US20110288267A2 - Method and Device for Cleaning an Absorptive Polyester - Google Patents

Method and Device for Cleaning an Absorptive Polyester Download PDF

Info

Publication number
US20110288267A2
US20110288267A2 US13/032,198 US201113032198A US2011288267A2 US 20110288267 A2 US20110288267 A2 US 20110288267A2 US 201113032198 A US201113032198 A US 201113032198A US 2011288267 A2 US2011288267 A2 US 2011288267A2
Authority
US
United States
Prior art keywords
solvent
dryer
polymer
polyester
resorbable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/032,198
Other versions
US9156942B2 (en
US20110144301A1 (en
Inventor
Anja Enderle
Manfred Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Priority to US13/032,198 priority Critical patent/US9156942B2/en
Publication of US20110144301A1 publication Critical patent/US20110144301A1/en
Assigned to EVONIK ROEHM GMBH reassignment EVONIK ROEHM GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG
Publication of US20110288267A2 publication Critical patent/US20110288267A2/en
Application granted granted Critical
Publication of US9156942B2 publication Critical patent/US9156942B2/en
Assigned to ROEHM GMBH reassignment ROEHM GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK ROEHM GMBH
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROEHM GMBH
Assigned to EVONIK OPERATIONS GMBH reassignment EVONIK OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK DEGUSSA GMBH
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides

Definitions

  • the invention relates to a process for purifying a resorbable polyester, the polymer being dissolved in a first solvent and subsequently the polymer solution being brought into intimate contact with a second solvent under the action of high shear forces in a turbulent shear field, the first solvent being a “genuine” solvent and the second solvent being a non-solvent for the resorbable polyester and being unlimitedly miscible with the first solvent.
  • the invention also relates to a resorbable polyester which is purified using the process and to the use thereof.
  • the invention further relates to a purification device for purifying a resorbable polyester that contains as its main components a dissolving vessel in which the polymer is dissolved in a first solvent, a separation device for separating a moist polymer mass from a polymer suspension and a dryer for drying the polymer mass.
  • Resorbable polyesters in the sense of the invention are homopolymers or copolymers based on lactide (L-lactide, D-lactide, DL-lactide, meso-lactide), glycolide, epsilon-caprolactone, dioxanone, trimethylene carbonate, delta-valerolactone, gamma-butyrolactone, and similar polymerisable heterocycles.
  • the polymers can either be composed of one or else of a plurality of different monomer modules or optionally contain further modules in the polymer chain, such as for example units of ethylene glycol.
  • Preferred according to the invention are homopolymers of D,L-lactide, copolymers of D,L-lactide and glycolide of differing composition and block copolymers of the aforementioned polyester units and polyethylene glycol.
  • Resorbable polyesters are raw materials which are widely used for the production of resorbable, surgical implants and also as a pharmaceutical auxiliary for the formulation of parenteral release systems.
  • poly(lactides) and other resorbable polyesters are used in surgical implants for the fixing of bone fractures, in reticule and membranes for controlled tissue regeneration and in microcapsules and implants for subcutaneous or intramuscular injection, in particular for the controlled release of active ingredients.
  • resorbable polymers After implantation or injection into the body, resorbable polymers are broken down into oligomers in a slow hydrolytic reaction. Hydrolysis end products such as lactic acid or glycolic acid are metabolised into carbon dioxide and water.
  • resorbable polyesters The synthesis of resorbable polyesters is known in the art. They can be prepared by polycondensation from hydroxycarboxylic acids such as lactic acid and/or glycolic acid. Another frequently taken synthesis pathway is the ring-opening polymerisation of the corresponding heterocycles.
  • the crude polymers always contain a specific content of non-converted monomers that frequently cannot be reduced below a value of from 1 to 3% even if the corresponding synthesis processes are optimised.
  • the reason for this is that ring-opening polymerisation is an equilibrium reaction and even during polycondensation the linear polyester is present in equilibrium with the corresponding hydroxycarboxylic acids.
  • Monomers can be removed from partially crystalline polyesters using extraction processes. Suitable for this purpose are solvents which dissolve the monomer but do not dissolve the polymer. Suitable examples include organic solvents such as n-hexane, cyclohexane, methanol, ethanol, acetone or ethyl acetate.
  • EP 0456246 discloses for example an extraction process for resorbable polyesters that uses carbon dioxide as the solvent.
  • Amorphous polyester can generally not be purified by extraction processes, as the relevant solvents either also dissolve the polymer or at least cause it to swell. If supercritical or pressure-liquefied carbon dioxide is used, the polymer mass expands greatly when the pressure is relieved, and this also prevents a process of this type from being carried out.
  • the prior art discloses a number of reprecipitation processes for the purification of amorphous polyesters. These involve dissolution of the crude polymer in a suitable solvent. The addition of a large excess of a non-solvent, which is however miscible with the solvent, causes precipitation of the polymer.
  • U.S. Pat. No. 4,810,775 discloses a purification process for resorbable polyesters having crystallinity of up to 20%, the polymer being dissolved in a solvent, the polymer solution subsequently being brought into intimate contact with a precipitant under the action of high shear forces in a turbulent shear field.
  • the turbulent shear field is generated by a device consisting of a two-fluid nozzle and of a container which is filled with precipitant and into which the two-fluid nozzle protrudes, so the precipitating polymer is broken down into very small particles.
  • the phase separation of the polymer suspension formed during the reprecipitation is carried out either in a centrifuge or by collection in receptacles which, owing to the large amount of solvent required, must be large even in relatively small batch sizes.
  • the object of the invention is therefore to provide an improved purification process for purifying a resorbable polyester, in particular an amorphous polyester, of the type mentioned at the outset that allows a resorbable polyester of high and reproducible quality to be obtained even on an industrial scale. It is furthermore the object of the invention to provide a corresponding device for the process according to the invention.
  • the object concerning the process is achieved according to the invention in that subsequently the polymer suspension, which is formed by the addition of the second solvent, is conveyed onto or into a rotating, cylindrical screen body of a drum shear screen and subsequently the moist polymer mass is separated from the screen body and subsequently dried thereon.
  • This provides a continuously operating separation process which allows the polymer suspension to be separated with high reproducibility into the solid and liquid phase.
  • the continuous mode of operation allows batches of constant quality to be provided irrespective of the amount.
  • the first solvent used is acetone, ethyl acetate, 1,4-dioxane, dimethylacetamide, tetrahydrofuran, toluene, dimethylformamide, dimethylsulphoxide, hexafluoroisopropanol or another halogenated hydrocarbon or a mixture of the aforementioned solvents.
  • a suitable solvent is thus provided depending on the type of polyester and the inherent viscosity of the polyester in solution.
  • Acetone, chloroform or dichloromethane have been found to be particularly suitable as the first solvent.
  • the second solvent used is ethanol, methanol or water or a mixture of the aforementioned solvents.
  • Particularly effective precipitation reactions can thus be achieved, depending on the first solvent used, water in particular being used as the second solvent.
  • Water is non-toxic and non-explosive but cost-effective and particularly environmentally acceptable.
  • the resorbable polyester which is dissolved in the first solvent is filtered and subsequently mixed with the second solvent via a two-fluid nozzle.
  • This produces an intimate contact under the action of high shear forces in the turbulent shear field, as a result of which optimum thorough mixing is achieved.
  • Alternative intensive thorough mixing can also be achieved if both media are injected from two separate nozzles into a flow tube and a fluidised bed is generated at the contact point by means of a rapidly rotating stirrer.
  • the moist polymer mass is separated effectively by means of gravity and by means of one or more helically attached conveyor rails and/or guide blades inside the rotating, cylindrical screen body.
  • This provides restricted conveyance which allows the polymer mass to be conveyed continuously, for example into a receptacle.
  • the process according to the invention can be used to purify cost-effectively and with constant quality, in particular, resorbable polyesters having an amorphous or partially crystalline structure.
  • Resorbable polyesters purified in this way preferably contain one or more units derived from lactide (L-lactide, D-lactide, DL-lactide, meso-lactide), glycolide, trimethylene carbonate, epsilon-caprolactone, gamma-butyrolactone, dioxanone, delta-valerolactone and/or similar polymerisable heterocycles and/or polyethylene glycols.
  • lactide L-lactide, D-lactide, DL-lactide, meso-lactide
  • glycolide trimethylene carbonate
  • epsilon-caprolactone gamma-butyrolactone
  • dioxanone dioxanone
  • delta-valerolactone delta-valerolactone
  • a resorbable polyester which is composed of D,L-lactide or copolymers of D,L-lactide and glycolide having any desired composition or a block copolymer of D,L-lactide, or D,L-lactide-co-glycolide having any desired composition and polyethylene glycol.
  • the residual monomer content after the purification has been carried out using the process according to the invention, is less than 1%, in particular less than 0.5%, a residual monomer content of below 0.1% being achievable.
  • the solvent and/or moisture content of the resorbable polyester is less than 2%, values of below 1%, in particular values of below 0.5% being achieved under beneficial settings. If dried particularly intensively, the solvent and/or moisture content of the resorbable polyester is ⁇ 0.1%.
  • a particularly preferred use of the resorbable polyester provides for the production of pharmaceutical formulations or resorbable implants.
  • the separation device is constructed as a drum shear screen comprising a rotating, cylindrical screen body.
  • Conveyor rails and/or guide blades inside the cylindrical screen body allow, in conjunction with the rotational movement of the screen body, the polymer mass to be conveyed continuously into, for example, a receptacle.
  • the drum shear screen has a suction device, in particular comprising a suction nozzle, above the rotating, cylindrical screen body in an upper housing cover.
  • a suction device in particular comprising a suction nozzle, above the rotating, cylindrical screen body in an upper housing cover.
  • a dryer which is configured as a fluidised bed dryer, circulating air dryer or tubular-flow dryer is particularly suitable for effective drying of the moist polymer mass.
  • the dryer has in a preferred embodiment a conical portion and a cylindrical portion, intensive swirling of the polymer mass to be dried being achieved in the conical portion of the dryer owing to the drying agent, for example nitrogen or air, which flows in from below.
  • the drying agent for example nitrogen or air, which flows in from below.
  • a grater is provided for the polymer. During drying, the polymer mass to be dried can be removed from the dryer and grated via the grater, after which the drying is continued.
  • the dryer has inside the cylindrical portion at least one screen insert.
  • the dryer expediently comprises a filter bag.
  • a swivel bearing of the dryer in a frame allows the dryer to be tilted, thus allowing the filter bag which is fastened to the dryer on the end side and comprises the dried polymer powder easily to be removed.
  • the polymer mass to be dried can be mixed thoroughly more easily during the drying process.
  • At least the product-guiding parts of the drum shear screen and of the dryer are made of stainless steel, thus ensuring high product quality with regard to pharmacological requirements.
  • FIG. 1 Is a schematic view of a purification device for resorbable polyesters for carrying out the process according to the invention
  • FIG. 2 is a perspective exploded view of the drum shear screen according to FIG. 1 .
  • FIG. 3 is a perspective view of the dryer according to FIG. 1 .
  • a purification device 1 comprises as its main component for a first process step a dissolving vessel 10 in which a polyester crude product 11 to be purified is placed.
  • a typical size of the dissolving vessel 10 is in the range of from 50 to 1,000 l and can, in the case of larger systems, be as much as 2,000 l or more.
  • the addition of a first solvent 12 causes dissolution in the dissolving vessel 10 of the polyester crude product 11 with the aid of a stirrer 13 and/or by constant recirculation of the solution.
  • Impurities in the polyester crude product 11 for example in the form of lint, are separated, for example by filtration.
  • first solvents 12 acetone, ethyl acetate, 1,4-dioxane, dimethylacetamide, tetrahydrofuran, toluene, dimethylformamide, dimethylsulphoxide, hexafluoroisopropanol or another halogenated hydrocarbon or a mixture of the aforementioned solvents.
  • acetone, chloroform or dichloromethane have proven particularly suitable as first solvents 12 .
  • a pump for example a diaphragm pump, is used to pump the polymer solution via a filter 30 containing a fine-meshed screen, preferably made of stainless steel.
  • a filter 30 containing a fine-meshed screen, preferably made of stainless steel.
  • insoluble impurities are separated off.
  • Typical mesh sizes are in this case a few ⁇ m, typically in the range of from 1 to 10 ⁇ m.
  • the polymer solution is intensively mixed via a two-fluid nozzle 40 by means of a second solvent 41 , which is a non-solvent for the polymer, and the polymer suspension resulting therefrom is guided into the interior of a rotating screen body 71 of a drum shear screen 70 via a conveyor 60 , in the simplest case directly or via a flow tube or a pipe, wherein the conveyance can be carried out by means of gravity, conventional pumps or by pressurization by means of a gas.
  • the second solvent 41 used is ethanol, methanol or water or a mixture of the aforementioned solvents for precipitation. Water is a particularly preferred second solvent 41 owing to its toxicological safeness and environmental acceptability.
  • the polymer suspension can be separated into the solvent mixture and into the precipitated polymer mass.
  • One or more helically attached guide rails and/or guide blades 72 inside the screen body 71 subject the polymer mass to restricted conveyance, so the polymer mass is transported to a solid outlet 75 .
  • the solvent mixture can in this case flow away downward through a liquid outlet 73 .
  • Solvent vapours can be removed by suction via a suction device 74 , for example a suction nozzle, in a housing cover 76 of the drum shear screen 70 above the screen body 71 , and this is advantageous with regard to the explosion protection class of the surrounding building.
  • the still-moist polymer mass which collects at the solid outlet 75 is transported using a solid conveyor 80 either directly into a dryer 90 or into a collection vessel. Batchwise filling of the dryer 90 from the collection vessel is possible in addition to continuous feeding.
  • the dryer 90 has a conical portion 95 and a cylindrical portion 96 . At least one screen insert 94 is provided inside the cylindrical portion 96 .
  • the drying agent 91 for example nitrogen or air, is introduced laterally from below into the conical portion 95 of the dryer 90 , so intensive swirling is achieved inside the dryer 90 .
  • the dryer 90 has a filter bag 92 for collecting the purified and dried resorbable polyester.
  • the drum shear screen 70 In the configuration of the drum shear screen 70 according to FIG. 2 , there may be seen on the inside the rotating screen body 71 into which the polymer suspension can be introduced via a U-shaped channel.
  • the screen body 71 is positioned slightly obliquely.
  • One or more helically attached guide rails and/or guide blades 72 inside the screen body 71 cause the restricted conveyance of the polymer mass to the solid outlet 75 .
  • Solvent vapours are removed by suction via the suction device 74 in the housing cover 76 of the drum shear screen 70 above the screen body 71 .
  • the screen body 71 is closed on its back to prevent the inside of the screen from becoming contaminated with abraded material from the drive unit. The back can be opened for purification purposes.
  • the dryer 90 according to FIG. 3 which is arranged in a movable frame 97 , can be tilted by means of a swivel bearing 93 .
  • the filter bag 92 is not shown.
  • at least the product-guiding parts of the drum shear screen 70 and of the dryer 90 are made of stainless steel.
  • the polyester crude product 11 is dissolved with the previously calculated amount of acetone as the first solvent 12 .
  • the polyester crude product 11 is weighed out and placed in the dissolving vessel 10 .
  • the calculated amount of acetone is added and the crude product dissolved by recirculation within approx. 24-72 hours.
  • the mixing ratio is dependent on the starting substances used (monomers or heterocycles) and the inherent viscosity of the crude product and is, for example in a copolymer of D,L-lactide and glycolide; 50:50 mol %; inherent viscosity of 0.5 dl/g measured as a 0.1% solution in chloroform; solution for precipitation is dispensed with, 8% by weight of polymer in acetone.
  • the polymer solution is conveyed into the two-fluid nozzle 40 by means of the pump 20 via a filter 30 made of stainless steel having a mesh size of 5 ⁇ m and a flowmeter.
  • the flow is dependent on the nature of the crude product used and is generally up to 20 l/h.
  • This figure relates to a flowmeter which is adjusted to the density of acetone.
  • the differing densities of the polymer solutions to be precipitated prevent precise flow measurement (except for mass flowmeters).
  • the polymer solution is injected into a water jet at a flow rate of approx. 700-1000 l/h, the dissolved crude product precipitating immediately in the form of flakes or fibres.
  • the suspension consisting of water, product flakes, monomer and acetone
  • the suspension is guided into the drum shear screen 70 via a pipe.
  • the suspension is guided into the rear region of the drum shear screen 70 .
  • the discharging water/acetone mixture which contains the monomers to be separated off, initially forms a product layer at this location. If the product layer is sufficiently heavy, it becomes detached from the wall and forms a product cluster (snowball system).
  • the guide blades 72 which run obliquely forward, and the rotational movement, these product clusters are slowly conveyed toward the solid outlet 75 in the screen body 71 .
  • the water/acetone mixture is separated off, on the one hand, by means of gravity and, on the other hand, by wedge-shaped screen profile bars and the Coand ⁇ hacek over (a) ⁇ effect resulting therefrom.
  • the solid is guided into the dryer 90 or the collection vessel by means of the solid conveyor 80 .
  • the dryer 90 which is configured as a tubular-flow dryer, the moist polymer mass is dried by means of a throughflow of air or nitrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

In a method for cleaning an absorptive polyester, the polymer is dissolved in a first solvent (12) and subsequently the polymer solution is brought into tight contact with a second solvent (41) in a turbulent shear field under the influence of strong shear forces. Here, the second solvent (41) represents a non-solvent for the absorptive polyester and is mixable with the first solvent (12) to an unlimited extent. Subsequently, the polymer suspension resulting from the addition of the second solvent (41) is conveyed onto or into a rotating, cylindrical screen body (71) of a drum shear screen (70) and then the moist polymer mass is removed from the screen body (71) and subsequently dried. The method is suitable for the production of absorptive polyester with a high degree of quality and may be performed in a cost-effective fashion on an industrial scale as well.

Description

  • The invention relates to a process for purifying a resorbable polyester, the polymer being dissolved in a first solvent and subsequently the polymer solution being brought into intimate contact with a second solvent under the action of high shear forces in a turbulent shear field, the first solvent being a “genuine” solvent and the second solvent being a non-solvent for the resorbable polyester and being unlimitedly miscible with the first solvent.
  • Furthermore the invention also relates to a resorbable polyester which is purified using the process and to the use thereof.
  • The invention further relates to a purification device for purifying a resorbable polyester that contains as its main components a dissolving vessel in which the polymer is dissolved in a first solvent, a separation device for separating a moist polymer mass from a polymer suspension and a dryer for drying the polymer mass.
  • Resorbable polyesters in the sense of the invention are homopolymers or copolymers based on lactide (L-lactide, D-lactide, DL-lactide, meso-lactide), glycolide, epsilon-caprolactone, dioxanone, trimethylene carbonate, delta-valerolactone, gamma-butyrolactone, and similar polymerisable heterocycles. The polymers can either be composed of one or else of a plurality of different monomer modules or optionally contain further modules in the polymer chain, such as for example units of ethylene glycol.
  • Preferred according to the invention are homopolymers of D,L-lactide, copolymers of D,L-lactide and glycolide of differing composition and block copolymers of the aforementioned polyester units and polyethylene glycol.
  • Resorbable polyesters are raw materials which are widely used for the production of resorbable, surgical implants and also as a pharmaceutical auxiliary for the formulation of parenteral release systems. For example, poly(lactides) and other resorbable polyesters are used in surgical implants for the fixing of bone fractures, in reticule and membranes for controlled tissue regeneration and in microcapsules and implants for subcutaneous or intramuscular injection, in particular for the controlled release of active ingredients. After implantation or injection into the body, resorbable polymers are broken down into oligomers in a slow hydrolytic reaction. Hydrolysis end products such as lactic acid or glycolic acid are metabolised into carbon dioxide and water.
  • The synthesis of resorbable polyesters is known in the art. They can be prepared by polycondensation from hydroxycarboxylic acids such as lactic acid and/or glycolic acid. Another frequently taken synthesis pathway is the ring-opening polymerisation of the corresponding heterocycles.
  • Irrespective of the synthesis pathway, the crude polymers always contain a specific content of non-converted monomers that frequently cannot be reduced below a value of from 1 to 3% even if the corresponding synthesis processes are optimised. The reason for this is that ring-opening polymerisation is an equilibrium reaction and even during polycondensation the linear polyester is present in equilibrium with the corresponding hydroxycarboxylic acids.
  • The presence of monomers in the polymers is extremely problematic for the following reasons:
      • a) Because cyclic monomers are much more unstable in relation to hydrolytic decomposition than linear polyesters, they decompose more rapidly than polyesters on ingress of moisture. The hydrolytic decomposition generates acid equivalents which, again, the hydrolytic decomposition of the polyesters also catalyses. The implantation of monomer-containing polyesters would therefore lead to a greatly accelerated breakdown of the material in the body.
      • b) For the same reason, the stability in storage of monomer-containing polyesters and implants or pharmaceutical formulations produced therefrom is markedly impaired.
      • c) The stability of resorbable polyesters is also impaired during thermoplastic processing if residual contents of monomers are present.
      • d) The encapsulation behaviour of non-purified polyesters is different from that of purified polyesters, as are the release behaviour and the breakdown behaviour. Encapsulated active ingredients, such as peptides, can become damaged or destroyed as a result of the greater amount of free acid compared to purified polymers.
      • e) During the synthesis reactions, the residual monomer content of the crude polymer is often difficult to control. Variability in the residual monomer content then automatically also leads to intolerable batch-to-batch variations in the breakdown rate, the stability in storage and the processing stability, so materials of reproducible quality cannot be obtained without a subsequent purification step to reduce the amount of residual monomers.
  • Purification processes for separating residual monomers from resorbable polyesters are also known in the art.
  • Monomers can be removed from partially crystalline polyesters using extraction processes. Suitable for this purpose are solvents which dissolve the monomer but do not dissolve the polymer. Suitable examples include organic solvents such as n-hexane, cyclohexane, methanol, ethanol, acetone or ethyl acetate. EP 0456246 discloses for example an extraction process for resorbable polyesters that uses carbon dioxide as the solvent.
  • Amorphous polyester can generally not be purified by extraction processes, as the relevant solvents either also dissolve the polymer or at least cause it to swell. If supercritical or pressure-liquefied carbon dioxide is used, the polymer mass expands greatly when the pressure is relieved, and this also prevents a process of this type from being carried out. The prior art discloses a number of reprecipitation processes for the purification of amorphous polyesters. These involve dissolution of the crude polymer in a suitable solvent. The addition of a large excess of a non-solvent, which is however miscible with the solvent, causes precipitation of the polymer. For example, the reprecipitation of a poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) by dissolution in chloroform and precipitation in methanol or methanol/chloroform mixtures is disclosed (J. Matsumotot et al.; Int. J. of Pharm.; 185; 1999; 93-101). The disclosed reprecipitation processes have the drawback of using a huge amount of organic solvents and, in addition, the solid/liquid phase separation, and thus the product isolation, is extremely difficult. This is in particular due to the fact the polyesters tend to agglomerate at the contact point at which the polymer solution enters into contact with the non-solvent. Application on an industrial scale is therefore difficult.
  • U.S. Pat. No. 4,810,775 discloses a purification process for resorbable polyesters having crystallinity of up to 20%, the polymer being dissolved in a solvent, the polymer solution subsequently being brought into intimate contact with a precipitant under the action of high shear forces in a turbulent shear field. The turbulent shear field is generated by a device consisting of a two-fluid nozzle and of a container which is filled with precipitant and into which the two-fluid nozzle protrudes, so the precipitating polymer is broken down into very small particles. However, it is not disclosed how a process of this type can be carried out economically on a large scale. The phase separation of the polymer suspension formed during the reprecipitation is carried out either in a centrifuge or by collection in receptacles which, owing to the large amount of solvent required, must be large even in relatively small batch sizes.
  • The object of the invention is therefore to provide an improved purification process for purifying a resorbable polyester, in particular an amorphous polyester, of the type mentioned at the outset that allows a resorbable polyester of high and reproducible quality to be obtained even on an industrial scale. It is furthermore the object of the invention to provide a corresponding device for the process according to the invention.
  • The object concerning the process is achieved according to the invention in that subsequently the polymer suspension, which is formed by the addition of the second solvent, is conveyed onto or into a rotating, cylindrical screen body of a drum shear screen and subsequently the moist polymer mass is separated from the screen body and subsequently dried thereon.
  • This provides a continuously operating separation process which allows the polymer suspension to be separated with high reproducibility into the solid and liquid phase. The continuous mode of operation allows batches of constant quality to be provided irrespective of the amount.
  • In terms of the process, provision is made for the first solvent used to be acetone, ethyl acetate, 1,4-dioxane, dimethylacetamide, tetrahydrofuran, toluene, dimethylformamide, dimethylsulphoxide, hexafluoroisopropanol or another halogenated hydrocarbon or a mixture of the aforementioned solvents. A suitable solvent is thus provided depending on the type of polyester and the inherent viscosity of the polyester in solution. Acetone, chloroform or dichloromethane have been found to be particularly suitable as the first solvent.
  • Preferably, the second solvent used is ethanol, methanol or water or a mixture of the aforementioned solvents. Particularly effective precipitation reactions can thus be achieved, depending on the first solvent used, water in particular being used as the second solvent. Water is non-toxic and non-explosive but cost-effective and particularly environmentally acceptable.
  • According to a development, the resorbable polyester which is dissolved in the first solvent is filtered and subsequently mixed with the second solvent via a two-fluid nozzle. This produces an intimate contact under the action of high shear forces in the turbulent shear field, as a result of which optimum thorough mixing is achieved. Alternative intensive thorough mixing can also be achieved if both media are injected from two separate nozzles into a flow tube and a fluidised bed is generated at the contact point by means of a rapidly rotating stirrer.
  • Advantageously, the moist polymer mass is separated effectively by means of gravity and by means of one or more helically attached conveyor rails and/or guide blades inside the rotating, cylindrical screen body. This provides restricted conveyance which allows the polymer mass to be conveyed continuously, for example into a receptacle.
  • In order to obtain a low residual moisture or residual solvent content, for drying the moist polymer mass, nitrogen or air is expediently passed therethrough in a dryer.
  • The process according to the invention can be used to purify cost-effectively and with constant quality, in particular, resorbable polyesters having an amorphous or partially crystalline structure.
  • Resorbable polyesters purified in this way preferably contain one or more units derived from lactide (L-lactide, D-lactide, DL-lactide, meso-lactide), glycolide, trimethylene carbonate, epsilon-caprolactone, gamma-butyrolactone, dioxanone, delta-valerolactone and/or similar polymerisable heterocycles and/or polyethylene glycols. Particularly preferred is a resorbable polyester which is composed of D,L-lactide or copolymers of D,L-lactide and glycolide having any desired composition or a block copolymer of D,L-lactide, or D,L-lactide-co-glycolide having any desired composition and polyethylene glycol.
  • The residual monomer content, after the purification has been carried out using the process according to the invention, is less than 1%, in particular less than 0.5%, a residual monomer content of below 0.1% being achievable.
  • After the drying, the solvent and/or moisture content of the resorbable polyester is less than 2%, values of below 1%, in particular values of below 0.5% being achieved under beneficial settings. If dried particularly intensively, the solvent and/or moisture content of the resorbable polyester is <0.1%.
  • A particularly preferred use of the resorbable polyester provides for the production of pharmaceutical formulations or resorbable implants.
  • The object concerning the purification device is achieved according to the invention in that the separation device is constructed as a drum shear screen comprising a rotating, cylindrical screen body.
  • With this type of separation device, such as has previously been used for example in other fields for the continuous dehydration of high solid loads, it has surprisingly been found that the device allows polymer suspensions formed from a precipitation reaction to be separated cost-effectively and at constant quality into a polymer mass and into solvent residues even if the throughput fluctuates.
  • Conveyor rails and/or guide blades inside the cylindrical screen body allow, in conjunction with the rotational movement of the screen body, the polymer mass to be conveyed continuously into, for example, a receptacle.
  • In an advantageous embodiment the drum shear screen has a suction device, in particular comprising a suction nozzle, above the rotating, cylindrical screen body in an upper housing cover. This provides removal of solvent vapours by suction, and this is particularly advantageous if, for example, acetone, ethanol or methanol is used, as the suction device allows the explosion protection class of the surrounding building to be reduced.
  • A dryer which is configured as a fluidised bed dryer, circulating air dryer or tubular-flow dryer is particularly suitable for effective drying of the moist polymer mass. The dryer has in a preferred embodiment a conical portion and a cylindrical portion, intensive swirling of the polymer mass to be dried being achieved in the conical portion of the dryer owing to the drying agent, for example nitrogen or air, which flows in from below. In order to reduce agglomeration, a grater is provided for the polymer. During drying, the polymer mass to be dried can be removed from the dryer and grated via the grater, after which the drying is continued.
  • In order to prevent the polymer from passing out of the dryer into a supply system, the dryer has inside the cylindrical portion at least one screen insert. For collecting the purified resorbable polyester, the dryer expediently comprises a filter bag. A swivel bearing of the dryer in a frame allows the dryer to be tilted, thus allowing the filter bag which is fastened to the dryer on the end side and comprises the dried polymer powder easily to be removed. Moreover the polymer mass to be dried can be mixed thoroughly more easily during the drying process.
  • According to a further configuration at least the product-guiding parts of the drum shear screen and of the dryer are made of stainless steel, thus ensuring high product quality with regard to pharmacological requirements.
  • It will be understood that the above-mentioned features and those which will be described hereinafter can be used not only in the respectively specified combination but rather also in other combinations. The scope of the invention is defined merely by the claims.
  • The invention will be described hereinafter in greater detail using an exemplary embodiment and with reference to the associated drawings, in which:
  • FIG. 1 Is a schematic view of a purification device for resorbable polyesters for carrying out the process according to the invention,
  • FIG. 2 is a perspective exploded view of the drum shear screen according to FIG. 1, and
  • FIG. 3 is a perspective view of the dryer according to FIG. 1.
  • A purification device 1 comprises as its main component for a first process step a dissolving vessel 10 in which a polyester crude product 11 to be purified is placed. A typical size of the dissolving vessel 10 is in the range of from 50 to 1,000 l and can, in the case of larger systems, be as much as 2,000 l or more. The addition of a first solvent 12 causes dissolution in the dissolving vessel 10 of the polyester crude product 11 with the aid of a stirrer 13 and/or by constant recirculation of the solution. Impurities in the polyester crude product 11, for example in the form of lint, are separated, for example by filtration. The following solvents have, for example, been found to be preferred first solvents 12: acetone, ethyl acetate, 1,4-dioxane, dimethylacetamide, tetrahydrofuran, toluene, dimethylformamide, dimethylsulphoxide, hexafluoroisopropanol or another halogenated hydrocarbon or a mixture of the aforementioned solvents. In the resorbable polyesters, acetone, chloroform or dichloromethane have proven particularly suitable as first solvents 12.
  • A pump, for example a diaphragm pump, is used to pump the polymer solution via a filter 30 containing a fine-meshed screen, preferably made of stainless steel. In this step insoluble impurities are separated off. Typical mesh sizes are in this case a few μm, typically in the range of from 1 to 10 μm.
  • Subsequently, the polymer solution is intensively mixed via a two-fluid nozzle 40 by means of a second solvent 41, which is a non-solvent for the polymer, and the polymer suspension resulting therefrom is guided into the interior of a rotating screen body 71 of a drum shear screen 70 via a conveyor 60, in the simplest case directly or via a flow tube or a pipe, wherein the conveyance can be carried out by means of gravity, conventional pumps or by pressurization by means of a gas. The second solvent 41 used is ethanol, methanol or water or a mixture of the aforementioned solvents for precipitation. Water is a particularly preferred second solvent 41 owing to its toxicological safeness and environmental acceptability.
  • Inside the rotating screen body 71 of the drum shear screen 70, the polymer suspension can be separated into the solvent mixture and into the precipitated polymer mass. One or more helically attached guide rails and/or guide blades 72 inside the screen body 71 subject the polymer mass to restricted conveyance, so the polymer mass is transported to a solid outlet 75. The solvent mixture can in this case flow away downward through a liquid outlet 73. Solvent vapours can be removed by suction via a suction device 74, for example a suction nozzle, in a housing cover 76 of the drum shear screen 70 above the screen body 71, and this is advantageous with regard to the explosion protection class of the surrounding building.
  • The still-moist polymer mass which collects at the solid outlet 75 is transported using a solid conveyor 80 either directly into a dryer 90 or into a collection vessel. Batchwise filling of the dryer 90 from the collection vessel is possible in addition to continuous feeding. The dryer 90 has a conical portion 95 and a cylindrical portion 96. At least one screen insert 94 is provided inside the cylindrical portion 96. The drying agent 91, for example nitrogen or air, is introduced laterally from below into the conical portion 95 of the dryer 90, so intensive swirling is achieved inside the dryer 90. The dryer 90 has a filter bag 92 for collecting the purified and dried resorbable polyester.
  • In the configuration of the drum shear screen 70 according to FIG. 2, there may be seen on the inside the rotating screen body 71 into which the polymer suspension can be introduced via a U-shaped channel. The screen body 71 is positioned slightly obliquely. One or more helically attached guide rails and/or guide blades 72 inside the screen body 71 cause the restricted conveyance of the polymer mass to the solid outlet 75. Solvent vapours are removed by suction via the suction device 74 in the housing cover 76 of the drum shear screen 70 above the screen body 71. The screen body 71 is closed on its back to prevent the inside of the screen from becoming contaminated with abraded material from the drive unit. The back can be opened for purification purposes.
  • The dryer 90 according to FIG. 3, which is arranged in a movable frame 97, can be tilted by means of a swivel bearing 93. The filter bag 92 is not shown. Moreover at least the product-guiding parts of the drum shear screen 70 and of the dryer 90 are made of stainless steel.
  • The process according to the invention will be described hereinafter:
  • The polyester crude product 11 is dissolved with the previously calculated amount of acetone as the first solvent 12. The polyester crude product 11 is weighed out and placed in the dissolving vessel 10. The calculated amount of acetone is added and the crude product dissolved by recirculation within approx. 24-72 hours. The mixing ratio is dependent on the starting substances used (monomers or heterocycles) and the inherent viscosity of the crude product and is, for example in a copolymer of D,L-lactide and glycolide; 50:50 mol %; inherent viscosity of 0.5 dl/g measured as a 0.1% solution in chloroform; solution for precipitation is dispensed with, 8% by weight of polymer in acetone.
  • The polymer solution is conveyed into the two-fluid nozzle 40 by means of the pump 20 via a filter 30 made of stainless steel having a mesh size of 5 μm and a flowmeter. The flow is dependent on the nature of the crude product used and is generally up to 20 l/h. This figure relates to a flowmeter which is adjusted to the density of acetone. The differing densities of the polymer solutions to be precipitated prevent precise flow measurement (except for mass flowmeters). In the two-fluid nozzle 40 the polymer solution is injected into a water jet at a flow rate of approx. 700-1000 l/h, the dissolved crude product precipitating immediately in the form of flakes or fibres.
  • The suspension, consisting of water, product flakes, monomer and acetone, is guided into the drum shear screen 70 via a pipe. In this case the suspension is guided into the rear region of the drum shear screen 70. As a result of the rotational movement, the discharging water/acetone mixture, which contains the monomers to be separated off, initially forms a product layer at this location. If the product layer is sufficiently heavy, it becomes detached from the wall and forms a product cluster (snowball system). As a result of the guide blades 72, which run obliquely forward, and the rotational movement, these product clusters are slowly conveyed toward the solid outlet 75 in the screen body 71. The water/acetone mixture is separated off, on the one hand, by means of gravity and, on the other hand, by wedge-shaped screen profile bars and the Coand{hacek over (a)} effect resulting therefrom.
  • The solid is guided into the dryer 90 or the collection vessel by means of the solid conveyor 80. In the dryer 90, which is configured as a tubular-flow dryer, the moist polymer mass is dried by means of a throughflow of air or nitrogen.

Claims (22)

1. Process for purifying a resorbable polyester, the polymer being dissolved in a first solvent (12) and subsequently the polymer solution being brought into intimate contact with a second solvent (41) under the action of high shear forces in a turbulent shear field, the first solvent (12) being a “genuine” solvent and the second solvent (41) being a non-solvent for the resorbable polyester and being unlimitedly miscible with the first solvent (12), characterised in that subsequently the polymer suspension, which is formed by the addition of the second solvent (41), is conveyed onto or into a rotating, cylindrical screen body (71) of a drum shear screen (70) and subsequently the moist polymer mass is separated from the screen body (71) and subsequently dried thereon.
2. Process according to claim 1, characterised in that the first solvent (12) used is acetone, ethyl acetate, 1,4-dioxane, dimethylacetamide, tetrahydrofuran, toluene, dimethylformamide, dimethylsulphoxide, hexafluoroisopropanol or another halogenated hydrocarbon or a mixture of the aforementioned solvents.
3. Process according to either claim 1 or claim 2, characterised in that the first solvent (12) used is acetone, chloroform or dichloromethane.
4. Process according to any one of claims 1 to 3, characterised in that the second solvent (41) used is ethanol, methanol or water or a mixture of the aforementioned solvents.
5. Process according to any one of claims 1 to 4, characterised in that the resorbable polyester which is dissolved in the first solvent (12) is filtered and subsequently mixed with the second solvent (41) via a two-fluid nozzle (40).
6. Process according to any one of claims 1 to 5, characterised in that the moist polymer mass is separated by means of gravity and by means of one or more helically attached conveyor rails and/or guide blades (72) inside the rotating, cylindrical screen body (71).
7. Process according to any one of claims 1 to 6, characterised in that for drying the moist polymer mass, nitrogen or air is passed therethrough in a dryer (90).
8. Resorbable polyester, purified using the process according to at least one of claims 1 to 7, characterised in that the resorbable polyester is an amorphous or partially crystalline polyester.
9. Resorbable polyester, purified using the process according to at least one of claims 1 to 7, characterised in that the resorbable polyester contains one or more units derived from lactide (L-lactide, D-lactide, DL-lactide, meso-lactide), glycolide, trimethylene carbonate, epsilon-caprolactone, gamma-butyrolactone, dioxanone, delta-valerolactone and/or similar polymerisable heterocycles and/or polyethylene glycols.
10. Resorbable polyester, purified using the process according to at least one of claims 1 to 7, characterised in that the resorbable polyester is composed of copolymers of lactide and glycolide and/or polyethylene glycols having any desired composition.
11. Resorbable polyester according to any one of claims 8 to 10, characterised in that the residual monomer content is less than 1%.
12. Resorbable polyester according to any one of claims 8 to 10, characterised in that the solvent and/or moisture content is less than 2%.
13. Use of the resorbable polyester according to any one of claims 8 to 12 for the production of pharmaceutical formulations or resorbable implants.
14. Purification device for purifying a resorbable polyester that contains as its main components a dissolving vessel (10) in which the polymer is dissolved in a first solvent (12), a separation device for separating a moist polymer mass from a polymer suspension and a dryer (90) for drying the polymer mass, characterised in that the separation device is constructed as a drum shear screen (70) comprising a rotating, cylindrical screen body (71).
15. Purification device according to claim 14, characterised in that the cylindrical screen body (71) has in its interior conveyor rails and/or guide blades (72).
16. Purification device according to claim 14, characterised in that the drum shear screen (70) has a suction device (74), in particular comprising a suction nozzle, above the rotating, cylindrical screen body (71) in an upper housing cover (76).
17. Purification device according to any one of claims 14 to 16, characterised in that the dryer (90) is a fluidised bed dryer, a circulating air dryer or a tubular-flow dryer.
18. Purification device according to any one of claims 14 to 17, characterised in that the dryer (90) has a conical portion (95) and a cylindrical portion (96).
19. Purification device according to any one of claims 14 to 18, characterised in that the dryer (90) comprises inside the cylindrical portion (96) at least one screen insert (94).
20. Purification device according to any one of claims 14 to 19, characterised in that the dryer (90) has a filter bag (92) for collecting the purified resorbable polyester.
21. Purification device according to any one of claims 14 to 20, characterised in that the dryer (90) is provided with a swivel bearing (93).
22. Purification device according to any one of claims 14 to 21, characterised in that at least the product-guiding parts of the drum shear screen (70) and of the dryer (90) are made of stainless steel.
US13/032,198 2007-05-04 2011-02-22 Method and device for cleaning an absorptive polyester Active 2030-11-03 US9156942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/032,198 US9156942B2 (en) 2007-05-04 2011-02-22 Method and device for cleaning an absorptive polyester

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102007020951A DE102007020951A1 (en) 2007-05-04 2007-05-04 Method and device for cleaning a resorbable polyester
DE102007020951.9 2007-05-04
DE102007020951 2007-05-04
PCT/EP2008/055408 WO2008135523A1 (en) 2007-05-04 2008-05-02 Method and device for cleaning an absorptive polyester
US59848009A 2009-11-02 2009-11-02
US13/032,198 US9156942B2 (en) 2007-05-04 2011-02-22 Method and device for cleaning an absorptive polyester

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/598,480 Continuation US20100137550A1 (en) 2007-05-04 2008-05-02 Method and Device for Cleaning an Absorptive Polyester
PCT/EP2008/055408 Continuation WO2008135523A1 (en) 2007-05-04 2008-05-02 Method and device for cleaning an absorptive polyester
US59848009A Continuation 2007-05-04 2009-11-02

Publications (3)

Publication Number Publication Date
US20110144301A1 US20110144301A1 (en) 2011-06-16
US20110288267A2 true US20110288267A2 (en) 2011-11-24
US9156942B2 US9156942B2 (en) 2015-10-13

Family

ID=39800573

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/598,480 Abandoned US20100137550A1 (en) 2007-05-04 2008-05-02 Method and Device for Cleaning an Absorptive Polyester
US13/032,198 Active 2030-11-03 US9156942B2 (en) 2007-05-04 2011-02-22 Method and device for cleaning an absorptive polyester

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/598,480 Abandoned US20100137550A1 (en) 2007-05-04 2008-05-02 Method and Device for Cleaning an Absorptive Polyester

Country Status (18)

Country Link
US (2) US20100137550A1 (en)
EP (2) EP2246381A3 (en)
JP (1) JP5654342B2 (en)
KR (1) KR20100016203A (en)
CN (1) CN101675092B (en)
AR (1) AR066434A1 (en)
AU (1) AU2008248649A1 (en)
BR (1) BRPI0810713A8 (en)
CA (1) CA2686045A1 (en)
DE (1) DE102007020951A1 (en)
ES (1) ES2627727T3 (en)
HK (1) HK1138027A1 (en)
IL (1) IL201279A (en)
MX (1) MX2009011077A (en)
NZ (1) NZ580827A (en)
RU (1) RU2473577C2 (en)
TW (1) TWI428365B (en)
WO (1) WO2008135523A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208057A1 (en) * 2013-08-29 2016-07-21 Evonik Röhm Gmbh Process for preparing a bio-resorbable polyester in the form of a powder
US11052053B2 (en) 2018-05-08 2021-07-06 Evonik Operations Gmbh Nanoparticle comprising a bio-resorbable polyester, a hydrophilic polymer and an acylated human lactoferrin-derived peptide

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053242A1 (en) 2008-11-07 2010-05-14 Samyang Corporation Highly purified polylactic acid or a derivative thereof, a salt of the same, and purification method thereof
DE102011014131A1 (en) 2011-03-15 2012-09-20 Thyssenkrupp Uhde Gmbh Process for drying moist polymer powder and apparatus suitable therefor
US8735504B2 (en) 2012-05-02 2014-05-27 Warsaw Orthopedic, Inc. Methods for preparing polymers having low residual monomer content
CN103421172B (en) * 2012-05-23 2016-01-20 上海现代药物制剂工程研究中心有限公司 A kind of purifying process of biodegradable polyesters
WO2014108191A1 (en) 2013-01-10 2014-07-17 Evonik Industries Ag Electronic device unit comprising a polymer coating
CN103105047B (en) * 2013-01-30 2014-10-22 青岛沃隆花生机械有限公司 Continuous type water removal machine
JP5959728B2 (en) 2013-04-11 2016-08-02 三井化学株式会社 Method for producing lactic acid-glycolic acid copolymer or salt thereof
CN106687077B (en) 2014-09-07 2021-07-27 奥西奥有限公司 Anisotropic biocomposite, medical implant comprising anisotropic biocomposite, and method of treatment thereof
JP6707537B2 (en) 2014-11-14 2020-06-10 レーム・ゲーエムベーハーRoehm GmbH Method for producing bioabsorbable polyester in the form of particles
CA2971990C (en) 2014-12-26 2023-03-28 Orahn Preiss-Bloom Continuous-fiber reinforced biocomposite medical implants
EP3307247A1 (en) 2015-06-10 2018-04-18 Evonik Röhm GmbH Process for preparing a powder comprising a human coagulation factor protein and a lactic acid polymer
WO2018002917A1 (en) * 2016-06-27 2018-01-04 Ossio Ltd. Fiber reinforced biocomposite medical implants with high mineral content
CN111050677B (en) 2017-09-07 2023-06-20 奥西西奥有限公司 Fiber reinforced biocomposite threaded implant
JP2019167402A (en) * 2018-03-22 2019-10-03 三井化学株式会社 Manufacturing method of powder containing lactic acid-glycolic acid copolymer
DE102019205941A1 (en) * 2019-04-25 2020-10-29 Robert Bosch Gmbh Method for treating at least one surface of a polymer
CN114058072A (en) * 2020-08-07 2022-02-18 Apk股份公司 Method for removing solvent from polymer solution by integrated drum drying and extrusion
CN112595033B (en) * 2020-12-10 2022-11-08 万华化学集团股份有限公司 Preparation method of polycarbonate powder with stable color
CN112694605B (en) * 2020-12-29 2023-03-17 浙江圣兆药物科技股份有限公司 Purification method and production equipment of polyester products
CN117337168A (en) 2021-04-01 2024-01-02 渤健马萨诸塞州股份有限公司 Nucleic acid delivery to the central nervous system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164329B (en) * 1984-09-13 1988-05-05 British Uralite Plc Hydraulic cement compositions containing fibrous material
JPS61250025A (en) * 1985-04-27 1986-11-07 Mitsubishi Gas Chem Co Inc Production of dried polycarbonate solid particles
DE3708916A1 (en) 1987-03-19 1988-09-29 Boehringer Ingelheim Kg METHOD FOR CLEANING RESORBABLE POLYESTERS
SU1625876A1 (en) * 1988-06-21 1991-02-07 Предприятие П/Я А-7629 Method of glycolide or lactid purification from organic acid admixtures
EP0452111B1 (en) * 1990-04-13 1998-07-15 Takeda Chemical Industries, Ltd. Biodegradable high-molecular polymers, production and use thereof
JP3200706B2 (en) * 1990-04-13 2001-08-20 武田薬品工業株式会社 Biodegradable polymer
DE4014974A1 (en) 1990-05-10 1991-11-14 Boehringer Ingelheim Kg METHOD FOR PRODUCING SOLVENT- AND RESIDUAL-MONOMER-FREE IN INJECTION MOLDING, EXTRUSION AND MELT SPINE PROCESSING POLYMERS
RU2093246C1 (en) * 1992-04-02 1997-10-20 Николай Прокофьевич Кохно Method and device for separation of coarse dispersive suspensions
DE4218268C2 (en) * 1992-06-03 1997-01-16 Boehringer Ingelheim Kg Process for cleaning bioabsorbable polyester
DE19800591C2 (en) 1997-03-21 2002-04-25 Dyneon Gmbh Process for the treatment of fluoropolymer suspensions
US6376643B1 (en) 2000-11-08 2002-04-23 Invigor Biotechnology Co., Ltd. Method of polymerization of lactide and polylactide homopolymer thereof
JP4214183B2 (en) * 2003-04-10 2009-01-28 川口精機株式会社 Screw type dehydrator
JP4403845B2 (en) * 2004-03-22 2010-01-27 東レ株式会社 Method for producing polylactic acid with low lactide content
JP2006026563A (en) * 2004-07-16 2006-02-02 Fuji Photo Film Co Ltd Method and apparatus for treating waste water containing suspension chemical substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ullman's Encyclopedia of Industrial Chemistry (pg 10-26 and 10-37, 1988). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208057A1 (en) * 2013-08-29 2016-07-21 Evonik Röhm Gmbh Process for preparing a bio-resorbable polyester in the form of a powder
US9790331B2 (en) * 2013-08-29 2017-10-17 Evonik Roehm Gmbh Process for preparing a bio-resorbable polyester in the form of a powder
US11052053B2 (en) 2018-05-08 2021-07-06 Evonik Operations Gmbh Nanoparticle comprising a bio-resorbable polyester, a hydrophilic polymer and an acylated human lactoferrin-derived peptide

Also Published As

Publication number Publication date
EP2147036B1 (en) 2017-03-22
RU2473577C2 (en) 2013-01-27
US20100137550A1 (en) 2010-06-03
NZ580827A (en) 2012-11-30
ES2627727T3 (en) 2017-07-31
AU2008248649A1 (en) 2008-11-13
AR066434A1 (en) 2009-08-19
WO2008135523A1 (en) 2008-11-13
US9156942B2 (en) 2015-10-13
IL201279A (en) 2013-11-28
EP2246381A2 (en) 2010-11-03
KR20100016203A (en) 2010-02-12
JP5654342B2 (en) 2015-01-14
TW200909474A (en) 2009-03-01
IL201279A0 (en) 2010-05-31
HK1138027A1 (en) 2010-08-13
BRPI0810713A2 (en) 2014-10-21
EP2246381A3 (en) 2017-10-25
JP2010526200A (en) 2010-07-29
DE102007020951A1 (en) 2008-11-06
EP2147036A1 (en) 2010-01-27
CN101675092B (en) 2012-01-11
TWI428365B (en) 2014-03-01
MX2009011077A (en) 2009-11-02
RU2009144850A (en) 2011-06-10
US20110144301A1 (en) 2011-06-16
CA2686045A1 (en) 2008-11-13
BRPI0810713A8 (en) 2016-06-07
CN101675092A (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US9156942B2 (en) Method and device for cleaning an absorptive polyester
US4810775A (en) Process for purifying resorbable polyesters
EP2814866B1 (en) Method for producing polymer and device for producing polymer
KR102468902B1 (en) Process for preparing a bio-resorbable polyester in particulate form
JP3622327B2 (en)   Cleaning method for aliphatic polyester pellets
US20150376363A1 (en) Porous material, producing method thereof, and serial producing apparatus thereof
KR100543541B1 (en) Method for the removal and recovery of lactide from polylactide
JP3471112B2 (en) Polylactic acid polymerization method and polymerization apparatus
JP7000631B1 (en) Method for Producing Aliphatic Polyester, Aliphatic Polyester Resin and Aliphatic Polyester Resin Composition
JPH07499A (en) Method for refining and stabilizing absorbent polymer
CN112694605B (en) Purification method and production equipment of polyester products
JP2014221886A (en) Polymer product and method for producing polymer
CN116159035A (en) Low-melting-point hydrophobic polymer microsphere and preparation method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: EVONIK ROEHM GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG;REEL/FRAME:026727/0581

Effective date: 20110330

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: EVONIK OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:051894/0001

Effective date: 20191002

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROEHM GMBH;REEL/FRAME:051893/0727

Effective date: 20190911

Owner name: ROEHM GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK ROEHM GMBH;REEL/FRAME:051893/0671

Effective date: 20190731

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8