US20110271158A1 - Method and apparatus for testing high capacity/high bandwidth memory devices - Google Patents

Method and apparatus for testing high capacity/high bandwidth memory devices Download PDF

Info

Publication number
US20110271158A1
US20110271158A1 US13/180,301 US201113180301A US2011271158A1 US 20110271158 A1 US20110271158 A1 US 20110271158A1 US 201113180301 A US201113180301 A US 201113180301A US 2011271158 A1 US2011271158 A1 US 2011271158A1
Authority
US
United States
Prior art keywords
vaults
data
packet
logic circuit
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/180,301
Other versions
US8799726B2 (en
Inventor
Joseph M. Jeddeloh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Bank NA
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US13/180,301 priority Critical patent/US8799726B2/en
Publication of US20110271158A1 publication Critical patent/US20110271158A1/en
Application granted granted Critical
Publication of US8799726B2 publication Critical patent/US8799726B2/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC., MICRON SEMICONDUCTOR PRODUCTS, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/1201Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/30Accessing single arrays
    • G11C29/32Serial access; Scan testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C2029/5602Interface to device under test
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/26Accessing multiple arrays

Definitions

  • This invention relates to memory devices, and, more particularly, to testing memory devices.
  • DRAM dynamic random access memory
  • Memory devices are typically tested to ensure the devices are in working order, as some memory cells may be defective.
  • Complex testing systems are utilized to test the devices, including generating test signals and reading test data from the memory cells.
  • the testing systems are expensive and require significant investment to acquire and set up. Changing or acquiring new test systems would therefore require a prohibitive amount of time and investment.
  • FIG. 1 is a block diagram of a computer system that includes a memory device according to an embodiment of the invention.
  • FIG. 2 is a block diagram of a memory device according to an embodiment of the invention.
  • FIG. 3 is a more detailed block diagram of a memory device according to an embodiment of the invention.
  • FIG. 4 is a block diagram of a memory device according to an embodiment of the invention coupled to a conventional tester.
  • FIG. 1 A computer system including a high-capacity, high bandwidth memory device 10 that can be tested according to an embodiment of the invention is shown in FIG. 1 connected to a processor 12 through a relatively narrow high-speed bus 14 that is divided into downstream lanes and separate upstream lanes (not shown in FIG. 1 ).
  • the memory device 10 includes 4 DRAM die 20 , 22 , 24 , 26 , which may be identical to each other, stacked on top of each other. Although the memory device 10 includes 4 DRAM die 20 , 22 , 24 , 26 , other embodiments of the memory device use a greater or lesser number of DRAM die.
  • the DRAM die 20 , 22 , 24 , 26 are stacked on top of a logic die 30 , which serves as the interface with the processor 12 .
  • the logic die 30 can implement a variety of functions in the memory device 10 to limit the number of functions that must be implemented in the DRAM die 20 , 22 , 24 , 26 .
  • the logic die 30 may perform memory management functions, such power management and refresh of memory cells in the DRAM die 20 , 22 , 24 , 26 .
  • the logic die 30 may perform error checking and correcting (“ECC”) functions.
  • the DRAM die 20 , 22 , 24 , 26 are connected to each other and to the logic die 30 by a relatively wide bus 34 .
  • the bus 34 may be implemented with through silicon vias (“TSVs”), which comprise a large number of conductors extending through the DRAM die 20 , 22 , 24 , 26 at the same locations on the DRAM die and connect to respective conductors formed on the die 20 , 22 , 24 , 26 .
  • TSVs through silicon vias
  • each of the DRAM die 20 , 22 , 24 , 26 are divided into 16 autonomous partitions, each of which may contain 2 or 4 independent memory banks. In such case, the partitions of each die 20 , 22 , 24 , 26 that are stacked on top each other may be independently accessed for read and write operations.
  • Each set of 16 stacked partitions may be referred to as a “vault.”
  • the memory device 10 may contain 16 vaults.
  • the vault may include a vertical stack of interconnected portions of the memory dies.
  • the bus 34 is divided into 16 36-bit bi-directional sub-buses 38 a - p , with each of the 16 36-bit sub-buses coupled to the 4 partitions in a respective vault, one on each of the separate die 20 , 22 , 24 , and 26 .
  • Each of these sub-buses may couple 32 bits of a data and 4 ECC bits between the logic die 30 and the DRAM die 20 , 22 , 24 , 26 .
  • the relatively narrow high-speed bus 14 connecting the processor 12 to the logic die is divided into 4 16-bit downstream lanes 40 a - d and 4 separate 16-bit upstream lanes 42 a - d .
  • the 4 downstream lanes 40 a - d may be connected to a single processor 12 as shown in FIG. 1 , which may be a multi-core processor, to multiple processors (not shown), or to some other memory access device like a memory controller.
  • the 4 downstream lanes 40 a - d may operate either independently of each other so that packets are coupled through the lanes 40 a - d at different times and to the same or different vaults.
  • one of the functions performed by the logic die 30 is to serialize the read data bits coupled from the DRAM die 20 , 22 , 24 , 26 into serial streams of 16 serial data bits coupled in 16 parallel bits of each upstream lane 42 a - d of the bus 14 .
  • the logic die 30 may perform the functions of deserializing 16 serial data bits coupled through one of the 16-bit downstream lanes 40 a - d of the bus 14 to obtain 256 parallel data bits.
  • the logic die 30 then couples these 256 bits through one of the 32-bit sub-buses 38 a - p in a serial stream of 8 bits.
  • other embodiments may use different numbers of lanes 40 , 42 having different widths or different numbers of sub-buses 38 a - p having different widths, and they may couple data bits having different structures.
  • the stacking of multiple DRAM die results in a memory device having a very large capacity.
  • the use of a very wide bus connecting the DRAM die allows data to be coupled to and from the DRAM die with a very high bandwidth.
  • a logic die 30 that can be tested according to an embodiment of the invention is shown in FIG. 3 connected to the processor 12 and the DRAM die 20 , 22 , 24 , 26 .
  • each of the 4 downstream lanes 40 a - d is connected to a respective link interface 50 a - d .
  • Each link interface 50 a - d includes a deserializer 54 that converts each serial stream of 16 data bits on each of the 16-bit lanes 40 a - d to 256 parallel bits. Insofar as there are 4 link interfaces 50 a - d , the link interfaces can together output 1024 output parallel bits.
  • Each of the link interfaces 50 a - d applies its 256 parallel bits to a respective downstream target 60 a - d , which decodes the command and address portions of the received packet and buffers write data in the event a memory request is for a write operation.
  • the downstream targets 60 a - d output their respective commands, addresses and possibly write data to a switch 62 .
  • the switch 62 contains 16 multiplexers 64 each of which direct the command, addresses and any write data from any of the downstream targets 60 a - d to its respective vault of the DRAM die 20 , 22 , 24 , 26 .
  • each of the downstream targets 60 a - d can access any of the 16 vaults in the DRAM die 20 , 22 , 24 , 26 .
  • the multiplexers 64 use the address in the received memory requests to determine if its respective vault is the target of a memory request.
  • Each of the multiplexers 64 apply the memory request to a respective one of 16 vault controllers 70 a - p
  • Each vault controller 70 a - p includes a write buffer 82 , a read buffer 84 and a command pipeline 86 .
  • the command and addresses in memory requests received from the switch 62 are loaded into the command pipeline 86 , and any write data in the memory requests are stored in the write buffer 82 .
  • the read buffer 84 is used to store read data from the respective vault, as will be explained in greater detail below. Both the write data from the write buffer 82 and the command from the command pipeline 86 are applied to a memory interface 88 .
  • the memory interface 88 may include a sequencer 90 and an ECC and defective memory cell repair system 100 .
  • the ECC and repair system 100 uses ECC techniques to check and correct the data read from the DRAM die 20 , 22 , 24 , 26 , and to assist the processor 12 or other memory access device to substitute redundant rows and columns for rows and columns, respectively, containing one or more defective memory cells.
  • the sequencer 90 couples commands and addresses from the command pipeline 86 to the DRAM die 20 , 22 , 24 , 26 through a command/address bus 92 and 32-bits of write data from the write buffer 82 and 4 bits of ECC from the ECC and repair system 100 to the DRAM die 20 , 22 , 24 , 26 through a 36-bit data bus 94 .
  • write data are loaded into the write buffer 82 as 256 parallel bits, they are output from the buffer 82 in two sets, each set being 128 parallel bits. These 128 bits are then further serialized by the ECC and repair system 100 to 4 sets of 32-bit data, which are coupled thorough the data bus 94 .
  • write data are coupled to the write buffer 82 in synchronism with a 500 MHz clock so the data are stored in the write buffer at 16 gigabytes (“GB”) per second.
  • the write data are coupled from the write buffer 82 to the DRAM die 20 , 22 , 24 , 26 using a 2 GHz clock so the data are output from the write buffer 82 at 8 GB/s.
  • the write buffers 82 will be able to couple the write data to the DRAM die 20 , 22 , 24 , 26 at least as fast as the data are coupled to the write buffer 82 .
  • the command and address for the request are coupled to the DRAM die 20 , 22 , 24 , 26 in the same manner as a write request, as explained above.
  • 32 bits of read data and 4 ECC bits may be output from the DRAM die 20 , 22 , 24 , 26 through the 36-bit data bus 94 .
  • the ECC bits are passed to the ECC and repair system 100 , which uses the ECC bits to check and correct the read data before passing the read data on to the read buffer 84 .
  • the ECC and repair system 100 also deserializes the 32 bits of read data into two sets of 128-bit read data.
  • the read buffer transmits 256 bits to the switch 62 .
  • the switch includes 4 output multiplexers 104 coupled to respective upstream masters 110 a - d .
  • Each multiplexer 104 can couple 256 bits of parallel data from any one of the vault controllers 70 a - p to its respective upstream master 110 a - d .
  • the upstream masters 110 a - d format the 256 bits of read data into packet data and couple the packet to respective upstream link interfaces 114 a - d .
  • Each of the link interfaces 114 - d include a respective serializer 120 that converts the incoming 256 bits to a serial stream of 16 bits on each bit of a respective one of the 16-bit upsteam links 42 a - d.
  • the logic chip 30 may receive data on downstream lanes 40 a - d and output data on upstream lanes 42 a - d .
  • Input data received in on a downstream lane in 16-bit increments is deserialized into a 256-bit packet and decoded by the relevant vault controller, such as vault controller 60 a.
  • Packets received from the vaults are serialized before application to upstream lanes 42 a - d.
  • a conventional tester 400 shown in FIG. 4 , has a 16-bit command interface 410 a, a 16-bit address interface 410 b and a 32-bit bi-directional interface 410 c .
  • the interfaces 410 a - c do not match up with the downstream lanes 40 a - d and upstream lanes 42 a - d .
  • the signals on the command, address, and data interfaces 410 a - c cannot be coupled directly to the downstream lanes 40 a - d or upstream lanes 42 a - d .
  • the lanes 40 a - d and 42 a - d are unidirectional and do not support bi-directional communication supported by the data interface 410 c.
  • sequential data received on each of the downstream lanes 40 a - d is assembled into a packet that may contain command, address and data information.
  • a packet builder and broadcaster 420 is provided.
  • the logic chip 30 may be placed in a test mode.
  • the test mode may be initiated, for example, by providing a control signal indicative of test operation.
  • the packet builder and broadcaster 420 includes a first input port for receiving command signals from the tester over the command interface 410 a, a second input port for receiving address signals from the tester 400 over the address interface 410 b and a third input port for receiving data signals from the tester 400 over the data interface 410 c.
  • the packet builder and broadcaster 420 receives command, address and optionally data signals from the tester 400 and reformats the received command, address and data signals into a format recognized by the logic chip 30 .
  • the packet builder and broadcaster 420 may pass test command, address, and data signals sequentially to one of the downstream lanes 40 a - d in the case of a write command.
  • the test command, address and data signals are then passed through the link interface 50 a to downstream target 60 a to form a packet, as generally described above.
  • the packet builder and broadcaster 420 is shown in FIG.
  • the packet builder and broadcaster 420 may include the link interfaces 50 a - d , downstream targets 60 a - d , or both.
  • the packet builder and broadcaster 420 may repeat the received test commands and apply them to multiple vaults.
  • the packet builder and broadcaster 420 may couple a test command to multiple lanes 40 a - d either simultaneously or sequentially.
  • the packet builder and broadcaster 420 may also direct a test command to be passed through multiple switches 62 to reach multiple vault controllers 70 a - p .
  • the packet builder and broadcaster may vary the received address signal as the test command is repeated such that the test command is directed to multiple vaults.
  • Each respective vault controller 70 a - p may receive and decode the broadcast write command as described above with respect to a routine command. In this manner, test signals generated by the conventional tester 400 on a command interface 410 a, address interface 410 b and data interface 410 c may be assembled into packets expected by the vault controllers 70 a - p and broadcast to multiple vaults.
  • a packet disassembler and data compare unit 430 receives and compares the test read data returned from multiple vaults. Results of the comparison may be provided as a 32-bit data signal and coupled to the data interface 410 c of the tester 400 .
  • the packet disassembler and data compare unit 430 is shown separate from the link interfaces 114 a - d and upstream masters 110 a - d , in some embodiments the packet disassembler and data compare unit 430 may include the link interfaces 114 a - d , upstream masters 110 a - d , or both.
  • the data interface 410 c is bidirectional, but each of the lanes 40 a - d and 42 a - d are unidirectional. Accordingly, both the packet builder and broadcaster 420 and the packet disassembler and data compare unit 430 are coupled to the data interface 410 c.
  • the output test read data provided to the tester over the data interface 410 c may indicate only that an error exists in one of the vaults tested.
  • the tester 400 may then provide test commands directed to a single vault.
  • the packet builder and broadcaster 420 would then only pass the test command to a single vault, and an error could be isolated to a particular vault. In some embodiments, this further testing could include an analysis of whether the error was a hard or soft error.
  • the packet disassembler and data compare unit 430 may compare read data returned from several vaults and return results of the comparison to the tester 400 . However, in some embodiments, the packet disassembler and data compare unit 430 may simply pass the read data returned from a vault back to the tester 400 for comparison at the tester with read data returned from other vaults, with the data expected to be returned, or both.
  • the packet disassembler 430 may format the received read data in a manner expected by the tester 400 , for example, placing the data in 32-bit chunks and coupling the read data to the bi-directional interface 410 c .
  • the packet disassembler and data compare unit 430 may sequentially couple read data received from a plurality of vaults to the tester 400 .
  • the logic die 30 may include a packet builder and broadcaster 420 and a packet disassembler and data compare unit 430 that allow the stacked memory devices in multiple vaults to be tested using a conventional tester 400 .

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A plurality of stacked memory device die and a logic circuit are connected to each other through a plurality of conductors. The stacked memory device die are arranged in a plurality of vaults. The logic circuit die serves as a memory interface device to a memory access device, such as a processor. The logic circuit die includes a plurality of link interfaces and downstream targets for transmitting received data to the vaults. The logic circuit die includes a packet builder and broadcaster configured to receive command, address and data signals over separate interfaces from a conventional tester, format the signals into a packet and broadcast the signals to a plurality of vaults.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of U.S. patent application Ser. No. No. 12/132,332, filed Jun. 3, 2008. This application is incorporated by reference herein in its entirety and for all purposes.
  • TECHNICAL FIELD
  • This invention relates to memory devices, and, more particularly, to testing memory devices.
  • BACKGROUND OF THE INVENTION
  • As memory devices of all types have evolved, continuous strides have been made in improving their performance in a variety of respects. For example, the storage capacity of memory devices has continued to increase at geometric proportions. This increased capacity, coupled with the geometrically higher operating speeds of electronic systems containing memory devices, has made high memory device bandwidth ever more critical. One application in which memory devices, such as dynamic random access memory (“DRAM”) devices, require a higher bandwidth is their use as system memory in computer systems. As the operating speed of processors has increased, processors are able to read and write data at correspondingly higher speeds. Yet conventional DRAM devices often do not have the bandwidth to read and write data at these higher speeds, thereby slowing the performance of conventional computer systems. This problem is exacerbated by the trend toward multi-core processors and multiple processor computer system. It is currently estimated that computer systems operating as high-end servers are idle as many as 3 out of every 4 clock cycles because of the limited data bandwidth of system memory devices. In fact, the limited bandwidth of DRAM devices operating as system memory can reduce the performance of computer systems to as low as 10% of the performance of which they would otherwise be capable.
  • Various attempts have been made to increase the data bandwidth of memory devices. For example, wider internal data buses have been used to transfer data to and from arrays with a higher bandwidth. However, doing so usually requires that write data be serialized and read data deserialized at the memory device interface. Another approach has been to simply scale up the size of memory devices or conversely shrink their feature sizes, but, for a variety of reasons, scaling has been incapable of keeping up with the geometric increase in the demand for higher data bandwidths. Proposals have also been made to stack several integrated circuit memory devices in the same package, but doing so threatens to create a large number of other problems that must be overcome.
  • Memory devices are typically tested to ensure the devices are in working order, as some memory cells may be defective. Complex testing systems are utilized to test the devices, including generating test signals and reading test data from the memory cells. The testing systems are expensive and require significant investment to acquire and set up. Changing or acquiring new test systems would therefore require a prohibitive amount of time and investment. As memory device design changes to increase the data bandwidth of the devices, however, the memory devices themselves may become incompatible with conventional test equipment.
  • Therefore, a need exists for a method and apparatus to test new memory designs utilizing conventional test equipment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a computer system that includes a memory device according to an embodiment of the invention.
  • FIG. 2 is a block diagram of a memory device according to an embodiment of the invention.
  • FIG. 3 is a more detailed block diagram of a memory device according to an embodiment of the invention.
  • FIG. 4 is a block diagram of a memory device according to an embodiment of the invention coupled to a conventional tester.
  • DETAILED DESCRIPTION
  • A computer system including a high-capacity, high bandwidth memory device 10 that can be tested according to an embodiment of the invention is shown in FIG. 1 connected to a processor 12 through a relatively narrow high-speed bus 14 that is divided into downstream lanes and separate upstream lanes (not shown in FIG. 1). The memory device 10 includes 4 DRAM die 20, 22, 24, 26, which may be identical to each other, stacked on top of each other. Although the memory device 10 includes 4 DRAM die 20, 22, 24, 26, other embodiments of the memory device use a greater or lesser number of DRAM die. The DRAM die 20, 22, 24, 26 are stacked on top of a logic die 30, which serves as the interface with the processor 12. The logic die 30 can implement a variety of functions in the memory device 10 to limit the number of functions that must be implemented in the DRAM die 20, 22, 24, 26. For example, the logic die 30 may perform memory management functions, such power management and refresh of memory cells in the DRAM die 20, 22, 24, 26. In some embodiments, the logic die 30 may perform error checking and correcting (“ECC”) functions.
  • The DRAM die 20, 22, 24, 26 are connected to each other and to the logic die 30 by a relatively wide bus 34. The bus 34 may be implemented with through silicon vias (“TSVs”), which comprise a large number of conductors extending through the DRAM die 20, 22, 24, 26 at the same locations on the DRAM die and connect to respective conductors formed on the die 20, 22, 24, 26. In one embodiment, each of the DRAM die 20, 22, 24, 26 are divided into 16 autonomous partitions, each of which may contain 2 or 4 independent memory banks. In such case, the partitions of each die 20, 22, 24, 26 that are stacked on top each other may be independently accessed for read and write operations. Each set of 16 stacked partitions may be referred to as a “vault.” Thus, the memory device 10 may contain 16 vaults. The vault may include a vertical stack of interconnected portions of the memory dies.
  • As shown in FIG. 2, in one embodiment, the bus 34 is divided into 16 36-bit bi-directional sub-buses 38 a-p, with each of the 16 36-bit sub-buses coupled to the 4 partitions in a respective vault, one on each of the separate die 20, 22, 24, and 26. Each of these sub-buses may couple 32 bits of a data and 4 ECC bits between the logic die 30 and the DRAM die 20, 22, 24, 26. However, the number of stacked DRAM die 20, 22, 24, 26, the number of partitions in each DRAM die, the number of banks in each partition, and the number of bits in each of the sub-buses 38 a-p can vary as desired. The relatively narrow high-speed bus 14 connecting the processor 12 to the logic die is divided into 4 16-bit downstream lanes 40 a-d and 4 separate 16-bit upstream lanes 42 a-d. The 4 downstream lanes 40 a-d may be connected to a single processor 12 as shown in FIG. 1, which may be a multi-core processor, to multiple processors (not shown), or to some other memory access device like a memory controller. The 4 downstream lanes 40 a-d may operate either independently of each other so that packets are coupled through the lanes 40 a-d at different times and to the same or different vaults.
  • As explained in greater detail below, one of the functions performed by the logic die 30 is to serialize the read data bits coupled from the DRAM die 20, 22, 24, 26 into serial streams of 16 serial data bits coupled in 16 parallel bits of each upstream lane 42 a-d of the bus 14. Similarly, the logic die 30 may perform the functions of deserializing 16 serial data bits coupled through one of the 16-bit downstream lanes 40 a-d of the bus 14 to obtain 256 parallel data bits. The logic die 30 then couples these 256 bits through one of the 32-bit sub-buses 38 a-p in a serial stream of 8 bits. However, other embodiments may use different numbers of lanes 40, 42 having different widths or different numbers of sub-buses 38 a-p having different widths, and they may couple data bits having different structures. As will be appreciated by one skilled in the art, the stacking of multiple DRAM die results in a memory device having a very large capacity. Further, the use of a very wide bus connecting the DRAM die allows data to be coupled to and from the DRAM die with a very high bandwidth.
  • A logic die 30 that can be tested according to an embodiment of the invention is shown in FIG. 3 connected to the processor 12 and the DRAM die 20, 22, 24, 26. As shown in FIG. 3, each of the 4 downstream lanes 40 a-d is connected to a respective link interface 50 a-d. Each link interface 50 a-d includes a deserializer 54 that converts each serial stream of 16 data bits on each of the 16-bit lanes 40 a-d to 256 parallel bits. Insofar as there are 4 link interfaces 50 a-d, the link interfaces can together output 1024 output parallel bits.
  • Each of the link interfaces 50 a-d applies its 256 parallel bits to a respective downstream target 60 a-d, which decodes the command and address portions of the received packet and buffers write data in the event a memory request is for a write operation. The downstream targets 60 a-d output their respective commands, addresses and possibly write data to a switch 62. The switch 62 contains 16 multiplexers 64 each of which direct the command, addresses and any write data from any of the downstream targets 60 a-d to its respective vault of the DRAM die 20, 22, 24, 26. Thus, each of the downstream targets 60 a-d can access any of the 16 vaults in the DRAM die 20, 22, 24, 26. The multiplexers 64 use the address in the received memory requests to determine if its respective vault is the target of a memory request. Each of the multiplexers 64 apply the memory request to a respective one of 16 vault controllers 70 a-p.
  • Each vault controller 70 a-p includes a write buffer 82, a read buffer 84 and a command pipeline 86. The command and addresses in memory requests received from the switch 62 are loaded into the command pipeline 86, and any write data in the memory requests are stored in the write buffer 82. The read buffer 84 is used to store read data from the respective vault, as will be explained in greater detail below. Both the write data from the write buffer 82 and the command from the command pipeline 86 are applied to a memory interface 88. The memory interface 88 may include a sequencer 90 and an ECC and defective memory cell repair system 100. The ECC and repair system 100 uses ECC techniques to check and correct the data read from the DRAM die 20, 22, 24, 26, and to assist the processor 12 or other memory access device to substitute redundant rows and columns for rows and columns, respectively, containing one or more defective memory cells. The sequencer 90 couples commands and addresses from the command pipeline 86 to the DRAM die 20, 22, 24, 26 through a command/address bus 92 and 32-bits of write data from the write buffer 82 and 4 bits of ECC from the ECC and repair system 100 to the DRAM die 20, 22, 24, 26 through a 36-bit data bus 94.
  • Although data are loaded into the write buffer 82 as 256 parallel bits, they are output from the buffer 82 in two sets, each set being 128 parallel bits. These 128 bits are then further serialized by the ECC and repair system 100 to 4 sets of 32-bit data, which are coupled thorough the data bus 94. In the embodiment shown in FIG. 3, write data are coupled to the write buffer 82 in synchronism with a 500 MHz clock so the data are stored in the write buffer at 16 gigabytes (“GB”) per second. The write data are coupled from the write buffer 82 to the DRAM die 20, 22, 24, 26 using a 2 GHz clock so the data are output from the write buffer 82 at 8 GB/s. Therefore, as long as more than half of the memory requests are not write operations to the same vault, the write buffers 82 will be able to couple the write data to the DRAM die 20, 22, 24, 26 at least as fast as the data are coupled to the write buffer 82.
  • In the event a memory request is for a read operation, the command and address for the request are coupled to the DRAM die 20, 22, 24, 26 in the same manner as a write request, as explained above. In response to a read request, 32 bits of read data and 4 ECC bits may be output from the DRAM die 20, 22, 24, 26 through the 36-bit data bus 94. The ECC bits are passed to the ECC and repair system 100, which uses the ECC bits to check and correct the read data before passing the read data on to the read buffer 84. The ECC and repair system 100 also deserializes the 32 bits of read data into two sets of 128-bit read data. After 2 sets of 128-bit read data have been stored in the read buffer 84, the read buffer transmits 256 bits to the switch 62. The switch includes 4 output multiplexers 104 coupled to respective upstream masters 110 a-d. Each multiplexer 104 can couple 256 bits of parallel data from any one of the vault controllers 70 a-p to its respective upstream master 110 a-d. The upstream masters 110 a-d format the 256 bits of read data into packet data and couple the packet to respective upstream link interfaces 114 a-d. Each of the link interfaces 114-d include a respective serializer 120 that converts the incoming 256 bits to a serial stream of 16 bits on each bit of a respective one of the 16-bit upsteam links 42 a-d.
  • The above description details how packets may be applied to a group of DRAM devices 20, 22, 24, 26 forming a stack containing logical vertical vaults of memory cells. As described above, the logic chip 30 may receive data on downstream lanes 40 a-d and output data on upstream lanes 42 a-d. Input data received in on a downstream lane in 16-bit increments is deserialized into a 256-bit packet and decoded by the relevant vault controller, such as vault controller 60 a. Packets received from the vaults are serialized before application to upstream lanes 42 a-d.
  • A conventional tester 400, shown in FIG. 4, has a 16-bit command interface 410 a, a 16-bit address interface 410 b and a 32-bit bi-directional interface 410 c. The interfaces 410 a-c do not match up with the downstream lanes 40 a-d and upstream lanes 42 a-d. The signals on the command, address, and data interfaces 410 a-c cannot be coupled directly to the downstream lanes 40 a-d or upstream lanes 42 a-d. For example, the lanes 40 a-d and 42 a-d are unidirectional and do not support bi-directional communication supported by the data interface 410 c. Furthermore, sequential data received on each of the downstream lanes 40 a-d is assembled into a packet that may contain command, address and data information.
  • To match signals provided by the tester 400 with information expected by the downstream lanes 40 a-d of the logic chip 30, a packet builder and broadcaster 420 is provided. The logic chip 30 may be placed in a test mode. The test mode may be initiated, for example, by providing a control signal indicative of test operation. The packet builder and broadcaster 420 includes a first input port for receiving command signals from the tester over the command interface 410 a, a second input port for receiving address signals from the tester 400 over the address interface 410 b and a third input port for receiving data signals from the tester 400 over the data interface 410 c.
  • In the test mode, according to one embodiment, the packet builder and broadcaster 420 receives command, address and optionally data signals from the tester 400 and reformats the received command, address and data signals into a format recognized by the logic chip 30. For example, the packet builder and broadcaster 420 may pass test command, address, and data signals sequentially to one of the downstream lanes 40 a-d in the case of a write command. The test command, address and data signals are then passed through the link interface 50 a to downstream target 60 a to form a packet, as generally described above. Although the packet builder and broadcaster 420 is shown in FIG. 4 separate from the link interfaces 50 a-d and downstream targets 60 a-d, in some embodiments the packet builder and broadcaster 420 may include the link interfaces 50 a-d, downstream targets 60 a-d, or both.
  • It may be desirable to test multiple vaults using the same test command. Accordingly, the packet builder and broadcaster 420 may repeat the received test commands and apply them to multiple vaults. For example, the packet builder and broadcaster 420 may couple a test command to multiple lanes 40 a-d either simultaneously or sequentially. The packet builder and broadcaster 420 may also direct a test command to be passed through multiple switches 62 to reach multiple vault controllers 70 a-p. The packet builder and broadcaster may vary the received address signal as the test command is repeated such that the test command is directed to multiple vaults. Each respective vault controller 70 a-p may receive and decode the broadcast write command as described above with respect to a routine command. In this manner, test signals generated by the conventional tester 400 on a command interface 410 a, address interface 410 b and data interface 410 c may be assembled into packets expected by the vault controllers 70 a-p and broadcast to multiple vaults.
  • As test read data is returned from the vaults in test mode, a packet disassembler and data compare unit 430 receives and compares the test read data returned from multiple vaults. Results of the comparison may be provided as a 32-bit data signal and coupled to the data interface 410 c of the tester 400. Although the packet disassembler and data compare unit 430 is shown separate from the link interfaces 114 a-d and upstream masters 110 a-d, in some embodiments the packet disassembler and data compare unit 430 may include the link interfaces 114 a-d, upstream masters 110 a-d, or both. The data interface 410 c is bidirectional, but each of the lanes 40 a-d and 42 a-d are unidirectional. Accordingly, both the packet builder and broadcaster 420 and the packet disassembler and data compare unit 430 are coupled to the data interface 410 c.
  • Because the packet disassembler and data compare unit 430 conducts a comparison of test read data received from multiple vaults, the output test read data provided to the tester over the data interface 410 c may indicate only that an error exists in one of the vaults tested. To isolate an error to a particular vault, the tester 400 may then provide test commands directed to a single vault. The packet builder and broadcaster 420 would then only pass the test command to a single vault, and an error could be isolated to a particular vault. In some embodiments, this further testing could include an analysis of whether the error was a hard or soft error.
  • As described above, the packet disassembler and data compare unit 430 may compare read data returned from several vaults and return results of the comparison to the tester 400. However, in some embodiments, the packet disassembler and data compare unit 430 may simply pass the read data returned from a vault back to the tester 400 for comparison at the tester with read data returned from other vaults, with the data expected to be returned, or both. The packet disassembler 430 may format the received read data in a manner expected by the tester 400, for example, placing the data in 32-bit chunks and coupling the read data to the bi-directional interface 410 c. The packet disassembler and data compare unit 430 may sequentially couple read data received from a plurality of vaults to the tester 400.
  • Accordingly, the logic die 30 may include a packet builder and broadcaster 420 and a packet disassembler and data compare unit 430 that allow the stacked memory devices in multiple vaults to be tested using a conventional tester 400.
  • From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. For example, although the embodiments of the invention are explained in the context of stacked DRAM die, it will be understood that the stacked die may be other types of memory device die, such as flash memory device die. Accordingly, the invention is not limited except as by the appended claims.

Claims (8)

1. A method of testing a plurality of stacked memory device die connected to each other and being connected to a logic circuit die on which the memory device die are stacked and being configured for access according to a plurality of vaults, the method comprising:
receiving at the logic circuit die a write command signal, an address signal and write data from separate interfaces;
combining, on the logic circuit die, the command and address signals and at least a portion of the write data into a packet;
broadcasting the packet to a plurality of the vaults;
writing the write data to a location corresponding to the address in each of the plurality of the vaults;
receiving at the logic circuit die a read command signal and an address signal from separate interfaces;
combining, on the logic circuit die, the command and address signals into a read packet;
broadcasting the read packet to the plurality of the vaults;
receiving read data responsive to the read packet from each of the plurality of the vertical vaults;
comparing the read data returned from each of the plurality of the vaults; and
outputting data to one of the separate interfaces corresponding to the comparison including an indication of whether any of the vaults returned read data different than any of the other plurality of vaults.
2. The method of testing according to claim 1 wherein each of the plurality of vaults comprise a plurality of memory devices interconnected in a vertical stack.
3. The method of testing according to claim 1 further comprising:
determining an error occurred in at least one of the plurality of vaults based on the output data; and
issuing a test command to fewer than all the plurality of vaults to determine the source of the error.
4. The method of testing according to claim 3 wherein the act of issuing the test command to fewer than all the plurality of vertical vaults comprises issuing the test command to a single vertical vault.
5. The method of testing according to claim 1 wherein the received read data from each of the plurality of vaults includes a packet and the act of comparing the read data includes disassembling each of the respective packets.
6. The method of testing according to claim 1 further comprising receiving wherein the output data is coupled to the interface from which the write data signal was received.
7. The method of testing according to claim 1 further comprising receiving a command signal placing the logic circuit die into a test mode.
8. The method of testing according to claim 11 further comprising coupling a conventional tester to the logic circuit die over the plurality of separate interfaces.
US13/180,301 2008-06-03 2011-07-11 Method and apparatus for testing high capacity/high bandwidth memory devices Active US8799726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/180,301 US8799726B2 (en) 2008-06-03 2011-07-11 Method and apparatus for testing high capacity/high bandwidth memory devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/132,332 US7979757B2 (en) 2008-06-03 2008-06-03 Method and apparatus for testing high capacity/high bandwidth memory devices
US13/180,301 US8799726B2 (en) 2008-06-03 2011-07-11 Method and apparatus for testing high capacity/high bandwidth memory devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/132,332 Division US7979757B2 (en) 2008-06-03 2008-06-03 Method and apparatus for testing high capacity/high bandwidth memory devices

Publications (2)

Publication Number Publication Date
US20110271158A1 true US20110271158A1 (en) 2011-11-03
US8799726B2 US8799726B2 (en) 2014-08-05

Family

ID=41381340

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/132,332 Active 2029-03-09 US7979757B2 (en) 2008-06-03 2008-06-03 Method and apparatus for testing high capacity/high bandwidth memory devices
US13/180,301 Active US8799726B2 (en) 2008-06-03 2011-07-11 Method and apparatus for testing high capacity/high bandwidth memory devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/132,332 Active 2029-03-09 US7979757B2 (en) 2008-06-03 2008-06-03 Method and apparatus for testing high capacity/high bandwidth memory devices

Country Status (1)

Country Link
US (2) US7979757B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067039A1 (en) * 2009-09-11 2011-03-17 Sean Eilert Autonomous memory architecture
US20110320894A1 (en) * 2010-06-28 2011-12-29 Qualcomm Incorporated Surrogate Circuit For Testing An Interface
US8539312B2 (en) 2008-08-15 2013-09-17 Microns Technology, Inc. Memory system and method using a memory device die stacked with a logic die using data encoding, and system using the memory system
US8751754B2 (en) 2008-05-29 2014-06-10 Micron Technology, Inc. Memory systems and methods for controlling the timing of receiving read data
US8793460B2 (en) 2008-07-21 2014-07-29 Micron Technology, Inc. Memory system and method using stacked memory device dice, and system using the memory system
US8861246B2 (en) 2010-12-16 2014-10-14 Micron Technology, Inc. Phase interpolators and push-pull buffers
US9146811B2 (en) 2008-07-02 2015-09-29 Micron Technology, Inc. Method and apparatus for repairing high capacity/high bandwidth memory devices
US9171597B2 (en) 2013-08-30 2015-10-27 Micron Technology, Inc. Apparatuses and methods for providing strobe signals to memories
US9432298B1 (en) 2011-12-09 2016-08-30 P4tents1, LLC System, method, and computer program product for improving memory systems
WO2016187221A1 (en) * 2015-05-18 2016-11-24 Micron Technology, Inc Apparatus having dice to perorm refresh operations
US9659630B2 (en) 2008-07-02 2017-05-23 Micron Technology, Inc. Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US10003675B2 (en) 2013-12-02 2018-06-19 Micron Technology, Inc. Packet processor receiving packets containing instructions, data, and starting location and generating packets containing instructions and data
CN112435709A (en) * 2020-12-03 2021-03-02 中科驭数(北京)科技有限公司 High-bandwidth memory test system, test method and test equipment

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979757B2 (en) 2008-06-03 2011-07-12 Micron Technology, Inc. Method and apparatus for testing high capacity/high bandwidth memory devices
US8127185B2 (en) * 2009-01-23 2012-02-28 Micron Technology, Inc. Memory devices and methods for managing error regions
US8612809B2 (en) 2009-12-31 2013-12-17 Intel Corporation Systems, methods, and apparatuses for stacked memory
US9164679B2 (en) 2011-04-06 2015-10-20 Patents1, Llc System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class
US9158546B1 (en) 2011-04-06 2015-10-13 P4tents1, LLC Computer program product for fetching from a first physical memory between an execution of a plurality of threads associated with a second physical memory
US9170744B1 (en) 2011-04-06 2015-10-27 P4tents1, LLC Computer program product for controlling a flash/DRAM/embedded DRAM-equipped system
US9176671B1 (en) 2011-04-06 2015-11-03 P4tents1, LLC Fetching data between thread execution in a flash/DRAM/embedded DRAM-equipped system
US8930647B1 (en) 2011-04-06 2015-01-06 P4tents1, LLC Multiple class memory systems
US9417754B2 (en) 2011-08-05 2016-08-16 P4tents1, LLC User interface system, method, and computer program product
US8924786B2 (en) * 2012-06-28 2014-12-30 Intel Corporation No-touch stress testing of memory I/O interfaces
US9135100B2 (en) 2013-03-14 2015-09-15 Micron Technology, Inc. Cooperative memory error detection and repair
US9223665B2 (en) 2013-03-15 2015-12-29 Micron Technology, Inc. Apparatuses and methods for memory testing and repair
US9170296B2 (en) 2013-08-06 2015-10-27 Globalfoundries U.S.2 Llc Semiconductor device defect monitoring using a plurality of temperature sensing devices in an adjacent semiconductor device
CN105117310A (en) * 2015-07-30 2015-12-02 浪潮电子信息产业股份有限公司 Linux system-based memory read-write bandwidth optimization test method
KR20170060205A (en) * 2015-11-23 2017-06-01 에스케이하이닉스 주식회사 Stacked memory device and semiconductor memory system
US10838645B2 (en) * 2019-04-22 2020-11-17 Micron Technology, Inc. Memory writing operations with consideration for thermal thresholds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774475A (en) * 1996-12-05 1998-06-30 National Semiconductor Corporation Testing scheme that re-uses original stimulus for testing circuitry embedded within a larger circuit
US5982684A (en) * 1998-05-28 1999-11-09 Intel Corporation Parallel access testing of a memory array
US6181616B1 (en) * 1998-09-03 2001-01-30 Micron Technology, Inc. Circuits and systems for realigning data output by semiconductor testers to packet-based devices under test
US6285211B1 (en) * 1997-07-16 2001-09-04 Altera Corporation I/O buffer circuit with pin multiplexing
US6839260B2 (en) * 2000-01-18 2005-01-04 Hitachi, Ltd. Semiconductor device having different types of memory cell arrays stacked in a vertical direction
US20050174877A1 (en) * 2004-02-06 2005-08-11 Soon-Jae Cho Bus arrangement and method thereof
US7171596B2 (en) * 2002-09-11 2007-01-30 Infineon Technologies Ag Circuit and method for testing embedded DRAM circuits through direct access mode

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263032A (en) 1991-06-27 1993-11-16 Digital Equipment Corporation Computer system operation with corrected read data function
US5179303A (en) 1991-10-24 1993-01-12 Northern Telecom Limited Signal delay apparatus employing a phase locked loop
US5748914A (en) 1995-10-19 1998-05-05 Rambus, Inc. Protocol for communication with dynamic memory
JP3691170B2 (en) * 1996-08-30 2005-08-31 株式会社ルネサステクノロジ Test circuit
US6247138B1 (en) 1997-06-12 2001-06-12 Fujitsu Limited Timing signal generating circuit, semiconductor integrated circuit device and semiconductor integrated circuit system to which the timing signal generating circuit is applied, and signal transmission system
JPH11213666A (en) 1998-01-30 1999-08-06 Mitsubishi Electric Corp Output circuit and synchronous semiconductor memory device
TW440767B (en) 1998-06-02 2001-06-16 Fujitsu Ltd Method of and apparatus for correctly transmitting signals at high speed without waveform distortion
US6177807B1 (en) 1999-05-28 2001-01-23 International Business Machines Corporation High frequency valid data strobe
US6401213B1 (en) 1999-07-09 2002-06-04 Micron Technology, Inc. Timing circuit for high speed memory
JP4216415B2 (en) 1999-08-31 2009-01-28 株式会社ルネサステクノロジ Semiconductor device
JP2001236797A (en) * 1999-12-17 2001-08-31 Fujitsu Ltd Self-test circuit and memory device incorporating it
JP2001195899A (en) * 2000-01-06 2001-07-19 Mitsubishi Electric Corp Semiconductor memory
DE10002130A1 (en) 2000-01-19 2001-08-02 Infineon Technologies Ag Method and device for alternately operating a read-write memory in the one-memory operating mode and in the entangled multi-memory operating mode
US6745275B2 (en) 2000-01-25 2004-06-01 Via Technologies, Inc. Feedback system for accomodating different memory module loading
US7168005B2 (en) * 2000-09-14 2007-01-23 Cadence Design Systems, Inc. Programable multi-port memory BIST with compact microcode
US20030120858A1 (en) 2000-09-15 2003-06-26 Matrix Semiconductor, Inc. Memory devices and methods for use therewith
US6574626B1 (en) * 2000-09-29 2003-06-03 Agilent Technologies, Inc. Method and apparatus for administration of extended memory
US6418068B1 (en) 2001-01-19 2002-07-09 Hewlett-Packard Co. Self-healing memory
US20020100231A1 (en) 2001-01-26 2002-08-01 Miller Robert J. Textured laminate flooring
US6714476B2 (en) 2001-02-15 2004-03-30 Ibm Corporation Memory array with dual wordline operation
TW483258B (en) 2001-02-22 2002-04-11 Realtek Semiconductor Corp Phase interpolating circuit and the apparatus composed of phase interpolating circuits for generating phase interpolating signal
US6658523B2 (en) 2001-03-13 2003-12-02 Micron Technology, Inc. System latency levelization for read data
US6417695B1 (en) 2001-03-15 2002-07-09 Micron Technology, Inc. Antifuse reroute of dies
JP2003014819A (en) 2001-07-03 2003-01-15 Matsushita Electric Ind Co Ltd Semiconductor wiring board, semiconductor device, test method therefor and mounting method therefor
JP4437519B2 (en) 2001-08-23 2010-03-24 スパンション エルエルシー Memory controller for multilevel cell memory
US6938133B2 (en) 2001-09-28 2005-08-30 Hewlett-Packard Development Company, L.P. Memory latency and bandwidth optimizations
US6889334B1 (en) 2001-10-02 2005-05-03 Advanced Micro Devices, Inc. Multimode system for calibrating a data strobe delay for a memory read operation
DE10163653A1 (en) 2001-12-21 2003-07-03 Bosch Gmbh Robert Device for radar system e.g. for speed control in vehicle, uses demodulated reception signals specifically as input signals for device
US7197101B2 (en) 2002-01-02 2007-03-27 Intel Corporation Phase interpolator based clock recovering
US7203259B2 (en) 2002-01-02 2007-04-10 Intel Corporation Phase interpolator
US6650157B2 (en) 2002-01-11 2003-11-18 Sun Microsystems, Inc. Using a push/pull buffer to improve delay locked loop performance
JP4004811B2 (en) 2002-02-06 2007-11-07 株式会社東芝 Nonvolatile semiconductor memory device
JP2003303139A (en) 2002-04-09 2003-10-24 Nec Corp Redundancy memory module and memory controller
US7035150B2 (en) 2002-10-31 2006-04-25 Infineon Technologies Ag Memory device with column select being variably delayed
US20040098545A1 (en) 2002-11-15 2004-05-20 Pline Steven L. Transferring data in selectable transfer modes
JP4274811B2 (en) 2003-02-17 2009-06-10 株式会社ルネサステクノロジ Synchronous semiconductor memory device
JP4291596B2 (en) * 2003-02-26 2009-07-08 株式会社ルネサステクノロジ Semiconductor integrated circuit testing apparatus and semiconductor integrated circuit manufacturing method using the same
JP4419049B2 (en) 2003-04-21 2010-02-24 エルピーダメモリ株式会社 Memory module and memory system
US7184916B2 (en) * 2003-05-20 2007-02-27 Cray Inc. Apparatus and method for testing memory cards
US7447950B2 (en) 2003-05-20 2008-11-04 Nec Electronics Corporation Memory device and memory error correction method
US7061273B2 (en) 2003-06-06 2006-06-13 Rambus Inc. Method and apparatus for multi-mode driver
JP2005025827A (en) 2003-06-30 2005-01-27 Toshiba Corp Semiconductor integrated circuit device and its error detecting and correcting method
US20050071707A1 (en) 2003-09-30 2005-03-31 Hampel Craig E. Integrated circuit with bi-modal data strobe
WO2005043384A1 (en) 2003-10-24 2005-05-12 Microchip Technology Incorporated Method and system for fast access to stack memory
JP2005191083A (en) 2003-12-24 2005-07-14 Fujitsu Ltd Semiconductor integrated circuit and method for evaluating wiring thereof
US7107424B1 (en) 2004-03-25 2006-09-12 Emc Corporation Memory read strobe pulse optimization training system
JP2005353168A (en) 2004-06-10 2005-12-22 Canon Inc Memory interface circuit and memory interface method
US20050289435A1 (en) 2004-06-29 2005-12-29 Mulla Dean A Fast approximate DINV calculation in parallel with coupled ECC generation or correction
KR100630343B1 (en) 2004-07-14 2006-09-29 삼성전자주식회사 Clock data recovery circuit with analog phase interpolator and clock data recovering method using the same
US7539800B2 (en) 2004-07-30 2009-05-26 International Business Machines Corporation System, method and storage medium for providing segment level sparing
US7389375B2 (en) 2004-07-30 2008-06-17 International Business Machines Corporation System, method and storage medium for a multi-mode memory buffer device
DE602004014371D1 (en) 2004-09-10 2008-07-24 St Microelectronics Srl Memory with built-in error correction code facility
US7135905B2 (en) 2004-10-12 2006-11-14 Broadcom Corporation High speed clock and data recovery system
US7464241B2 (en) 2004-11-22 2008-12-09 Intel Corporation Memory transaction burst operation and memory components supporting temporally multiplexed error correction coding
US7200021B2 (en) * 2004-12-10 2007-04-03 Infineon Technologies Ag Stacked DRAM memory chip for a dual inline memory module (DIMM)
JP2006277872A (en) * 2005-03-30 2006-10-12 Elpida Memory Inc Semiconductor memory device and its test method
JP4309368B2 (en) 2005-03-30 2009-08-05 エルピーダメモリ株式会社 Semiconductor memory device
US7296195B2 (en) 2005-05-02 2007-11-13 Credence Systems Corporation Bit synchronization for high-speed serial device testing
TWI289851B (en) 2005-05-04 2007-11-11 Univ Tsinghua Semiconductor memory and method of correcting errors for the same
US7317256B2 (en) 2005-06-01 2008-01-08 Intel Corporation Electronic packaging including die with through silicon via
US8619452B2 (en) 2005-09-02 2013-12-31 Google Inc. Methods and apparatus of stacking DRAMs
US7464225B2 (en) 2005-09-26 2008-12-09 Rambus Inc. Memory module including a plurality of integrated circuit memory devices and a plurality of buffer devices in a matrix topology
US7631245B2 (en) 2005-09-26 2009-12-08 Sandisk Il Ltd. NAND flash memory controller exporting a NAND interface
US7802169B2 (en) 2005-12-12 2010-09-21 Mediatek Inc. Error correction devices and correction methods
US20080017897A1 (en) * 2006-01-30 2008-01-24 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing same
US8185711B2 (en) 2006-05-16 2012-05-22 Samsung Electronics Co., Ltd. Memory module, a memory system including a memory controller and a memory module and methods thereof
JP4267002B2 (en) 2006-06-08 2009-05-27 エルピーダメモリ株式会社 System with controller and memory
US7694031B2 (en) 2006-10-31 2010-04-06 Globalfoundries Inc. Memory controller including a dual-mode memory interconnect
JP2008140220A (en) 2006-12-04 2008-06-19 Nec Corp Semiconductor device
EP4254413A3 (en) 2006-12-14 2023-12-27 Rambus Inc. Multi-die memory device
US8110899B2 (en) 2006-12-20 2012-02-07 Intel Corporation Method for incorporating existing silicon die into 3D integrated stack
US7984355B2 (en) 2007-04-09 2011-07-19 Qimonda Ag Memory module with ranks of memory chips
US8427891B2 (en) 2007-04-17 2013-04-23 Rambus Inc. Hybrid volatile and non-volatile memory device with a shared interface circuit
US7921264B2 (en) 2007-06-27 2011-04-05 International Business Machines Corporation Dual-mode memory chip for high capacity memory subsystem
US20090016130A1 (en) * 2007-07-12 2009-01-15 Manfred Menke Memory device and method of testing a memory device
US7688652B2 (en) 2007-07-18 2010-03-30 Mosaid Technologies Incorporated Storage of data in memory via packet strobing
US8356138B1 (en) 2007-08-20 2013-01-15 Xilinx, Inc. Methods for implementing programmable memory controller for distributed DRAM system-in-package (SiP)
US20090091968A1 (en) 2007-10-08 2009-04-09 Stefan Dietrich Integrated circuit including a memory having a data inversion circuit
KR101396366B1 (en) 2007-10-22 2014-05-20 삼성전자주식회사 Linear digital phase interpolator and semi-digital delay locked loop including the same
US20090196093A1 (en) 2008-01-31 2009-08-06 Qimonda Ag Stacked die memory
US9252758B2 (en) 2008-04-08 2016-02-02 Realtek Semiconductor Corporation Multi-phase phase interpolator
US8521979B2 (en) 2008-05-29 2013-08-27 Micron Technology, Inc. Memory systems and methods for controlling the timing of receiving read data
US7979757B2 (en) 2008-06-03 2011-07-12 Micron Technology, Inc. Method and apparatus for testing high capacity/high bandwidth memory devices
US7710144B2 (en) 2008-07-01 2010-05-04 International Business Machines Corporation Controlling for variable impedance and voltage in a memory system
US7855931B2 (en) 2008-07-21 2010-12-21 Micron Technology, Inc. Memory system and method using stacked memory device dice, and system using the memory system
US8756486B2 (en) 2008-07-02 2014-06-17 Micron Technology, Inc. Method and apparatus for repairing high capacity/high bandwidth memory devices
US8289760B2 (en) 2008-07-02 2012-10-16 Micron Technology, Inc. Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US8103928B2 (en) 2008-08-04 2012-01-24 Micron Technology, Inc. Multiple device apparatus, systems, and methods
US8127204B2 (en) 2008-08-15 2012-02-28 Micron Technology, Inc. Memory system and method using a memory device die stacked with a logic die using data encoding, and system using the memory system
US7872936B2 (en) 2008-09-17 2011-01-18 Qimonda Ag System and method for packaged memory
KR20100037427A (en) 2008-10-01 2010-04-09 삼성전자주식회사 Ac coupling phase interpolator and dll using it
TWI420818B (en) 2009-03-10 2013-12-21 Realtek Semiconductor Corp Method and apparatus for preventing phase interpolation circuit from glitch during clock switching
JPWO2012060097A1 (en) 2010-11-02 2014-05-12 日本電気株式会社 Memory module and memory system
US8400808B2 (en) 2010-12-16 2013-03-19 Micron Technology, Inc. Phase interpolators and push-pull buffers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774475A (en) * 1996-12-05 1998-06-30 National Semiconductor Corporation Testing scheme that re-uses original stimulus for testing circuitry embedded within a larger circuit
US6285211B1 (en) * 1997-07-16 2001-09-04 Altera Corporation I/O buffer circuit with pin multiplexing
US5982684A (en) * 1998-05-28 1999-11-09 Intel Corporation Parallel access testing of a memory array
US6181616B1 (en) * 1998-09-03 2001-01-30 Micron Technology, Inc. Circuits and systems for realigning data output by semiconductor testers to packet-based devices under test
US6839260B2 (en) * 2000-01-18 2005-01-04 Hitachi, Ltd. Semiconductor device having different types of memory cell arrays stacked in a vertical direction
US7171596B2 (en) * 2002-09-11 2007-01-30 Infineon Technologies Ag Circuit and method for testing embedded DRAM circuits through direct access mode
US20050174877A1 (en) * 2004-02-06 2005-08-11 Soon-Jae Cho Bus arrangement and method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8751754B2 (en) 2008-05-29 2014-06-10 Micron Technology, Inc. Memory systems and methods for controlling the timing of receiving read data
US9411538B2 (en) 2008-05-29 2016-08-09 Micron Technology, Inc. Memory systems and methods for controlling the timing of receiving read data
US10109343B2 (en) 2008-07-02 2018-10-23 Micron Technology, Inc. Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US10892003B2 (en) 2008-07-02 2021-01-12 Micron Technology, Inc. Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US9659630B2 (en) 2008-07-02 2017-05-23 Micron Technology, Inc. Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US9146811B2 (en) 2008-07-02 2015-09-29 Micron Technology, Inc. Method and apparatus for repairing high capacity/high bandwidth memory devices
US9275698B2 (en) 2008-07-21 2016-03-01 Micron Technology, Inc. Memory system and method using stacked memory device dice, and system using the memory system
US8793460B2 (en) 2008-07-21 2014-07-29 Micron Technology, Inc. Memory system and method using stacked memory device dice, and system using the memory system
US8539312B2 (en) 2008-08-15 2013-09-17 Microns Technology, Inc. Memory system and method using a memory device die stacked with a logic die using data encoding, and system using the memory system
US8826101B2 (en) 2008-08-15 2014-09-02 Micron Technology, Inc. Memory system and method using a memory device die stacked with a logic die using data encoding, and system using the memory system
US9779057B2 (en) * 2009-09-11 2017-10-03 Micron Technology, Inc. Autonomous memory architecture
US10769097B2 (en) 2009-09-11 2020-09-08 Micron Technologies, Inc. Autonomous memory architecture
US20110067039A1 (en) * 2009-09-11 2011-03-17 Sean Eilert Autonomous memory architecture
US11586577B2 (en) 2009-09-11 2023-02-21 Micron Technology, Inc. Autonomous memory architecture
US20110320894A1 (en) * 2010-06-28 2011-12-29 Qualcomm Incorporated Surrogate Circuit For Testing An Interface
US8464107B2 (en) * 2010-06-28 2013-06-11 Qualcomm Incorporated Surrogate circuit for testing an interface
US8861246B2 (en) 2010-12-16 2014-10-14 Micron Technology, Inc. Phase interpolators and push-pull buffers
US9602080B2 (en) 2010-12-16 2017-03-21 Micron Technology, Inc. Phase interpolators and push-pull buffers
US9899994B2 (en) 2010-12-16 2018-02-20 Micron Technology, Inc. Phase interpolators and push-pull buffers
US9432298B1 (en) 2011-12-09 2016-08-30 P4tents1, LLC System, method, and computer program product for improving memory systems
US9171597B2 (en) 2013-08-30 2015-10-27 Micron Technology, Inc. Apparatuses and methods for providing strobe signals to memories
US9437263B2 (en) 2013-08-30 2016-09-06 Micron Technology, Inc. Apparatuses and methods for providing strobe signals to memories
US10003675B2 (en) 2013-12-02 2018-06-19 Micron Technology, Inc. Packet processor receiving packets containing instructions, data, and starting location and generating packets containing instructions and data
US10778815B2 (en) 2013-12-02 2020-09-15 Micron Technology, Inc. Methods and systems for parsing and executing instructions to retrieve data using autonomous memory
WO2016187221A1 (en) * 2015-05-18 2016-11-24 Micron Technology, Inc Apparatus having dice to perorm refresh operations
US10255963B2 (en) 2015-05-18 2019-04-09 Micron Technology, Inc. Apparatus having dice to perform refresh operations
US10008254B2 (en) 2015-05-18 2018-06-26 Micron Technology, Inc. Apparatus having dice to perorm refresh operations
US9570142B2 (en) 2015-05-18 2017-02-14 Micron Technology, Inc. Apparatus having dice to perorm refresh operations
CN112435709A (en) * 2020-12-03 2021-03-02 中科驭数(北京)科技有限公司 High-bandwidth memory test system, test method and test equipment

Also Published As

Publication number Publication date
US8799726B2 (en) 2014-08-05
US20090300444A1 (en) 2009-12-03
US7979757B2 (en) 2011-07-12

Similar Documents

Publication Publication Date Title
US8799726B2 (en) Method and apparatus for testing high capacity/high bandwidth memory devices
US10109343B2 (en) Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US9146811B2 (en) Method and apparatus for repairing high capacity/high bandwidth memory devices
US20090097348A1 (en) Integrated circuit including a memory module having a plurality of memory banks
KR20160143744A (en) Memory device having controller with local memory
US9361973B2 (en) Multi-channel, multi-bank memory with wide data input/output
US10896738B1 (en) Apparatuses and methods for direct access hybrid testing
US7613065B2 (en) Multi-port memory device
US20160358671A1 (en) Memory chip and stack type semiconductor apparatus including the same
CN116246687A (en) Memory device, memory system, and method of performing test using BIST circuit
US8488400B2 (en) Multi-port memory device
US6718487B1 (en) Method for high speed testing with low speed semiconductor test equipment
CN116583902A (en) Memory, memory testing method and electronic equipment
CN118430628A (en) Memory device including repair circuit and method of operating the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date: 20190731

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8