US20110268972A1 - Elastic particle foam based on polyolefin/styrene polymer mixtures - Google Patents

Elastic particle foam based on polyolefin/styrene polymer mixtures Download PDF

Info

Publication number
US20110268972A1
US20110268972A1 US13/142,987 US200913142987A US2011268972A1 US 20110268972 A1 US20110268972 A1 US 20110268972A1 US 200913142987 A US200913142987 A US 200913142987A US 2011268972 A1 US2011268972 A1 US 2011268972A1
Authority
US
United States
Prior art keywords
weight
expandable
percent
styrene
bead material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/142,987
Other versions
US8729143B2 (en
Inventor
Carsten Schips
Klaus Hahn
Maximilian Hofmann
Holger Ruckdäschel
Jens Assmann
Geert Janssens
Georg Gräßel
Jurgen Lambert
Christof Zylla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZYLLA, CHRISTOF, LAMBERT, JURGEN, GRASSEL, GEORG, JANSSENS, GEERT, ASSMANN, JENS, HAHN, KLAUS, HOFMANN, MAXIMILIAN, RUCKDASCHEL, HOLGER, SCHIPS, CARSTEN
Publication of US20110268972A1 publication Critical patent/US20110268972A1/en
Application granted granted Critical
Publication of US8729143B2 publication Critical patent/US8729143B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • C08J2425/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the invention relates to expandable, thermoplastic polymer bead material composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase of a thermoplastic polymer, where at least two different disperse phases P 1 and P 2 are present, dispersed in the continuous phase, and also to processes for its production, and to use for the production of elastic molded foams.
  • Expandable polymer mixtures composed of styrene polymers, polyolefins, and optionally solubilizers, such as hydrogenated styrene-butadiene block copolymers, are known by way of example from DE 24 13 375, DE 24 13 408, or DE 38 14 783.
  • the foams obtainable therefrom are intended to have better mechanical properties when compared with foams composed of styrene polymers, in particular better elasticity and less brittleness at low temperatures, and also resistance to solvents, such as ethyl acetate and toluene.
  • solvents such as ethyl acetate and toluene.
  • the ability to retain blowing agent and the foamability of the expandable polymer mixtures to give low densities are inadequate to meet the requirements of processing.
  • WO 2005/056652 describes molded foams with density in the range from 10 to 100 g/l which are obtainable via fusion of prefoamed foam beads derived from expandable, thermoplastic polymer pellets.
  • the polymer pellets comprise mixtures composed of styrene polymers and of other thermoplastic polymers, and can be obtained via melt impregnation and subsequent pressurized underwater pelletization.
  • Elastic moldable foams composed of expandable interpolymer beads are also known (e.g. US 2004/0152795 A1).
  • the interpolymers are obtainable via polymerization of styrene in the presence of polyolefins in aqueous suspension, and form an interpenetrating network composed of styrene polymers and of olefin polymers.
  • the blowing agent diffuses rapidly out of the expandable polymer beads, and they therefore have to be stored at low temperatures, and have only a short period of adequate foamability.
  • WO 2005/092959 describes nanoporous polymer foams which are obtainable from multiphase polymer mixtures which comprise blowing agent and which have domains in the range from 5 to 200 nm.
  • the domains are preferably composed of a core-shell particle obtainable via emulsion polymerization, and the solubility of the blowing agent in these is at least twice as high as in the adjacent phases.
  • the average diameter of the disperse phases of the polymer mixture is generally in the range from 1 to 2000 nm.
  • thermoplastic polymer bead material In preferred expandable, thermoplastic polymer bead material,
  • the continuous phase consists essentially of styrene polymers
  • the first disperse phase P 1 consists essentially of polyolefins
  • the second disperse phase P 2 consists essentially of a styrene-butadiene block copolymer or styrene-isoprene block copolymer, of a thermoplastic polyurethane (TPU), of a polystyrene-grafted butadiene polymer, or of a core-shell particle having a styrene polymer shell.
  • TPU thermoplastic polyurethane
  • Preferred expandable, thermoplastic polymer bead material comprises
  • the expandable, thermoplastic polymer bead material particularly preferably comprises
  • styrene polymer from 55 to 78.1 percent by weight of a styrene polymer, B1) from 7 to 15 percent by weight of a polyolefin with a melting point in the range from 105 to 140° C., B2) from 5 to 10 percent by weight of a polyolefin with a melting point below 105° C., C1) from 6 to 15 percent by weight of a styrene-butadiene or styrene-isoprene block copolymer, C2) from 0.8 to 3 percent by weight of a styrene-ethylene-butylene block copolymer, from 3 to 10 percent by weight of a blowing agent, and from 0.1 to 2 percent by weight of a nucleating agent, where the entirety composed of the components A) to E) gives 100% by weight.
  • components C1) and C2) lies within the range from 3.5 to 30 percent by weight, preferably within the range from 6.8 to 18 percent by weight.
  • the ratio by weight of the entirety composed of components B1) and B2) to component C2) in the expandable, thermoplastic polymer bead material according to the invention preferably lies within the range from 5 to 70.
  • the ratio by weight of components C1):C2) in the expandable thermoplastic polymer bead material of the invention preferably lies within the range from 2 to 5.
  • the expandable polymer bead material according to the invention consists essentially of components A) to E).
  • the expandable, thermoplastic polymer bead material is composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase and has at least two disperse phases P 1 and P 2 dispersed in the continuous phase, where
  • the continuous phase consists essentially of component A
  • the first disperse phase P 1 consists essentially of components B1 and B2
  • the second disperse phase P 2 consists essentially of component C1.
  • Component C2) preferably forms an interface between the disperse phase P 1 and the continuous phase.
  • the expandable, thermoplastic polymer bead material according to the invention preferably has a coating, comprising a glycerol stearate.
  • Component A) may be styrene polymers, such as standard polystyrene (GPPS) or impact resistant polystyrene (HIPS), or styrene-acrylonitrile copolymers (SAN), or acrylonitrile-butadiene-styrene copolymers (ABS).
  • GPPS standard polystyrene
  • HIPS impact resistant polystyrene
  • SAN styrene-acrylonitrile copolymers
  • ABS acrylonitrile-butadiene-styrene copolymers
  • standard polystyrene grades with weight-average molar masses in the range from 120 000 to 300 000 g/mol and with a melt volume rate MVR (200° C./5 kg) to ISO 113 in the range from 1 to 10 cm 3 /10 min, examples being PS 158 K, 168 N, or 148 G from BASF Aktiengesellschaft.
  • Free-flowing grades can be added in order to improve the fusion
  • the expandable thermoplastic polymer bead material comprises, as further components B), polyolefins B1) with a melting point in the range from 105 to 140° C., and polyolefins B2) with a melting point below 105° C.
  • the melting point is the melting peak determined by means of DSC (Dynamic Scanning calorimetry), at a heating rate of 10° C./minute.
  • Preferred polyolefin B1) is a homo- or copolymer of ethylene and/or propylene, with density in the range from 0.91 to 0.98 g/L (determined to ASTM D792), in particular polyethylene.
  • Particular polypropylenes that can be used are injection-molding grades.
  • Polyethylenes that can be used are commercially available homopolymers composed of ethylene, e.g. LDPE (injection-molding grades), LLDPE, HDPE, or copolymers composed of ethylene and propylene (e.g. Moplen® RP220 and Moplen® RP320 from Basell), ethylene and vinyl acetate (EVA), ethylene-acrylates (EA), or ethylene-butylene-acrylates (EBA).
  • the melt volume index MVI (190° C./2.16 kg) of the polyethylenes is usually in the range from 0.5 to 40 g/10 min, and the densities are usually in the range from 0.91 to 0.95 g/cm 3 .
  • Blends with polyisobutene (PIB) can moreover be used (e.g. Oppanol® 8150 from BASF Aktiengesellschaft). It is particularly preferable to use LLDPE with a melting point in the range from 110 to 125° C. and with density in the range from 0.92 to 0.94 g/L.
  • the density of the polyolefin B2) is preferably in the range from 0.86 to 0.90 g/L (determined to ASTM D792).
  • Thermoplastic elastomers based on olefins (TPOs) are particularly suitable for this purpose. Particular preference is given to ethylene-octene copolymers which are commercially obtainable by way of example as Engage® 8411 from Dow.
  • Engage® 8411 from Dow.
  • compatibilizers for controlled establishment of the desired morphology, compatibilizers (components C) are used. According to the invention, compatibility is improved via the use of a mixture of styrene-butadiene block copolymers or styrene-isoprene block copolymers, as component C1), and styrene-ethylene-butylene block copolymers (SEBS), as component C2).
  • component C1 styrene-butadiene block copolymers or styrene-isoprene block copolymers
  • SEBS styrene-ethylene-butylene block copolymers
  • the compatibilizers lead to improved adhesion between the polyolefin-rich and the styrene-polymer-rich phase, and even small amounts improve the elasticity of the foam in comparison with conventional EPS foams.
  • Studies on the domain size of the polyolefin-rich phase showed that the compatibilizer stabilizes small droplets via a reduction in interfacial tension.
  • FIG. 1 shows an electron micrograph of a section through an expandable polystyrene-polyethylene comprising blowing agent and having disperse polyethylene domains in the polystyrene matrix.
  • the expandable, thermoplastic polymer bead material comprises, as component C1), from 0.1 to 9.9 percent by weight, in particular from 1 to 5% by weight, of a styrene-butadiene or styrene-isoprene block copolymer.
  • Total diene content is preferably in the range from 20 to 60% by weight, particularly preferably in the range from 30 to 50% by weight, and total styrene content is correspondingly preferably in the range from 40 to 80% by weight, particularly preferably in the range from 50 to 70% by weight.
  • Suitable styrene-butadiene block copolymers which are composed of at least two polystyrene blocks S and of at least one styrene-butadiene copolymer block S/B are by way of example the star-shaped branched block copolymers described in EP-A 0654488.
  • block copolymers having at least two hard blocks S 1 and S 2 composed of vinylaromatic monomers, and having, between these, at least one random soft block B/S composed of vinylaromatic monomers and diene, where the proportion of the hard blocks is above 40% by weight, based on the entire block copolymer, and the 1,2-vinyl content in the soft block B/S is below 20%, these being described in WO 00/58380.
  • Suitable compatibilizers are linear styrene-butadiene block copolymers whose general structure is S—(S/B)—S having one or more (S/B) random blocks which have random styrene/butadiene distribution, between the two S blocks.
  • Block copolymers of this type are obtainable via anionic polymerization in a non-polar solvent with addition of a polar cosolvent or of a potassium salt, as described by way of example in WO 95/35335 or WO 97/40079.
  • the vinyl content is the relative proportion of 1,2-linkages of the diene units, based on the total of the 1,2-, 1,4-cis, and 1,4-trans linkages.
  • the 1,2-vinyl content in the styrene-butadiene copolymer block (S/B) is preferably below 20%, in particular in the range from 10 to 18%, particularly preferably in the range from 12 to 16%.
  • Compatibilizers preferably used are styrene-butadiene-styrene (SBS) triblock copolymers whose butadiene content is from 20 to 60% by weight, preferably from 30 to 50% by weight, and these may be hydrogenated or non-hydrogenated materials.
  • SBS styrene-butadiene-styrene
  • These are marketed by way of example as Styroflex® 2G66, Styrolux® 3G55, Styroclear® GH62, Kraton® D 1101, Kraton® D 1155, Tuftec® H1043, or Europren® SOL T6414. They are SBS block copolymers with sharp transitions between B blocks and S blocks.
  • the expandable, thermoplastic polymer bead material comprises, as component C2), from 0.1 to 9.9 percent by weight, in particular from 1 to 5% by weight, of a styrene-ethylene-butylene block copolymer (SEBS).
  • SEBS styrene-ethylene-butylene block copolymer
  • suitable styrene-ethylene-butylene block copolymers (SEBS) are those obtainable via hydrogenation of the olefinic double bonds of the block copolymers C1).
  • suitable styrene-ethylene-butylene block copolymers are the Kraton® G grades obtainable commercially, in particular Kraton® G 1650.
  • additives can moreover be made to the multiphase polymer mixture: additives, nucleating agents, plasticizers, flame retardants, soluble and insoluble inorganic and/or organic dyes and pigments, fillers, or co-blowing agents, in amounts which do not impair domain formation and foam structure resulting therefrom.
  • the expandable, thermoplastic polymer bead material comprises, as component E), from 0 to 5 percent by weight, preferably from 0.3 to 3 percent by weight, of a nucleating agent, such as talc.
  • the expandable, thermoplastic polymer bead material comprises, as blowing agent (component D), from 1 to 15 percent by weight, preferably from 3 to 10 percent by weight, based on components A) to E), of a physical blowing agent, such as aliphatic C 3 -C 8 hydrocarbons, alcohols, ketones, ethers, or halogenated hydrocarbons. Preference is given to isobutane, n-butane, isopentane, or n-pentane.
  • Suitable co-blowing agents are those having relatively low selectivity of solubility for the phase forming domains, examples being gases, such as CO 2 , N 2 , and fluorocarbons, or noble gases.
  • gases such as CO 2 , N 2 , and fluorocarbons, or noble gases.
  • the amounts preferably used of these are from 0 to 10% by weight, based on the expandable, thermoplastic polymer bead material.
  • the polymer mixture with at least one continuous and at least two different disperse phases can be produced via mixing of incompatible thermoplastic polymers, for example in an extruder.
  • the expandable thermoplastic polymer bead material of the invention can be obtained via a process of
  • the average diameter of the disperse phase of the polymer mixture produced in stage a) is preferably in the range from 1 to 2000 nm, particularly preferably in the range from 100 to 1500 nm.
  • the polymer mixture can also first be pelletized in stage b), and the pellets can then be post-impregnated with a blowing agent D) in a stage c) in aqueous phase, under pressure and at an elevated temperature, to give expandable thermoplastic polymer bead material. This can then be isolated after cooling below the melting point of the polymer matrix, or can be obtained directly in the form of prefoamed foam bead material via depressurization.
  • thermoplastic styrene polymer A) forming the continuous phase for example polystyrene
  • a twin-screw extruder to form the polymer mixture
  • a polyolefin B1) and B2) forming the disperse phase and also with the compatibilizers C1) and C2) and optionally nucleating agent E
  • the polymer melt is conveyed in stage b) through one or more static and/or dynamic mixing elements, and is impregnated with the blowing agent D).
  • the melt loaded with blowing agent can then be extruded through an appropriate die, and cut, to give foam sheets, foam strands, or foam bead material.
  • An underwater pelletization system can also be used to cut the melt emerging from the die directly to give expandable polymer bead material or to give polymer bead material with a controlled degree of incipient foaming. Controlled production of foam bead material is therefore possible by setting the appropriate counterpressure and an appropriate temperature in the water bath of the UWPS.
  • Underwater pelletization is generally carried out at pressures in the range from 1.5 to 10 bar to produce the expandable polymer bead material.
  • the die plate generally has a plurality of cavity systems with a plurality of holes.
  • a hole diameter in the range from 0.2 to 1 mm gives expandable polymer bead material with the preferred average bead diameter in the range from 0.5 to 1.5 mm.
  • Expandable polymer bead material with a narrow particle size distribution and with an average particle diameter in the range from 0.6 to 0.8 mm leads to better filling of the automatic molding system, where the design of the molding has relatively fine structure. This also gives a better surface on the molding, with smaller volume of interstices.
  • the resultant round or oval particles are preferably foamed to a diameter in the range from 0.2 to 10 mm.
  • Their bulk density is preferably in the range from 10 to 100 g/l.
  • a preferred polymer mixture is obtained in stage a) via mixing of
  • the finished expandable thermoplastic polymer bead material can be coated with glycerol ester, with antistatic agents, or with anticaking agent.
  • the fusion of the prefoamed foam beads to give the molding and the resultant mechanical properties are in particular improved via coating of the expandable thermoplastic polymer bead material with a glycerol stearate.
  • a coating composed of from 50 to 100% by weight of glycerol tristearate (GTS), from 0 to 50% by weight of glycerol monostearate (GMS), and from 0 to 20% by weight of silica.
  • the expandable, thermoplastic polymer bead material of the invention can be prefoamed using hot air or steam to give foam beads whose density is in the range from 8 to 200 kg/m 3 , preferably in the range from 10 to 50 kg/m 3 , and can then be fused in a closed mold to give foam moldings.
  • the processing pressure selected here is sufficiently low as to retain domain structure in the cell membranes fused to give foam moldings.
  • the pressure is usually in the range from 0.5 to 1.0 bar.
  • thermoplastic molded foams that can be obtained in this way preferably have cells whose average cell size is in the range from 50 to 250 ⁇ m, and an oriented fibrous disperse phase in the cell walls of the thermoplastic molded foams with an average diameter in the range from 10 to 1000 nm, particularly preferably in the range from 100 to 750 nm.
  • the additional disperse phase make it possible to combine a higher soft phase fraction with a domain size of the disperse phase ⁇ 2 ⁇ m. This leads for the same expandability to a higher bending energy in the molded foam.
  • Component B is a compound having Component B:
  • Component D Blowing agent: (95% of isopentane, 5% of n-pentane)
  • Component E Talc (HP 320, Omyacarb)
  • Components A) to C) were melted and mixed with talc as nucleating agent (component E) (see table 1) at from 240 to 260° C. and 140 bar in a Leitritz ZE 40 twin-screw extruder.
  • the blowing agent (component D) was then injected into the polymer melt, and homogeneously incorporated into the polymer melt by way of two static mixers. The temperature was then reduced to from 180° to 195° C. by way of a cooler. After further homogenization by way of two further static mixers, the polymer melt was injected at 50 kg/h through a perforated plate heated to 240-260° C.
  • the pellets loaded with blowing agent were prefoamed in an EPS prefoamer to give foam beads of low density (from 15 to 25 g/L), and processed in an automatic EPS molding machine at a gage pressure of from 0.9 to 1.4 bar, to give moldings.
  • the disperse nature of the polyethylene phase P 1 , pale-colored regions
  • the disperse nature of the styrene-butadiene block copolymer phase P 2 , dark-colored regions
  • the order of magnitude of the PE domains of the minipellets loaded with blowing agent here is from 200 to 1000 nm
  • the order of magnitude of the styrene-butadiene block copolymer domains here is from 200 to 1500 nm.
  • Coating components used comprised 70% by weight of glycerol tristearate (GTS) and 30% by weight of glycerol monostearate (GMS).
  • GTS glycerol tristearate
  • GMS glycerol monostearate

Abstract

Expandable, thermoplastic polymer bead material composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase of a thermoplastic polymer, where at least two different disperse phases P1 and P2 are present, disperse in the continuous phase, and also to processes for its production, and to use for the production of elastic molded foams.

Description

  • The invention relates to expandable, thermoplastic polymer bead material composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase of a thermoplastic polymer, where at least two different disperse phases P1 and P2 are present, dispersed in the continuous phase, and also to processes for its production, and to use for the production of elastic molded foams.
  • Expandable polymer mixtures composed of styrene polymers, polyolefins, and optionally solubilizers, such as hydrogenated styrene-butadiene block copolymers, are known by way of example from DE 24 13 375, DE 24 13 408, or DE 38 14 783. The foams obtainable therefrom are intended to have better mechanical properties when compared with foams composed of styrene polymers, in particular better elasticity and less brittleness at low temperatures, and also resistance to solvents, such as ethyl acetate and toluene. However, the ability to retain blowing agent and the foamability of the expandable polymer mixtures to give low densities are inadequate to meet the requirements of processing.
  • WO 2005/056652 describes molded foams with density in the range from 10 to 100 g/l which are obtainable via fusion of prefoamed foam beads derived from expandable, thermoplastic polymer pellets. The polymer pellets comprise mixtures composed of styrene polymers and of other thermoplastic polymers, and can be obtained via melt impregnation and subsequent pressurized underwater pelletization.
  • Elastic moldable foams composed of expandable interpolymer beads are also known (e.g. US 2004/0152795 A1). The interpolymers are obtainable via polymerization of styrene in the presence of polyolefins in aqueous suspension, and form an interpenetrating network composed of styrene polymers and of olefin polymers. However, the blowing agent diffuses rapidly out of the expandable polymer beads, and they therefore have to be stored at low temperatures, and have only a short period of adequate foamability.
  • WO 2005/092959 describes nanoporous polymer foams which are obtainable from multiphase polymer mixtures which comprise blowing agent and which have domains in the range from 5 to 200 nm. The domains are preferably composed of a core-shell particle obtainable via emulsion polymerization, and the solubility of the blowing agent in these is at least twice as high as in the adjacent phases.
  • It was an object of the present invention to provide expandable, thermoplastic polymer bead material with low loss of blowing agent and with high expansion capability, processible to give molded foams with high stiffness together with good elasticity, and also to provide, a process for production of this material.
  • Accordingly, the expandable thermoplastic polymer bead material described above has been found.
  • The average diameter of the disperse phases of the polymer mixture is generally in the range from 1 to 2000 nm.
  • In preferred expandable, thermoplastic polymer bead material,
  • a) the continuous phase consists essentially of styrene polymers,
    b) the first disperse phase P1 consists essentially of polyolefins, and
    c) the second disperse phase P2 consists essentially of a styrene-butadiene block copolymer or styrene-isoprene block copolymer, of a thermoplastic polyurethane (TPU), of a polystyrene-grafted butadiene polymer, or of a core-shell particle having a styrene polymer shell.
  • Preferred expandable, thermoplastic polymer bead material comprises
  • from 45 to 89.5 percent by weight of a styrene polymer,
    • B1) from 5 to 20 percent by weight of a polyolefin with a melting point in the range from 105 to 140° C.,
    • B2) from 1 to 15 percent by weight of a polyolefin with a melting point below 105° C.,
    • C1) from 3 to 25 percent by weight of a styrene-butadiene or styrene-isoprene block copolymer,
    • C2) from 0.5 to 5 percent by weight of a styrene-ethylene-butylene block copolymer,
    • D) from 1 to 15 percent by weight of a blowing agent, and
    • E) from 0 to 5 percent by weight of a nucleating agent,
      where the entirety composed of A) to E) gives 100% by weight and the entirety of C1) and C2) lies within the range from 3.5 to 30 percent by weight, generally has the above-described morphology.
  • The expandable, thermoplastic polymer bead material particularly preferably comprises
  • from 55 to 78.1 percent by weight of a styrene polymer,
    B1) from 7 to 15 percent by weight of a polyolefin with a melting point in the range from 105 to 140° C.,
    B2) from 5 to 10 percent by weight of a polyolefin with a melting point below 105° C.,
    C1) from 6 to 15 percent by weight of a styrene-butadiene or styrene-isoprene block copolymer,
    C2) from 0.8 to 3 percent by weight of a styrene-ethylene-butylene block copolymer,
    from 3 to 10 percent by weight of a blowing agent, and
    from 0.1 to 2 percent by weight of a nucleating agent,
    where the entirety composed of the components A) to E) gives 100% by weight.
  • The entirety of components C1) and C2) lies within the range from 3.5 to 30 percent by weight, preferably within the range from 6.8 to 18 percent by weight.
  • The ratio by weight of the entirety composed of components B1) and B2) to component C2) in the expandable, thermoplastic polymer bead material according to the invention preferably lies within the range from 5 to 70.
  • The ratio by weight of components C1):C2) in the expandable thermoplastic polymer bead material of the invention preferably lies within the range from 2 to 5.
  • It is particularly preferable that the expandable polymer bead material according to the invention consists essentially of components A) to E).
  • It is particularly preferable that the expandable, thermoplastic polymer bead material is composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase and has at least two disperse phases P1 and P2 dispersed in the continuous phase, where
  • a) the continuous phase consists essentially of component A,
    b) the first disperse phase P1 consists essentially of components B1 and B2, and
    c) the second disperse phase P2 consists essentially of component C1.
  • Component C2) preferably forms an interface between the disperse phase P1 and the continuous phase.
  • The expandable, thermoplastic polymer bead material according to the invention preferably has a coating, comprising a glycerol stearate.
  • Component A) may be styrene polymers, such as standard polystyrene (GPPS) or impact resistant polystyrene (HIPS), or styrene-acrylonitrile copolymers (SAN), or acrylonitrile-butadiene-styrene copolymers (ABS). Particular preference is given to standard polystyrene grades with weight-average molar masses in the range from 120 000 to 300 000 g/mol and with a melt volume rate MVR (200° C./5 kg) to ISO 113 in the range from 1 to 10 cm3/10 min, examples being PS 158 K, 168 N, or 148 G from BASF Aktiengesellschaft. Free-flowing grades can be added in order to improve the fusion of the foam beads during processing to give the molding, an example being Empera® 156L (Innovene).
  • The expandable thermoplastic polymer bead material comprises, as further components B), polyolefins B1) with a melting point in the range from 105 to 140° C., and polyolefins B2) with a melting point below 105° C. The melting point is the melting peak determined by means of DSC (Dynamic Scanning calorimetry), at a heating rate of 10° C./minute.
  • Preferred polyolefin B1) is a homo- or copolymer of ethylene and/or propylene, with density in the range from 0.91 to 0.98 g/L (determined to ASTM D792), in particular polyethylene. Particular polypropylenes that can be used are injection-molding grades. Polyethylenes that can be used are commercially available homopolymers composed of ethylene, e.g. LDPE (injection-molding grades), LLDPE, HDPE, or copolymers composed of ethylene and propylene (e.g. Moplen® RP220 and Moplen® RP320 from Basell), ethylene and vinyl acetate (EVA), ethylene-acrylates (EA), or ethylene-butylene-acrylates (EBA). The melt volume index MVI (190° C./2.16 kg) of the polyethylenes is usually in the range from 0.5 to 40 g/10 min, and the densities are usually in the range from 0.91 to 0.95 g/cm3. Blends with polyisobutene (PIB) can moreover be used (e.g. Oppanol® 8150 from BASF Aktiengesellschaft). It is particularly preferable to use LLDPE with a melting point in the range from 110 to 125° C. and with density in the range from 0.92 to 0.94 g/L.
  • With a relatively small proportion of polyolefin B1), blowing-agent-retention capability increases markedly. With this, the storage capability and the processability of the expandable, thermoplastic polymer bead material are markedly improved. In the range from 5 to 20% by weight of polyolefin, expandable thermoplastic polymer bead material with long-term storage capability is obtained, without any impairment of the elastic properties of the molded foam produced therefrom. This is apparent by way of example in a relatively low compression set Eset in the range from 25 to 35%.
  • The density of the polyolefin B2) is preferably in the range from 0.86 to 0.90 g/L (determined to ASTM D792). Thermoplastic elastomers based on olefins (TPOs) are particularly suitable for this purpose. Particular preference is given to ethylene-octene copolymers which are commercially obtainable by way of example as Engage® 8411 from Dow. When expandable, thermoplastic polymer bead materials comprising component B2) have been processed to give foam moldings they show a marked improvement in bending energy and ultimate tensile strength.
  • It is known from the sector of multiphase polymer systems that most polymers have no, or only slight, miscibility with one another (Flory), and the result, as a function of temperature, pressure, and chemical constitution, is therefore separation to give the respective phases. If incompatible polymers are covalently linked to one another, the separation does not take place at the macroscopic level, but only at the microscopic level, i.e. on the scale of the length of the individual polymer chains. In this case, the term used is microphase separation. The result of this is a wide variety of mesoscopic structures, e.g. lamellar, hexagonal, cubic, and bicontinuous morphologies, which are closely related to lyotropic phases.
  • For controlled establishment of the desired morphology, compatibilizers (components C) are used. According to the invention, compatibility is improved via the use of a mixture of styrene-butadiene block copolymers or styrene-isoprene block copolymers, as component C1), and styrene-ethylene-butylene block copolymers (SEBS), as component C2).
  • The compatibilizers lead to improved adhesion between the polyolefin-rich and the styrene-polymer-rich phase, and even small amounts improve the elasticity of the foam in comparison with conventional EPS foams. Studies on the domain size of the polyolefin-rich phase showed that the compatibilizer stabilizes small droplets via a reduction in interfacial tension.
  • FIG. 1 shows an electron micrograph of a section through an expandable polystyrene-polyethylene comprising blowing agent and having disperse polyethylene domains in the polystyrene matrix.
  • The expandable, thermoplastic polymer bead material comprises, as component C1), from 0.1 to 9.9 percent by weight, in particular from 1 to 5% by weight, of a styrene-butadiene or styrene-isoprene block copolymer.
  • Examples of those suitable for this purpose are styrene-butadiene or styrene-isoprene block copolymers. Total diene content is preferably in the range from 20 to 60% by weight, particularly preferably in the range from 30 to 50% by weight, and total styrene content is correspondingly preferably in the range from 40 to 80% by weight, particularly preferably in the range from 50 to 70% by weight.
  • Suitable styrene-butadiene block copolymers which are composed of at least two polystyrene blocks S and of at least one styrene-butadiene copolymer block S/B are by way of example the star-shaped branched block copolymers described in EP-A 0654488.
  • Other suitable materials are block copolymers having at least two hard blocks S1 and S2 composed of vinylaromatic monomers, and having, between these, at least one random soft block B/S composed of vinylaromatic monomers and diene, where the proportion of the hard blocks is above 40% by weight, based on the entire block copolymer, and the 1,2-vinyl content in the soft block B/S is below 20%, these being described in WO 00/58380.
  • Other suitable compatibilizers are linear styrene-butadiene block copolymers whose general structure is S—(S/B)—S having one or more (S/B)random blocks which have random styrene/butadiene distribution, between the two S blocks. Block copolymers of this type are obtainable via anionic polymerization in a non-polar solvent with addition of a polar cosolvent or of a potassium salt, as described by way of example in WO 95/35335 or WO 97/40079.
  • The vinyl content is the relative proportion of 1,2-linkages of the diene units, based on the total of the 1,2-, 1,4-cis, and 1,4-trans linkages. The 1,2-vinyl content in the styrene-butadiene copolymer block (S/B) is preferably below 20%, in particular in the range from 10 to 18%, particularly preferably in the range from 12 to 16%.
  • Compatibilizers preferably used are styrene-butadiene-styrene (SBS) triblock copolymers whose butadiene content is from 20 to 60% by weight, preferably from 30 to 50% by weight, and these may be hydrogenated or non-hydrogenated materials. These are marketed by way of example as Styroflex® 2G66, Styrolux® 3G55, Styroclear® GH62, Kraton® D 1101, Kraton® D 1155, Tuftec® H1043, or Europren® SOL T6414. They are SBS block copolymers with sharp transitions between B blocks and S blocks.
  • The expandable, thermoplastic polymer bead material comprises, as component C2), from 0.1 to 9.9 percent by weight, in particular from 1 to 5% by weight, of a styrene-ethylene-butylene block copolymer (SEBS). Examples of suitable styrene-ethylene-butylene block copolymers (SEBS) are those obtainable via hydrogenation of the olefinic double bonds of the block copolymers C1). Examples of suitable styrene-ethylene-butylene block copolymers are the Kraton® G grades obtainable commercially, in particular Kraton® G 1650.
  • The following additions can moreover be made to the multiphase polymer mixture: additives, nucleating agents, plasticizers, flame retardants, soluble and insoluble inorganic and/or organic dyes and pigments, fillers, or co-blowing agents, in amounts which do not impair domain formation and foam structure resulting therefrom.
  • The expandable, thermoplastic polymer bead material comprises, as component E), from 0 to 5 percent by weight, preferably from 0.3 to 3 percent by weight, of a nucleating agent, such as talc.
  • The expandable, thermoplastic polymer bead material comprises, as blowing agent (component D), from 1 to 15 percent by weight, preferably from 3 to 10 percent by weight, based on components A) to E), of a physical blowing agent, such as aliphatic C3-C8 hydrocarbons, alcohols, ketones, ethers, or halogenated hydrocarbons. Preference is given to isobutane, n-butane, isopentane, or n-pentane.
  • Suitable co-blowing agents are those having relatively low selectivity of solubility for the phase forming domains, examples being gases, such as CO2, N2, and fluorocarbons, or noble gases. The amounts preferably used of these are from 0 to 10% by weight, based on the expandable, thermoplastic polymer bead material.
  • The polymer mixture with at least one continuous and at least two different disperse phases can be produced via mixing of incompatible thermoplastic polymers, for example in an extruder.
  • The expandable thermoplastic polymer bead material of the invention can be obtained via a process of
  • a) producing a polymer mixture with a continuous and at least two disperse phases via mixing of components A) to C) and optionally E),
    b) impregnating these mixtures with a blowing agent D), and
    c) pelletizing via underwater pelletization at a pressure in the range from 1.5 to 10 bar, to give expandable, thermoplastic polymer bead material.
  • The average diameter of the disperse phase of the polymer mixture produced in stage a) is preferably in the range from 1 to 2000 nm, particularly preferably in the range from 100 to 1500 nm.
  • In another embodiment, the polymer mixture can also first be pelletized in stage b), and the pellets can then be post-impregnated with a blowing agent D) in a stage c) in aqueous phase, under pressure and at an elevated temperature, to give expandable thermoplastic polymer bead material. This can then be isolated after cooling below the melting point of the polymer matrix, or can be obtained directly in the form of prefoamed foam bead material via depressurization.
  • Particular preference is given to a continuous process in which, in stage a), a thermoplastic styrene polymer A) forming the continuous phase, for example polystyrene, is melted in a twin-screw extruder, and to form the polymer mixture is mixed with a polyolefin B1) and B2) forming the disperse phase, and also with the compatibilizers C1) and C2) and optionally nucleating agent E), and then the polymer melt is conveyed in stage b) through one or more static and/or dynamic mixing elements, and is impregnated with the blowing agent D). The melt loaded with blowing agent can then be extruded through an appropriate die, and cut, to give foam sheets, foam strands, or foam bead material.
  • An underwater pelletization system (UWPS) can also be used to cut the melt emerging from the die directly to give expandable polymer bead material or to give polymer bead material with a controlled degree of incipient foaming. Controlled production of foam bead material is therefore possible by setting the appropriate counterpressure and an appropriate temperature in the water bath of the UWPS.
  • Underwater pelletization is generally carried out at pressures in the range from 1.5 to 10 bar to produce the expandable polymer bead material. The die plate generally has a plurality of cavity systems with a plurality of holes. A hole diameter in the range from 0.2 to 1 mm gives expandable polymer bead material with the preferred average bead diameter in the range from 0.5 to 1.5 mm. Expandable polymer bead material with a narrow particle size distribution and with an average particle diameter in the range from 0.6 to 0.8 mm leads to better filling of the automatic molding system, where the design of the molding has relatively fine structure. This also gives a better surface on the molding, with smaller volume of interstices.
  • The resultant round or oval particles are preferably foamed to a diameter in the range from 0.2 to 10 mm. Their bulk density is preferably in the range from 10 to 100 g/l.
  • A preferred polymer mixture is obtained in stage a) via mixing of
  • A) from 45 to 89.5 percent by weight, in particular from 55 to 78.1% by weight, of styrene polymer,
    B1) from 5 to 20 percent by weight, in particular from 7 to 15% by weight, of polyolefin whose melting point is in the range from 105 to 140° C.,
    B2) from 1 to 15 percent by weight, in particular from 7 to 15% by weight, of a polyolefin whose melting point is below 105° C.,
    C1) from 3 to 25 percent by weight, in particular from 6 to 15% by weight, of a styrene-butadiene block copolymer or styrene-isoprene block copolymer,
    C2) from 0.5 to 5 percent by weight, in particular from 0.8 to 3% by weight, of a styrene-ethylene-butylene block copolymer,
    E) from 0 to 5 percent by weight, in particular from 0.1 to 2% by weight, of a nucleating agent,
    and
    is impregnated in stage c) with from 1 to 15% by weight, in particular from 3 to 10% by weight, of a blowing agent D), where the entirety composed of the components A) to E) gives 100% by weight.
  • To improve processability, the finished expandable thermoplastic polymer bead material can be coated with glycerol ester, with antistatic agents, or with anticaking agent.
  • The fusion of the prefoamed foam beads to give the molding and the resultant mechanical properties are in particular improved via coating of the expandable thermoplastic polymer bead material with a glycerol stearate. Particular preference is given to use of a coating composed of from 50 to 100% by weight of glycerol tristearate (GTS), from 0 to 50% by weight of glycerol monostearate (GMS), and from 0 to 20% by weight of silica.
  • The expandable, thermoplastic polymer bead material of the invention can be prefoamed using hot air or steam to give foam beads whose density is in the range from 8 to 200 kg/m3, preferably in the range from 10 to 50 kg/m3, and can then be fused in a closed mold to give foam moldings. The processing pressure selected here is sufficiently low as to retain domain structure in the cell membranes fused to give foam moldings. The pressure is usually in the range from 0.5 to 1.0 bar.
  • The thermoplastic molded foams that can be obtained in this way preferably have cells whose average cell size is in the range from 50 to 250 μm, and an oriented fibrous disperse phase in the cell walls of the thermoplastic molded foams with an average diameter in the range from 10 to 1000 nm, particularly preferably in the range from 100 to 750 nm.
  • The additional disperse phase make it possible to combine a higher soft phase fraction with a domain size of the disperse phase <2 μm. This leads for the same expandability to a higher bending energy in the molded foam.
  • EXAMPLES Starting Materials
  • Component A: Polystyrene having a melt viscosity index MVI (200° C./5 kg) of 2.9 cm3/10 min (PS158K from BASF SE, Mw=280 000 g/mol, viscosity number VN 98 ml/g)
  • Component B:
  • B1: LLDPE (LL1201 XV, Exxon Mobil, density 0.925 g/L, MVI=0.7 g/10 min, melting point 123° C.)
    B2: Ethylene-octene copolymer (Exact® 210 from Exxon Mobile, density 0.902 g/L, MVI=10 g/10 min, melting point 95° C.)
  • Component C:
  • C1.1: Styrolux®3G55, styrene-butadiene block copolymer from BASF SE,
    C1.2: Styroflex®2G66, thermoplastic elastic styrene-butadiene block copolymer from BASF SE,
    C2.1: Kraton G 1650, styrene-ethylene-butylene block copolymer from Kraton
  • Polymers LLC
  • C2.2 Kraton G 1652, styrene-ethylene-butylene block copolymer from Kraton
  • Polymers LLC
  • Component D: Blowing agent: (95% of isopentane, 5% of n-pentane)
  • Component E: Talc (HP 320, Omyacarb) Inventive Examples 1 to 6
  • Components A) to C) were melted and mixed with talc as nucleating agent (component E) (see table 1) at from 240 to 260° C. and 140 bar in a Leitritz ZE 40 twin-screw extruder. The blowing agent (component D) was then injected into the polymer melt, and homogeneously incorporated into the polymer melt by way of two static mixers. The temperature was then reduced to from 180° to 195° C. by way of a cooler. After further homogenization by way of two further static mixers, the polymer melt was injected at 50 kg/h through a perforated plate heated to 240-260° C. at 200-220 bar (0.6 mm hole diameter with 7 cavity systems×7 holes or 0.4 mm hole diameter with 7 cavity systems×10 holes). The polymer strand was chopped by means of an underwater pelletizer (underwater pressure 11-10 bar, water temperature 40°) C.-50°, thus giving minipellets loaded with blowing agent and having narrow particle size distribution (d′=1.2 mm with 0.65 mm hole diameter).
  • The pellets loaded with blowing agent were prefoamed in an EPS prefoamer to give foam beads of low density (from 15 to 25 g/L), and processed in an automatic EPS molding machine at a gage pressure of from 0.9 to 1.4 bar, to give moldings.
  • Various mechanical tests were carried out on the moldings, in order to demonstrate the elasticification of the foam. In the inventive examples, marked elastification is observed in comparison with the straight EPS, discernible from the very high resilience. Compressive strength at 10% compression was determined to DIN-EN 826, as was flexural strength to DIN-EN 12089. Bending energy was determined from the values measured for flexural strength.
  • In the transmission electron micrograph (TEM), the disperse nature of the polyethylene (phase P1, pale-colored regions) and the disperse nature of the styrene-butadiene block copolymer (phase P2, dark-colored regions) can be discerned (FIG. 1) in the minipellets comprising blowing agent, and these later contribute to elastification within the foam. The order of magnitude of the PE domains of the minipellets loaded with blowing agent here is from 200 to 1000 nm, and the order of magnitude of the styrene-butadiene block copolymer domains here is from 200 to 1500 nm.
  • Coating components used comprised 70% by weight of glycerol tristearate (GTS) and 30% by weight of glycerol monostearate (GMS). The coating composition had a favorable effect on the fusion of the prefoamed foam beads to give the molding. Flexural strength was increased to 250 and, respectively, 310 kPa, in comparison with 150 kPa for the moldings obtained from the uncoated pellets.
  • TABLE 1
    Constitution of expandable polymer beads (EPS) in proportions
    by weight, and properties of foam moldings
    Example 1 2 3 4 5 6
    Constitution of the expandable bead material
    Component A) 73.0 67.6 65.1 69.8 67.6 69.8
    Component B1) 8.1 7.5 7.2 7.7 7.5 7.7
    Component B2) 5.0 4.7 8.1 8.7 4.7 8.7
    Component C1.1 13.0 5.8
    Component C1.2 6.0 13.0 12.6 5.8
    Component C2.1 0.7 1.3
    Component C2.2 0.8 0.7 0.7 1.3
    Component D 6.5 6.1 5.8 6.3 6.1 6.3
    Component E) 0.5 0.5 0.4 0.5 0.5 0.5
    Properties of the foam molding
    Foam density [g/L] 19.3 19.4 19.5 19.5 21.3 21.6
    Compressive strength 97 96 86 94 95 94
    10% [kPa]
    Flexural strength [kPa] 282 286 240 282 278 280
    Bending energy [Nm] 4.8 5.8 5.1 5.5 5.7 5.4

Claims (17)

1-16. (canceled)
17. An expandable, thermoplastic polymer bead material composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase of a thermoplastic polymer, wherein at least two different disperse phases P1 and P2 are present, dispersed in the continuous phase.
18. The expandable, thermoplastic polymer bead material according to claim 17, wherein the average diameter of the disperse phases of the polymer mixture is in the range from 1 to 2000 nm.
19. The expandable, thermoplastic polymer bead material according to claim 17, wherein
a) the continuous phase consists essentially of styrene polymers,
b) the first disperse phase P1 consists essentially of polyolefins, and
c) the second disperse phase P2 consists essentially of a styrene-butadiene or styrene-isoprene block copolymer, of a thermoplastic polyurethane (TPU), of a polystyrene-grafted butadiene polymer, or of a core-shell particle, having a styrene polymer shell.
20. An expandable, thermoplastic polymer bead material, comprising
A) from 45 to 89.5 percent by weight of a styrene polymer,
B1) from 5 to 20 percent by weight of a polyolefin with a melting point in the range from 105 to 140° C.,
B2) from 1 to 15 percent by weight of a polyolefin with a melting point below 105° C.,
C1) from 3 to 25 percent by weight of a styrene-butadiene or styrene-isoprene block copolymer,
C2) from 0.5 to 5 percent by weight of a styrene-ethylene-butylene block copolymer,
D) from 1 to 15 percent by weight of a blowing agent, and
E) from 0 to 5 percent by weight of a nucleating agent,
where the entirety composed of the components A) to E) gives 100% by weight wherein the entirety of components C1) and C2) lies within the range from 3.5 to 30 percent by weight.
21. The expandable, thermoplastic polymer bead material according to claim 20, comprising:
A) from 55 to 78.1 percent by weight of a styrene polymer,
B1) from 7 to 15 percent by weight of a polyolefin with a melting point in the range from 105 to 140° C.,
B2) from 5 to 10 percent by weight of a polyolefin with a melting point below 105° C.,
C1) from 6 to 15 percent by weight of a styrene-butadiene or styrene-isoprene block copolymer,
C2) from 0.8 to 3 percent by weight of a styrene-ethylene-butylene block copolymer,
D) from 3 to 10 percent by weight of a blowing agent, and
E) from 0.1 to 2 percent by weight of a nucleating agent,
where the entirety composed of the amounts of the components A) to E) gives 100% by weight and the entirety composed of the amounts of the components C1) and C2) lies within the range from 6.8 to 18 percent by weight.
22. The expandable, thermoplastic polymer bead material according to claim 20, wherein the ratio by weight of the entirety of components B1) and B) to C2) is in the range from 5 to 70.
23. The expandable, thermoplastic polymer bead material according to claim 20, wherein the ratio by weight of components C1):C2) is in the range from 2 to 5.
24. The expandable, thermoplastic polymer bead material according to claim 20, which comprises, as styrene polymer A), standard polystyrene (GPPS).
25. The expandable, thermoplastic polymer bead material according to claim 20, which comprises, as polyolefin B1), polyethylene.
26. The expandable, thermoplastic polymer bead material according to claim 20, which comprises, as polyolefin B2), a copolymer composed of ethylene and octene.
27. The expandable, thermoplastic polymer bead material according to claim 20 which is composed of a multiphase polymer mixture which comprises blowing agent and has at least one continuous phase and has at least two disperse phases P1 and P2 dispersed in the continuous phase, where
a) the continuous phase consists essentially of component A,
b) the first disperse phase P1 consists essentially of components B1 and B2, and
c) the second disperse phase P2 consists essentially of component C1.
28. The expandable, thermoplastic polymer bead material according to claim 27, wherein the component C2 forms an interface between the disperse phase P1 and the continuous phase.
29. The expandable, thermoplastic polymer bead material according to claim 17 which has a coating, comprising a glycerol stearate.
30. A process for the production of expandable, thermoplastic polymer bead material according to claim 20, which comprises
a) producing a polymer melt with a continuous and at least two disperse phases P1 and P2 via mixing of components A) to C) and optionally E),
b) impregnating this polymer melt with a blowing agent D), and
c) pelletizing via underwater pelletization at a pressure of from 1.5 to 10 bar, to give expandable thermoplastic polymer bead material.
31. A process for the production of expandable, thermoplastic polymer bead material according to claim 20, which comprises
a) producing a polymer melt with a continuous and at least two disperse phases P1 and P2 via mixing of components A) to C) and optionally E),
b) pelletizing this polymer melt and
c) post-impregnating it in an aqueous phase under pressure and at an elevated temperature with a blowing agent D) to give expandable thermoplastic polymer bead material.
32. The process according to claim 30, wherein, in stage b), the amount used of a C3-C8 hydrocarbon as blowing agent is from 1 to 10 percent by weight, based on the polymer mixture.
US13/142,987 2008-12-30 2009-12-15 Elastic particle foam based on polyolefin/styrene polymer mixtures Expired - Fee Related US8729143B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08173086 2008-12-30
EP08173086 2008-12-30
EP08173086.3 2008-12-30
PCT/EP2009/067138 WO2010076184A1 (en) 2008-12-30 2009-12-15 Elastic particle foam based on polyolefin/styrene polymer mixtures

Publications (2)

Publication Number Publication Date
US20110268972A1 true US20110268972A1 (en) 2011-11-03
US8729143B2 US8729143B2 (en) 2014-05-20

Family

ID=41664679

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/142,987 Expired - Fee Related US8729143B2 (en) 2008-12-30 2009-12-15 Elastic particle foam based on polyolefin/styrene polymer mixtures

Country Status (9)

Country Link
US (1) US8729143B2 (en)
EP (1) EP2384354B1 (en)
KR (1) KR20110110281A (en)
CN (1) CN102272222B (en)
BR (1) BRPI0923799A2 (en)
DK (1) DK2384354T3 (en)
ES (1) ES2402874T3 (en)
PL (1) PL2384354T3 (en)
WO (1) WO2010076184A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636929B2 (en) 2010-05-21 2014-01-28 Basf Se Nanoporous foamed active compound-containing preparations based on pharmaceutically acceptable thermoplastically workable polymers
US9181136B2 (en) 2010-01-19 2015-11-10 Basf Se Method for producing hollow bodies having enclosed freely displaceable particles
WO2018019995A1 (en) 2016-07-29 2018-02-01 Versalis S.P.A. Block expandable polymeric compositions
US10920033B2 (en) 2016-07-29 2021-02-16 Versalis S.P.A. Expandable vinyl aromatic composition containing functionalized ethylene-vinyl acetate copolymer
CN116656051A (en) * 2023-05-31 2023-08-29 广东丙辛新材料有限公司 Foaming polypropylene material for bumper energy absorption block and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089574A1 (en) * 2010-12-28 2012-07-05 Basf Se Foam board based on styrene polymer-polyolefin mixtures
DE102011078083A1 (en) 2011-06-27 2012-12-27 Robert Bosch Gmbh Hand-held power tool with a vibratory excitation actuator
DE102011078684A1 (en) 2011-07-05 2013-01-10 Robert Bosch Gmbh Hand-held power tool with a vibratory excitation actuator
CN107177117A (en) * 2017-07-11 2017-09-19 天津市大林新材料科技股份有限公司 A kind of expandability polyolefin, particle of polystyrene blend and preparation method thereof
BR112020025473A2 (en) * 2018-07-04 2021-03-16 China Petroleum & Chemical Corporation MULTIPHASE PARTICLE, MANUFACTURING PROCESS AND ITS USE
CN110903629A (en) * 2019-12-21 2020-03-24 惠安伟盛鞋业有限公司 High-elasticity wear-resistant polyurethane foamed shoe material and preparation method thereof
CN115335448A (en) * 2020-03-30 2022-11-11 Sabic环球技术有限责任公司 Thermoplastic material for slurry transport pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496864A (en) * 1994-05-13 1996-03-05 Basf Aktiengesellschaft Expandable styrene polymers
US6342540B1 (en) * 1998-03-25 2002-01-29 Basf Aktiengesellschaft Method for producing water expandable styrene polymers
US6465533B1 (en) * 1999-01-25 2002-10-15 Sunpor Kunstoff Ges. M.B.H. Particulate-shaped, expandable styrol polymers and method for the production thereof
US6727291B2 (en) * 2000-01-25 2004-04-27 Basf Aktiengesellschaft Preparation of expandable propylene polymer beads

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2413375A1 (en) 1974-03-20 1975-10-23 Basf Ag PROCESS FOR THE PRODUCTION OF FOAM FROM BULK CONTAINING STYRENE AND ETHYLENE POLYMERISATE
DE2413408A1 (en) 1974-03-20 1975-10-23 Basf Ag EXPANDABLE PLASTIC COMPOUND MADE FROM A STYRENE POLYMERISATE, AN ETHYLENE POLYMERISATE, A SOLVENT AND A DRIVING AGENT
DE3814783A1 (en) 1988-04-30 1989-11-09 Basf Ag Expandable polymer alloy in particle form, and process for the preparation thereof
CA2134026C (en) 1993-11-15 1998-06-09 William J. Trepka Tapered block copolymers of monovinylarenes and conjugated dienes
DE4420952A1 (en) 1994-06-17 1995-12-21 Basf Ag Thermoplastic elastomer
DE19615533A1 (en) 1996-04-19 1997-10-23 Basf Ag Thermoplastic molding compound
DE19914075A1 (en) 1999-03-27 2000-09-28 Basf Ag Transparent high-impact styrene-butadiene block copolymers comprises at least two hard blocks and a soft block with a low 1,2-vinyl content for improved thermal stability
WO2004069917A2 (en) 2003-01-27 2004-08-19 Nova Chemicals Inc. Foamable interpolymer resin particles containing limonene as a blowing aid
DE10358801A1 (en) 2003-12-12 2005-07-14 Basf Ag Particle foam moldings of expandable styrene polymers and blends with thermoplastic polymers
PL1732975T3 (en) 2004-03-25 2010-11-30 Basf Se Nanoporous polymer foams formed from multiphase polymer mixtures containing a foaming agent
US20070219317A1 (en) 2004-04-15 2007-09-20 Masataka Uchikawa Thermoplastic Styrene Resin Composition
DK2144959T3 (en) 2007-04-11 2011-04-18 Basf Se Elastic particle foam based on polyolefin / styrene polymer blends
PL2254937T3 (en) 2008-03-13 2013-02-28 Basf Se Elastic particle foam made from polyolefin/styrol polymer mixtures
EP2307497A1 (en) 2008-07-29 2011-04-13 Basf Se Expandable thermoplastic polymer blend
WO2010076185A1 (en) 2008-12-30 2010-07-08 Basf Se Expandable thermoplastic polymer particles based on polyolefin/styrene polymer mixtures using isopentane or cyclopentane as a blowing agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496864A (en) * 1994-05-13 1996-03-05 Basf Aktiengesellschaft Expandable styrene polymers
US6342540B1 (en) * 1998-03-25 2002-01-29 Basf Aktiengesellschaft Method for producing water expandable styrene polymers
US6465533B1 (en) * 1999-01-25 2002-10-15 Sunpor Kunstoff Ges. M.B.H. Particulate-shaped, expandable styrol polymers and method for the production thereof
US6727291B2 (en) * 2000-01-25 2004-04-27 Basf Aktiengesellschaft Preparation of expandable propylene polymer beads

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181136B2 (en) 2010-01-19 2015-11-10 Basf Se Method for producing hollow bodies having enclosed freely displaceable particles
US8636929B2 (en) 2010-05-21 2014-01-28 Basf Se Nanoporous foamed active compound-containing preparations based on pharmaceutically acceptable thermoplastically workable polymers
WO2018019995A1 (en) 2016-07-29 2018-02-01 Versalis S.P.A. Block expandable polymeric compositions
US10920033B2 (en) 2016-07-29 2021-02-16 Versalis S.P.A. Expandable vinyl aromatic composition containing functionalized ethylene-vinyl acetate copolymer
US11078342B2 (en) 2016-07-29 2021-08-03 Versalis S.P.A. Block expandable polymeric compositions
CN116656051A (en) * 2023-05-31 2023-08-29 广东丙辛新材料有限公司 Foaming polypropylene material for bumper energy absorption block and preparation method thereof

Also Published As

Publication number Publication date
CN102272222B (en) 2013-10-16
DK2384354T3 (en) 2013-05-13
WO2010076184A1 (en) 2010-07-08
EP2384354A1 (en) 2011-11-09
BRPI0923799A2 (en) 2015-07-21
US8729143B2 (en) 2014-05-20
KR20110110281A (en) 2011-10-06
PL2384354T3 (en) 2013-07-31
ES2402874T3 (en) 2013-05-10
EP2384354B1 (en) 2013-02-20
CN102272222A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US8729143B2 (en) Elastic particle foam based on polyolefin/styrene polymer mixtures
KR101514094B1 (en) / elastic particle foam based on polyolefin/styrene polymer mixtures
KR101554377B1 (en) Elastic particle foam made from polyolefin/styrol polymer mixtures
US20110269858A1 (en) Elastic molded foam based on polyolefin/styrene polymer mixtures
KR101869577B1 (en) Process for Producing Expandable Thermoplastic Beads with Improved Expandability
US8741973B2 (en) Elastic expanded polymer foam based on polyolefin/styrene polymer mixtures
US20120121905A1 (en) Process for producing expandable thermoplastic beads with improved expandability
WO2010076185A1 (en) Expandable thermoplastic polymer particles based on polyolefin/styrene polymer mixtures using isopentane or cyclopentane as a blowing agent

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHIPS, CARSTEN;HAHN, KLAUS;HOFMANN, MAXIMILIAN;AND OTHERS;SIGNING DATES FROM 20100120 TO 20100225;REEL/FRAME:026532/0260

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220520