
  • Sensors 3044 integrated into the casters 3024 and/or engaged by the casters 3024 are also within the scope of this disclosure.
  • the force sensors 3044 are load cells that are coupled proximate the corners of the intermediate frame 3032 .
  • the sensors 3044 are piezoelectric sensors and/or elongated sensor strips or arrays 3038 . It will be appreciated that the force sensors 3044 comprising other force sensor types can be provided and positioned in other locations on the upper frame 3018 and/or within the person support surface 3026 .
  • the sensors 3036 are pressure sensors 3046 integrated into the person support surface 3026 and configured to measure the pressure in or among the fluid bladders 3028 in the person support surface 3026 as shown diagrammatically in FIG. 7 .
  • the pressure sensors 3046 are coupled between the bladders 3028 in some embodiments such that they can allow communication between adjacent bladders 3028 . It should be appreciated that the pressure sensors can be situated within the bladders 3028 and/or otherwise positioned to measure the pressure within the bladder 3028 .
  • Pressure sensors 3046 coupled to bladders 3028 via pneumatic tubes, hoses, or other types of conduits are contemplated by this disclosure as well.
  • the sensors 3036 are physiological sensors 3048 integrated into the person support surface 3026 and configured to measure various physiological parameters of a person supported on the person support surface 3026 as suggested in FIG. 7 .
  • the physiological sensors 3048 can be coupled to the upper frame 3018 , the supports 3020 , and/or the lower frame 3016 in lieu of being coupled to the mattress 3046 .
  • the force sensor 3044 and/or pressure sensor 3046 are configured to sense physiological parameters in some embodiments.
  • one or more of the physiological sensors 3048 are used to sense the heart rate and/or respiration rate of a person supported on the person support surface 3026 in some embodiments.
  • one or more of the physiological sensors 3048 are configured to sense the temperature of the person.
  • the physiological sensors 3048 are configured to sense the weight of the person on the person support surface 3026 .
  • the physiological sensors 3048 are pressure-strip sensors disposed on the fluid bladders 3028 along an axis parallel to the lateral axis Y 1 and/or along an axis parallel with the longitudinal axis X 1 .
  • one or more of the sensors 3036 produces an analog data signal and is connected directly to the controller 3074 .
  • one or more of the sensors 3036 produce a digital data signal, e.g., a serial digital data signal, and are connected to the network 3042 , e.g., SPI network, to communicate with the controller 3074 .
  • the data signals can be stored in the memory 3076 , which is operatively coupled with the controller 3074 .
  • the memory 3076 is integrated into the controller 3074 in some embodiments.
  • the controller 3074 executes operating logic that defines various control, management, and/or regulation functions.
  • This operating logic can be in the form of software, firmware, and/or dedicated hardware, such as, a series of programmed instructions, code, electronic files, or commands using general purpose or special purpose programming languages or programs that can be executed on one or more general purpose or special purpose computers, processors, other control circuitry, or networks; a hardwired state machine; and/or a different form as would occur to those skilled in the art.

Abstract

A system includes a person-support structure, a sensor configured to sense a characteristic of a person supported on the person-support structure, and a control configured to calculate a condition score as a function of the characteristic of the person. The control is operable to change a characteristic of the person-support structure as a function of the condition score.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Application No. 61/352,017 which was filed Jun. 7, 2010 and which is hereby incorporated by reference herein.
  • The present application relates to U.S. Application No. (unknown), filed concurrently herewith and titled “Apparatus for Supporting and Monitoring a Person” (attorney docket number 7175-216695).
  • BACKGROUND
  • This disclosure relates to person support apparatuses. More particularly, but not exclusively, the present disclosure relates to person support apparatuses that incorporate or are used with vital signs monitoring devices and movement detection systems, and prediction of the onset of a condition.
  • Person support apparatuses can include beds, chairs, stretchers, seats, mattresses, therapy surfaces, furniture, and the like, or other apparatuses that support a person. Hospital beds and stretchers, hospital mattresses, and wheelchairs are examples of such apparatuses that support persons. Consumer beds, chairs, and furniture are also examples of such person support apparatuses, as are seats for vehicles, businesses, and venues.
  • Vital signs monitors monitor one or more physiological parameters of a person, such as body temperature, pulse rate, heart rate, blood pressure, and respiratory rate, as well as other body signs, such as end-tidal CO2, SpO2 (saturation of oxygen in arterial blood flow, sometimes referred to as pulse oximetry), and other indicators of the person's physiological state. Movement and/or position detection systems monitor the movement of a person to determine if they are attempting to exit the support apparatus. Movement and/or position detection systems are sometimes included as part of a hospital bed.
  • While various systems have been developed, there is still a need for further contributions and improvements in these areas of technology, particularly with regard to predicting the onset of an adverse condition prior to the occurrence of the condition.
  • SUMMARY
  • The present disclosure includes one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter.
  • According to this disclosure, a method may include receiving an input signal from an electronic medical record and configuring a person-support apparatus as a function of the input signal. The input signal may include a fall risk assessment score or a pressure ulcer risk assessment score, for example.
  • Also according to this disclosure, a method may include sensing a characteristic of a person supported on a person-support apparatus, calculating a condition score as a function of the characteristic, and configuring a support system as a function of the condition score. The support system may include a person-support apparatus or a person-support surface, for example.
  • Further according to this disclosure, a method may include sensing a characteristic of a person supported on a person-support apparatus, calculating a condition score as a function of the characteristic, and configuring a communication system as a function of the condition score. The communication system may include a work-flow process program, for example.
  • According to this disclosure, a person-support apparatus may include a frame configured to support a person thereon, a sensor configured to sense a characteristic of a person supported on the frame, and a control configured to calculate a condition score as a function of the characteristic of the person. The control may be operable to change a characteristic of the frame as a function of the condition score.
  • The person-support apparatus may further include a communication device configured to receive an input signal corresponding to information in an electronic medical record. The control may calculate the condition score as a function of the characteristic of the person and the input signal. The input signal may include a fall risk assessment score or a pressure ulcer risk assessment score, for example. The frame of the person-support apparatus may include an upper frame portion with a deck movably coupled thereto. The deck may have a head section. The control may cause the head section to rotate between a relatively horizontal position and an inclined position.
  • It is contemplated by this disclosure that a person-support apparatus may include a frame configured to support a person thereon, a communication device configured to receive an input signal corresponding to information in an electronic medical record, and a control configured to calculate a condition score as a function of the input signal. The control may be operable to change a characteristic of the frame as a function of the condition score.
  • It is also contemplated by this disclosure that a person-support surface may be configured to support a person thereon and may include a fluid chamber, a fluid supply configured to supply fluid to the fluid chamber, a communication device configured to receive an input signal corresponding to information in an electronic medical record, and a control configured to calculate a condition score as a function of the input signal. The control may be operable to control the fluid supply as a function of the condition score.
  • Further according to this disclosure, a person-support surface may be configured to support a person thereon and may include a fluid chamber, a fluid supply configured to supply gas to the fluid chamber, a sensor configured to sense a characteristic of a person supported on the person-support surface, and a control configured to calculate a condition score as a function of the characteristic of the person. The control may be operable to control the fluid supply as a function of the condition score.
  • The person-support surface may further include a communication device configured to receive an input signal corresponding to information in an electronic medical record. The control may calculate the condition score as a function of the characteristic of the person and the input signal. The input signal may include a fall risk assessment score or a pressure ulcer risk assessment score, as noted previously. In some embodiments, the fluid chamber may comprise a temperature and humidity topper. Alternatively or additionally, the fluid chamber may include a gas bladder.
  • Some embodiments may include a control system for a person support system configured to receive input signals from at least one of a sensor and an electronic medical record (EMR), generate a condition score as a function of the input that can corresponding to the likelihood of an adverse condition occurring, and alert a caregiver when the condition score exceeds a predetermined threshold.
  • According to this disclosure, therefore, a method may include sensing a characteristic of a person supported on a person-support apparatus, calculating a condition score as a function of the characteristic, and configuring a support system and/or a communication system as a function of the condition score. The support system may include the person-support apparatus, such as a bed frame, and/or a person-support surface. The condition score may include a fall risk assessment score or a pressure ulcer risk assessment score. The support system may further include a fluid supply and the configuring may comprise causing the fluid supply to initiate a therapy.
  • Also according to this disclosure, a system may include a person-support structure, a sensor configured to sense a characteristic of a person supported on the person-support structure, and a control configured to calculate a condition score as a function of the characteristic of the person. The control may be operable to change a characteristic of the person-support structure as a function of the condition score.
  • The person-support structure may include a bed frame with a movement mechanism. The control may control the movement mechanism as a function of the condition score to change a characteristic of the bed frame. In some embodiments, the frame may include an upper frame portion with a deck movably coupled thereto having a head section. The control may cause the head section to rotate between a relatively horizontal position and an inclined position.
  • The system may further have a fluid supply and the person-support structure may include a fluid chamber configured to receive fluid from the fluid supply. The control may control the fluid supply as a function of the condition score. In some instances, the control may cause the fluid supply to initiate a therapy. It is contemplated by this disclosure that the fluid chamber may comprise, for example, at least one of a temperature and humidity topper, a mattress, and a gas bladder.
  • The system may further include a communication device configured to receive an input signal corresponding to information in an electronic medical record. The control may calculate the condition score as a function of the characteristic of the person and the input signal. The input signal may include a fall risk assessment score or a pressure ulcer risk assessment score. The control may calculate the condition score as a function of the status of the person-support structure and the characteristic of the person. In some embodiments, the control may calculate the condition score as a function of the status of the person-support structure, an input signal corresponding to information in an electronic medical record, and the characteristic of the person.
  • Additional features, which alone or in combination with any other feature(s), such as those listed above and/or those listed in the claims, can comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of various embodiments exemplifying the best mode of carrying out the embodiments as presently perceived.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the illustrative examples in the drawings, wherein like numerals represent the same or similar elements throughout:
  • FIG. 1 is a diagrammatic view of person monitoring system according to one or more principles of the present disclosure;
  • FIG. 2 is a perspective side view of the person support apparatus of the person monitoring system of FIG. 1 according to one illustrative embodiment;
  • FIG. 3 is a perspective side view of a person support surface that can be supported on the person support apparatus of FIG. 2 according to one illustrative embodiment;
  • FIG. 4 is a perspective side view of the upper frame of the person support apparatus of FIG. 2 according to one illustrative embodiment;
  • FIG. 5 is diagrammatic view of a control system of the person support apparatus of FIG. 2 according to one illustrative embodiment including a controller and a plurality of sensors;
  • FIG. 6 is a flow chart illustrating a procedure that can be executed by the controller of the control system of FIG. 5 according to one illustrative embodiment; and
  • FIG. 7 is a diagrammatic view of a control system of the person support apparatus of FIG. 2 according to one illustrative embodiment including a controller and a plurality of sensors.
  • DETAILED DESCRIPTION
  • While the present disclosure can take many different forms, for the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. No limitation of the scope of the disclosure is thereby intended. Various alterations, further modifications of the described embodiments, and any further applications of the principles of the disclosure, as described herein, are contemplated.
  • One illustrative embodiment includes a control system coupled to a person support system configured to receive input signals corresponding to at least one of bed status information, person position, electronic medical record information, and physiological information, generate a condition score corresponding to the likelihood of an adverse condition occurring, and alert a caregiver when the condition score exceeds a predetermined threshold.
  • A person monitor system 3010 according to one illustrative embodiment of the current disclosure is shown in FIG. 1. The person monitor system 3010 includes a signaling and communication system 3012 in communication with a person support apparatus 3014. The person monitor system 3010 is configured to provide caregivers with information about a person supported on the person support apparatus 3014 through the signaling and communication system 3012. In one illustrative embodiment, the signaling and communication system 3012 comprises a patient/nurse call system 3012 that, in some embodiments, includes patient stations capable of generating hospital calls and a remote master station which prioritizes and store the calls. One example of such a system is disclosed in U.S. Pat. No. 5,561,412 issued on Oct. 1, 1996 to Novak et al., which is incorporated by reference herein in its entirety. Another example of such a system is disclosed in U.S. Pat. No. 4,967,195 issued on May 8, 2006 to Shipley, which is incorporated by reference herein in its entirety.
  • In some embodiments, the signaling and communication system 3012 includes a system 3012 for transmitting voice and data in packets over a network with any suitable number of intra-room networks that can couple a number of data devices to an audio station, where the audio station couples the respective intra-room network to a packet based network. One example of such a system is disclosed in U.S. Pat. No. 7,315,535 issued on Jan. 1, 2008 to Schuman, which is incorporated by reference herein in its entirety. Another example of such a system is disclosed in U.S. Patent Publication No. 2008/0095156 issued on Apr. 24, 2008 to Schuman, which is incorporated by reference herein in its entirety.
  • According to some embodiments, the signaling and communication system 3012 includes a patient/nurse call system, a nurse call/locating badge, an electronic medical record (EMR) database, and one or more computers programmed with work-flow process software. One example of such a system is disclosed in U.S. Patent Publication No. 2008/0094207 published on Apr. 24, 2008 to Collins, Jr. et al., which is incorporated by reference herein in its entirety. Another example of such a system is disclosed in U.S. Patent Publication No. 2007/0210917 published on Sep. 13, 2007 to Collins, Jr. et al., which is incorporated by reference herein in its entirety. Yet another example of such a system is disclosed in U.S. Pat. No. 7,319,386 published on Jan. 15, 2008 to Collins, Jr. et al., which is incorporated by reference herein in its entirety. It should be appreciated that the workflow process software can be the NaviCare® software available from Hill-Rom Company, Inc. It should also be appreciated that the workflow process software can be the system disclosed in U.S. Pat. No. 7,443,303 issued on Oct. 28, 2008 to Spear et al., which is incorporated by reference herein in its entirety. It should further be appreciated that the badge can be of the type available as part of the ComLinx™ system from Hill-Rom Company, Inc. It should also be appreciated that the badge can also be of the type available from Vocera Communications, Inc.
  • According to some embodiments, the remote signaling and communication system 3012 is configured to organize, store, maintain and facilitate retrieval of bed status information, along with the various non-bed calls placed in a hospital wing or ward, and remotely identify and monitor the status and location of the person support apparatus, patients, and caregivers. One example of such a system is disclosed in U.S. Pat. No. 7,242,308 issued on Jul. 10, 2007 to Ulrich et al., which is incorporated by reference herein in its entirety. It should be appreciated that the remote status and location monitoring can be the system disclosed in U.S. Pat. No. 7,242,306 issued on Jul. 10, 2007 to Wildman et al., which is incorporated by reference herein in its entirety. It should also be appreciated that the remote status and location monitoring can be the system disclosed in U.S. Patent Publication No. 2007/0247316 published on Oct. 25, 2007 to Wildman et al., which is incorporated by reference herein in its entirety.
  • The person support apparatus 3014 according to one illustrative embodiment of the current disclosure is shown in FIG. 2. The person support apparatus 3014 includes a head section H1, where the head and a portion of the torso of a person are to be positioned, and a foot section F1, where the feet of a person are to be positioned. The person support apparatus 3014 includes a lower frame 3016 or base 3016, an upper frame 3018, a plurality of supports 3020, and a control system 3022. It should be appreciated that the person support apparatus 3014 can include only one support 3016. The lower frame 3016 includes at least one lower frame section supported by casters 3024. The supports 3020 are lift mechanisms 3020 that define a vertical axis Z1 which extends through the lower frame 3016 and the upper frame 3018 and are configured to move the upper frame 3018 with respect to the lower frame 3016. It should be appreciated that the supports 3020 can be at least one fixed column (not shown), if desired. It should also be appreciated that, in some embodiments, the supports 3020 move the upper frame 3018 to a Trendelenburg/reverse Trendelenburg position and/or rotate the upper frame 3014 from side to side with respect to the lower frame 3012.
  • The person support apparatus 3014 supports a person support surface 3026 on the upper frame 3018 as shown in FIGS. 2 and 3. The person support surface 3026 is configured to support a person (not shown) in multiple articulated positions. The person support surface 3026 includes a back portion B1 and a main portion M1. The person support surface 3026 includes an outer cover or ticking C1 that covers one or more support sections and/or layers having foam and/or fluid bladders 3028. In some embodiments, the person support surface 3026 delivers therapy to the person, such as, for example, through sequential inflation/deflation of the fluid bladders 3028, rapid changes in pressure of the fluid in the fluid bladders 3028, passing fluid through the person support surface 3026, and/or various other techniques. For example, in various embodiments, one or more portions of the surface 3026 provide alternating pressure therapy, continuous lateral rotation therapy, low air loss therapy, boost assistance, percussion/vibration therapy, and/or other therapies. It should also be appreciated that, in some embodiments, the person support surface 3026 includes a coverlet (not shown) that overlies another person support surface 3026 and is configured to deliver therapy to a person supported thereon. The person support surface 3026 receives fluid from a fluid supply FS connected to the person support surface 3026 by a connecting tube T1. In some embodiments, the fluid supply FS is a gas blower and is configured to vary at least one of a rate and a temperature of fluid supplied to the person support surface 3026.
  • The upper frame 3018 defines a longitudinal axis X1 that extends at least the length of the person support apparatus 3014 through the head end H1 and the foot end F1 along the lateral center of the upper frame 3018, and a lateral axis Y1 that is perpendicular to the longitudinal axis X1 and extends at least the width of the person support apparatus 3014 through the longitudinal center of the upper frame 3018 as shown in FIGS. 2 and 4. The upper frame 3018 includes a deck 3030, an intermediate frame 3032, and an upper frame base 3034 that couples with the supports 3020 and supports the deck 3030 and the intermediate frame 3032. It should be appreciated that the upper frame 3018 includes a footboard FB, a head board HB, and/or siderails SR in some embodiments. The deck 3030 is comprised of multiple sections, such as, a head deck section HD, a seat deck section SD, and a foot deck section FD, that are pivotably coupled to one another and/or the intermediate frame 3032 and articulate about the lateral axis Y1.
  • The control system 3022 is configured to control various functions of the person support apparatus 3014 and/or communicate with the signaling and communication system 3012 as shown in FIG. 5. Additionally or alternatively, the control system 3022 can be configured to be controlled through the signaling and communication system 3012, if desired. In some embodiments, the control system 3022 is configured to articulate the deck 3030 with respect to the intermediate frame 3032. In some embodiments, the control system 3022 is configured to administer therapy to a person supported on the person support apparatus 3014. According to some embodiments, the control system 3022 is configured to alert caregivers when a person is exiting the person support apparatus 3014. According to other embodiments, the control system 3022 is configured to predict the onset of an adverse condition and alert a caregiver.
  • The control system 3022 includes a plurality of sensors 3036, control modules 3038, and a display 3040 as shown in FIG. 5. The sensors 3036 and/or the control modules 3038 are coupled to the upper frame 3018 in some embodiments. It should be appreciated that the sensors 3036 and/or the control modules 3038 can be coupled to the lower frame 3016, supports 3020, and/or incorporated within or coupled to the person support surface 3020 in other embodiments, if desired. In one illustrative embodiment, the sensors 3036, control modules 3038, and the display 3040 are directly connected to one another. In another illustrative embodiment, the sensors 3036, control modules 3038, and the display 3040 are operatively connected to one another through a network 3042.
  • The network 3042 facilitates communication between the various modules 3038, sensors 3036, displays 3040, and/or other equipment operatively connected to the network 3042. In one illustrative embodiment, the network 3042 comprises a CAN network on a person support apparatus 3014. In another illustrative embodiment, the network 3042 is part of the signaling and communication system 3012. In some embodiments, the network 3042 comprises a Serial Peripheral Interface (SPI) network. It should be appreciated that the network 3042 can be other types of networks or communication protocols that can facilitate communication between two or more devices. It should also be appreciated that the module 3038 can be configured to connect to the network 3042 wirelessly, if desired. In one illustrative embodiment, the control module 3038 negotiates with the network 3042 to be a network node. According to some embodiments contemplated by this disclosure, the control modules 3038 can be located at or on any node on the network 3042 and/or distributed across multiple nodes on the network 3042.
  • In the illustrative example, the sensors 3036 are operatively connected to the control modules 3038 and include sensors that contact the person (contact sensors 3044) and/or sensors that do not contact the person (contact-less sensors 3046) as shown in FIG. 5. In one illustrative embodiment, the contact sensors 3044 contact a person's tissue to measure the desired parameter. In another illustrative embodiment, the contact-less sensors 3046 are integrated into the person support surface 3026. It should be appreciated that the contact-less sensors 3046 can be integrated into the portion of the ticking C1 contacting the person, if desired. In some embodiments, the contact-less sensors 3046 are coupled to at least one of the upper frame 3018, the supports 3020, and/or the lower frame 3016. It should be appreciated that the contact-less sensors 3046 can be coupled to the casters 3024 and/or engaged by the casters 3024, if desired.
  • The sensors 3036 are configured to sense a variety of parameters, including, but not limited to, for example, a person's physiological information, a position of a person on the person support apparatus 3014 and/or person support surface 3026, a pressure of the fluid inside the bladders 3028 in the person support surface 3026, or other various parameters. In one illustrative embodiment, the contact sensors 3044 include blood pressure sensors 3048 that are configured to sense the person's blood pressure; oxygen saturation level (SpO2) sensors 3050 that are configured to sense the amount of hemoglobin binding sites in the person's bloodstream occupied by oxygen; temperature sensors 3052 that are configured to sense the person's body temperature; heart rate sensors 3054 that are configured to sense the rate at which a person's heart contracts; and respiration rate sensors 3056 that are configured to sense the person's breathing rate as shown in FIG. 5. It should be appreciated that the SpO2 sensors 3050 comprise a pulse oximeter device in some embodiments. It should be appreciated that the contact sensors 3044 are configured to measure other physiological and biochemical parameters in other embodiments.
  • In some embodiments, the contact-less sensors 3046 include one or more of the following: force sensors 3058 configured to sense the force profile and/or distribution of a person supported on a person support apparatus 3014; pressure sensors 3060 configured to measure the pressure in or among the bladders 3028; temperature sensors 3062 configured to sense the person's body temperature; heart rate sensors 3064 configured to sense the rate at which the person's heart contracts; respiration rate sensors 3066 configured to sense the person's breathing rate; and other sensors configured to sense information corresponding to the status of the person-support apparatus 3014, such as, for example, the angle of the head deck section HD with respect to the longitudinal axis X1 as shown in FIG. 5.
  • In some embodiments, the force sensors 3058 are load cells 3058 that couple the intermediate frame 3032 to the upper frame base 3034 proximate the corners of the upper frame 3018 and are configured to measure the weight of a person on the person support apparatus 3014. Alternatively or additionally, the force sensors 3058 comprise piezoelectric sensors and/or elongated sensor strips or arrays 3058 in some embodiments. In some embodiments, the pressure sensors 3060 are coupled between the bladders 3028 such that they allow communication between adjacent bladders 3028. In some embodiments, pressure sensors 3060 are situated within the bladders 3028 and measure the pressure within the bladder 3028.
  • In some embodiments, the heart rate sensors 3064 and respiration rate sensors 3066 are integrated into the surface 3026. In some embodiments contemplated herein, the heart rate sensors 3064 and respiration rate sensors 3066 are force sensors 3058 and/or pressure sensors 3060. It will be appreciated that the sensors 3036 are configured to sense various other physiological characteristics. In some embodiments, the heart rate sensors 3064 and respiration rate sensors 3066 are pressure-strip sensors disposed on the fluid bladders 3028 along an axis parallel to the lateral axis Yl and/or along an axis parallel to the longitudinal axis X1.
  • The control modules 3038 can each be configured to perform different operations, if desired. According to this disclosure, a single control module 3038 can be configured to perform the multiple different operations if desired. Optionally, a single control module 3038 can be configured to perform operations independently or in conjunction with at least one other control module 3038. In one contemplated embodiment, one control module 3038, such as, a person position monitor module (not shown) (PPM), is configured to detect the position of a person on the person support apparatus 3014. Alternatively or additionally, a second control module 3038, such as a therapy control module (not shown), is configured to sense and/or modify the pressure within the fluid bladders 3028. Optionally, a third control module 3038, such as a physiological parameter monitor (not shown), is configured to detect a person's physiological information. In some embodiments, a fourth control module 3038, such as a wake up detector (not shown), is configured to detect when a person is regaining consciousness.
  • In some contemplated embodiments, a fifth control module 3038, such as, a person-support apparatus configuration module (not shown), configures the person-support apparatus 3014 as a function of an input signal. Additionally or alternatively, the person-support apparatus 3014 streams information to the control system 3022, such as, the Navicare system, which configures the person-support apparatus 3014 based on the information. The input signal includes information from the EMR, a user input through the interface, i.e., user interface, a physiological characteristic of a person supported on the person-support apparatus 3014, or other information or combinations thereof. In one example, the control module 3038 automatically activates alarms, such as, a bed exit alarm, siderail-down alarm, head of bed angle, wheel brake not set, person-support apparatus 3014 not in lowest position, based on information from the EMR, such as, a fall risk assessment score. In some embodiments, the control module 3038 prompts the caregiver and asks them if they want to apply the fall risk protocol. Also, in some embodiments, the control module 3038 automatically applies the protocol. Further, in some embodiments, the control module 3038 configures the person-support apparatus 3014 based on a remote signal, such as, a signal from the EMR or a remote interface, without a caregiver present.
  • In another example, the fifth control module 3038 automatically activates therapies, such as, low-air loss therapy, percussion vibration, lateral rotation, microclimate management, heating/cooling, and/or other therapies, based on information from the EMR, such as, a pressure ulcer assessment score. In another example, the control module 3038 changes the angle of at least one section of the deck 3030 based on a change in the respiration rate or heart rate of a person. In another example, the control module 3038 changes the height of the upper frame 3018 with respect to the lower frame 3016 based on a fall risk protocol. In another example, the control module 3014 configures the person-support apparatus 3014 based on the center of gravity of the person. In another example, the control module 3038 configures the person-support apparatus 3014 based on the person's physiology/morphology (a person having no legs might be more prone to triggering an out of position alarm versus a bed exit alarm). In another example, the control module 3038 configures the person-support apparatus 3014 based on the output from one of the other modules, such as, the person position monitor module, the therapy control module, the physiological parameter monitor, the wake up detector, or other modules. In another example, the control module 3038 configures the person-support apparatus 3014 based on an adverse condition prediction score (described below). In some embodiments, the communication system 3012 configures itself as a function of an input signals described above and can receive data from the person-support apparatus 3014.
  • Once the fifth control module 3038 has configured the person-support apparatus 3014, the control module 3038 inputs the person-support status information and/or the person's status information into the EMR (or confirm that the recommended action was taken). Alternatively or additionally, the caregiver must acknowledge that a task or function was completed through the interface, i.e., user interface, and the acknowledgement is also input into the EMR by the control module 3038. In some embodiments, the communication system 3012 inputs the person-support status information and/or the person's status information into the EMR.
  • The control modules 3038 are implemented using software or hardware. In some embodiments, the control modules 3038 are implemented in software and are configured to perform one or more operations. In some embodiments, for example, the modules 3038 are configured to communicate via a memory mailbox where information from one module is sent to the memory address of a recipient module. In other embodiments, the software modules are configured to push information in a memory location, such as, a stack, that the control modules 3038 monitor or periodically check for information that the software modules subscribe to.
  • In contemplated embodiments, the control module 3038 is implemented using hardware. The control module 3038 includes a controller 3074 or processor 3074 and memory 3076 as shown in FIG. 5. The controller 3074 is provided as a single component or a collection of operatively coupled components; and can be comprised of digital circuitry, analog circuitry, or a hybrid combination of both of these types. When of a multi-component form, controller 3074 has one or more components remotely located relative to the others. The controller 3074 can include multiple processing units arranged to operate independently, in a pipeline processing arrangement, in a parallel processing arrangement, and/or such different arrangement as would occur to those skilled in the art.
  • In some embodiments, processor 3074 is a programmable microprocessing device of a solid-state, integrated circuit type that includes one or more processing units and memory. The controller 3074 can include one or more signal conditioners, modulators, demodulators, Arithmetic Logic Units (ALUs), Central Processing Units (CPUs), limiters, oscillators, control clocks, amplifiers, signal conditioners, filters, format converters, communication ports, clamps, delay devices, memory devices, and/or different circuitry or functional components as would occur to those skilled in the art to perform the desired communications. In some embodiments, the controller 3074 includes a computer network interface to communicate among various system components and/or components not included in the depicted system, as desired. The listed examples are not intended to be an exhaustive list of structures that are within the scope of controller 3074, but are instead only a non-exhaustive list of such structures which can have substantial differences in the manner in which they are implemented and/or operate.
  • The controller 3074 is configured to receive input signals corresponding to signals from the sensors 3036 and/or output signals from other modules 3038 via the network 3042. The information is stored in the memory 3076, which is operatively coupled to the controller 3074 as shown in FIG. 5. It should be appreciated that the memory 3076 is integrated into the controller in some embodiments. The controller 3074 is configured to execute operating logic 3078 that defines various control, management, and/or regulation functions. This operating logic 3078 can be in the form of software, firmware, and/or dedicated hardware, such as, a series of programmed instructions, code, electronic files, or commands using general purpose or special purpose programming languages or programs that are executed on one or more general purpose or special purpose computers, processors, other control circuitry, or networks; a hardwired state machine; and/or a different form as would occur to those skilled in the art.
  • In the illustrative embodiment, the controller 3074 includes operating logic 3078 in the form of procedure 3080, for example, as shown in the flowchart of FIG. 6. Procedure 3080 includes operations/conditionals shown at blocks 3082, 3084, 3086, and 3088. Procedure 3080 is used to generate a condition score corresponding to the condition of a person, which is compared to a threshold in order to predict the onset of an adverse condition.
  • The thresholds are established in accordance with hospital specific standard protocols and/or are generic thresholds that can be modified as desired. In some embodiments, the preset thresholds that are set by standard hospital specific protocols, which are automatically selected based on information present in a person's electronic medical record (EMR), in patient profiles, and/or based on the condition score generated by the procedure 3080. Alternatively or additionally, the thresholds are set by a caregiver through an interface (not shown) on the person-support apparatus 3014 by manually selecting the protocols or modifying the generic thresholds. In some contemplated embodiments, the thresholds are automatically modified based on information in the person's electronic medical record (EMR). It should be appreciated that the thresholds can be person specific and can be incorporated into the person's EMR. It should also be appreciated that the thresholds can be incorporated into a patient profile that can be used for multiple people with similar characteristics. In some embodiments, the thresholds are modified by a caregiver through the signaling and communication system 3012.
  • Illustrative procedure 3080 begins with operation 3082 where, in one illustrative embodiment, the sensors 3036 post electronic data signals corresponding to at least one of an event and an amount on the network 3042. In some embodiments, the sensors 3036 post electronic data signals to a memory mailbox or register (not shown) where the modules 3038 are implemented in software. In some embodiments, sensors 3036 post data signals substantially continuously and, in other embodiments, sensors 3036 post data signals at predetermined intervals. The data signals from sensors 3036 are representative of heart rate, respiration rate, temperature, blood pressure and/or SpO2 as indicated at block 3082 of FIG. 6. Data signals corresponding to features of the person support apparatus 3014 are also posted to the network such as, for example, signals from force sensors 3044 of a patient position and/or movement monitoring system of apparatus 3014 and are used in a similar manner as signals from sensors 3036 in procedure 3080.
  • In the conditional of block 3084, the controller 3074 examines each of the data signals posted by the sensors 3036 on the network 3042 and determines if the associated module 3038 subscribes to the data. If the module 3038 does not subscribe to the data, then the algorithm returns to block 3082 and awaits more incoming data.
  • If at block 3084 it is determined that module 3038 subscribes to the data, the algorithm proceeds to the operation of block 3086 and the data is input into an algorithm that is used to predict an adverse event or condition. In some embodiments, the data signals can be used to select one or more standard hospital specific protocols, which, in some instances, have predetermined thresholds associated therewith. Alternatively or additionally, the data signals can be input into an algorithm that is used to select the hospital specific protocols and/or to set the predetermined thresholds associated with the protocols.
  • In the operation of block 3088, the controller 3074 executes the algorithm to generate a condition score corresponding to the condition of the person and/or to generate a graphic representative of the condition of the person. In one embodiment, the algorithm receives inputs from the contact-less sensors 3046 corresponding to the heart rate, respiration rate, and temperature of a person, and inputs from the contact sensors 3044 corresponding to the blood pressure and SpO2 of a person. It should be understood that all of the inputs can be from the contact sensors 3044 in other embodiments. The controller 3074 processes the data inputs in accordance with the algorithm to calculate the condition score and/or generate the graphic.
  • In some embodiments, the algorithm combines the inputs into a data point, which is used to calculate a condition score constituting a one-dimensional visualization space based on the distance of the data point in a multi-dimensional measurement space, whose coordinates are defined by values of the inputs, from a normal point. In other contemplated embodiments, the algorithm maps the inputs from an n-dimensional measurement space to an m-dimensional visualization space using a dimensionality reduction mapping technique, and displays the m-dimensional visualization space on the display 3040. One example of such a system using this algorithm and technique is disclosed in U.S. Pat. No. 7,031,857 issued on Apr. 18, 2006 to Tarassenko et al., which is hereby incorporated by reference herein in its entirety. One condition score in accordance with the teachings of U.S. Pat. No. 7,031,857 is know as a Visensia® index that can be produced by the Visensia® system sold by OBS Medical, for example. The Visensia® index creates a score based on heart rate, respiration rate, blood pressure, temperature, and SpO2 data.
  • Based on the foregoing, it will be understood that the Visensia® index is a condition score that is based on, or a function of, only a person's physiological data. According to this disclosure, some or all of the physiological data used to calculate the Visensia® index is obtained by one or more sensors included as part of the person support apparatus 3014. This distinguishes over the known prior art. To the extent that some of the physiological data needed to calculate a condition score, such as the Visensia® index, is obtained by equipment and/or sensors that are not included as part of person support apparatus 3014, such data is transmitted to controller 3074 in accordance with this disclosure for the purpose of calculating the condition score. For example, data is transmitted to controller 3074 from a person's EMR in some instances as suggested diagrammatically in FIG. 5. In other instances, person support apparatus 3014 is communicatively coupled to physiological monitoring equipment that is co-located with apparatus 3014 to obtain the needed data for calculating a condition score. In the preceding examples, controller 3074 automatically initiates the queries to obtain the needed data from the EMR or co-located equipment and/or picks up the needed data from network transmissions. Thus, controller 3074 automatically calculates the condition score without the need for any further actions on the part of caregivers or users. However, it is within the scope of this disclosure for some or all of the needed physiological data to be entered by a caregiver using a user interface of the apparatus 3014.
  • In another contemplated embodiment, the condition score comprises a modified early warning score (MEWS). According to this disclosure, the data needed to calculate the MEWS is obtained from sensors included as part of person support apparatus 3014, obtained via manual user inputs, obtained from separate monitoring equipment that communicates with controller 3074 of apparatus 3014, and/or obtained from the person's EMR. The MEWS is a known score calculated based on the following table:
  • Score
    3 2 1 0 1 2 3
    Systolic <70 71-80 81-100 101-199 >200
    BP
    Heart rate <40 41-50   51-100 101-110 111-129 >130
    (BPM)
    Respi-  <9  9-14 15-20 21-29  >30
    ratory
    rate
    (RPM)
    Temper- <35 35.0-38.4 >38.5
    ature
    (° C.)
    AVPU A V P U
  • In the MEWS table, the various integers in the column headings are added together based on the various readings for the person of the data corresponding to the rows of the table. A score of 5 or greater indicates a likelihood of death. With regard to the systolic blood pressure, heart rate, respiratory rate, and temperature portions of the MEWS, those pieces of information are obtained using sensors 3036 of person support apparatus 3014 and/or using the other manners of obtaining a person's physiological data as discussed above. It is contemplated by this disclosure that the AVPU portion of the MEWS is obtained using information from the person support apparatus 3014 as discussed below.
  • The AVPU portion of the MEWS indicates whether a person is alert (A), responsive to voice (V), responsive to pain (P), or unresponsive (U). As discussed above, the person support apparatus 3014 in some embodiments comprises a hospital bed having a patient position monitoring system including sensors, such as load cells, piezoelectric sensors, and/or force sensitive resistors (FSR's) which sense a patient's position and/or movement. In accordance with this disclosure, the patient movement information is used by the controller to automatically assign an appropriate integer corresponding to the A portion or the U portion of the AVPU line of the MEWS depending upon the amount of movement of the patient. For example, if the patient has not moved for a threshold amount of time, such as fifteen minutes or an hour or some threshold greater than or less than these particular times, then the integer associated with the U portion of the AVPU line of the MEWS is assigned automatically by controller 3074. If the patient has moved by a threshold amount within a particular time period, then the integer associated with the A portion of the AVPU line of the MEWS is assigned automatically by controller 3074.
  • It is contemplated by this disclosure that the controller 3074 initiates a voice query to the person in some embodiments. If the person answers the voice query orally or by engaging a designated user input, such as pressing a particular button mentioned in the voice query, then the controller 3074 automatically assigns an appropriate integer corresponding to the V portion of the MEWS. The voice query is a pre-recorded message in some embodiments. The voice query is initiated by controller 3074 if the person has been inactive for the threshold period of time. In other words, in some embodiments, the voice query is initiated only after the conditions for assigning the U portion of the MEWS has been satisfied. Thus, if the person responds properly to the voice query, the AVPU portion of the MEWS is assigned as V rather than U. Apparatus 3014, therefore, has speakers or similar such sound-producing devices through which the voice query is played and, in some instances, a microphone that picks up the person's oral response. Appropriate interactive voice recognition (IVR) software is provided in such embodiments.
  • With regard to determining whether to select the P portion of the AVPU line of the MEWS score, apparatus 3014 is operated to inflict some amount of discomfort to the patient and then monitors the person's response, such as an oral response or movement. For example, in some embodiments, apparatus 3014 includes an inflatable cuff or sleeve placed on a limb of the person and the controller 3074 controls inflation and deflation of the cuff or sleeve. If the patient movement information indicates sufficient patient movement by the patient in response to inflation of the cuff or sleeve, then the controller automatically assigns the appropriate integer corresponding to the P portion of the AVPU line of the MEWS. Alternatively or additionally, a microphone is used to determine if the patient expresses an audible pain or discomfort sound at which point the integer associated with the P portion of the AVPU line of the MEWS is assigned. The steps for determining whether to assign the P integer are performed only after the steps for determining whether to assign the U integer and/or the V integer in some embodiments. That is, operating the person apparatus 3014 so as to cause the patient some discomfort is only done as a last resort. In assigning the AVPU integer in the MEWS, it will be appreciated that it is the lowest pertinent integer that is assigned. Clearly, an alert person would also be responsive to voice for example.
  • The MEWS and Visensia® index discussed above are just a couple of examples of condition scores according to this disclosure. The teachings of this disclosure are intended to be broadly applicable to all types of condition scores.
  • Referring once again to FIG. 6, in the operation of block 3090, the controller 3074 compares the calculated condition score (referred to sometimes in FIG. 6 as an “index value” or simply an “index”) with the predetermined thresholds to determine at least one of the likelihood that an adverse condition will occur, an amount of time before an adverse condition will occur, and/or how close the condition score is to the threshold.
  • In the conditional of block 3100, if the controller 3074 determines that the condition score is greater than the threshold, then, in one illustrative embodiment, a status update including the condition score is communicated to a caregiver through the signaling and communication system 3012 and/or is displayed on the display 3040 as indicated at block 3110. That is, if the condition score exceeds the threshold, then, in some embodiments, at least one of the condition score and an alert signal are communicated to a caregiver. In other embodiments, the alert condition may correspond to the condition score being less than, rather than greater than, a particular threshold. The term “greater than” is intended to cover one or both of a greater than situation and a greater than or equal to situation and the term “less than” is intended to cover one or both of a less than situation and a less than or equal to situation.
  • As alluded to above, in some embodiments, the condition score and/or alert signal are communicated to a caregiver through the signaling and communication system 3012. Alternatively or additionally, the condition score and/or alert signal are displayed on the display 3040. In still other embodiments, the condition score and/or alert signal are communicated to the Visensia® Alert system sold by OBS Medical. In further embodiments, the condition score is communicated to and stored in the person's EMR.
  • The display 3040 is any suitable display such as a liquid crystal display, touch screen display, plasma screen, light emitting diode display, cathode ray tube display, or other conventional display. The display 3040 is operable to display multiple parameters thereon along with the condition score in some embodiments. In some contemplated embodiments, the display 3040 displays physiological and/or biochemical information sensed by contact sensors 3044 along with the condition score. Thus, it is within the scope of this disclosure for the display 3040 to display physiological and/or biochemical information on the display 3040 along with the condition score. In yet other embodiments, the display 3040 displays bed status information and/or graphics, for example, a head deck section HD angle or PPM armed indicator, on the display along with the condition score. In still other contemplated examples, the display 3040 displays bed status information and/or graphics along with patient condition graphics, such as, pie charts. Other information that is displayable on the display 3040 includes force profile information and/or graphics, person position information and/or graphics, weight, and other physiological information.
  • Referring now to FIG. 7, the sensors 3036 are operatively coupled to the control modules 3038 and are configured to sense various parameters, including, but not limited to, for example, a person's physiological information, a position of a person on the person support apparatus 3014 and/or person support surface 3026, a pressure of the fluid inside the bladders 3028 in the person support surface 3026, or other various parameters. As mentioned above, the sensors 3036 can be sensors configured to contact the tissue of a person and/or sensors configured to not contact the tissue of a person. In some embodiments, the sensors 3036 are force sensors 3044 coupled to the upper frame 3018 and are configured to measure force on the upper frame 3018 as shown in FIGS. 4 and 7. In some embodiments, the sensors 3036 are force sensors 3044 that measure force on the upper frame 3018 and are positioned between the intermediate frame 3032 and the upper frame base 3034 so as to couple the intermediate frame 3032 and deck 3030 to the upper frame base 3034.
  • In some contemplated embodiments, the sensors 3036 are force sensors 3044 integrated into the person support surface 3026 and configured to measure changes in force on the person support surface 3026 as shown in FIG. 4. Alternatively or additionally, the force sensors 3044 are coupled to the supports 3020 and/or the lower frame 3016. Sensors 3044 integrated into the casters 3024 and/or engaged by the casters 3024 are also within the scope of this disclosure. In some embodiments, the force sensors 3044 are load cells that are coupled proximate the corners of the intermediate frame 3032. In other embodiments, the sensors 3044 are piezoelectric sensors and/or elongated sensor strips or arrays 3038. It will be appreciated that the force sensors 3044 comprising other force sensor types can be provided and positioned in other locations on the upper frame 3018 and/or within the person support surface 3026.
  • In some embodiments, the sensors 3036 are pressure sensors 3046 integrated into the person support surface 3026 and configured to measure the pressure in or among the fluid bladders 3028 in the person support surface 3026 as shown diagrammatically in FIG. 7. The pressure sensors 3046 are coupled between the bladders 3028 in some embodiments such that they can allow communication between adjacent bladders 3028. It should be appreciated that the pressure sensors can be situated within the bladders 3028 and/or otherwise positioned to measure the pressure within the bladder 3028. Pressure sensors 3046 coupled to bladders 3028 via pneumatic tubes, hoses, or other types of conduits are contemplated by this disclosure as well.
  • In some embodiments, the sensors 3036 are physiological sensors 3048 integrated into the person support surface 3026 and configured to measure various physiological parameters of a person supported on the person support surface 3026 as suggested in FIG. 7. Optionally, the physiological sensors 3048 can be coupled to the upper frame 3018, the supports 3020, and/or the lower frame 3016 in lieu of being coupled to the mattress 3046. As indicated above, the force sensor 3044 and/or pressure sensor 3046 are configured to sense physiological parameters in some embodiments. For example, one or more of the physiological sensors 3048 are used to sense the heart rate and/or respiration rate of a person supported on the person support surface 3026 in some embodiments. Alternatively or additionally, one or more of the physiological sensors 3048 are configured to sense the temperature of the person. In some embodiments, the physiological sensors 3048 are configured to sense the weight of the person on the person support surface 3026. In some embodiments, the physiological sensors 3048 are pressure-strip sensors disposed on the fluid bladders 3028 along an axis parallel to the lateral axis Y1 and/or along an axis parallel with the longitudinal axis X1.
  • In some embodiments, one or more of the sensors 3036 produces an analog data signal and is connected directly to the controller 3074. In other embodiments, one or more of the sensors 3036 produce a digital data signal, e.g., a serial digital data signal, and are connected to the network 3042, e.g., SPI network, to communicate with the controller 3074. The data signals can be stored in the memory 3076, which is operatively coupled with the controller 3074. As mentioned above, the memory 3076 is integrated into the controller 3074 in some embodiments.
  • In some embodiments, the controller 3074 executes operating logic that defines various control, management, and/or regulation functions. This operating logic can be in the form of software, firmware, and/or dedicated hardware, such as, a series of programmed instructions, code, electronic files, or commands using general purpose or special purpose programming languages or programs that can be executed on one or more general purpose or special purpose computers, processors, other control circuitry, or networks; a hardwired state machine; and/or a different form as would occur to those skilled in the art.
  • Any theory, mechanism of operation, proof, or finding stated herein is meant to further enhance understanding of principles of the present disclosure and is not intended to make the present disclosure in any way dependent upon such theory, mechanism of operation, illustrative embodiment, proof, or finding. It should be understood that while the use of the word preferable, preferably or preferred in the description above indicates that the feature so described can be more desirable, it nonetheless can not be necessary and embodiments lacking the same can be contemplated as within the scope of the disclosure, that scope being defined by the claims that follow.
  • In reading the claims it is intended that when words such as “a,” “an,” “at least one,” “at least a portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
  • While embodiments of the disclosure have been illustrated and described in detail in the drawings and foregoing description, the same are to be considered as illustrative and not restrictive in character, it being understood that only the selected embodiments have been shown and described and that all changes, modifications and equivalents that come within the spirit of the disclosure as defined herein or by any of the following claims are desired to be protected.

Claims (15)

1. A method comprising
sensing a characteristic of a person supported on a person-support apparatus,
calculating a condition score as a function of the characteristic, and
configuring a support system and/or a communication system as a function of the condition score.
2. The method of claim 1, wherein the support system includes the person-support apparatus.
3. The method of claim 1, wherein the support system includes a person-support surface.
4. The method of claim 1, wherein the condition score includes a fall risk assessment score or a pressure ulcer risk assessment score.
5. The method of claim 1, wherein the support system includes a fluid supply and the configuring comprises causing the fluid supply to initiate a therapy.
6. A system comprising:
a person-support structure,
a sensor configured to sense a characteristic of a person supported on the person-support structure, and
a control configured to calculate a condition score as a function of the characteristic of the person, the control being operable to change a characteristic of the person-support structure as a function of the condition score.
7. The system of claim 6, wherein the person-support structure includes a bed frame with a movement mechanism, the control controlling the movement mechanism as a function of the condition score to change a characteristic of the bed frame.
8. The system of claim 7, wherein the frame includes an upper frame portion with a deck movably coupled thereto having a head section, the control causing the head section to rotate between a relatively horizontal position and an inclined position.
9. The system of claim 6, further comprising a fluid supply, the person-support structure including a fluid chamber configured to receive fluid from the fluid supply, and the control controlling the fluid supply as a function of the condition score.
10. The system of claim 9, wherein the control causes the fluid supply to initiate a therapy.
11. The system of claim 9, wherein the fluid chamber comprises at least one of a temperature and humidity topper, a mattress, and a gas bladder.
12. The system of claim 6, further comprising a communication device configured to receive an input signal corresponding to information in an electronic medical record, the control calculating the condition score as a function of the characteristic of the person and the input signal.
13. The system of claim 12, wherein the input signal includes a fall risk assessment score or a pressure ulcer risk assessment score.
14. The system of claim 6, wherein the control calculates the condition score as a function of the status of the person-support structure and the characteristic of the person.
15. The system of claim 6, wherein the control calculates the condition score as a function of the status of the person-support structure, an input signal corresponding to information in an electronic medical record, and the characteristic of the person.
US13/153,672 2009-09-18 2011-06-06 Apparatus for supporting and monitoring a person Abandoned US20110301432A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/153,672 US20110301432A1 (en) 2010-06-07 2011-06-06 Apparatus for supporting and monitoring a person
US14/325,535 US9552460B2 (en) 2009-09-18 2014-07-08 Apparatus for supporting and monitoring a person
US14/493,475 US20150032384A1 (en) 2010-06-07 2014-09-23 Apparatus for supporting and monitoring a person

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35201710P 2010-06-07 2010-06-07
US13/153,672 US20110301432A1 (en) 2010-06-07 2011-06-06 Apparatus for supporting and monitoring a person

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/011,833 Continuation-In-Part US9044204B2 (en) 2009-09-18 2013-08-28 Apparatuses for supporting and monitoring a condition of a person

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/325,535 Continuation US9552460B2 (en) 2009-09-18 2014-07-08 Apparatus for supporting and monitoring a person

Publications (1)

Publication Number Publication Date
US20110301432A1 true US20110301432A1 (en) 2011-12-08

Family

ID=44533791

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/153,672 Abandoned US20110301432A1 (en) 2009-09-18 2011-06-06 Apparatus for supporting and monitoring a person
US14/325,535 Active US9552460B2 (en) 2009-09-18 2014-07-08 Apparatus for supporting and monitoring a person

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/325,535 Active US9552460B2 (en) 2009-09-18 2014-07-08 Apparatus for supporting and monitoring a person

Country Status (2)

Country Link
US (2) US20110301432A1 (en)
EP (1) EP2392304B1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281804A1 (en) * 2012-04-20 2013-10-24 Life Support Technologies, Inc. Methods and systems for monitoring a patient to reduce the incidence of pressure ulcers
US20130317399A1 (en) * 2012-05-22 2013-11-28 David Ribble Adverse condition detection, assessment, and response systems, methods and devices
US20140180027A1 (en) * 2012-12-20 2014-06-26 U.S. Government, As Represented By The Secretary Of The Army Estimation of Human Core Temperature based on Heart Rate System and Method
US20140343889A1 (en) * 2012-01-13 2014-11-20 Enhanced Surface Dynamics, Inc. System and methods for risk management analysis of a pressure sensing system
US20160095445A1 (en) * 2012-02-21 2016-04-07 Hill-Rom Services, Inc. Topper with targeted fluid flow distribution
US20160338591A1 (en) * 2015-05-21 2016-11-24 Hill-Rom Services, Inc. Systems and methods for mitigating tissue breakdown
JP2018082843A (en) * 2016-11-22 2018-05-31 パラマウントベッド株式会社 Information provision system, information providing method and computer program
US10492734B2 (en) 2016-11-04 2019-12-03 Wellsense, Inc. Patient visualization system
US10702165B2 (en) 2012-12-20 2020-07-07 The Government Of The United States, As Represented By The Secretary Of The Army Estimation of human core temperature based on heart rate system and method
US11009959B1 (en) * 2019-05-09 2021-05-18 Facebook Technologies, Llc Haptic vibrotactile actuators on inflatable bladders and related systems and methods
US11083418B2 (en) 2016-11-04 2021-08-10 Wellsense, Inc. Patient visualization system
US11129549B2 (en) * 2016-08-24 2021-09-28 Koninklijke Philips N.V. Device, system and method for patient monitoring to predict and prevent bed falls
US11172892B2 (en) 2017-01-04 2021-11-16 Hill-Rom Services, Inc. Patient support apparatus having vital signs monitoring and alerting
US11217079B2 (en) * 2012-07-17 2022-01-04 Stryker Corporation Patient risk notification system
US11504071B2 (en) 2018-04-10 2022-11-22 Hill-Rom Services, Inc. Patient risk assessment based on data from multiple sources in a healthcare facility
US11517203B2 (en) 2016-08-25 2022-12-06 The Government Of The United States, As Represented By The Secretary Of The Army Real-time estimation of human core body temperature based on non-invasive physiological measurements
US11564579B2 (en) 2016-04-15 2023-01-31 U.S. Government, As Represented By The Secretary Of The Army System and method for determining an adaptive physiological strain index
US11571134B2 (en) 2016-04-15 2023-02-07 U.S. Government, As Represented By The Secretary Of The Army Pacing templates for performance optimization
US11908581B2 (en) 2018-04-10 2024-02-20 Hill-Rom Services, Inc. Patient risk assessment based on data from multiple sources in a healthcare facility

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892354A (en) 2010-03-12 2013-01-23 茵汉斯瑟菲斯动力公司 System and method for rapid data collection from pressure sensors in pressure sensing system
AU2012282132A1 (en) 2011-07-13 2014-01-30 Enhanced Surface Dynamics, Inc. Methods and systems for the manufacture and initiation of a pressure detection mat
US8736453B2 (en) 2012-07-17 2014-05-27 GlobeStar Systems, Inc. Preemptive notification of patient fall risk condition
KR101396203B1 (en) * 2013-03-13 2014-05-19 한국생산기술연구원 Apparatus and method for sensing operation of aircusion
WO2016111069A1 (en) * 2015-01-05 2016-07-14 ソニー株式会社 Information processing device, information processing method, and program
US9833081B2 (en) * 2015-11-17 2017-12-05 Dreamwell, Ltd. Mattress with flexible pressure sensor
EP3205268B1 (en) 2016-02-11 2023-10-25 Hill-Rom Services, Inc. Hospital bed
US10682090B2 (en) * 2016-06-29 2020-06-16 General Electric Company Sensing device for controlling the delivery of care to immobile patients
CA3041763A1 (en) * 2016-11-04 2018-05-11 Ably Medical As Hospital bed
US10813809B2 (en) * 2017-07-12 2020-10-27 Hill-Rom Services, Inc. Patient immersion sensor using radar
US10945902B2 (en) 2017-11-13 2021-03-16 Stryker Corporation Techniques for controlling actuators of a patient support apparatus
US20200037779A1 (en) * 2018-07-31 2020-02-06 Levy Zur Area support surface seating system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611096A (en) * 1994-05-09 1997-03-18 Kinetic Concepts, Inc. Positional feedback system for medical mattress systems
US6721980B1 (en) * 1998-10-28 2004-04-20 Hill-Fom Services, Inc. Force optimization surface apparatus and method
US7031857B2 (en) * 2001-05-31 2006-04-18 Isis Innovation Limited Patient condition display
US7314451B2 (en) * 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US20090093686A1 (en) * 2007-10-08 2009-04-09 Xiao Hu Multi Automated Severity Scoring
US20090216556A1 (en) * 2008-02-24 2009-08-27 Neil Martin Patient Monitoring
US20090237264A1 (en) * 2005-07-08 2009-09-24 Hill-Rom Services, Inc. Control Unit For Patient Support
US7629890B2 (en) * 2003-12-04 2009-12-08 Hoana Medical, Inc. System and methods for intelligent medical vigilance with bed exit detection
US20100212089A1 (en) * 2007-10-02 2010-08-26 Ryuji Kajiwara Air mattress controller
US20110035057A1 (en) * 2009-08-07 2011-02-10 Receveur Timothy J Patient health based support apparatus configuration
US20110068935A1 (en) * 2009-09-18 2011-03-24 Riley Carl W Apparatuses for supporting and monitoring a condition of a person

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2194809A (en) 1939-05-20 1940-03-26 Jr Daniel William Powell Diaphragmeter
US3325799A (en) 1964-07-13 1967-06-13 Edwia Greines Cohen Mattress alarm
GB1261357A (en) 1968-10-31 1972-01-26 Nat Res Dev Apnoea alarms
US3644950A (en) 1969-08-01 1972-02-29 Milton Roy Co Patient support system
US3727606A (en) 1970-06-12 1973-04-17 Airco Inc Apnea detection device
US3836900A (en) 1973-01-26 1974-09-17 Fleet Electronics Ltd Recording or alarm devices
US3996928A (en) 1975-05-28 1976-12-14 Marx Alvin J Patient vital-signs automated measuring apparatus
US4146885A (en) 1977-10-13 1979-03-27 Lawson Jr William H Infant bed and apnea alarm
US4195287A (en) 1977-11-28 1980-03-25 Mathis James C Fire and absence detection and alarm system for bed occupants
US4245651A (en) 1979-03-13 1981-01-20 Frost James K Detecting body movements
GB2070174A (en) 1980-02-26 1981-09-03 Watkins & Watson Ltd Conduit connector
US4422458A (en) 1980-04-28 1983-12-27 Montefiore Hospital And Medical Center, Inc. Method and apparatus for detecting respiratory distress
EP0046008B1 (en) 1980-08-13 1984-10-10 PAUL, Patrick Robin David Mattress
US4483029A (en) 1981-08-10 1984-11-20 Support Systems International, Inc. Fluidized supporting apparatus
US4595023A (en) 1981-11-16 1986-06-17 Kenneth Bonnet Apparatus and method for detecting body vibrations
FR2523841B1 (en) 1982-03-25 1985-10-25 Lacoste Francois FLUIDIZED BED FOR THERAPEUTIC USE
US4559656A (en) 1982-12-28 1985-12-24 Hill-Rom Company, Inc. Hospital bed with a weight-distributing lever system
US4564965A (en) 1984-01-17 1986-01-21 Support Systems International, Inc. Fluidized patient support system
US4602643A (en) 1984-09-14 1986-07-29 Dietz Henry G Pneumatic breathing belt sensor with minimum space maintaining tapes
DE3523168A1 (en) 1984-11-10 1986-05-15 Wabco Westinghouse Fahrzeugbremsen GmbH, 3000 Hannover DEVICE FOR FASTENING A FIRST COMPONENT
US4971065A (en) 1985-02-11 1990-11-20 Pearce Stephen D Transducer for detecting apnea
US4637083A (en) 1985-03-13 1987-01-20 Support Systems International, Inc. Fluidized patient support apparatus
DE3687060T2 (en) 1985-05-10 1993-05-27 Mediscus Prod Ltd PATIENT ASSISTANCE DEVICE.
US4681098A (en) 1985-10-11 1987-07-21 Lee Arnold St J System, apparatus and method for gathering physiological data
US4757825A (en) 1985-10-31 1988-07-19 Diamond Research Group, Inc. Cardio-pulmonary activity monitor
US4838309A (en) 1985-12-30 1989-06-13 Ssi Medical Services, Inc. Variable flow gas valve
US4694520A (en) 1986-01-15 1987-09-22 Ssi Medical Services, Inc. Patient support apparatus
US5010772A (en) 1986-04-11 1991-04-30 Purdue Research Foundation Pressure mapping system with capacitive measuring pad
US4967195A (en) 1986-05-08 1990-10-30 Shipley Robert T Hospital signaling and communications system
US4657026A (en) 1986-07-14 1987-04-14 Tagg James R Apnea alarm systems
IL80025A0 (en) 1986-09-15 1986-12-31 Ehud Kadish Body rest with means for preventing pressure sores
US4949412A (en) 1986-11-05 1990-08-21 Air Plus, Inc. Closed loop feedback air supply for air support beds
US4889131A (en) 1987-12-03 1989-12-26 American Health Products, Inc. Portable belt monitor of physiological functions and sensors therefor
US4934468A (en) 1987-12-28 1990-06-19 Hill-Rom Company, Inc. Hospital bed for weighing patients
GB8805961D0 (en) 1988-03-14 1988-04-13 Huntleigh Technology Plc Pressure controller
US4942635A (en) 1988-12-20 1990-07-24 Ssi Medical Services, Inc. Dual mode patient support system
US5182826A (en) 1989-03-09 1993-02-02 Ssi Medical Services, Inc. Method of blower control
US4949414A (en) 1989-03-09 1990-08-21 Ssi Medical Services, Inc. Modular low air loss patient support system and methods for automatic patient turning and pressure point relief
US5052067A (en) 1989-03-09 1991-10-01 Ssi Medical Services, Inc. Bimodal system for pressurizing a low air loss patient support
US5060174A (en) 1990-04-18 1991-10-22 Biomechanics Corporation Of America Method and apparatus for evaluating a load bearing surface such as a seat
US5057819A (en) 1990-04-27 1991-10-15 Valenti James J Alarmed safety cushion
US5170364A (en) 1990-12-06 1992-12-08 Biomechanics Corporation Of America Feedback system for load bearing surface
JP2596233B2 (en) 1991-02-19 1997-04-02 松下電器産業株式会社 Bed equipment
US5101828A (en) 1991-04-11 1992-04-07 Rutgers, The State University Of Nj Methods and apparatus for nonivasive monitoring of dynamic cardiac performance
US5184112A (en) 1991-09-11 1993-02-02 Gaymar Industries, Inc. Bed patient position monitor
US5276432A (en) 1992-01-15 1994-01-04 Stryker Corporation Patient exit detection mechanism for hospital bed
US6897780B2 (en) 1993-07-12 2005-05-24 Hill-Rom Services, Inc. Bed status information system for hospital beds
US5561412A (en) 1993-07-12 1996-10-01 Hill-Rom, Inc. Patient/nurse call system
US5592706A (en) 1993-11-09 1997-01-14 Teksource, Lc Cushioning device formed from separate reshapable cells
US5539942A (en) 1993-12-17 1996-07-30 Melou; Yves Continuous airflow patient support with automatic pressure adjustment
US5738102A (en) 1994-03-31 1998-04-14 Lemelson; Jerome H. Patient monitoring system
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
US5817146A (en) 1995-11-09 1998-10-06 Augustine Medical, Inc. Patient warming system with IV fluid warmer
US5815864A (en) 1996-04-02 1998-10-06 Sytron Corporation Microprocessor controller and method of initializing and controlling low air loss floatation mattress
US5794288A (en) 1996-06-14 1998-08-18 Hill-Rom, Inc. Pressure control assembly for an air mattress
US5873137A (en) 1996-06-17 1999-02-23 Medogar Technologies Pnuematic mattress systems
FR2751530B1 (en) 1996-07-23 1998-10-23 Support Systems International METHOD AND DEVICE FOR SUPPORTING A PATIENT WITH A DERIVED SUPPORT HEEL AREA
FR2751743B1 (en) 1996-07-23 1998-10-23 Support Systems International SELF INTEGRATED METHOD AND DEVICE IN A MEASUREMENT BRIDGE
US5970789A (en) 1996-11-20 1999-10-26 Hill-Rom, Inc. Method and apparatus for evaluating a support surface
US6067019A (en) 1996-11-25 2000-05-23 Hill-Rom, Inc. Bed exit detection apparatus
IL119721A (en) 1996-11-29 2005-08-31 Mindlife Ltd Method and system for monitoring the physiological condition of a patient
FR2757377B1 (en) 1996-12-23 1999-03-12 Support Systems International METHOD AND APPARATUS FOR SUPPORTING A SUPPORTING ELEMENT, IN PARTICULAR THE BODY OF A PATIENT ALLOWING SUPPORT FOR A PREDETERMINED FLOAT LINE
FR2757378B1 (en) 1996-12-23 1999-03-12 Support Systems International METHOD AND APPARATUS FOR SUPPORTING A SUPPORTING ELEMENT, IN PARTICULAR THE BODY OF A PATIENT, HAVING A SUPPORT DEVICE INDEPENDENT OF A CONTROL DEVICE
SE9700447D0 (en) * 1997-02-10 1997-02-10 Herbert Lewin Medical mattress
US6076208A (en) 1997-07-14 2000-06-20 Hill-Rom, Inc. Surgical stretcher
US6011477A (en) 1997-07-23 2000-01-04 Sensitive Technologies, Llc Respiration and movement monitoring system
US6739006B2 (en) 1997-11-07 2004-05-25 Hill-Rom Services, Inc. Head section support for a surgical table apparatus
US6560804B2 (en) 1997-11-24 2003-05-13 Kci Licensing, Inc. System and methods for mattress control in relation to patient distance
FR2774573B1 (en) 1998-02-09 2000-04-28 Support Systems International METHOD AND APPARATUS FOR SUPPORTING A SUPPORTING ELEMENT, IN PARTICULAR THE BODY OF A PATIENT, WITH AN INTEGRATED DYNAMIC AND AUTOMATIC PRESSURE BALANCE SYSTEM
CA2326812A1 (en) 1998-03-31 1999-10-07 Hill-Rom, Inc. Air-over-foam mattress
US6067466A (en) 1998-11-18 2000-05-23 New England Medical Center Hospitals, Inc. Diagnostic tool using a predictive instrument
US6208250B1 (en) 1999-03-05 2001-03-27 Hill-Rom, Inc. Patient position detection apparatus for a bed
US6984207B1 (en) 1999-09-14 2006-01-10 Hoana Medical, Inc. Passive physiological monitoring (P2M) system
US6402691B1 (en) * 1999-09-21 2002-06-11 Herschel Q. Peddicord In-home patient monitoring system
US7296312B2 (en) 2002-09-06 2007-11-20 Hill-Rom Services, Inc. Hospital bed
JP2004512058A (en) 2000-05-05 2004-04-22 ヒル−ロム サービシーズ,インコーポレイティド Hospital bed remote control
US7666151B2 (en) 2002-11-20 2010-02-23 Hoana Medical, Inc. Devices and methods for passive patient monitoring
JP2005509312A (en) 2001-03-30 2005-04-07 ヒル−ロム サービシーズ,インコーポレイティド Hospital bed and network system
US7248933B2 (en) 2001-05-08 2007-07-24 Hill-Rom Services, Inc. Article locating and tracking system
US7242306B2 (en) 2001-05-08 2007-07-10 Hill-Rom Services, Inc. Article locating and tracking apparatus and method
US6656125B2 (en) 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
AU2003217253A1 (en) 2002-01-25 2003-09-02 Intellipatch, Inc. Evaluation of a patient and prediction of chronic symptoms
US20050165284A1 (en) 2002-03-25 2005-07-28 Amit Gefen Method and system for determining a risk of ulcer onset
US7183930B2 (en) 2003-07-18 2007-02-27 Intelligent Mechatronic Systems Inc. Occupant heartbeat detection and monitoring system
US7396331B2 (en) 2003-10-27 2008-07-08 Home Guardian, Llc System and process for non-invasive collection and analysis of physiological signals
US7306564B2 (en) 2003-11-26 2007-12-11 Denso Corporation Breath monitor
WO2005055824A1 (en) 2003-12-04 2005-06-23 Hoana Medical, Inc. Intelligent medical vigilance system
US20070118054A1 (en) 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
JP4809779B2 (en) 2004-02-05 2011-11-09 アーリーセンス・リミテッド Prediction and monitoring technology for clinical onset in respiration
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
JP2007525266A (en) 2004-02-18 2007-09-06 ホアナ メディカル、インコーポレイテッド Method and system for incorporating a passive sensor array in a mattress to monitor a patient
US7557718B2 (en) 2004-04-30 2009-07-07 Hill-Rom Services, Inc. Lack of patient movement monitor and method
JP3916086B2 (en) 2004-06-29 2007-05-16 ソニー株式会社 Method and detection unit for detecting interaction such as hybridization, substrate for bioassay including the detection unit, apparatus for detecting interaction such as hybridization, and reagent kit
US7245956B2 (en) 2004-07-15 2007-07-17 Quantum Applied Science & Research, Inc. Unobtrusive measurement system for bioelectric signals
US7852208B2 (en) 2004-08-02 2010-12-14 Hill-Rom Services, Inc. Wireless bed connectivity
US7319386B2 (en) 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US7253366B2 (en) 2004-08-09 2007-08-07 Hill-Rom Services, Inc. Exit alarm for a hospital bed triggered by individual load cell weight readings exceeding a predetermined threshold
US8413271B2 (en) * 2004-10-29 2013-04-09 Stryker Corporation Patient support apparatus
JP2008522708A (en) * 2004-12-07 2008-07-03 タイラートン インターナショナル インコーポレイテッド Apparatus and methods for training, rehabilitation, and / or support
US7443303B2 (en) 2005-01-10 2008-10-28 Hill-Rom Services, Inc. System and method for managing workflow
US7127948B2 (en) 2005-02-17 2006-10-31 The Boeing Company Piezoelectric sensor, sensor array, and associated method for measuring pressure
JP4772066B2 (en) 2005-02-28 2011-09-14 リハビリテーション インスティテュート オブ シカゴ Wheelchair pneumatic support system
US20090054735A1 (en) 2005-03-08 2009-02-26 Vanderbilt University Office Of Technology Transfer And Enterprise Development System and method for remote monitoring of multiple healthcare patients
AU2006257880B2 (en) 2005-06-10 2012-02-09 Hill-Rom Services, Inc. Control for pressurized bladder in a patient support apparatus
US8745788B2 (en) * 2005-07-26 2014-06-10 Hill-Rom Services. Inc. System and method for controlling an air mattress
US7536739B2 (en) 2005-08-10 2009-05-26 Kreg Medical, Inc. Therapeutic mattress
US20070056101A1 (en) * 2005-09-08 2007-03-15 Ajay Mahajan Sensor based mattress/seat for monitoring pressure, temperature and sweat concentration to prevent pressure ulcerations
WO2007054841A1 (en) 2005-11-08 2007-05-18 Koninklijke Philips Electronics, N.V. Method for detecting critical trends in multi-parameter patient monitoring and clinical data using clustering
US20100170043A1 (en) 2009-01-06 2010-07-08 Bam Labs, Inc. Apparatus for monitoring vital signs
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
WO2008096307A1 (en) 2007-02-07 2008-08-14 Philips Intellectual Property & Standards Gmbh Sleep management
EP2142095A1 (en) 2007-05-02 2010-01-13 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US20090044334A1 (en) * 2007-08-13 2009-02-19 Valence Broadband, Inc. Automatically adjusting patient platform support height in response to patient related events
US20090062623A1 (en) 2007-08-30 2009-03-05 Kimberly-Clark Worldwide, Inc. Identifying possible medical conditions of a patient
WO2009036150A2 (en) 2007-09-11 2009-03-19 Aid Networks, Llc Wearable wireless electronic patient data communications and physiological monitoring device
US8011041B2 (en) * 2007-09-19 2011-09-06 Persimmon Scientific, Inc. Devices for prevention of pressure ulcers
US20090088606A1 (en) 2007-09-28 2009-04-02 Cuddihy Paul E Systems and methods for patient specific adaptable telemonitoring alerts
US20090163774A1 (en) 2007-12-20 2009-06-25 Sudeesh Thatha Managment and Diagnostic System for Patient Monitoring and Symptom Analysis
WO2009095877A2 (en) 2008-01-31 2009-08-06 Fund For Medical Research Development Of Infrastructure And Health Services Rambam Medical Center Method of predicting pain medication efficacy
US8768520B2 (en) 2008-02-25 2014-07-01 Kingsdown, Inc. Systems and methods for controlling a bedroom environment and for providing sleep data
US20090326339A1 (en) 2008-06-26 2009-12-31 Microsoft Corporation Connected healthcare devices with real-time and proactive capture and relay of contextual information
CN102150186B (en) 2008-09-10 2014-11-12 皇家飞利浦电子股份有限公司 Bed exit warning system
US8593284B2 (en) * 2008-09-19 2013-11-26 Hill-Rom Services, Inc. System and method for reporting status of a bed
US20100099954A1 (en) 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
WO2010048112A1 (en) * 2008-10-24 2010-04-29 Hill-Rom Services, Inc. Apparatuses for supporting and monitoring a person
US8444558B2 (en) 2009-01-07 2013-05-21 Bam Labs, Inc. Apparatus for monitoring vital signs having fluid bladder beneath padding
US8531307B2 (en) * 2009-09-18 2013-09-10 Hill-Rom Services, Inc. Patient support surface index control
US8844073B2 (en) * 2010-06-07 2014-09-30 Hill-Rom Services, Inc. Apparatus for supporting and monitoring a person
EP2417908A1 (en) 2010-08-12 2012-02-15 Philips Intellectual Property & Standards GmbH Device, system and method for measuring vital signs
US9333136B2 (en) * 2013-02-28 2016-05-10 Hill-Rom Services, Inc. Sensors in a mattress cover

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611096A (en) * 1994-05-09 1997-03-18 Kinetic Concepts, Inc. Positional feedback system for medical mattress systems
US6721980B1 (en) * 1998-10-28 2004-04-20 Hill-Fom Services, Inc. Force optimization surface apparatus and method
US7031857B2 (en) * 2001-05-31 2006-04-18 Isis Innovation Limited Patient condition display
US7629890B2 (en) * 2003-12-04 2009-12-08 Hoana Medical, Inc. System and methods for intelligent medical vigilance with bed exit detection
US7314451B2 (en) * 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US20090237264A1 (en) * 2005-07-08 2009-09-24 Hill-Rom Services, Inc. Control Unit For Patient Support
US20100212089A1 (en) * 2007-10-02 2010-08-26 Ryuji Kajiwara Air mattress controller
US20090093686A1 (en) * 2007-10-08 2009-04-09 Xiao Hu Multi Automated Severity Scoring
US20090216556A1 (en) * 2008-02-24 2009-08-27 Neil Martin Patient Monitoring
US20110035057A1 (en) * 2009-08-07 2011-02-10 Receveur Timothy J Patient health based support apparatus configuration
US8437876B2 (en) * 2009-08-07 2013-05-07 Hill-Rom Services, Inc. Patient health based support apparatus configuration
US20110068935A1 (en) * 2009-09-18 2011-03-24 Riley Carl W Apparatuses for supporting and monitoring a condition of a person
US8525680B2 (en) * 2009-09-18 2013-09-03 Hill-Rom Services, Inc. Apparatuses for supporting and monitoring a condition of a person

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140343889A1 (en) * 2012-01-13 2014-11-20 Enhanced Surface Dynamics, Inc. System and methods for risk management analysis of a pressure sensing system
US20160095445A1 (en) * 2012-02-21 2016-04-07 Hill-Rom Services, Inc. Topper with targeted fluid flow distribution
US20130281804A1 (en) * 2012-04-20 2013-10-24 Life Support Technologies, Inc. Methods and systems for monitoring a patient to reduce the incidence of pressure ulcers
US10524721B2 (en) * 2012-04-20 2020-01-07 Life Support Technologies, Inc. Methods and systems for monitoring a patient to reduce the incidence of pressure ulcers
US20130317399A1 (en) * 2012-05-22 2013-11-28 David Ribble Adverse condition detection, assessment, and response systems, methods and devices
US11322258B2 (en) 2012-05-22 2022-05-03 Hill-Rom Services, Inc. Adverse condition detection, assessment, and response systems, methods and devices
US11217079B2 (en) * 2012-07-17 2022-01-04 Stryker Corporation Patient risk notification system
US11830336B2 (en) 2012-07-17 2023-11-28 Stryker Corporation Patient risk notification system
US11545018B2 (en) 2012-07-17 2023-01-03 Stryker Corporation Patient risk notification system
US20140180027A1 (en) * 2012-12-20 2014-06-26 U.S. Government, As Represented By The Secretary Of The Army Estimation of Human Core Temperature based on Heart Rate System and Method
US10702165B2 (en) 2012-12-20 2020-07-07 The Government Of The United States, As Represented By The Secretary Of The Army Estimation of human core temperature based on heart rate system and method
US20160338591A1 (en) * 2015-05-21 2016-11-24 Hill-Rom Services, Inc. Systems and methods for mitigating tissue breakdown
US11571134B2 (en) 2016-04-15 2023-02-07 U.S. Government, As Represented By The Secretary Of The Army Pacing templates for performance optimization
US11564579B2 (en) 2016-04-15 2023-01-31 U.S. Government, As Represented By The Secretary Of The Army System and method for determining an adaptive physiological strain index
US11129549B2 (en) * 2016-08-24 2021-09-28 Koninklijke Philips N.V. Device, system and method for patient monitoring to predict and prevent bed falls
US11540723B2 (en) 2016-08-25 2023-01-03 The Government Of The United States As Represented By The Secretary Of The Army Real-time estimation of human core body temperature based on non-invasive physiological measurements
US11517203B2 (en) 2016-08-25 2022-12-06 The Government Of The United States, As Represented By The Secretary Of The Army Real-time estimation of human core body temperature based on non-invasive physiological measurements
US11083418B2 (en) 2016-11-04 2021-08-10 Wellsense, Inc. Patient visualization system
US20210321958A1 (en) * 2016-11-04 2021-10-21 Wellsense, Inc. Patient visualization system
US10492734B2 (en) 2016-11-04 2019-12-03 Wellsense, Inc. Patient visualization system
JP2018082843A (en) * 2016-11-22 2018-05-31 パラマウントベッド株式会社 Information provision system, information providing method and computer program
US11172892B2 (en) 2017-01-04 2021-11-16 Hill-Rom Services, Inc. Patient support apparatus having vital signs monitoring and alerting
US11896406B2 (en) 2017-01-04 2024-02-13 Hill-Rom Services, Inc. Patient support apparatus having vital signs monitoring and alerting
US11504071B2 (en) 2018-04-10 2022-11-22 Hill-Rom Services, Inc. Patient risk assessment based on data from multiple sources in a healthcare facility
US11908581B2 (en) 2018-04-10 2024-02-20 Hill-Rom Services, Inc. Patient risk assessment based on data from multiple sources in a healthcare facility
US11500465B1 (en) 2019-05-09 2022-11-15 Meta Platforms Technologies, Llc Systems including vibrotactile actuators and inflatable bladders, and related methods
US11009959B1 (en) * 2019-05-09 2021-05-18 Facebook Technologies, Llc Haptic vibrotactile actuators on inflatable bladders and related systems and methods

Also Published As

Publication number Publication date
US20150005675A1 (en) 2015-01-01
US9552460B2 (en) 2017-01-24
EP2392304A1 (en) 2011-12-07
EP2392304B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
US9552460B2 (en) Apparatus for supporting and monitoring a person
US9549705B2 (en) Apparatuses for supporting and monitoring a condition of a person
US8844073B2 (en) Apparatus for supporting and monitoring a person
US20190053761A1 (en) Systems and methods for monitoring a subject at rest
EP2680744B1 (en) Sensing system and method for patient supports
US8437876B2 (en) Patient health based support apparatus configuration
JP5951630B2 (en) Monitor, predict, and treat clinical symptoms
WO2019199606A2 (en) Patient risk assessment based on data from multiple sources in a healthcare facility
US20100170043A1 (en) Apparatus for monitoring vital signs
CN112151172A (en) Patient risk assessment based on data from multiple sources in a medical facility
EP3603492B1 (en) Systems for patient turn detection and confirmation
US11672470B2 (en) Systems and methods for determining an objective pressure injury score and altering a treatment plan based on the same
KR20230145434A (en) Bed with features to sense sleeper pressure and generate estimates of brain activity

Legal Events

Date Code Title Description
AS Assignment

Owner name: HILL-ROM SERVICES, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RILEY, CARL W.;TALLENT, DAN R.;SIGNING DATES FROM 20110610 TO 20110725;REEL/FRAME:026650/0195

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION