US20110278312A1 - Housing of an electronic device formed by doubleshot injection molding - Google Patents
Housing of an electronic device formed by doubleshot injection molding Download PDFInfo
- Publication number
- US20110278312A1 US20110278312A1 US13/190,312 US201113190312A US2011278312A1 US 20110278312 A1 US20110278312 A1 US 20110278312A1 US 201113190312 A US201113190312 A US 201113190312A US 2011278312 A1 US2011278312 A1 US 2011278312A1
- Authority
- US
- United States
- Prior art keywords
- enclosure
- walls
- wall
- recited
- injection molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/16—Making multilayered or multicoloured articles
- B29C45/1615—The materials being injected at different moulding stations
- B29C45/162—The materials being injected at different moulding stations using means, e.g. mould parts, for transferring an injected part between moulding stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/03—Injection moulding apparatus
- B29C45/04—Injection moulding apparatus using movable moulds or mould halves
- B29C45/06—Injection moulding apparatus using movable moulds or mould halves mounted on a turntable, i.e. on a rotating support having a rotating axis parallel to the mould opening, closing or clamping direction
- B29C45/062—Injection moulding apparatus using movable moulds or mould halves mounted on a turntable, i.e. on a rotating support having a rotating axis parallel to the mould opening, closing or clamping direction carrying mould halves co-operating with fixed mould halves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
Abstract
A method for forming an enclosure for enclosing internal electronic components of an electronic device is provided, which comprises: performing a first injection molding process, the first injection molding process forming at least a first wall of the enclosure; allowing the at least a first wall of the enclosure to solidify; thereafter performing a second injection molding process, the second injection molding process forming at least a second wall of the enclosure, the at least a second wall of the enclosure fusing with the at least a first wall of the enclosure during the second injection molding process, the at least second wall of the enclosure forming at least one different side of the enclosure than the at least first wall of the enclosure; and allowing the at least a second wall of the enclosure to solidify, the at least a second wall of the enclosure being integrally formed with the at least a first wall of the enclosure to thereby form a single-piece multi-walled enclosure.
Description
- This application is a Divisional of pending U.S. application Ser. No. 12/710,261 filed Feb. 22, 2010, entitled “HOUSING OF AN ELECTRONIC DEVICE FORMED BY DOUBLESHOT INJECTION MOLDING”, which is a Continuation of U.S. application Ser. No. 11/782,175 filed Jul. 24, 2007, entitled “HOUSING OF AN ELECTRONIC DEVICE FORMED BY DOUBLESHOT INJECTION MOLDING,” that issued on Apr. 13, 2010, as U.S. Pat. No. 7,695,665. Furthermore, U.S. application Ser. No. 11/782,175 is a Divisional of U.S. application Ser. No. 11/205,850 filed Aug. 16, 2005, entitled “HOUSING OF AN ELECTRONIC DEVICE FORMED BY DOUBLESHOT INJECTION MOLDING,” now abandoned. All of the aforementioned applications are incorporated herein by reference in their entirety and for all purposes.
- 1. Field of the Invention
- The present invention relates generally to methods of injection molding and housings formed therefrom. More particularly, the present invention relates to a housing of an electronic device formed by double shot injection molding.
- 2. Description of the Related Art
- Injection molding is one of the most popular processes for manufacturing plastic products. The injection molding process generally includes (1) injecting molten plastic material into a closed mold, (2) allowing the plastic to cool down and solidify, and (3) ejecting the finished product from the mold. This process may for example be used to form enclosures or housings for various electronic products.
- Referring to
FIG. 1 , in order to mold a single opening enclosure for electronic devices using standard injection molding processes, themold 10 typically consists of two parts, afirst mold half 12 that includes acavity 14, and asecond mold half 16 that includes acore 18. When the twomold halves core 18 is placed inside thecavity 14, and plastic is injected through a gate into theopen space 22 found between thecavity 14 and thecore 18 thereby forming a box like part with an open end. The part is typically formed vertically along itslongitudinal axis 24. After allowing the part to cool, the twomold halves cavity 14 of thefirst mold half 12. - In order to allow proper removal of the
core 18 when themold halves core 18 typically includes adraft angle 28 on each of its sides (e.g., four sides). Thedraft angle 28 is the amount of taper required to allow the proper removal of thecore 18 from the molded part along theaxis 24. That is, thedraft angle 28 allows thecore 18 to slide out of the molded part when the molds are opened. The larger thedraft angle 28, the easier it is to get thecore 18 out of the part. If there is nodraft angle 28 thecore 18 may be difficult to remove from the molded part (the part shrinks around the core). Although the draft angle depends on the part design, in most cases a 2 degree draft angle per side is used. However, the minimum requirement is typically 1 degree and in some cases the draft angle may be as small as ½ degree. However, in elongated parts that extend longitudinally as shown, thedraft angle 28 tends to be on the high side as for example at least one degree and more likely 2 degrees. If a large draft angle is not used, the sticktion force between the part and thecore 18 is difficult to overcome. And even if the sticktion force is overcome, stresses may be induced in the molded part and/or the part may be damaged during ejection. A large sticktion force is typically caused by the large surface area between the part and the core in the direction of the release (e.g., along the longitudinal axis 24). - Unfortunately, because of the
draft angle 28, the inside walls of the molded part are also tapered and as a result the thickness of the molded part is non-uniform. The thickness varies longitudinally from thin at theopen end 30 to thick at the closedend 32. While this may not be too problematic in low depth parts, it can be especially problematic in elongated parts, as the thickness can become very large at the closed end. In enclosures for electronic devices, especially small handheld electronic devices, either the outer dimensions of the part have to grow to provide the internal space necessary for the internal electronics or the device is left with less room for these components. That is, the draft either reduces the amount usable space inside the enclosure or drives the outside of the enclosure larger to create the same space for the electronic components inside. Neither of these results is desirable in small handheld devices where the outer dimensions are highly controlled and the internal space is at a premium. Furthermore, the thick wall sections may yield cosmetic issues such as sinks, cooling/flatness issues, etc. and require additional plastic material that is not needed thereby driving up the cost of the product. - In some cases, it may be desirable to place internal features such as protrusions, recesses, undercuts, on the inside surfaces of the molded part. In cases such as these, the core may include a mechanical action. The mechanical action forces the part off of the core and at the same time causes the part to be lifted away from the internal feature thereby allowing the core to be released from the molded part. If the core was not lifted away, the part would get stuck on the core as its removed along the longitudinal axis. By way of example, the core may include a lifter that forms the internal feature on the inside surface and then moves away from the internal feature in order to provide enough clearance during removal.
- Unfortunately, mechanical actions require large cores so they are not possible with smaller parts, especially small parts that are thin and long (as shown). With parts such as these, there is simply not enough room inside the part for mechanical actions such as those created by lifters. This is especially true at the closed end of the part. Even if a lifter was somehow placed on the core, it probably wouldn't make too many cycles before it failed. Because of the small size, the lifter would overheat and self destruct.
- Injection molding is not limited to forming parts as described above. In some cases, injection molding may be used to put decorative features on the outer surfaces of a part. This may be accomplished using a technique called double shot injection molding. In double shot injection molding, the molding process utilizes two injections. One of the injections is used to form the part (as described above for example), and the second injection is used to create an outer layer around some or all of the part (or vice versa). By way of example, double shot injection molding may be used to place a soft layer on top of a hard layer, a transparent layer on top of an opaque layer, or create multicolored layers. In the case of an enclosure as discussed above, double shot injection molding typically only serves to enhance the look and feel of the enclosure. It does not help form the enclosure itself, as for example each of the various walls.
- Thus, there is a need for improved approaches for molding thin elongated enclosures, especially those for small handheld electronic devices.
- The invention relates, in one embodiment, to a method for forming an enclosure for enclosing internal electronic components of an electronic device is provided, which comprises: performing a first injection molding process, the first injection molding process forming at least a first wall of the enclosure; allowing the at least a first wall of the enclosure to solidify; thereafter performing a second injection molding process, the second injection molding process forming at least a second wall of the enclosure, the at least a second wall of the enclosure fusing with the at least a first wall of the enclosure during the second injection molding process, the at least second wall of the enclosure forming at least one different side of the enclosure than the at least first wall of the enclosure; and allowing the at least a second wall of the enclosure to solidify, the at least a second wall of the enclosure being integrally formed with the at least a first wall of the enclosure to thereby form a single-piece multi-walled enclosure.
- The invention relates, in another embodiment, to a method of forming a multi-walled enclosure that defines an open space for placement of internal components via a double shot injection molding process.
- The invention relates, in another embodiment, to a method of forming a single opening enclosure. The method includes performing a first injection mold process. The first injection mold process forms a front wall, right and left side walls, and a top wall of the single opening enclosure. The method also includes performing a second injection mold process. The second injection mold process forms a back wall of the single opening enclosure. The back wall is made integral with the front, right, left and top walls so as to form a single integral part.
- The invention relates, in another embodiment, to a double shot injection molding method for producing an enclosure of an electronic device having five walls and an open end. The double shot injection molding method includes providing a mold A and a mold B. Mold A includes a first injecting area and second injecting area. The first injecting area includes a core. The second injecting area includes a cavity and a movable insert for forming a wall of the enclosure. Mold B includes a cavity that cooperates with the core to form multiple walls of the enclosure. The method also includes engaging mold A with mold B so that the core of mold A is partially inserted into the cavity of mold B. The mold cooperating to form a void associated with a first half of the enclosure. The method further includes injecting plastic into the void so as to form a first half of the enclosure. The method additionally includes allowing the first half of the enclosure to cool and solidify.
- Once solidified, the method continues by disengaging mold A and mold B. The first half of the enclosure remains in the mold B after disengagement. The method also includes rotating mold B so that the first half of the enclosure is aligned with the second injection area of mold A. The method further includes engaging mold A with mold B. The movable insert is inserted into the first half of the enclosure so that only the edges of the first half of the enclosure are exposed to the cavity of mold A. The method further includes injecting plastic into the cavity of mold A so as to form a second half of the enclosure. The second half of the enclosure fuses with the first half of the enclosure during the injection. The method additionally includes allowing the second half of the enclosure to cool and solidify. The second half of the enclosure is integrally formed with the first half of the enclosure thereby producing the entire enclosure.
- Once formed, the method continues by removing the insert from the entire enclosure. The method also includes disengaging mold A and mold B. The entire enclosure remains in mold B after disengagement. The method further includes ejecting the entire enclosure from mold B.
- The invention relates, in another embodiment, to a method of forming an enclosure. The method includes forming first void. The first void forms a first set of walls of the enclosure. The method also includes injecting plastic into first void to form a first part. The method further includes allowing first part to solidify. The method additionally includes inserting wedge into first part.
- Moreover, the method includes forming second void. The second void forms the remaining walls of the enclosure. The method also includes injecting plastic into the second void to form a second part. The second part fuses with the first part during the injection thereby forming a final enclosure with integral first and second parts. The method further includes allowing the second part to solidify. The method additionally includes removing the wedge from the final part. The final part has five walls and an open end.
- The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
-
FIGS. 1A and 1B illustrate a standard injection molding process. -
FIG. 2 is a perspective diagram of an enclosure for an electronic device, in accordance with one embodiment of the present invention. -
FIG. 3 is a flow diagram of a two shot injection method for forming an enclosure of an electronic device, in accordance with one embodiment of the present invention. -
FIGS. 4A-J illustrate a method for forming an enclosure of an electronic device, in accordance with one embodiment of the present invention. -
FIG. 5 is a diagram of a double shot injection molding apparatus, in accordance with one embodiment of the present invention. -
FIG. 6 is a flow diagram of a double shot injection method, in accordance with one embodiment of the present invention. -
FIG. 7A is a diagram of a key-like enclosure, in accordance with one embodiment of the present invention. -
FIG. 7B is diagram of a finally assembledmedia player 402 that utilizes the enclosure ofFIG. 7A , in accordance with one embodiment of the present invention. -
FIG. 8 are cross sectional side views showing a side by side comparison of an enclosure formed via a traditional single shot process and an enclosure formed via the inventive two shot process, in accordance with one embodiment of the present invention. - The present invention proposes a two shot injection process for forming an enclosure for an electronic device. The two shot injection process allows for a thinner walled enclosure that uses less materials and allows for added structural features that would not be possible using traditional molding techniques. The two shot injection process generally includes forming one or more walls of an enclosure with a first shot and thereafter forming the remaining walls of the enclosure with a second shot. During the second shot, the walls fuse together thereby forming an integrally molded enclosure that is one piece.
- Embodiments of the invention are discussed below with reference to
FIGS. 2-8 . However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. -
FIG. 2 is a perspective diagram of anenclosure 50 for an electronic device, in accordance with one embodiment of the present invention. Theenclosure 50 includes five walls—afront wall 52, aback wall 54, aright side wall 56, aleft side wall 58 and atop wall 60. Theenclosure 50 also includes anopen end 62 at the bottom of theenclosure 50. Theenclosure 50 extends longitudinally from the top to bottom end of theenclosure 50. The dimensions of theenclosure 50 are defined by length L, width W, depth D and thickness t. - Although the dimensions can be widely varied, in one particular embodiment, the
enclosure 50 is thin and long and therefore the depth D is small and the length L is large. By way of example, the length L may be about 8 times the dimension of the depth D. In one embodiment, the enclosure has a depth of about 8.5 mm, a width of about 24.1 mm, a length of about 68.4 mm and a thickness t between about 1 mm to about 1.5 mm. It should be noted however is not a limitation but rather an example of a particular thin and elongated enclosure. By way of example, this example may generally correspond to the dimensions of the enclosure used in the iPod Shuffle manufactured by Apple Computer of Cupertino, Calif. - As mentioned in the background, this configuration of an enclosure (long and thin) presents problems when molding the enclosure using conventional techniques. For example, large tapers must be used, and further forming internal features is nearly impossible. In order to overcome these problems, the present invention proposes forming the
enclosure 50 in two or more injection molding steps rather than just one injection molding step. In the first step one or more walls are created, and in the second step, the remaining walls are created. More particularly, a first side of the enclosure is formed with the first injection and a second side of the enclosure is formed with the second injection. Although done in two steps, all the walls are integrally formed as the remaining walls fuse with the existing walls during the second injection molding process. These steps can be performed on the same machine in the same cycle (double shot) or separate machines (transfer) in different cycles. -
FIG. 3 is a flow diagram of a twoshot injection method 70 for forming an enclosure of an electronic device, in accordance with one embodiment of the present invention. Themethod 70 may for example be used to form theenclosure 50 shown inFIG. 2 . Themethod 70 includesblocks block 72, one or more walls of an enclosure are formed via a first injection. Inblock 74, the remaining walls of the enclosure are formed via a second injection. During the second injection, the molten plastic that forms the remaining walls fuses with the solidified walls formed during the first injection thereby forming a single solid enclosure with integral walls. - By utilizing two process steps, the taper that would normally exist is substantially minimized or completely eliminated from the inside surfaces of the enclosure. As such, the internal space of the enclosure is capable of fitting the desired internal components without increasing the outer dimensions of the enclosure. Furthermore, internal features can be placed on the inner surfaces without using a mechanical action. Mechanical actions for creating internal features are nearly impossible with enclosures of this type (e.g., thin and long).
- Further advantages can be realized when you consider that the two injection processes can use the same or different materials. In one embodiment, the first and second injections use the same plastic material. This may be beneficial in that this typically provides the best bond strength. In another embodiment, the first and second injections use different materials or the same materials with different characteristics (e.g., color). The materials may for example be selected from polycarbonate (PC), ABS or PC-ABS plastic materials. Polycarbonate has been found to work particularly well. In one implementation, both injections use polycarbonate. In another implementation, one of the injections uses polycarbonate, and the other injection uses ABS. In yet another implementation, one of the injections uses polycarbonate, and the other injections uses PC-ABS.
- In one embodiment, and referring to
FIGS. 2 and 3 , thefront wall 52,side walls top wall 60, are formed in the first injection molding process, and theback wall 54 is formed in the second injection molding process. This arrangement has been found to work particularly well. In fact, the inside surface of the front wall can be made with zero taper, and the inside surface of the back wall can be made with a limited taper such as substantially zero. Furthermore, the inside surfaces of the right and left sides can be made with zero taper along the y axis and minimal taper in the z direction as for example substantially zero. As a result, the thickness t of the enclosure can remain substantially uniform from the top and bottom ends. - It should be pointed out, however, that although this embodiment is directed at creating the front, sides and top of the enclosure in a first process, and the back wall of the enclosure in a second process, this is not a limitation and that the two or more process steps may be used to form a different arrangement of walls. For example, the front wall may be formed in the first step and the remaining walls may be formed in the second step. Alternatively, the back and one of the side walls may be formed in a first process and the front and the remaining side walls may be formed in the second process (or vice versa).
-
FIGS. 4A-J illustrate a method for forming an enclosure of an electronic device, in accordance with one embodiment of the present invention. The method may for example be used to form the enclosure shown inFIG. 2 . Each Figure includes both a cross sectional side view and a cross section top view.FIG. 4A illustrates afirst mold 102 and asecond mold 104. Thefirst mold 102 includes acavity 106 and thesecond mold 104 includes acore 108. - In
FIG. 4B , themolds core 108 is inserted into thecavity 106 thereby forming afirst void 110. Thefirst void 110 provides the space for molding the first half of the enclosure, particularly, the front, top, and side walls of the enclosure. - In
FIG. 4C , plastic is injected into thefirst void 110. This may be accomplished with a gate located in thesecond mold 102. In the illustrated embodiment, the plastic is injected through thecore 108 via the gate and thus the plastic flows first into the area of the void 110 that forms the front wall and then into the area of the void 110 that forms the top and side walls. By injecting plastic along the inner surface of the front wall, any imperfections created at the gate interface may be hidden inside the enclosure. - Unlike, the traditional part, the enclosure is formed horizontally rather than vertically as shown in
FIG. 1 . That is the part is laid during molding rather than being upright. As a result, the long longitudinal surface of the front wall does not include a taper. Furthermore, because the side and top walls are short, the walls may or may not include a taper. If a taper is used, it is typically very minimal because the part is easy to remove since the depth of the part is small, and/or because the part does not fully surround the core in the pull direction (e.g., one side is open thereby alleviating the squeezing caused by shrinkage). Even if a larger taper is used, the taper does not have a large affect on the wall thickness because of the shallow depth, i.e., the draft increases the wall thickness very minimally. As should be appreciated, the longer the part, the greater the impact of the draft angle. By way of example, the taper is less than about 0.5 degrees, and more particularly zero or near zero. - In
FIG. 4D , themolds core 108 is removed from the first half of theenclosure 112, which stays inside thecavity 106. Once themolds enclosure 112 is ready for the second shot. In some cases, the first half of theenclosure 112 remains in the first mold during the second shot (double shot), and in other cases the first half of theenclosure 112 is ejected and moved to another set of molds (transfer). In the illustrated embodiment, the first half of theenclosure 112 stays with thefirst mold 102, however it is moved from one molding area to another molding area. For example, thefirst mold 102 may rotate so that the first half of theenclosure 112 can interface with another part of thesecond mold 104 that is configured for forming the remaining portions of the enclosure. - In
FIG. 4E , thefirst mold 102 transports the first half of theenclosure 112 to a second molding area of thesecond mold 104. The second molding area of thesecond mold 104 includes asecond cavity 114 with aninsert 116 partially positioned in front of thesecond cavity 114. Theinsert 116 is sized and dimension for placement inside the first half of theenclosure 112 between the walls. Theinsert 116 is configured to protect the existing walls and form the remaining walls during the second injection process. - In
FIG. 4F , themolds insert 116 is placed inside the internal space of the first half of theenclosure 112 thereby leaving the edges of the walls exposed to thesecond cavity 114. The insert hits tight against the inside surfaces of the first half of the enclosure (shuts off the inside surfaces for the second shot except at the edges where the remaining walls are connected to the existing walls). Thesecond cavity 114 in cooperation with the wall edges and the back surface of theinsert 116 form asecond void 118. Thesecond void 118 provides the space for molding the second half of the enclosure, particularly, the back wall of the enclosure. - In
FIG. 4G , plastic is injected into thesecond void 118. This may be accomplished with a second gate located in thesecond mold 104. In the illustrated embodiment, the plastic is injected at the bottom edge of thesecond cavity 114 and thus the plastic flows first into the bottom of the back wall and then to top of the back wall and the edges of the exposed front, top and side walls. By injecting plastic at the bottom edge, any imperfections created at the gate interface may be easily removed as for example during a machining operation. - When the injected molten plastic comes into contact with the edges of the existing walls, the molten plastic melts the edges of the existing walls thereby allowing the back wall to fuse with the other walls. In essence, the plastic of the second shot recombines with the plastic of the first shot thereby forming a single
integral enclosure 120. After injection, theenclosure 120 is allowed to solidify. - Because the first half of the enclosure is frozen and the second half of the enclosure is molten during the second shot, the first half of the enclosure may have the tendency to curl up when the molten material of the second half of the enclosure begins to cool (as the second half solidifies, it begins to shrink which squeezes the first half of the enclosure). Unfortunately, this may adversely affect the structural strength, dimensional tolerances, and aesthetics of the enclosure.
- Several techniques can be performed to prevent curling during the second shot. In one embodiment, the first mold includes one or more retention features that help hold the first half of the enclosure rigid inside the cavity during the second shot. The retention features may for example be protrusions that are located inside the cavity along the front wall. The protrusions increase the surface area onto which plastic is molded during the first shot thereby increasing the sticktion force between the cavity and the part. They also provide pilings that help capture the part thereby preventing any bowing. For at least these reasons, the first half of the enclosure is prevented from curling up. In the illustrated embodiment, the retention features are a pair of spatially separated but side by side nubs 121. One of the nubs 121 is located closer to the right side and the other nub 121 is located closer to the left side thereby creating a more rigid structure on both sides. In some cases, the nubs 121 may include a slight taper for helping remove the part from the cavity when the process is completed. In other cases, the nubs 121 may be strategically placed at locations where aesthetics are of no concern or alternatively locations that can be machined or removed altogether. For example, the nubs may be positioned at locations where an opening will eventually be created in the enclosure for I/O devices such as buttons or displays.
- In another embodiment, the insert may include a cooling feature. The cooling feature prevents the insert from getting too hot. Because the core is thin (shallow depth), it heats up very rapidly and the heat may cause the first half of the enclosure to soften which as a result reduces the enclosure's resistance to creep and bending. The cooling keeps the first half of the enclosure rigid, which helps prevent the curling effect. In one implementation, the cooling is provided by one or more cooling channels that run through the insert and that maintain the temperature of the insert at an appropriate level. For example, water can run through the channels.
- In
FIG. 4H , theinsert 116 is removed from theinternal space 122 of theenclosure 120. This may be accomplished via a sliding action. Because only the back wall is made with molten plastic, the side of theinsert 116 that helped form the second void typically does not require a taper or alternatively only requires a minimal taper in order to remove theinsert 116 from theinternal space 122 of theenclosure 120. As should be appreciated, this is the only place that has any sticktion force as the existing walls have already solidified and therefore there is substantially no sticktion between the existing walls and theinsert 116. That is, because the existing walls are already frozen when the insert is placed therein, the insert does not stick thereto making the release manageable without a draft. Furthermore, because the existing walls are solid they do not shrink around the insert. In essence, the draft can be much less that would normally be used since its only one side and therefore the sticktion force and shrinkage force is much less. By way of example, the draft angle of the insert on the side of the back wall may be less than 0.25 degree, and more particularly, zero or substantially non-zero. - In some cases, the surfaces of the
insert 116, and mainly the surfaces in contact with the molten plastic, are polished to make the removal from the enclosure much easier. In one particular embodiment, the final polishing step used to create the polished surfaces is performed in the pull direction so that the polishing lines run parallel to the pull direction. Not only does this help in the removal, but it also helps prevent mystery or sink marks from forming on the surfaces during removal of the insert from the enclosure. It has been found that if the final polishing steps is performed in a direct transverse to the pull direction, sink marks may be created on the surfaces of the part when the insert is pulled out of the enclosure. In some cases, this may even cause the part to deform. - In
FIG. 4I , themolds enclosure 120 stays inside thefirst cavity 106 of thefirst mold 102. - In
FIG. 4J , theenclosure 120 is ejected from thefirst mold 102. In some cases, a robot arm with suction cups picks theenclosure 120 out of thefirst mold 102 and transfers it to another area where post molding steps may be performed. For example, machining steps may be performed as for example to clean up the edges of theenclosure 120. -
FIG. 5 is a diagram of a double shot injection molding apparatus 200, in accordance with one embodiment of the present invention. The double shot injection molding apparatus 200 is configured to perform two shots in the same machine and using the same molds—the first shot forming the first half of the enclosure, the second shot forming the second half of the enclosure and fusing the second half to the first half. One advantage of double shot is that the part stays in the mold, and as a result there is less handling, quicker cycle times and better cosmetics. - As shown, the molding apparatus 200 includes a
mold positioning mechanism 202 and aninjection unit 204. Themold positioning mechanism 202 includes aclamping unit 206 and arotating platen 208. Theclamping unit 206 is configured to clamp first andsecond molds rotating platen 208 is configured to rotate thefirst mold 210 about the clamping axis 214 in order to reposition thefirst mold 210 with thesecond mold 212. Therotating platen 208 may for example rotate thefirst mold 210 after the first shot in order to position the first half of the enclosure for the second shot. - The
injection unit 204, on the other hand, includes a pair ofinjectors platen 218. The fixedplaten 218 is configured to support thesecond mold 212 during the injection processes. The injectors 216 are configured to inject plastic into themolds first injector 216A is configured to produce the first shot and thesecond injector 216B is configured to produce the second shot of the double shot molding apparatus 200. Each injector 216 includes a heating cylinder 220 and amaterial feed system 222 such as a hopper. Alternatively, a single material feed system may be used to feed material to both heating cylinders. The injectors 216 are configured to force molten plastic out ofnozzles gates second mold 212. Thefirst gate 226 distributes the molten plastic to a first molding area 230 of thesecond mold 212, and thesecond gate 228 distributes molten plastic to a second molding area 232 of thesecond mold 212. - The first molding area 230 includes a core 234 that that interfaces with a
cavity 236 on thefirst mold 210 during the first shot. Thefirst gate 226 is positioned through thecore 234 so that plastic can be forced into the void created by thecore 234 and thecavity 236. Thesecond molding area 22 includes acavity 238 and amovable insert 240 located in front of thecavity 238. Thesecond gate 228 exits into thecavity 240 so that molten plastic can be forced into the void created by theinsert 240 and thecavity 238. This arrangement is configured to interface with asecond cavity 242 on thefirst mold 210 during the second shot. Thesecond cavity 242, which includes the first half of the enclosure, is rotated into alignment with theinsert 240 of thesecond mold 212 after the first shot, and thefirst cavity 236 is rotated into alignment with thecore 234 of thesecond mold 212 after the second shot and after the final molded enclosure is ejected from thefirst mold 210. Theinsert 240 is configured for placement in the first half of the enclosure, which is left in thesecond cavity 242. Theinsert 240 protects the existing walls of the first half of the enclosure while leaving the edges of the existing walls exposed to the molten plastic of the second shot. Theinsert 240 is slidably coupled to thesecond mold 212. Once the part cools, theinsert 240 slides out of the part in a direction that is transverse to the injection axis. For example, theinsert 240 may slide into or out of the page. -
FIG. 6 is a flow diagram of a doubleshot injection method 300, in accordance with one embodiment of the present invention. The flow diagram may for example be used to operate the apparatus described inFIG. 5 . The method begins atblock 302 where thefirst mold 210 closes thereby causing thecore 234 of thesecond mold 212 to be inserted into thecavity 236 of thefirst mold 210. When closed themolds - Thereafter in
block 304, plastic is injected into the void through thesecond mold 212 so as to form the first half of the enclosure. Thegate 226 is located in thecore 234 and injects plastic in the middle of the void. The molten plastic flows out of thegate 226 into the area that forms the front wall of the enclosure and eventually flows into areas that form the side walls and top wall of the enclosure. Once filled, the first half of the enclosure is allowed to cool and solidify. The first half of the enclosure includes an integral front wall, top wall, and left and right side walls and an open bottom end, and no back wall. - Following
block 304, the method proceeds to block 306 where thefirst mold 210 opens. The first half of the enclosure stays in thefirst mold 210 after the opening sequence. - Thereafter, in
block 308 thefirst mold 210 rotates while thesecond mold 212 stays fixed. Thefirst mold 210 is rotated so that the second half of the enclosure can be integrally formed with the first half of the enclosure. The first half of the enclosure is rotated until it is aligned with themovable insert 240 of thesecond mold 212. Themovable insert 240 is configured for placement in the internal space of the first half of the enclosure. - Following
block 308, the method proceeds to block 310 where thefirst mold 210 is closed and theinsert 240 is placed into the internal space of the first half of the enclosure. Theinsert 240 forms a tight fit against the walls of the first half of the enclosure so that the walls are protected during the second shot. Theinsert 240 does however leave the edges of the walls exposed to thecavity 238 located behind themovable insert 240. - Thereafter in
block 312, plastic is injected into thecavity 238 from thesecond mold 212 so as to form the second half of the enclosure. The plastic flows out of thegate 228 and into the void that forms the back wall of the enclosure. As it fills the void, the molten plastic comes into contact with the edge of the walls thereby fusing the back wall to the side and top walls of the first half of the enclosure. Once filled, the second half of the enclosure is allowed to cool and solidify. This forms an enclosure with an open bottom end and five integrally formed walls. - Following
block 312, the method proceeds to block 314 where themovable insert 240 is removed. That is, theinsert 240 slides out the open bottom end in a direction that is transverse to the gate 228 (e.g., radially). - Thereafter in
block 316 thefirst mold 210 opens. The enclosure stays in thecavity 242 of thefirst mold 210 during opening. - Following
block 316, the method proceeds to block 318 where the enclosure is ejected from thefirst mold 210. - Thereafter in
block 320, post molding steps are performed. For example, the enclosure is machined to final its form factor. - In accordance with one embodiment, the enclosure as described above is configured as a key-like device such as a USB key or miniature media player.
FIG. 7A is a diagram of a key-like enclosure 400, andFIG. 7B is diagram of a finally assembledmedia player 402 that utilizes theenclosure 400. As shown, theenclosure 400 extends longitudinally and includes five walls and an open end. The five walls are integrally formed as a single part. Thefront wall 404 andside walls back wall 412 is formed in the second shot. - After the
enclosure 400 is formed, various surfaces are machined to allow access to I/O devices or to remove excess material. In the illustrated embodiment, acircle 414 is machined in thefront wall 404 to accommodate abutton wheel 416 and arectangle 416 is machined in theback wall 412 to accommodate a switch (not show). In one embodiment, the gates are strategically placed at locations on the enclosure that would normally be machined to accommodate other parts. In one implementation, the gate that forms thefront wall 404 is located in the region where thebutton wheel 416 is located. As such, the surface marks associated with gate are removed while making space for thebutton wheel 416. In another implementation, the gate that forms the back wall is located at the bottom edge of the back wall so that the outer surface of the back wall is free from gate imperfections. In this implementation, the bottom edges are machined to remove excess material generated at the gate during the second shot. - Once the surfaces are machined, the internal parts are positioned inside the enclosure, and the open bottom end is sealed with a
wall 420 that includes a USB or alternatively aFirewire connector 422. Theconnector 422 andbottom wall 420 may be connected to a printed circuit board that includes the electrical hardware for the media player. The media player may therefore be assembled with ease, i.e., insert the PCB assembly into the enclosure while sealing the bottom end. -
FIG. 8 are cross sectional side views showing a side by side comparison of anenclosure 500 formed via a traditional single shot process and anenclosure 502 formed via the inventive two shot process. Each part is designed to provide the volume necessary to accommodate all of the internal electronic parts inside the enclosure. Because of the use of a draft angle, thetraditional enclosure 500 includes alarge taper 504 along its longitudinal surfaces. As a result, the wall thickness t increases from the open end to the close end of theenclosure 500. In order to provide the internal volume necessary, the depth D of thetraditional part 500 is increased to make up for the increased thickness at the closed end. In contrast, the twoshot enclosure 502 of the present invention does not include any taper along the longitudinal surfaces and if a taper is needed it is typically very minimal. The thickness t therefore remains substantially uniform from the bottom to the top ends. As such, the overall depth D of the part can be minimized to accommodate the same space as thetraditional part 500. - In one example, the thickness t of the two
shot enclosure 502 is a substantially uniform thickness of about 1.2 mm for the back surface and about 1.5 mm for the front surfaces with an overall depth D of about 8.5 mm. In contrast, using conventional techniques, thetraditional enclosure 500, includes thickness t that varies between 1.2 mm at the open end to 2.7 mm at the closed end with an overall depth of about 11.2 mm. Moreover, the twoshot enclosure 502 includes internalstructural features 510 on the front longitudinal surface whereas thetraditional part 500 does not. The internal features may for example be embossments or undercuts in the inside surface of the front wall of the enclosure for helping position and support the button wheel. - The advantages of the invention are numerous. Different aspects, embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that the overall size of the enclosure can be reduced while maintaining the useable space inside the enclosure. Another advantage is that the thickness of the wall can remain thin and substantially uniform. This saves material costs and reduces the cosmetic risks (sink, cooling/flatness issues, etc.). Another advantage is that the invention additionally allows for placement of structural placement features that would be nearly impossible using traditional molding techniques.
- While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Claims (25)
1. A single integral enclosure for enclosing internal electronic components of an electronic device, the enclosure being formed by a process comprising:
performing a first injection molding process, the first injection molding process forming at least a first wall of the enclosure;
allowing the at least a first wall of the enclosure to solidify;
thereafter performing a second injection molding process, the second injection molding process forming remaining walls of the enclosure, the remaining walls of the enclosure fusing with the at least a first wall of the enclosure during the second injection molding process, wherein each of the remaining walls of the enclosure is in a plane different from a plane of the at least a first wall of the enclosure; and
allowing the remaining walls of the enclosure to solidify, the remaining walls of the enclosure being integrally formed with the at least a first wall of the enclosure to thereby form the single integral enclosure, wherein at least one internal feature is formed on an inside surface of at least one of the walls during one of the injection molding processes.
2. The single integral enclosure as recited in claim 1 , wherein the internal feature is a protrusion, recess, undercut, or embossment.
3. The single integral enclosure as recited in claim 1 , wherein the walls are all substantially planar and substantially orthogonal to one another.
4. The single integral enclosure as recited in claim 1 , wherein the walls have a substantially uniform thickness.
5. The single integral enclosure as recited in claim 1 , wherein the at least a first wall and at least one of the remaining walls have a taper angle of 0.25 degree or less.
6. The single integral enclosure as recited in claim 1 , wherein the enclosure has a length, a width, and a depth, and the length of the enclosure is substantially greater than the depth of the enclosure.
7. The single integral enclosure as recited in claim 6 , wherein the length of the enclosure is at least approximately eight times the depth of the enclosure.
8. The single integral enclosure as recited in claim 6 , wherein during the first and second injection molding processes, enclosure walls defined by the length and the width of the enclosure are formed horizontally, and enclosure walls defined by the length and the depth of the enclosure and enclosure walls defined by the width and the depth of the enclosure are formed vertically.
9. The single integral enclosure as recited in claim 8 , wherein the horizontally formed enclosure walls have a taper angle of approximately 0 degree, and the vertically formed enclosure walls have a taper angle of less than approximately 0.25 degrees.
10. The method, as recited in claim 1 , wherein there is no visible seam on surfaces of the enclosure.
11. An integrally molded single-piece multi-walled enclosure that defines an open space for placement of internal components of an electronic device, the enclosure being formed by a double shot injection molding process comprising:
forming at least one wall of the single-piece multi-walled enclosure with a first shot; and
forming remaining walls of the single-piece multi-walled enclosure with a second shot, wherein each of the remaining walls is in a plane different from a plane of the at least one wall, and wherein the at least one wall formed with the first shot fusing with the walls formed with the second shot during the second shot so as to form the integrally molded single-piece multi-walled enclosure, wherein each wall is substantially parallel or substantially orthogonal to another wall and wherein at least two walls have a taper angle of 0.25 degree or less.
12. The enclosure as recited in claim 11 , wherein all of the walls have a taper angle of 0.25 degree or less.
13. The enclosure as recited in claim 11 , wherein the single-piece multi-walled enclosure is a five wall enclosure with an open end.
14. The enclosure as recited in claim 11 , wherein the single-piece multi-walled enclosure has a length that extends from a top to a bottom end of the single-piece multi-walled enclosure, wherein the length is at least approximately eight times a depth of the enclosure.
15. The enclosure as recited in claim 11 , wherein the at least one wall of the single-piece multi-walled enclosure formed with the first shot includes a front wall, a right side wall, a left side wall, and a top wall, and wherein the remaining walls of the single-piece multi-walled enclosure formed with the second shot includes a back wall.
16. The enclosure as recited in claim 11 , wherein inside surfaces of the single-piece multi-walled enclosure have limited or no taper, and wherein a thickness of the walls of single-piece multi-walled enclosure is substantially uniform from a top to a bottom end of the single-piece multi-walled enclosure.
17. The enclosure as recited in claim 11 , wherein the first shot comprises:
forming a first void;
injecting plastic into the first void to form a first part of the enclosure;
allowing the first part to solidify; and
inserting a wedge into the first part; and wherein the second shot comprises:
forming a second void;
injecting plastic into the second void to form a second part of the enclosure, the second part fusing with the first part during the injection thereby forming a single-piece enclosure with integral first and second parts;
allowing the second part to solidify.
18. The enclosure as recited in claim 17 , further comprising removing a wedge from the enclosure, the enclosure having five walls and an open end.
19. The enclosure as recited in claim 11 , wherein at least one of the walls includes internal features that are formed during the first or second shot and without using mechanical actions.
20. The enclosure as recited in claim 11 , wherein the walls each have a substantially uniform thickness.
21. A substantially seamless molded integral enclosure for enclosing internal electronic components of an electronic device, the enclosure being formed by a process comprising:
performing a first injection molding process, the first injection molding process forming at least an entire first wall of the enclosure;
allowing the at least an entire first wall of the enclosure to solidify;
thereafter performing a second injection molding process, the second injection molding process forming remaining entire walls of the enclosure, the remaining entire walls of the enclosure fusing with the at least an entire first wall of the enclosure during the second injection molding process, wherein each of the remaining entire walls of the enclosure is in a plane different from a plane of the at least an entire first wall of the enclosure, and wherein the at least an entire first wall and at least one of the remaining entire walls have a taper angle of 0.25 degree or less; and
allowing the remaining entire walls of the enclosure to solidify, the remaining walls of the enclosure being integrally formed with the at least an entire first wall of the enclosure to thereby form the single integral enclosure, wherein at least one internal feature is formed on an inside surface of at least one of the walls during one of the injection molding processes.
22. The enclosure as recited in claim 21 , wherein the internal feature is a protrusion, recess, undercut, or embossment.
23. The single integral enclosure as recited in claim 21 , wherein the walls are all substantially planar and substantially orthogonal to one another.
24. The single integral enclosure as recited in claim 21 , wherein the walls have a substantially uniform thickness.
25. The single integral enclosure as recited in claim 21 , wherein a length of the enclosure is between about 40 to about 70 times a thickness of the walls.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/190,312 US20110278312A1 (en) | 2005-08-16 | 2011-07-25 | Housing of an electronic device formed by doubleshot injection molding |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/205,850 US20070048470A1 (en) | 2005-08-16 | 2005-08-16 | Housing of an electronic device formed by doubleshot injection molding |
US11/782,175 US7695665B2 (en) | 2005-08-16 | 2007-07-24 | Housing of an electronic device formed by doubleshot injection molding |
US12/710,261 US8012398B2 (en) | 2005-08-16 | 2010-02-22 | Housing of an electronic device formed by doubleshot injection molding |
US13/190,312 US20110278312A1 (en) | 2005-08-16 | 2011-07-25 | Housing of an electronic device formed by doubleshot injection molding |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US12/710,261 Division US8012398B2 (en) | 2005-08-16 | 2010-02-22 | Housing of an electronic device formed by doubleshot injection molding |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110278312A1 true US20110278312A1 (en) | 2011-11-17 |
Family
ID=37804537
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/205,850 Abandoned US20070048470A1 (en) | 2005-08-16 | 2005-08-16 | Housing of an electronic device formed by doubleshot injection molding |
US11/782,175 Active 2026-03-07 US7695665B2 (en) | 2005-08-16 | 2007-07-24 | Housing of an electronic device formed by doubleshot injection molding |
US12/710,261 Expired - Fee Related US8012398B2 (en) | 2005-08-16 | 2010-02-22 | Housing of an electronic device formed by doubleshot injection molding |
US13/190,312 Abandoned US20110278312A1 (en) | 2005-08-16 | 2011-07-25 | Housing of an electronic device formed by doubleshot injection molding |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/205,850 Abandoned US20070048470A1 (en) | 2005-08-16 | 2005-08-16 | Housing of an electronic device formed by doubleshot injection molding |
US11/782,175 Active 2026-03-07 US7695665B2 (en) | 2005-08-16 | 2007-07-24 | Housing of an electronic device formed by doubleshot injection molding |
US12/710,261 Expired - Fee Related US8012398B2 (en) | 2005-08-16 | 2010-02-22 | Housing of an electronic device formed by doubleshot injection molding |
Country Status (1)
Country | Link |
---|---|
US (4) | US20070048470A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100324705A1 (en) * | 2009-06-17 | 2010-12-23 | Jesse Vandiver | Controller for ipod shuffle |
US20120295497A1 (en) * | 2010-05-31 | 2012-11-22 | Zte Corporation | Universal serial bus head and manufacturing method thereof |
US9682500B2 (en) | 2013-09-30 | 2017-06-20 | Apple Inc. | Insert molded parts and methods for forming the same |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101370362A (en) * | 2007-08-15 | 2009-02-18 | 深圳富泰宏精密工业有限公司 | Casing, method and mold for fabricating the same |
CN101376262B (en) * | 2007-08-30 | 2011-05-04 | 深圳富泰宏精密工业有限公司 | Shaped part and dual-color molding method for producing the shaped part |
US8413837B2 (en) * | 2007-10-31 | 2013-04-09 | Simple Wave Llc | Enhanced serving apparatus |
TWI352566B (en) * | 2008-03-31 | 2011-11-11 | Wistron Neweb Corp | Housing structure of hand-hled electronic divice |
US8216502B2 (en) * | 2008-12-02 | 2012-07-10 | Tesla Motors, Inc. | Method for the external application of battery pack encapsulant |
WO2011071539A1 (en) | 2009-12-11 | 2011-06-16 | Flextronics Ap Llc | System and method for overmolding of decorated plastic parts |
US9363905B2 (en) | 2010-02-02 | 2016-06-07 | Apple Inc. | Cosmetic co-removal of material for electronic device surfaces |
CA2793828A1 (en) * | 2010-03-20 | 2011-09-29 | Daido Steel Co., Ltd. | Method of manufacture for encased coil body and encased coil body |
CA3019065C (en) * | 2010-10-08 | 2020-10-27 | Composite Panel Systems, Llc | Building panel using wrapped foam blocks |
US20120091623A1 (en) * | 2010-10-18 | 2012-04-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method to manufacture chrome buttons with integrated light pipe using two shot molding process |
US9363912B2 (en) | 2011-01-21 | 2016-06-07 | Hewlett-Packard Development Company, L.P. | Housing assembly for a portable electronic device |
DE102011011533B4 (en) * | 2011-02-17 | 2012-10-04 | Poschmann Gmbh & Co. Kg | Apparatus and method for producing ball bearing rings |
US8557158B2 (en) | 2011-08-23 | 2013-10-15 | Sabic Innovative Plastics Ip B.V. | Molded article having enhanced aesthetic effect and method and system for making the molded article |
JP6486074B2 (en) * | 2013-12-20 | 2019-03-20 | キヤノン株式会社 | Resin molding method and liquid discharge head manufacturing method |
US9573306B2 (en) | 2014-01-10 | 2017-02-21 | Western Digital Technologies, Inc. | Injection molding part with “zero draft” design and manufacturing methodologies |
EP3164036A1 (en) | 2014-07-02 | 2017-05-10 | Modern Packaging LLC | Overmolded cutlery articles |
KR102262827B1 (en) | 2014-12-30 | 2021-06-08 | 삼성전자주식회사 | Semiconductor device and the fabricating method thereof |
US10112329B2 (en) | 2015-11-02 | 2018-10-30 | Modern Packaging Llc | Overmolded disposable cutlery articles |
WO2017078677A1 (en) | 2015-11-02 | 2017-05-11 | Modern Packaging Llc | Overmolded disposable cutlery |
ITUB20155873A1 (en) * | 2015-11-25 | 2017-05-25 | Italian Cable Company S P A | ELECTRIC DERIVATOR, MANUFACTURING DEVICE AND METHOD |
US10795240B2 (en) | 2016-11-18 | 2020-10-06 | Moment Inc | Protective case for a mobile device |
WO2018094369A1 (en) * | 2016-11-18 | 2018-05-24 | Moment Inc | Protective battery case for a mobile device |
US10248170B2 (en) | 2017-01-12 | 2019-04-02 | Microsoft Technology Licensing, Llc | Very low draft housings and methods of manufacturing |
JP7175757B2 (en) * | 2018-02-23 | 2022-11-21 | キヤノン株式会社 | Inkjet recording head and manufacturing method thereof |
US11082596B2 (en) | 2018-03-25 | 2021-08-03 | Moment Inc | Anamorphic optical assembly for mobile camera-enabled device and device case |
DE102018117643A1 (en) * | 2018-07-20 | 2020-01-23 | Kunststofftechnik Bernt Gmbh | Process for producing a plastic control element metallized on one side with backlit symbols, control element with backlit symbols as well as a machine for carrying out several process steps |
US11090876B2 (en) | 2018-09-18 | 2021-08-17 | Flex Ltd. | Assembly of sub-components by compression molding |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449164B1 (en) * | 2002-01-22 | 2002-09-10 | Jack Gershfeld | Enclosure for housing a printed circuit board |
US6456500B1 (en) * | 2001-12-05 | 2002-09-24 | Speed Tech Corp. | Assembling structure for portable memory device |
US6490163B1 (en) * | 2001-08-30 | 2002-12-03 | Phison Electronic Corp. | Computer readable portable data storage device |
USD469109S1 (en) * | 2001-10-22 | 2003-01-21 | Apple Computer, Inc. | Media player |
US20030223286A1 (en) * | 2002-05-30 | 2003-12-04 | Hana Micron Inc. | Flash memory apparatus having single body type rotary cover |
US20040077216A1 (en) * | 2002-10-18 | 2004-04-22 | Aiptek International Inc. | USB connector structure with protection means |
US6763410B2 (en) * | 2002-10-28 | 2004-07-13 | Walton Advanced Engineering, Inc. | Portable universal serial bus memory device |
US6778401B1 (en) * | 2003-01-24 | 2004-08-17 | C-One Technology Corp. | Mini-type connector of circuit substrate |
US6804749B2 (en) * | 2002-06-18 | 2004-10-12 | Topseed Technology Corp. | Wireless portable adaptive electronic device capable of receiving signals |
US20040212966A1 (en) * | 2002-12-02 | 2004-10-28 | Fisher Ken Scott | Integral computer connector cover |
US20040233645A1 (en) * | 2003-05-23 | 2004-11-25 | Wan-Tien Chen | Portable data storage device |
US20040233646A1 (en) * | 2003-05-23 | 2004-11-25 | Chi-Yu Yen | Shell device with circuit unit |
USD500302S1 (en) * | 2004-02-12 | 2004-12-28 | Sony Corporation | Storage medium |
US20060113307A1 (en) * | 2004-12-01 | 2006-06-01 | Goulette Ross D | Liner for portable food storage container |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US540539A (en) * | 1895-06-04 | Air-brake branch-pipe drain-cu p | ||
US3543338A (en) * | 1969-11-06 | 1970-12-01 | Cities Service Co | Molding apparatus |
DE3011244C2 (en) * | 1980-03-24 | 1983-07-28 | Walter 6000 Frankfurt Röder | Laser cutting device for three-dimensional molded parts |
US4935184A (en) * | 1988-02-05 | 1990-06-19 | Primtec | Stabilized injection molding when using a common mold part with separate complimentary mold parts |
PH31484A (en) * | 1992-12-22 | 1998-11-03 | Hosokawa Yoko Kk | Container, method of manufacturing the same and installation jig for cartridge container for d18scharge gun. |
US6809254B2 (en) * | 2001-07-20 | 2004-10-26 | Parker-Hannifin Corporation | Electronics enclosure having an interior EMI shielding and cosmetic coating |
US7292881B2 (en) * | 2004-09-08 | 2007-11-06 | Belkin International, Inc. | Holder, electrical supply, and RF transmitter unit for electronic devices |
USD540539S1 (en) * | 2005-06-13 | 2007-04-17 | Griffin Technology, Inc. | Protective case for a memory storage device which is connectable to a computer or an MP3 player device |
-
2005
- 2005-08-16 US US11/205,850 patent/US20070048470A1/en not_active Abandoned
-
2007
- 2007-07-24 US US11/782,175 patent/US7695665B2/en active Active
-
2010
- 2010-02-22 US US12/710,261 patent/US8012398B2/en not_active Expired - Fee Related
-
2011
- 2011-07-25 US US13/190,312 patent/US20110278312A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6490163B1 (en) * | 2001-08-30 | 2002-12-03 | Phison Electronic Corp. | Computer readable portable data storage device |
USD469109S1 (en) * | 2001-10-22 | 2003-01-21 | Apple Computer, Inc. | Media player |
US6456500B1 (en) * | 2001-12-05 | 2002-09-24 | Speed Tech Corp. | Assembling structure for portable memory device |
US6449164B1 (en) * | 2002-01-22 | 2002-09-10 | Jack Gershfeld | Enclosure for housing a printed circuit board |
US20030223286A1 (en) * | 2002-05-30 | 2003-12-04 | Hana Micron Inc. | Flash memory apparatus having single body type rotary cover |
US6804749B2 (en) * | 2002-06-18 | 2004-10-12 | Topseed Technology Corp. | Wireless portable adaptive electronic device capable of receiving signals |
US6808400B2 (en) * | 2002-10-18 | 2004-10-26 | Aiptek International Inc. | USB connector structure with protection means |
US20040077216A1 (en) * | 2002-10-18 | 2004-04-22 | Aiptek International Inc. | USB connector structure with protection means |
US6763410B2 (en) * | 2002-10-28 | 2004-07-13 | Walton Advanced Engineering, Inc. | Portable universal serial bus memory device |
US20040212966A1 (en) * | 2002-12-02 | 2004-10-28 | Fisher Ken Scott | Integral computer connector cover |
US6778401B1 (en) * | 2003-01-24 | 2004-08-17 | C-One Technology Corp. | Mini-type connector of circuit substrate |
US20040233645A1 (en) * | 2003-05-23 | 2004-11-25 | Wan-Tien Chen | Portable data storage device |
US20040233646A1 (en) * | 2003-05-23 | 2004-11-25 | Chi-Yu Yen | Shell device with circuit unit |
USD500302S1 (en) * | 2004-02-12 | 2004-12-28 | Sony Corporation | Storage medium |
US20060113307A1 (en) * | 2004-12-01 | 2006-06-01 | Goulette Ross D | Liner for portable food storage container |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100324705A1 (en) * | 2009-06-17 | 2010-12-23 | Jesse Vandiver | Controller for ipod shuffle |
US20120295497A1 (en) * | 2010-05-31 | 2012-11-22 | Zte Corporation | Universal serial bus head and manufacturing method thereof |
US8662942B2 (en) * | 2010-05-31 | 2014-03-04 | Zte Corporation | Universal serial bus head and manufacturing method thereof |
US9682500B2 (en) | 2013-09-30 | 2017-06-20 | Apple Inc. | Insert molded parts and methods for forming the same |
Also Published As
Publication number | Publication date |
---|---|
US8012398B2 (en) | 2011-09-06 |
US20080012179A1 (en) | 2008-01-17 |
US20100149735A1 (en) | 2010-06-17 |
US7695665B2 (en) | 2010-04-13 |
US20070048470A1 (en) | 2007-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8012398B2 (en) | Housing of an electronic device formed by doubleshot injection molding | |
EP1058612B1 (en) | Procedure and machinery for the moulding of an assembled object | |
RU2410238C2 (en) | Mould for injection moulding | |
US5372770A (en) | Injection molding method, injection molding machine, injection molding die and half case of magnetic tape cassette | |
JP4646181B2 (en) | Method and apparatus for manufacturing thick optical lenses | |
JPWO2004018178A1 (en) | Combined product mold and molding method thereof | |
CA2344776A1 (en) | Process and equipment for hot moulding of articles made of thermoplastic material | |
JP2004522624A5 (en) | ||
JP2006192836A (en) | Manufacturing method of product by insert molding | |
JP2010149450A (en) | Method of molding multicolor molded product and mold for multicolor molding | |
KR100454733B1 (en) | Die for injection molding of synthetic resins and method of injection molding | |
JP2011051109A (en) | Two-color injection molding method of resin window | |
JP2003170467A (en) | Method for insert molding and mold apparatus | |
JP2006231794A (en) | Injection mold | |
JP3752160B2 (en) | Injection molding method of composite molded product and injection mold | |
TW200536701A (en) | Disc molding die, adjusting member and disc board molding method | |
JP2003094484A (en) | Two-color molding method and mold device | |
TW201038388A (en) | Mold of injection molding | |
JP2859494B2 (en) | Multi-material injection molding machine | |
JPH09267363A (en) | Method for molding front cabinet | |
JP2006231781A (en) | Injection mold | |
KR101487009B1 (en) | Injection molding product with multi molding system and injection molding method | |
JPH082859Y2 (en) | Cassette half | |
JP2003011181A (en) | Mold assembly | |
TWI271299B (en) | Manufacturing method of plastic housing for thin lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |