US20110262022A1 - System and method for processing images - Google Patents
System and method for processing images Download PDFInfo
- Publication number
- US20110262022A1 US20110262022A1 US13/122,379 US200913122379A US2011262022A1 US 20110262022 A1 US20110262022 A1 US 20110262022A1 US 200913122379 A US200913122379 A US 200913122379A US 2011262022 A1 US2011262022 A1 US 2011262022A1
- Authority
- US
- United States
- Prior art keywords
- tilde over
- temporal
- time separated
- separated images
- selecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 83
- 238000012545 processing Methods 0.000 title claims abstract description 16
- 238000003384 imaging method Methods 0.000 claims abstract description 52
- 230000002123 temporal effect Effects 0.000 claims abstract description 52
- 238000002591 computed tomography Methods 0.000 claims description 37
- 239000011159 matrix material Substances 0.000 claims description 33
- 238000002059 diagnostic imaging Methods 0.000 claims description 20
- 239000002872 contrast media Substances 0.000 claims description 18
- 230000010412 perfusion Effects 0.000 claims description 18
- 238000000513 principal component analysis Methods 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 8
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims 1
- 238000002599 functional magnetic resonance imaging Methods 0.000 claims 1
- 238000012880 independent component analysis Methods 0.000 claims 1
- 239000013598 vector Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 14
- 230000017531 blood circulation Effects 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 230000006399 behavior Effects 0.000 description 6
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000009206 nuclear medicine Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 206010073306 Exposure to radiation Diseases 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 208000032382 Ischaemic stroke Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 230000008344 brain blood flow Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 238000012847 principal component analysis method Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/486—Diagnostic techniques involving generating temporal series of image data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
Definitions
- the present invention relates generally to image processing and, more particularly, to a system and method for processing image data obtained by using a dynamic imaging technique
- Medical imaging encompasses techniques and processes used to create images of the human body for clinical purposes, including medical procedures for diagnosing or monitoring disease.
- Medical imaging technology has grown to encompass many image recording techniques including electron microscopy, fluoroscopy, magnetic resonance imaging (MRI), nuclear medicine, photoacoustic imaging, positron emission tomography (PET), projection radiography, thermography, computed tomography (CT), and ultrasound.
- Medical imaging can incorporate the use of compounds referred to as contrast agents or contrast materials to improve the visibility of internal bodily structures in an image.
- Dynamic medical imaging involves an acquisition process that takes many “snapshots” of the organ/region/body of interest over time in order to capture a time-varying behaviour, for example, distribution of a contrast agent and hence capture of a specific biological state (disease, condition, physiological phenomenon, etc.). As the speed and digital nature of medical imaging evolves, this acquisition data can have tremendous temporal resolution and can result in large quantities of data.
- Medical imaging technologies have been used widely to improve diagnosis and care for such conditions as cancer, heart disease, brain disorders, and cardiovascular conditions. Most estimates conclude that millions of lives have been saved or dramatically improved as a result of these medical imaging technologies. However, the risk of radiation exposure from such medical imaging technologies for patients must be considered.
- the increasing use of CT in medical diagnosis has highlighted concern about the increased cancer risk to exposed patients because of the larger radiation doses delivered in CT than the more common, conventional x-ray imaging procedures.
- the effective dose of a CT Stroke series consisting of: 1) a non-enhanced CT scan to rule out hemorrhage; 2) a CT angiography to localize the occlusion causing the stroke; and 3) a two-phase CT Perfusion protocol to define the ischemic region with blood flow and blood volume and predict hemorrhagic transformation (HT) with blood-brain barrier permeability surface area product (BBB-PS); is 10 mSv, of which 4.9 mSv is contributed by the two-phase CT Perfusion protocol.
- HT hemorrhagic transformation
- BBB-PS blood-brain barrier permeability surface area product
- the CT Stroke series is predicted to induce 80 and 131 additional cancers for every exposed 100,000 male and female acute ischemic stroke (AIS) patients, respectively, with the two-phase CT Perfusion protocol alone predicted to cause half of the additional cancers (Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII. The National Academys Press, Washington D.C., 2006).
- a method of processing a plurality of time separated images comprising: selecting a plurality of imaging units in each image; determining a temporal difference for each imaging unit; and selecting temporal differences above a threshold limit.
- a system for processing a plurality of time separated images comprising: an interface for receiving a plurality of time separated images; and a processor for selecting a plurality of imaging units in each image, determining a temporal difference for each imaging unit, and selecting temporal differences above a threshold limit.
- a computer readable medium embodying a computer program for processing a plurality of time separated images, the computer program comprising: computer program code for selecting a plurality of imaging units in each image; computer program code for determining a temporal difference for each imaging unit; and computer program code for selecting temporal differences above a threshold limit.
- FIG. 1 is a flow chart of an image processing method
- FIG. 2 schematically illustrates the positioning of imaging units in a plurality of time separated images
- FIGS. 3A to 3E show brain blood flow maps from CT images processed with a statistical filtering technique
- FIG. 4 graphically shows blood flow Figure of Merit calculated for the images shown in FIGS. 3A to 3D using the regions outlined in FIG. 3E ;
- FIG. 5 is a diagram of a system for implementing the image processing method shown in FIG. 1 .
- Dynamic medical imaging involves an acquisition process that takes many “snapshots” of an organ/region/body of interest (i.e. a target region) over time in order to capture a time-varying behaviour, for example uptake and/or wash out of a contrast agent.
- This acquisition process results in the production of a plurality of time separated images.
- the method and system described herein involves processing of such time separated images.
- the plurality of time separated images may be obtained from dynamic medical imaging of a patient with or without the use of an injected contrast agent.
- a contrast agent can selectively increase the contrast of the target region in an image, for example on the basis of the target region's structure or physiological state. For example, one may inject into a patient a compound which has a biophysical, molecular, genetic or cellular affinity for a particular organ, disease, state or physiological process.
- Such contrast agents are selected to have a property that provides enhanced information to a given imaging technique by altering imaging conditions, for example by altering image contrast, to reflect the behaviour of the compound in the body.
- Contrast agents for many imaging techniques are well-known. In some cases contrast enhancement does not rely on an injected contrast agent, for example the use of “black blood” or “white blood” in magnetic resonance imaging (MRI) where specific pulse sequences are used to change the magnetic saturation of the blood and thus its appearance in the image, or tagged MRI sequences which alter the magnetic behaviour of a particular tissue or fluid.
- An injected contrast agent, or a tissue or fluid with altered behaviour may all be regarded as “imaging agents”.
- the plurality of time separated images are not limited to any particular imaging technique and include, for example, dynamic medical imaging using magnetic resonance imaging (MRI), computed tomography (CT), nuclear medicine (NM) or positron emission tomography (PET).
- MRI magnetic resonance imaging
- CT computed tomography
- NM nuclear medicine
- PET positron emission tomography
- the plurality of time separated images are also not limited to particular image types. For example, grayscale or colour images may be processed.
- An “imaging unit” may be any desired unit for separating an image into equivalent portions including, for example, a pixel, a plurality of pixels, a fraction of a pixel, a voxel, a plurality of voxels, a fraction of a voxel etc.
- the imaging unit data is represented by a value, for example a digital value, and can thus be quantified and measured.
- image intensity is measured for corresponding imaging units in the time separated images.
- a temporal difference can be determined with respect to contrast concentration.
- the temporal difference of contrast concentration can be represented as a plot of contrast enhancement as a function of time.
- FIG. 1 Two alternatives for determining temporal differences of contrast concentration and selecting temporal differences are shown in FIG. 1 .
- a temporal difference is determined for each imaging unit (step 115 ).
- the determined temporal difference or representations thereof are then ranked according to degree of observed temporal difference (step 120 ).
- Temporal differences above a threshold limit are then selected (step 125 ).
- a processed image is then constructed on the basis of the selected temporal differences (step 150 ).
- the temporal differences are not ranked. Rather, the temporal data for imaging units are analyzed to select temporal differences above a threshold limit using statistical techniques, and more particularly blind signal separation statistical techniques.
- a covariance matrix of the co-variations of all pairs of contrast enhancement plots in relation to a mean curve is established (step 130 ) and analyzed with a blind signal separation statistical technique (step 135 ), such as with a principal components analysis being applied to the covariance matrix.
- Eigenvector/eigenvalue pairs are calculated on the basis of the statistical analysis (step 140 ).
- Resulting eigenvector/eigenvalue pairs above a threshold limit are then selected on the basis of their eigenvalues (step 145 ).
- a processed image is then constructed using the selected eigenvectors, with different weightings of the selected eigenvectors being used to construct individual imaging units (step 160 ).
- the plurality of time separated images may optionally be registered to correlate corresponding locations in the time separated images to each other. Registration of the plurality of time separated images is only needed to correct for gross misregistration. Otherwise, slight movement between the time separated images may be tolerated and may even be removed by the processing method described herein.
- the plurality of time separated images may be preprocessed so that the time separated images are represented with quantifiable values or codes.
- the time separated images may be represented by digital values using known digitization techniques. If the imaging data of the plurality of time separated images is provided in a digital form, then a digitization step is not necessary.
- FIG. 2 shows a series of six chronologically ordered time separated images, t 1 to t 6 .
- a 4 ⁇ 6 array of imaging units is marked on each time separated image.
- five (5) imaging units, IU 1 to IU 5 have been selected.
- imaging unit IU 1 is selected at the same position of the array (i.e. column 1 , row 2 ) for each of the time separated images.
- each of imaging units IU 2 to IU 5 is selected in corresponding positions of the imaging unit array throughout the series of time separated images.
- values for each imaging unit at its corresponding position throughout the time separated images can be plotted as a function of time to obtain a temporal curve.
- the plotting step is illustrated by the arrows linking the corresponding positions of imaging units IU 1 , IU 2 and IU 5 .
- the temporal curve for each imaging unit can then be analyzed to determine a temporal difference. For example, a mean curve for all of the temporal curves obtained can be calculated. The mean curve is then subtracted from each of the temporal curves to obtain a temporal difference curve for each selected imaging unit.
- the marked array and the selection of imaging units IU 1 to IU 5 is for illustration purposes only, and that any number of imaging units may be selected and analyzed as desired.
- the determination of temporal differences by subtraction of a mean curve from the temporal curves for imaging units is for illustration only, and other methods of analyzing the temporal curves, for example using derivatives and/or statistical techniques are contemplated.
- n dynamic images Given a series of n dynamic (i.e. time separated) images from a CT Perfusion study, the n dynamic images can be represented compactly as a matrix:
- ⁇ tilde over (X) ⁇ [ ⁇ tilde over (x) ⁇ 1 T ⁇ tilde over (x) ⁇ 2 T . . . ⁇ tilde over (x) ⁇ p ⁇ 1 T ⁇ tilde over (x) ⁇ p T ] T
- the (i,j) th element of ⁇ tilde over (X) ⁇ is the j th element x ij of ⁇ tilde over (x) ⁇ i .
- Each ⁇ tilde over (x) ⁇ i , i 1, . . .
- p can also be interpreted as repeated observations of a single time vs. enhancement curve ⁇ tilde over ( ⁇ ) ⁇ (a random process consisting of n random variables, ⁇ 1 , ⁇ 2 , . . . , ⁇ n-1 , ⁇ n ).
- One approach to removing noise from the n dynamic images is to find an ‘expansion’ of the p ⁇ n matrix, ⁇ tilde over (X) ⁇ , and then truncate the expansion by certain pre-determined criteria.
- a common expansion is the singular value decomposition of ⁇ tilde over (X) ⁇ :
- ⁇ is a p ⁇ p orthogonal matrix
- ⁇ tilde over (V) ⁇ is a n ⁇ n orthogonal matrix
- ⁇ tilde over (L) ⁇ is a p ⁇ n diagonal matrix with singular values of ⁇ tilde over (X) ⁇ as its diagonal elements.
- l 1 , . . . ,l n be the singular values of ⁇ tilde over (X) ⁇ (it is assumed without loss of generality that ⁇ tilde over (X) ⁇ is of full column rank, n and p>n). Then:
- x by definition is a n ⁇ 1 vector (the sample mean time vs. enhancement curve) and the j th component of x , according to Equation (3), is:
- n is typically 40- 60.
- ⁇ is a given n ⁇ 1 vector of coefficients.
- ⁇ is also a zero mean random variable.
- the sample variance of ⁇ is given by:
- ⁇ is the eigenvalue of ⁇ tilde over (S) ⁇ and ⁇ is the corresponding eigenvector
- ⁇ is the eigenvector of ⁇ tilde over (S) ⁇ that has the highest eigenvalue.
- the sample covariance of ⁇ 1 and ⁇ 2 is:
- ⁇ 2 is once more an eigenvalue of ⁇ tilde over (S) ⁇ , and ⁇ 2 the corresponding eigenvector.
- ⁇ 2 T ⁇ tilde over (S) ⁇ 2 ⁇ 2 or the the sample variance of ⁇ 2 is ⁇ 2 .
- ⁇ 2 is the second largest eigenvalue and ⁇ 2 the corresponding eigenvector.
- the vectors of coefficients ⁇ 3 , ⁇ 4 , . . . , ⁇ n are the eigenvectors of ⁇ tilde over (S) ⁇ corresponding to ⁇ 3 , ⁇ 4 , . . . , ⁇ n , the third, fourth largest, . . . , and the smallest eigenvalue.
- the sample variances of the principal components are also given by the eigenvalues of ⁇ tilde over (S) ⁇ .
- ⁇ tilde over (Z) ⁇ to be the p ⁇ n matrix of the scores of observations on principal components.
- the i th row consists of the scores of the i th observation of ⁇ tilde over ( ⁇ ) ⁇ (i.e. ⁇ tilde over (y) ⁇ i ) on all principal components ⁇ 1 , ⁇ 2 , . . . , ⁇ n-1 , ⁇ n , that is:
- ⁇ is a n ⁇ n matrix whose columns are the eigenvectors of ⁇ tilde over (S) ⁇ and is orthogonal.
- the first principal component, ⁇ 1 , maximized is expressed by:
- ⁇ tilde over (x) ⁇ 1 ⁇ x is the deviation of the time vs. enhancement curve (TEC) from the i th pixel (pixel block) from the mean of TECs from all pixels (pixel blocks).
- TEC time vs. enhancement curve
- the eigenvectors: ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , . . . ⁇ n represent the first, second, third, fourth, . . . , and least dominant time vs. enhancement behaviour in the set of TECs from all pixels.
- the loadings of the eigenvectors ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , . . . , ⁇ n in the TEC from the i th pixel (pixel block) are:
- the i th column of ⁇ tilde over (Z) ⁇ therefore, gives the loading map of the eigenvector ⁇ i which corresponds to the i th largest eigenvalue ⁇ i .
- Equation (1) the p ⁇ n matrix ⁇ tilde over (Y) ⁇ can be expanded by singular value decomposition as:
- ⁇ is a p ⁇ p orthogonal matrix
- ⁇ tilde over (V) ⁇ is a n ⁇ n orthogonal matrix
- ⁇ tilde over (L) ⁇ is a p ⁇ n diagonal matrix with singular values of ⁇ tilde over (Y) ⁇ as its diagonal elements.
- l 1 , . . . ,l n be the singular values of ⁇ tilde over (Y) ⁇ (it is assumed without loss of generality that ⁇ tilde over (Y) ⁇ is of full column rank, n and p>n).
- ⁇ tilde over (L) ⁇ ⁇ tilde over (l) ⁇ 1 . . . ⁇ tilde over (l) ⁇ i . . ⁇ tilde over (l) ⁇ n ⁇
- Equation (5a) is:
- c* is set to:
- ⁇ is a p ⁇ p orthogonal matrix
- ⁇ tilde over (V) ⁇ is a n ⁇ n orthogonal matrix
- ⁇ tilde over (L) ⁇ is a p ⁇ n diagonal matrix with singular values of ⁇ tilde over (Y) ⁇ , l 1 , . . . ,l n , as its diagonal elements; it is also assumed without loss of generality that ⁇ tilde over (Y) ⁇ is of full column rank, n and p>n.
- Equation (8) also affords a very simple geometric interpretation as explained in the following.
- Equation (10) suggests that the TEC for the i th pixel (pixel block) is a weighted summation of r eigenvectors with the weights given by the loading of the i th pixel TEC on the eigenvectors.
- the eigenvectors ⁇ 1 , ⁇ 2 , . . . , ⁇ r ⁇ 1 , ⁇ r can be regarded as forming an orthonormal basis in n dimensional space.
- the projection of ⁇ tilde over (y) ⁇ i on ⁇ i is ⁇ tilde over (y) ⁇ i T ⁇ i and ⁇ tilde over (y) ⁇ i can be reconstituted as
- ⁇ i 1 r ⁇ ( y ⁇ 1 T ⁇ a ⁇ j ) ⁇ a ⁇ j T .
- ⁇ i 1 r ⁇ a ⁇ i ⁇ a ⁇ i T
- ⁇ tilde over (X) ⁇ * [ ⁇ tilde over (y) ⁇ 1 *+ x . . . ⁇ tilde over (y) ⁇ i *+ x . . . ⁇ tilde over (y) ⁇ p *+ x ].
- PCA principal component analysis
- the PCA method will now be summarized based on a CT Perfusion study that generates a plurality of time separated images that capture the passage of contrast through the brain. Corresponding to each pixel in the series of images, a curve is generated that represents the contrast concentration in that pixel as a function of time. A difference curve, equal to the difference of the curve from the mean of all pixel curves is also generated. A covariance matrix of the co-variations of all pairs of difference curves is calculated and represents all possible variations about the mean curve. The principal component analysis method analyzes the covariance matrix to find common temporal patterns among the curves by finding linear combinations of the difference curves that represent most of the variations about the mean curve.
- the PCA method is tested versus the traditional filtered back-projection (FBP) method in radiation dose reduction for CT Perfusion applications.
- FBP filtered back-projection
- FIG. 3 shows brain blood flow maps of the pig calculated using the J-W model with CT Perfusion images obtained using (A) 190 mA and FBP reconstruction; (B) 100 mA, FBP reconstruction and PCA; (C) 70 mA, FBP reconstruction and PCA; and, (D) 50 mA, FBP reconstruction and PCA.
- FIG. 3(E) shows regions of interest (3 outlined circles) used for calculation of Figure of Merit of the blood flow maps shown in FIG. 4 . The regions are superimposed on a CT image which shows a coronal section through the brain of the pig. The dark areas are the skull and jaw bones.
- FIG. 4 shows that in terms of standard deviation/mean of blood flow (Figure of Merit) in the three regions shown in FIG. 3(E) : 70 mA with PCA was better than 190 mA with FBP, while 50 mA PCA was worse than 190 mA with FBP (p ⁇ 0.05).
- the image quality of the blood flow maps in FIG. 3 also reflects this progression. Therefore, the PCA method is able to reduce radiation dose required to obtain images in CT Perfusion studies and in maintaining the quality of derived blood flow maps compared to the use of FBP alone. More specifically, the PCA method achieved approximately three fold reduction in radiation dose compared to the use of FBP alone.
- the principal component analysis methodology described herein has been implemented in a computer executable software application using C++.
- the time required to process ninety-five (95) 512 ⁇ 512 CT brain images is less than two (2) minutes on a general purpose computing device such as for example a personal computer (PC).
- PC personal computer
- An input 510 receives a plurality of time separated images, which can be previously stored, received directly from an imaging device, or communicated over a wired or wireless communication link from a remote location.
- a general purpose computing device 505 receives the time separated images from the input and executes a software application thereby to process the time separated images as described above.
- the general purpose computing device 505 interfaces with the user through a display 520 , a keyboard 515 and/or a mouse or other pointing device 525 .
- Results for example the constructed processed images, can be presented on display 520 and/or output to any suitable output device 530 , for example, a printer, a storage device, or a communication device for communicating the results to a remote location.
- the software application described herein may run as a stand-alone application or may be incorporated into other available applications to provide enhanced functionality to those applications.
- the software application may include program modules including routines, programs, object components, data structures etc. and may be embodied as computer readable program code stored on a computer readable medium.
- the computer readable medium is any data storage device that can store data, which can thereafter be read by a computer system. Examples of computer readable media include for example read-only memory, random-access memory, CD-ROMs, magnetic tape and optical data storage devices.
- the computer readable program code can also be distributed over a network including coupled computer systems so that the computer readable program code is stored and executed in a distributed fashion.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Vascular Medicine (AREA)
- Data Mining & Analysis (AREA)
- Pulmonology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/122,379 US20110262022A1 (en) | 2008-10-02 | 2009-10-02 | System and method for processing images |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10220608P | 2008-10-02 | 2008-10-02 | |
PCT/CA2009/001397 WO2010037233A1 (en) | 2008-10-02 | 2009-10-02 | System and method for processing images |
US13/122,379 US20110262022A1 (en) | 2008-10-02 | 2009-10-02 | System and method for processing images |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2009/001397 A-371-Of-International WO2010037233A1 (en) | 2008-10-02 | 2009-10-02 | System and method for processing images |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/039,619 Continuation US8965086B2 (en) | 2008-10-02 | 2013-09-27 | System and method for processing images |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110262022A1 true US20110262022A1 (en) | 2011-10-27 |
Family
ID=42073000
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/122,379 Abandoned US20110262022A1 (en) | 2008-10-02 | 2009-10-02 | System and method for processing images |
US14/039,619 Expired - Fee Related US8965086B2 (en) | 2008-10-02 | 2013-09-27 | System and method for processing images |
US14/628,731 Abandoned US20150230771A1 (en) | 2008-10-02 | 2015-02-23 | System and method for processing images |
US15/338,000 Abandoned US20170109886A1 (en) | 2008-10-02 | 2016-10-28 | System and method for processing images |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/039,619 Expired - Fee Related US8965086B2 (en) | 2008-10-02 | 2013-09-27 | System and method for processing images |
US14/628,731 Abandoned US20150230771A1 (en) | 2008-10-02 | 2015-02-23 | System and method for processing images |
US15/338,000 Abandoned US20170109886A1 (en) | 2008-10-02 | 2016-10-28 | System and method for processing images |
Country Status (4)
Country | Link |
---|---|
US (4) | US20110262022A1 (zh) |
EP (1) | EP2332122A4 (zh) |
CN (1) | CN102282587B (zh) |
WO (1) | WO2010037233A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130089252A1 (en) * | 2010-06-21 | 2013-04-11 | Koninklijke Philips Electronics N.V. | Method and system for noise reduction in low dose computed tomography |
US20150206287A1 (en) * | 2013-10-25 | 2015-07-23 | Acamar Corporation | Denoising Raw Image Data Using Content Adaptive Orthonormal Transformation with Cycle Spinning |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103403702A (zh) * | 2010-12-24 | 2013-11-20 | 澳大利亚国立大学 | 动态多维图像数据的重构 |
JP6730980B2 (ja) * | 2014-08-14 | 2020-07-29 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 液体プールを検出し識別するための音響流 |
CN105809670B (zh) * | 2016-02-29 | 2019-07-19 | 上海联影医疗科技有限公司 | 灌注分析方法 |
WO2017192629A1 (en) * | 2016-05-02 | 2017-11-09 | The Regents Of The University Of California | System and method for estimating perfusion parameters using medical imaging |
JP7086630B2 (ja) * | 2018-02-09 | 2022-06-20 | キヤノン株式会社 | 情報処理装置、情報処理方法、及びプログラム |
CN112035818B (zh) * | 2020-09-23 | 2023-08-18 | 南京航空航天大学 | 一种基于物理加密辐射成像身份认证系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040005083A1 (en) * | 2002-03-26 | 2004-01-08 | Kikuo Fujimura | Real-time eye detection and tracking under various light conditions |
US20040101156A1 (en) * | 2002-11-22 | 2004-05-27 | Dhiraj Kacker | Image ranking for imaging products and services |
US20040167395A1 (en) * | 2003-01-15 | 2004-08-26 | Mirada Solutions Limited, British Body Corporate | Dynamic medical imaging |
US20060083407A1 (en) * | 2004-10-15 | 2006-04-20 | Klaus Zimmermann | Method for motion estimation |
US20070183629A1 (en) * | 2006-02-09 | 2007-08-09 | Porikli Fatih M | Method for tracking objects in videos using covariance matrices |
US20080146897A1 (en) * | 2004-12-07 | 2008-06-19 | Research Foundation Of City University Of New York | Optical tomography using independent component analysis for detection and localization of targets in turbid media |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9314499D0 (en) * | 1993-07-12 | 1993-08-25 | Nycomed Imaging As | Method |
EP1171028B1 (en) * | 1999-03-26 | 2005-11-16 | Leif Ostergaard | System for determining haemodynamic indices by use of tomographic data |
US7187794B2 (en) | 2001-10-18 | 2007-03-06 | Research Foundation Of State University Of New York | Noise treatment of low-dose computed tomography projections and images |
US7078897B2 (en) * | 2002-01-16 | 2006-07-18 | Washington University | Magnetic resonance method and system for quantification of anisotropic diffusion |
FR2848093B1 (fr) * | 2002-12-06 | 2005-12-30 | Ge Med Sys Global Tech Co Llc | Procede de detection du cycle cardiaque a partir d'angiogramme de vaisseaux coronaires |
US20040218794A1 (en) | 2003-05-01 | 2004-11-04 | Yi-Hsuan Kao | Method for processing perfusion images |
US20050113680A1 (en) * | 2003-10-29 | 2005-05-26 | Yoshihiro Ikeda | Cerebral ischemia diagnosis assisting apparatus, X-ray computer tomography apparatus, and apparatus for aiding diagnosis and treatment of acute cerebral infarct |
GB0326381D0 (en) * | 2003-11-12 | 2003-12-17 | Inst Of Cancer Res The | A method and means for image processing |
WO2005120353A1 (en) * | 2004-06-14 | 2005-12-22 | Canon Kabushiki Kaisha | Image processing device and method |
US7668359B2 (en) | 2004-06-28 | 2010-02-23 | Siemens Meidcal Solutions USA, Inc. | Automatic detection of regions (such as, e.g., renal regions, including, e.g., kidney regions) in dynamic imaging studies |
JP4437071B2 (ja) | 2004-12-24 | 2010-03-24 | パナソニック株式会社 | 運転支援装置 |
US20080292194A1 (en) * | 2005-04-27 | 2008-11-27 | Mark Schmidt | Method and System for Automatic Detection and Segmentation of Tumors and Associated Edema (Swelling) in Magnetic Resonance (Mri) Images |
US20080100473A1 (en) * | 2006-10-25 | 2008-05-01 | Siemens Corporate Research, Inc. | Spatial-temporal Image Analysis in Vehicle Detection Systems |
-
2009
- 2009-10-02 US US13/122,379 patent/US20110262022A1/en not_active Abandoned
- 2009-10-02 WO PCT/CA2009/001397 patent/WO2010037233A1/en active Application Filing
- 2009-10-02 CN CN200980147491.XA patent/CN102282587B/zh not_active Expired - Fee Related
- 2009-10-02 EP EP09817153.1A patent/EP2332122A4/en not_active Withdrawn
-
2013
- 2013-09-27 US US14/039,619 patent/US8965086B2/en not_active Expired - Fee Related
-
2015
- 2015-02-23 US US14/628,731 patent/US20150230771A1/en not_active Abandoned
-
2016
- 2016-10-28 US US15/338,000 patent/US20170109886A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040005083A1 (en) * | 2002-03-26 | 2004-01-08 | Kikuo Fujimura | Real-time eye detection and tracking under various light conditions |
US20040101156A1 (en) * | 2002-11-22 | 2004-05-27 | Dhiraj Kacker | Image ranking for imaging products and services |
US20040167395A1 (en) * | 2003-01-15 | 2004-08-26 | Mirada Solutions Limited, British Body Corporate | Dynamic medical imaging |
US20060083407A1 (en) * | 2004-10-15 | 2006-04-20 | Klaus Zimmermann | Method for motion estimation |
US20080146897A1 (en) * | 2004-12-07 | 2008-06-19 | Research Foundation Of City University Of New York | Optical tomography using independent component analysis for detection and localization of targets in turbid media |
US20070183629A1 (en) * | 2006-02-09 | 2007-08-09 | Porikli Fatih M | Method for tracking objects in videos using covariance matrices |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130089252A1 (en) * | 2010-06-21 | 2013-04-11 | Koninklijke Philips Electronics N.V. | Method and system for noise reduction in low dose computed tomography |
US9189832B2 (en) * | 2010-06-21 | 2015-11-17 | Koninklijke Philips N.V. | Method and system for noise reduction in low dose computed tomography |
US20150206287A1 (en) * | 2013-10-25 | 2015-07-23 | Acamar Corporation | Denoising Raw Image Data Using Content Adaptive Orthonormal Transformation with Cycle Spinning |
Also Published As
Publication number | Publication date |
---|---|
EP2332122A4 (en) | 2013-11-20 |
EP2332122A1 (en) | 2011-06-15 |
CN102282587A (zh) | 2011-12-14 |
CN102282587B (zh) | 2015-11-25 |
US8965086B2 (en) | 2015-02-24 |
US20150230771A1 (en) | 2015-08-20 |
US20170109886A1 (en) | 2017-04-20 |
WO2010037233A1 (en) | 2010-04-08 |
US20140044334A1 (en) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8965086B2 (en) | System and method for processing images | |
US10997725B2 (en) | Image processing method, image processing apparatus, and computer-program product | |
US20180160935A1 (en) | Medical image display apparatus | |
US7283652B2 (en) | Method and system for measuring disease relevant tissue changes | |
US20200311932A1 (en) | Systems and Methods for Synthetic Medical Image Generation | |
EP1958161B1 (en) | Method and system of multivariate analysis on normalized volume-wise data in the sinogram domain for improved quality in positron emission tomography studies | |
Khader et al. | Medical diffusion: denoising diffusion probabilistic models for 3D medical image generation | |
Tapiovaara et al. | SNR and noise measurements for medical imaging: I. A practical approach based on statistical decision theory | |
US9299146B2 (en) | Image processing device, image processing method and image processing program | |
Butler et al. | Processing of spectral X-ray data with principal components analysis | |
KR20100105576A (ko) | 영상 분석 | |
US20090074279A1 (en) | Method and system of multivariate analysis on slice-wise data of reference structure normalized images for improved quality in positron emission tomography studies | |
US8526701B2 (en) | Image analysis method and system | |
He et al. | Downsampled imaging geometric modeling for accurate CT reconstruction via deep learning | |
US7668359B2 (en) | Automatic detection of regions (such as, e.g., renal regions, including, e.g., kidney regions) in dynamic imaging studies | |
US8150133B2 (en) | System and method for automatic registration of 4D (3D plus time) renal perfusion MRI data | |
Lei et al. | Estimating standard-dose PET from low-dose PET with deep learning | |
Vargas-Cardona et al. | Tensor decomposition processes for interpolation of diffusion magnetic resonance imaging | |
Raj et al. | Recovery of the spatially-variant deformations in dual-panel PET reconstructions using deep-learning | |
Park | 10 Spatial-domain model observers for optimizing tomosynthesis | |
US10332252B2 (en) | Slope constrained cubic interpolation | |
Lee et al. | Robust extraction of input function from H/sub 2//sup 15/O dynamic myocardial positron emission tomography using independent component analysis | |
Tichý et al. | Estimation of input function from dynamic PET brain data using Bayesian blind source separation | |
Sun et al. | A method for detecting interstructural atrophy correlation in MRI brain images | |
Chen et al. | Temporal and spatial compression of dynamic positron emission tomography in sinogram domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE UNIVERSITY OF WESTERN ONTARIO, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, TING YING;REEL/FRAME:026613/0188 Effective date: 20110622 |
|
AS | Assignment |
Owner name: THE UNIVERSITY OF WESTERN ONTARIO, CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR'S NAME PREVIOUSLY RECORDED ON REEL 026613 FRAME 0188. ASSIGNOR(S) HEREBY CONFIRMS THE TO RE-RECORD ASSIGNMENT TO CORRECT THE ASSIGNOR'S NAME FROM LEE, TING YING TO LEE, TING YIM;ASSIGNOR:LEE, TING YIM;REEL/FRAME:026863/0760 Effective date: 20110622 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |