US20110223198A1 - dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants - Google Patents

dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants Download PDF

Info

Publication number
US20110223198A1
US20110223198A1 US13/064,824 US201113064824A US2011223198A1 US 20110223198 A1 US20110223198 A1 US 20110223198A1 US 201113064824 A US201113064824 A US 201113064824A US 2011223198 A1 US2011223198 A1 US 2011223198A1
Authority
US
United States
Prior art keywords
vaccine
dsrna
stabilizing polymer
influenza
immuno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/064,824
Inventor
William A. Carter
David Strayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIM Immunotech Inc
Original Assignee
Hemispherx Biopharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hemispherx Biopharma Inc filed Critical Hemispherx Biopharma Inc
Priority to US13/064,824 priority Critical patent/US20110223198A1/en
Publication of US20110223198A1 publication Critical patent/US20110223198A1/en
Priority to US14/537,981 priority patent/US20150064216A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • Vaccine protection against acute or chronic viral infection is facilitated by using, together with an anti-influenza vaccine, as an adjuvant or immuno-stimulant, a dsRNA.
  • Adjuvants have been used to facilitate vaccines in affording immunization to protect animals including humans. Identifying an efficient and effective adjuvant is often a difficult task.
  • influenza virus H5N1 birds flu
  • Inactivated vaccines against influenza virus have been administered parenterally to induce serum antibodies and also to the nasal mucosa to provide mucosal immunity to influenza virus.
  • adjuvants such as alum, squalene emulsion (MF 59, Chiron Vaccines), and Freund's adjuvant.
  • MF 59 squalene emulsion
  • I:C synthetic dsRNA polyriboinosinic polyribocytldylic acid or poly (I:C) has been proposed as an adjuvant or immuno-stimulant for inactivated influenza virus vaccine; see Ichinohe et al, Journal of Virology, March 2005, p. 2910-2919.
  • Disclosed are methods of facilitating vaccine protection against an acute or chronic viral infection comprising the coordinated administration to a subject requiring protection an immunity-inducing amount of an anti-influenza vaccine together with, as an adjuvant, a dsRNA. Also disclosed are methods of facilitating vaccine protection against an acute or chronic viral infection comprising administering to a subject requiring protection an immunity-inducing amount of an anti-influenza vaccine in combination with, as an adjuvant or immuno-stimulant, a dsRNA.
  • the invention includes methods of facilitating vaccine protection against an acute or chronic viral infection comprising administering substantially simultaneously or sequentially to a subject requiring protection an immunity-inducing amount of an anti-influenza vaccine together in admixture with, as an adjuvant or immuno-stimulant, a dsRNA.
  • This invention also includes methods of protecting animals, including humans, susceptible to avian influenza infections against viral-induced pathology secondary to both antigenic drift and shift (as evidenced by rearrangement of the viral particle structure) and genomic rearrangement as well.
  • the invention further includes methods of enhancing immunization against influenza viruses by coordinated administration of a vaccine to patients together or conjointly a synthetic, specifically configured, double-stranded ribonucleic acid (dsRNA).
  • dsRNA double-stranded ribonucleic acid
  • the dsRNA of choice is AMPLIGEN®, available from HEMISPHER X BIOPHARMA, 1617 JFK Boulevard, Philadelphia, Pa. USA., a synthetic, specifically configured, double-stranded ribonucleic acid (dsRNA) which retains the immunostimulatory and antiviral properties of other double-stranded RNA molecules (dsRNA) but exhibits greatly reduced toxicity.
  • AMPLIGEN® can stimulate host defense mechanisms including innate immunity.
  • AMPLIGEN® has the ability to stimulate a variety of dsRNA-dependent intracellular antiviral defense mechanisms including the 2′,5′-oligoadenylate synthetase/RNase L and protein kinase enzyme pathways.
  • Other mismatched dsRNAs for use in the present invention are based on copolynucleotides selected from poly (C m , U) and poly (C m G) in which m is an integer having a value of from 4 to 29 and are mismatched analogs of complexes of polyriboinosinic and polyribocytidilic acids, formed by modifying rI n ⁇ rC n to incorporate unpaired bases (uracil or guanine) along the polyribocytidylate (rC m ) strand.
  • the dsRNA may be derived from r(I) ⁇ r(C) dsRNA by modifying the ribosyl backbone of polyriboinosinic acid (rI n ), e.g., by including 2′-O-methyl ribosyl residues.
  • the mismatched may be complexed with an RNA-stabilizing polymer such as lysine and/or cellulose.
  • RNA-stabilizing polymer such as lysine and/or cellulose.
  • the preferred ones are of the general formula rI n ⁇ r(C 11-14 , U) n. or rI n ⁇ r(C 29 , G) n , and are described by Carter and Ts'o in U.S. Pat. Nos. 4,130,641 and 4,024,222, the disclosures of which are hereby incorporated by reference.
  • the dsRNA's described therein generally are suitable for use according to the present invention.
  • the dsRNA may be the matched form, thus polyadenylic acid complexed with polyuridylic acid (poly A ⁇ poly U) may also be used.
  • Another aspect of the invention is the treatment of acute and chronic viral infections susceptible to vaccine prophylaxis therapy, available now or in the future including, for example, HIV, severe acute respiratory syndrome (SARS) and influenza including avian influenza employing a synergistic combination of an appropriate vaccine and a dsRNA.
  • vaccine prophylaxis therapy available now or in the future including, for example, HIV, severe acute respiratory syndrome (SARS) and influenza including avian influenza employing a synergistic combination of an appropriate vaccine and a dsRNA.
  • FIG. 1 is a table showing the results of Example 1
  • FIG. 2 is a table showing the results of Example 2.
  • FIG. 3 is a table showing the results of Example 3 using a trivalent influenza vaccine
  • FIG. 4 is a table showing the results of Example 3 using a trivalent vaccine plus AMPLIGEN® intranasally;
  • FIG. 5 is a table showing a direct cross assessment according to Example 3 of trivalent seasonal influenza vaccine and intranasally administered AMPLIGEN®;
  • FIG. 6 is a table showing the results of Example 3.
  • mice This study was conducted in mice in the manner of Ichinohe et al, Journal of Virology, March, 2005, pages 2910-2919, this time using two different strains of avian flu virus, Vietnam and Hong Kong, and the dsRNA AMPLIGEN®, as described above, in combination or alone with the vaccine. The results are given in FIGS. 1 and 2 .
  • the animals were then subjected to a challenge to avian influenza virus Vietnamese strain and, significantly, there was no virus detected in the nasal wash of the challenged animals receiving a combination of vaccine and AMPLIGEN® administered by the intranasal route while various amounts of virus were detected using the vaccine alone, AMPLIGEN® alone, intranasally, and a combination of vaccine and AMPLIGEN® administered subcutaneously.
  • Example 2 A second set of studies was completed similar to Example 1, this time initially using inactivated avian influenza virus vaccine Vietnam strain in combination with AMPLIGEN® or AMPLIGEN® alone or the vaccine alone then later challenging with the different Hong Kong strain of avian influenza virus.
  • the results are shown in FIG. 2 .
  • the first two panels under anti-A/VN-IgA and anti-A/VN IgG were prior to challenge and the third panel was subsequent to challenge with the Hong Kong strain.
  • beneficial results were noted in the virus titer nasal wash subsequent to challenge with the best results achieved using the combination of Vietnam strain vaccine and AMPLIGEN® and subsequent challenge with the Hong Kong strain of the virus.
  • A/VN virus titer in the nasal wash was rather insignificant for the combination of 0.1 ⁇ g A/VN and 10 ⁇ g poly(I:C) as compared to a measurable value when the avian flu vaccine was used alone. From these data one may conclude the use of poly(I:C) as an adjuvant enables one to reduce by tenfold (in this example) the amount of avian influenza vaccine necessary to achieve significant rates of survival.
  • Presence of the AMPLIGEN® appears to possess cross-protection ability against variant avian influenza viruses and thereby mitigate antigenic drift of the avian influenza virus.
  • Antigenic drift is a change in structure of a virus, such as the internal and external proteins, glycoproteins, glycolipids, etc., due to fundamental change in the genomic content of the virus particle.
  • dsRNAs reduce the phenomenon of viral escape and cellular damage attendant thereto.
  • Viral escape is a process by which a virus or intracellular pathogen alters its host range or indirectly alters its susceptibility of antiviral or immunological therapies.
  • This invention includes methods of cross-protecting animals, including humans, susceptible to avian influenza infections against viral-induced pathology secondary to both antigenic drift and shift (produced by mutations or rearrangement of the viral genetic material).
  • mice seven groups of mice, five mice per group, were selected. Four of these groups were exposed to the 2005/2006 trivalent influenza vaccine either intranasally or subcutaneously. Within 21 days intranasal inoculation was repeated and within 14 days intranasal inoculation was completed again making a total of one initial inoculation and two boosters.
  • mice Two weeks after the second booster the mice were then subjected to challenge with the avian influenza VN1194 (H5N1) strain and assessed for the presence and amount of IgA anti-A/VN in a nasal wash and for IgG antibodies in serum.
  • the results indicate that only with the presence AMPLIGEN® and administration by the intranasal route were A/VN IgA antibodies raised against the avian influenza Vietnam (VN1194) strain. While IgG antibodies were raised in the serum against the VN1194 strain from the intranasal administration there were serum antibodies raised with or without the presence of AMPLIGEN® using the SC route of administration.
  • Virus titers for the avian flu virus were then assessed after avian influenza VN1194 (H5N1) virus challenge in nasal wash.
  • H5N1 avian influenza VN1194
  • the virus was effectively neutralized while the other groups showed measurable quantities of the A/VN virus.
  • FIG. 4 shows that the only group of animals to survive the challenge with VN1194 as assessed over a period of 18 days, was the group which received both the 05/06 trivalent vaccine plus the AMPLIGEN® intranasally. While antibodies were present in the blood serum they provided no effective protection against VN1194 challenge but antibodies present in the nasal mucosa Were effective to prevent infection and death over the period of time measured. These findings are significant as they demonstrate in this study protection against avian influenza H5N 1 strains is conferred by the use of a trivalent seasonal vaccine administered intranasally with AMPLIGEN® as a vaccine adjuvant.
  • FIG. 5 shows the direct cross assessment, again indicating the quantities and amounts of 05/06 trivalent vaccine, AMPLIGEN® and route of administration but measuring for the antibodies to be elicited against the seasonal trivalent vaccine as measured either in the nasal mucosa or blood serum.
  • the results show antibodies against the seasonal vaccine were present in the nasal mucosa of only those animals receiving both the trivalent 05/06 seasonal vaccine and AMPLIGEN® administered by the intranasal route.
  • all of the groups had a certain elevated “baseline” level, but a significant increase was seen both times the vaccine was used with AMPLIGEN®.
  • Target Activity Result Epithelial cells Activate antiviral Restricts viral replication defenses in infected, and Secrete interferon. surrounding cells. Initiate supportive immune response.
  • Dendritic Cells Activate DC antigen T cell activation and presentation, differentiation into T costimulatory function, helper cells, and T killer and inflammatory CTL cells.
  • cytokine release Macrophages Activate phagocytosis Increased killing and and inflammatory clearing of virally cytokine release. infected cells. Mast cells Cytokine release Enhance recruitment and activation of immune cells at affected tissue sites.
  • Avian influenza co-administration studies were extended to a primate model, where vaccination plus co-administered AMPLIGEN® was well tolerated and effective.
  • macaques were vaccinated with A/VN plus AMPLIGEN® (A/Vietnam (H5N1) 90 ⁇ g/500 ml, AMPLIGEN® 500 ⁇ g), for three doses, spaced 3 and 2 weeks apart. That is, an initial dose, 3 weeks later a second dose and 2 weeks later a third dose.
  • A/VN A/Vietnam (H5N1) 2.5 ⁇ 10 5 pfu/2.5 ml (lung) and A/Vietnam (H5N1) 0.5 ⁇ 10 5 pfu/0.5 ml (nasal)) intratracheally and intranasally.
  • Infected control animals developed tachypnea, coughing, weight loss, and focal consolidating pneumonia.
  • Vaccinated animals were symptom free, and protected from disease with normal appearing pulmonary tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Vaccine protection against acute or chronic viral infection is facilitated by using as an adjuvant or immuno-stimulant, a dsRNA together with an anti-influenza vaccine.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of Ser. No. 11/634,389, filed Dec. 6, 2006, which is a utility version of provisional applications Ser. No. 60/793,239 filed Apr. 20, 2006, Ser. No. 60/752,898 filed Dec. 23, 2005 and Ser. No. 60/742,906 filed Dec. 7, 2005, the entire content of each of which is hereby incorporated by reference in this application
  • Vaccine protection against acute or chronic viral infection is facilitated by using, together with an anti-influenza vaccine, as an adjuvant or immuno-stimulant, a dsRNA.
  • BACKGROUND OF THE INVENTION
  • Adjuvants have been used to facilitate vaccines in affording immunization to protect animals including humans. Identifying an efficient and effective adjuvant is often a difficult task.
  • Of particular interest are vaccines for protecting against influenza viruses, and of current interest avian influenza virus H5N1 (bird flu) including Vietnam and Hong Kong strains. Inactivated vaccines against influenza virus have been administered parenterally to induce serum antibodies and also to the nasal mucosa to provide mucosal immunity to influenza virus.
  • Several adjuvants are known such as alum, squalene emulsion (MF 59, Chiron Vaccines), and Freund's adjuvant. Recently a synthetic dsRNA polyriboinosinic polyribocytldylic acid or poly (I:C) has been proposed as an adjuvant or immuno-stimulant for inactivated influenza virus vaccine; see Ichinohe et al, Journal of Virology, March 2005, p. 2910-2919.
  • DESCRIPTION OF THE INVENTION
  • Disclosed are methods of facilitating vaccine protection against an acute or chronic viral infection comprising the coordinated administration to a subject requiring protection an immunity-inducing amount of an anti-influenza vaccine together with, as an adjuvant, a dsRNA. Also disclosed are methods of facilitating vaccine protection against an acute or chronic viral infection comprising administering to a subject requiring protection an immunity-inducing amount of an anti-influenza vaccine in combination with, as an adjuvant or immuno-stimulant, a dsRNA.
  • The invention includes methods of facilitating vaccine protection against an acute or chronic viral infection comprising administering substantially simultaneously or sequentially to a subject requiring protection an immunity-inducing amount of an anti-influenza vaccine together in admixture with, as an adjuvant or immuno-stimulant, a dsRNA.
  • This invention also includes methods of protecting animals, including humans, susceptible to avian influenza infections against viral-induced pathology secondary to both antigenic drift and shift (as evidenced by rearrangement of the viral particle structure) and genomic rearrangement as well.
  • The invention further includes methods of enhancing immunization against influenza viruses by coordinated administration of a vaccine to patients together or conjointly a synthetic, specifically configured, double-stranded ribonucleic acid (dsRNA). The dsRNA of choice is AMPLIGEN®, available from HEMISPHERX BIOPHARMA, 1617 JFK Boulevard, Philadelphia, Pa. USA., a synthetic, specifically configured, double-stranded ribonucleic acid (dsRNA) which retains the immunostimulatory and antiviral properties of other double-stranded RNA molecules (dsRNA) but exhibits greatly reduced toxicity. Like other dsRNAs, AMPLIGEN® can stimulate host defense mechanisms including innate immunity. AMPLIGEN® has the ability to stimulate a variety of dsRNA-dependent intracellular antiviral defense mechanisms including the 2′,5′-oligoadenylate synthetase/RNase L and protein kinase enzyme pathways.
  • In the context of the present invention, what is meant by “coordinated” use is, independently, either (i) co-administration, i.e. substantially simultaneous or sequential administration of the vaccine and of the dsRNA, or (ii) the administration of a composition comprising the vaccine and the dsRNA in combination and in a mixture, in addition to optional pharmaceutically acceptable excipients and/or vehicles.
  • The mismatched dsRNA may be of the general formula rIn·r(C12U)n. In this and the other formulae that follow r=ribo. Other mismatched dsRNAs for use in the present invention are based on copolynucleotides selected from poly (Cm, U) and poly (CmG) in which m is an integer having a value of from 4 to 29 and are mismatched analogs of complexes of polyriboinosinic and polyribocytidilic acids, formed by modifying rIn·rCn to incorporate unpaired bases (uracil or guanine) along the polyribocytidylate (rCm) strand. Alternatively, the dsRNA may be derived from r(I)·r(C) dsRNA by modifying the ribosyl backbone of polyriboinosinic acid (rIn), e.g., by including 2′-O-methyl ribosyl residues. The mismatched may be complexed with an RNA-stabilizing polymer such as lysine and/or cellulose. Of these mismatched analogs of rIn·rCn, the preferred ones are of the general formula rIn·r(C11-14, U)n. or rIn·r(C29, G)n, and are described by Carter and Ts'o in U.S. Pat. Nos. 4,130,641 and 4,024,222, the disclosures of which are hereby incorporated by reference. The dsRNA's described therein generally are suitable for use according to the present invention.
  • Other examples of mismatched dsRNA for use in the invention include:
    • r(I)·r(C4, U)
    • r(I)·r(C7, U)
    • r(I)·r(C13, U)
    • r(I)·r(C22, U)
    • r(I)·r(C20, G) and
    • r(I)·r(Cp·23, G>p).
  • Alternatively the dsRNA may be the matched form, thus polyadenylic acid complexed with polyuridylic acid (poly A·poly U) may also be used.
  • Another aspect of the invention is the treatment of acute and chronic viral infections susceptible to vaccine prophylaxis therapy, available now or in the future including, for example, HIV, severe acute respiratory syndrome (SARS) and influenza including avian influenza employing a synergistic combination of an appropriate vaccine and a dsRNA.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is further explained and illustrated in the following examples and figures in which:
  • FIG. 1 is a table showing the results of Example 1;
  • FIG. 2 is a table showing the results of Example 2;
  • FIG. 3 is a table showing the results of Example 3 using a trivalent influenza vaccine;
  • FIG. 4 is a table showing the results of Example 3 using a trivalent vaccine plus AMPLIGEN® intranasally;
  • FIG. 5 is a table showing a direct cross assessment according to Example 3 of trivalent seasonal influenza vaccine and intranasally administered AMPLIGEN®; and
  • FIG. 6 is a table showing the results of Example 3.
  • The terms used in the Figures that follow are:
      • A/VN avian influenza/Vietnam (H5N1) strain
      • VN1194 avian influenza/Vietnam (H5N1) strain
      • 05/06 Vaccine trivalent “seasonal” influenza vaccine for the 2005-2006 season
      • Amp AMPLIGEN®
      • I.N. intranasal
      • S.C. subcutaneous
      • Anti-A/VN IgA IgA antibodies raised against the avian influenza Vietnam strain
      • Anti-A/VN IgG IgG antibodies raised against the avian influenza Vietnam strain
      • A/VN virus titer quantitation of the amount of avian influenza virus Vietnam strain (i.e. as detected in nasal mucosal washings)
      • Anti-05/06 Vaccine antibodies raised against the 2005/2006 trivalent seasonal influenza vaccine
      • H5N1 avian influenza virus classification type
    DESCRIPTION OF THE PREFERRED EMBODIMENTS Example 1 Cross Protection Between Avian Influenza Strains
  • This study was conducted in mice in the manner of Ichinohe et al, Journal of Virology, March, 2005, pages 2910-2919, this time using two different strains of avian flu virus, Vietnam and Hong Kong, and the dsRNA AMPLIGEN®, as described above, in combination or alone with the vaccine. The results are given in FIGS. 1 and 2.
  • In the first panel, from the antibodies detected in the nasal wash use of the (A/VN) vaccine by itself when administered intranasally provided a positive result in raising antibody but when administered with AMPLIGEN® produced a result that was more than twice than that of the vaccine used alone. No IgA antibodies were detected using AMPLIGEN® alone. The subcutaneous route did not yield any IgA antibodies in the nasal mucosa.
  • In contrast to this, a limited number of IgG antibodies were raised in the blood serum following intranasal administration but significantly greater amounts were obtained in the blood serum from the subcutaneous administration. Again, the combination of the vaccine plus AMPLIGEN® produced a greater result than with the vaccine alone.
  • The animals were then subjected to a challenge to avian influenza virus Vietnamese strain and, significantly, there was no virus detected in the nasal wash of the challenged animals receiving a combination of vaccine and AMPLIGEN® administered by the intranasal route while various amounts of virus were detected using the vaccine alone, AMPLIGEN® alone, intranasally, and a combination of vaccine and AMPLIGEN® administered subcutaneously.
  • It is desirable to raise antibodies to the avian flu virus in the nasal mucosa and other mucosa as this is the typical point of entry/infection and is believed to offer a significant preventative or mitigating benefit.
  • Example 2 Cross Protection Between Seasonal Influenza Vaccine and H5N1
  • A second set of studies was completed similar to Example 1, this time initially using inactivated avian influenza virus vaccine Vietnam strain in combination with AMPLIGEN® or AMPLIGEN® alone or the vaccine alone then later challenging with the different Hong Kong strain of avian influenza virus. The results are shown in FIG. 2. The first two panels under anti-A/VN-IgA and anti-A/VN IgG were prior to challenge and the third panel was subsequent to challenge with the Hong Kong strain. Overall, beneficial results were noted in the virus titer nasal wash subsequent to challenge with the best results achieved using the combination of Vietnam strain vaccine and AMPLIGEN® and subsequent challenge with the Hong Kong strain of the virus.
  • These results indicate continued efficacy when the Vietnam strain vaccine-treated patients also receiving AMPLIGEN® were later challenged with the Hong Kong strain of the virus and from this it is expected that similar results will occur when the viral strains are reversed and the Hong Kong virus is used to raise the vaccine followed by subsequent challenge with the Vietnam strain.
  • Example 3 Viral Antigen Sparing and Augmentation
  • In this example a study was made to determine how the influence of poly(I:C) on the administration of an avian influenza, Vietnam strain in animals similar to those used in Example 2. The results are presented in FIG. 6. Various doses of the avian influenza vaccine (A/VN) were employed and varying amounts of poly(I:C) were used including no A/VN and no poly(I:C) as controls. Of particular interest is a comparison between 1 μg of avian influenza vaccine and no poly(I:C) contrasted with 0.1 μg of avian influenza vaccine and 10 μg of poly(I:C). When administered intranasally in the first panel of bar graphs it will be noted that more antibodies were raised by the combination of 0.1 μg of A/VN and 10 μg of poly(I:C) compared to a tenfold larger amount of avian influenza vaccine used by itself. Of particular significance is the final panel under the heading Survival Rate where the survival rate was numerically the same, on a percentage basis, between the use of one-tenth the amount of avian influenza vaccine in combination with 10 μg poly(I:C) and 10 μg of A/VN alone (without poly(I:C)). Note also the A/VN virus titer in the nasal wash was rather insignificant for the combination of 0.1 μg A/VN and 10 μg poly(I:C) as compared to a measurable value when the avian flu vaccine was used alone. From these data one may conclude the use of poly(I:C) as an adjuvant enables one to reduce by tenfold (in this example) the amount of avian influenza vaccine necessary to achieve significant rates of survival.
  • Presence of the AMPLIGEN® appears to possess cross-protection ability against variant avian influenza viruses and thereby mitigate antigenic drift of the avian influenza virus.
  • Antigenic drift is a change in structure of a virus, such as the internal and external proteins, glycoproteins, glycolipids, etc., due to fundamental change in the genomic content of the virus particle. dsRNAs reduce the phenomenon of viral escape and cellular damage attendant thereto. Viral escape is a process by which a virus or intracellular pathogen alters its host range or indirectly alters its susceptibility of antiviral or immunological therapies.
  • This invention includes methods of cross-protecting animals, including humans, susceptible to avian influenza infections against viral-induced pathology secondary to both antigenic drift and shift (produced by mutations or rearrangement of the viral genetic material).
  • In FIG. 3, seven groups of mice, five mice per group, were selected. Four of these groups were exposed to the 2005/2006 trivalent influenza vaccine either intranasally or subcutaneously. Within 21 days intranasal inoculation was repeated and within 14 days intranasal inoculation was completed again making a total of one initial inoculation and two boosters.
  • Two weeks after the second booster the mice were then subjected to challenge with the avian influenza VN1194 (H5N1) strain and assessed for the presence and amount of IgA anti-A/VN in a nasal wash and for IgG antibodies in serum. The results indicate that only with the presence AMPLIGEN® and administration by the intranasal route were A/VN IgA antibodies raised against the avian influenza Vietnam (VN1194) strain. While IgG antibodies were raised in the serum against the VN1194 strain from the intranasal administration there were serum antibodies raised with or without the presence of AMPLIGEN® using the SC route of administration. Virus titers for the avian flu virus were then assessed after avian influenza VN1194 (H5N1) virus challenge in nasal wash. For the subset receiving both the trivalent seasonal vaccine and AMPLIGEN® adjuvant the virus was effectively neutralized while the other groups showed measurable quantities of the A/VN virus.
  • FIG. 4 shows that the only group of animals to survive the challenge with VN1194 as assessed over a period of 18 days, was the group which received both the 05/06 trivalent vaccine plus the AMPLIGEN® intranasally. While antibodies were present in the blood serum they provided no effective protection against VN1194 challenge but antibodies present in the nasal mucosa Were effective to prevent infection and death over the period of time measured. These findings are significant as they demonstrate in this study protection against avian influenza H5N 1 strains is conferred by the use of a trivalent seasonal vaccine administered intranasally with AMPLIGEN® as a vaccine adjuvant.
  • FIG. 5 shows the direct cross assessment, again indicating the quantities and amounts of 05/06 trivalent vaccine, AMPLIGEN® and route of administration but measuring for the antibodies to be elicited against the seasonal trivalent vaccine as measured either in the nasal mucosa or blood serum. The results show antibodies against the seasonal vaccine were present in the nasal mucosa of only those animals receiving both the trivalent 05/06 seasonal vaccine and AMPLIGEN® administered by the intranasal route. Regarding the detecting of antibodies against the 05/06 trivalent vaccine in serum, all of the groups had a certain elevated “baseline” level, but a significant increase was seen both times the vaccine was used with AMPLIGEN®.
  • Our studies also demonstrate the presence of antibodies in blood serum does not necessarily provide an accurate indicator of protection against avian influenza and the more reliable indicator is the antibodies raised in the nasal mucosa.
  • Additional key cellular mechanisms induced by double-stranded RNAs to
    provide for more potent immune stimulating effects of influenza and other
    vaccines.
    Target Activity Result
    Epithelial cells Activate antiviral Restricts viral replication
    defenses in infected, and
    Secrete interferon. surrounding cells.
    Initiate supportive
    immune response.
    Dendritic Cells Activate DC antigen T cell activation and
    presentation, differentiation into T
    costimulatory function, helper cells, and T killer
    and inflammatory CTL cells.
    cytokine release.
    Macrophages Activate phagocytosis Increased killing and
    and inflammatory clearing of virally
    cytokine release. infected cells.
    Mast cells Cytokine release Enhance recruitment and
    activation of immune
    cells at affected tissue
    sites.
    Natural Killer (NK) cells Lysis of virally infected Enhance viral clearance
    cells, Further dendritic and boost immune
    cell activation. responses.
    Gamma-delta T cells Activate innate sentinel Enhance immune
    T cells in epithelial responses.
    tissues.
    CD4 and CD8 T cells Augment T cell Enhance magnitude of
    activation, immune responses.
    differentiation, cytokine
    secretion, and survival
  • Avian influenza co-administration studies were extended to a primate model, where vaccination plus co-administered AMPLIGEN® was well tolerated and effective. In this study macaques were vaccinated with A/VN plus AMPLIGEN® (A/Vietnam (H5N1) 90 μg/500 ml, AMPLIGEN® 500 μg), for three doses, spaced 3 and 2 weeks apart. That is, an initial dose, 3 weeks later a second dose and 2 weeks later a third dose. Then the monkeys were challenged 2 weeks after the third does with high doses of A/VN (A/Vietnam (H5N1) 2.5×105 pfu/2.5 ml (lung) and A/Vietnam (H5N1) 0.5×105 pfu/0.5 ml (nasal)) intratracheally and intranasally. Infected control animals developed tachypnea, coughing, weight loss, and focal consolidating pneumonia. Vaccinated animals were symptom free, and protected from disease with normal appearing pulmonary tissue.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (21)

1. A method of facilitating vaccine protection against an acute or chronic viral infection comprising the coordinated administration to a subject requiring protection an immunity-inducing amount of an antiviral vaccine together with, as an adjuvant or immuno-stimulant, a dsRNA.
2. A method of facilitating vaccine protection against an acute or chronic viral infection wherein the antiviral vaccine is administered in combination with, as an adjuvant or immuno-stimulant, a dsRNA.
3. A method of facilitating vaccine protection against an acute or chronic viral infection according to claim 1 comprising administering substantially simultaneously or sequentially to a subject requiring protection an immunity-inducing amount of an antiviral vaccine together in admixture with, as an adjuvant or immuno-stimulant, a dsRNA.
4. A method of protecting an animal or animal cells susceptible to avian flu virus against viral-induced pathology secondary to antigenic drift or shift, as evidenced by mutational changes or molecular rearrangement in the viral particle structure, the method comprising exposing the animal or animal cells to a mismatched dsRNA before, during or after exposure to an anti-avian flu vaccine.
5. A method of facilitating vaccine protection against an acute or chronic avian influenza infection comprising the coordinated administration to a subject requiring protection an immunity-inducing amount of an antiviral vaccine other than avian influenza together with, as an adjuvant or immuno-stimulant, a dsRNA.
6. A method of facilitating vaccine protection against an acute or chronic avian influenza infection according to claim 5 comprising administering to a subject requiring protection an immunity-inducing amount of an antiviral vaccine other than avian influenza in combination with or in admixture with, as an adjuvant or immuno-stimulant, a dsRNA.
7. A method of protecting an animal or animal cells susceptible to avian flu virus comprising exposing the animal or animal cells to a mismatched dsRNA before, during or after exposure to an influenza vaccine other than an anti-avian flu vaccine.
8. The method of claim 1, where influenza vaccine includes the standard seasonal trivalent influenza vaccine.
9. The method of claim 1 in which the dsRNA is additionally complexed with an RNA-stabilizing polymer.
10. The method of claim 9 in which the stabilizing polymer is lysine or cellulose.
11. A method of claim 2, where influenza vaccine includes the standard seasonal trivalent influenza vaccine.
12. The method of claim 2 in which the dsRNA is additionally complexed with an RNA-stabilizing polymer.
13. The method of claim 12 in which the stabilizing polymer is lysine or cellulose.
14. The method of claim 3 in which the dsRNA is additionally complexed with an RNA-stabilizing polymer.
15. The method of claim 14 in which the stabilizing polymer is lysine or cellulose.
16. The method of claim 5 in which the dsRNA is additionally complexed with an RNA-stabilizing polymer.
17. The method of claim 16 in which the stabilizing polymer is lysine or cellulose.
18. The method of claim 6 in which the dsRNA is additionally complexed with an RNA-stabilizing polymer.
19. The method of claim 18 in which the stabilizing polymer is lysine or cellulose.
20. The method of claim 7 in which the dsRNA is additionally complexed with an RNA-stabilizing polymer.
21. The method of claim 20 in which the stabilizing polymer is lysine or cellulose.
US13/064,824 2005-12-07 2011-04-19 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants Abandoned US20110223198A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/064,824 US20110223198A1 (en) 2005-12-07 2011-04-19 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
US14/537,981 US20150064216A1 (en) 2005-12-07 2014-11-11 Dsrnas as influenza virus vaccine adjuvants or immuno-stimulants

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US74290605P 2005-12-07 2005-12-07
US75289805P 2005-12-23 2005-12-23
US79323906P 2006-04-20 2006-04-20
US11/634,389 US7943147B2 (en) 2005-12-07 2006-12-06 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
US13/064,824 US20110223198A1 (en) 2005-12-07 2011-04-19 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/634,389 Continuation US7943147B2 (en) 2005-12-07 2006-12-06 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/537,981 Continuation US20150064216A1 (en) 2005-12-07 2014-11-11 Dsrnas as influenza virus vaccine adjuvants or immuno-stimulants

Publications (1)

Publication Number Publication Date
US20110223198A1 true US20110223198A1 (en) 2011-09-15

Family

ID=38123418

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/634,389 Active US7943147B2 (en) 2005-12-07 2006-12-06 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
US13/064,824 Abandoned US20110223198A1 (en) 2005-12-07 2011-04-19 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
US14/537,981 Abandoned US20150064216A1 (en) 2005-12-07 2014-11-11 Dsrnas as influenza virus vaccine adjuvants or immuno-stimulants

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/634,389 Active US7943147B2 (en) 2005-12-07 2006-12-06 dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/537,981 Abandoned US20150064216A1 (en) 2005-12-07 2014-11-11 Dsrnas as influenza virus vaccine adjuvants or immuno-stimulants

Country Status (6)

Country Link
US (3) US7943147B2 (en)
EP (1) EP1957101A4 (en)
JP (2) JP2009518410A (en)
AU (1) AU2006322073A1 (en)
CA (1) CA2632516C (en)
WO (1) WO2007067517A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603919B2 (en) 2009-03-31 2017-03-28 Japan As Represented By The Director-General Of National Institute Of Infectious Diseases Method for prophylaxis of influenza using vaccine for intranasal administration

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060035859A1 (en) * 2003-05-16 2006-02-16 Hemispherx Biopharma Treating severe and acute viral infections
WO2005009337A2 (en) * 2003-05-16 2005-02-03 Hemispherx Biopharma Treating severe acute respiratory syndrome
AU2006322073A1 (en) * 2005-12-07 2007-06-14 Hemispherx Biopharma, Inc. dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
US20100104533A1 (en) * 2007-06-18 2010-04-29 Carter William A Early intervention of viral infection with immune activators
EP2197497B1 (en) 2007-09-27 2016-06-01 ImmunoVaccine Technologies Inc. Use of liposomes in a carrier comprising a continuous hydrophobic phase for delivery of polynucleotides in vivo
WO2009102496A2 (en) * 2008-02-15 2009-08-20 Hemispherx Biopharma, Inc. Selective agonist of toll-like receptor 3
WO2009127988A1 (en) * 2008-04-16 2009-10-22 Universite De Lausanne Method and vaccine for optimizing the specific immune responses
CN102056622B (en) * 2008-06-05 2016-04-06 免疫疫苗技术有限公司 Comprise the compositions of liposome, antigen, polynucleotide and the carrier containing the continuous phase of hydrophobic substance
BR112014007927B1 (en) 2011-10-06 2021-04-13 Immunovaccine Technologies Inc LIPOSOME COMPOSITIONS UNDERSTANDING AN ADJUVANT AND USES OF THESE COMPOSITIONS AND USES OF THOSE COMPOSITIONS
WO2021040439A1 (en) * 2019-08-28 2021-03-04 주식회사 엔에이백신연구소 Influenza vaccine composition based on novel nucleic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) * 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US4349538A (en) * 1979-12-07 1982-09-14 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Nuclease-resistant hydrophilic complex of polyriboinosinic-polyribocytidylic acid
US6589529B1 (en) * 1998-10-30 2003-07-08 Children's Hospital Medical Center Rotavirus subunit vaccine
US20060223742A1 (en) * 2005-01-03 2006-10-05 Salazar Andres M Clinical method for the immunomodulatory and vaccine adjuvant use of poly-ICLC and other dsRNAs
US20070224219A1 (en) * 2005-12-07 2007-09-27 Hemispherx Biopharma dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024222A (en) * 1973-10-30 1977-05-17 The Johns Hopkins University Nucleic acid complexes
CA1326450C (en) * 1985-08-26 1994-01-25 William A. Carter Modulation of aids virus-related events by double stranded rnas (dsrnas)
US5132292A (en) * 1990-05-25 1992-07-21 Hem Research, Inc. Treatment of viral hepatitis
GB0119346D0 (en) * 2001-08-08 2001-10-03 Bioclones Proprietary Ltd Process for the maturation of dendritic cells
KR101280094B1 (en) 2003-08-11 2013-06-28 사이단호진한다이비세이부쯔뵤우겐큐우카이 Novel vaccine containing adjuvant capable of inducing mucosal immunity
US20100183638A1 (en) 2007-03-05 2010-07-22 Gowen Brian B Restrictive agonist of toll-like receptor 3 (tlr3)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) * 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US4349538A (en) * 1979-12-07 1982-09-14 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Nuclease-resistant hydrophilic complex of polyriboinosinic-polyribocytidylic acid
US6589529B1 (en) * 1998-10-30 2003-07-08 Children's Hospital Medical Center Rotavirus subunit vaccine
US20060223742A1 (en) * 2005-01-03 2006-10-05 Salazar Andres M Clinical method for the immunomodulatory and vaccine adjuvant use of poly-ICLC and other dsRNAs
US20070224219A1 (en) * 2005-12-07 2007-09-27 Hemispherx Biopharma dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
US7943147B2 (en) * 2005-12-07 2011-05-17 Hemispherx Biopharma dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ellis et al., Vaccination of chickens against H5N1 avian influenza in the face of an outbreak interrupts virus transmission, 2004, Avian Pathology, Vol. 33, No. 4, pages 405-412. *
Montefiori and Mitchell, Antiviral activity of mismatched double-stranded RNA against human immunodeficiency virus in vitro, 1987, PNAS, Vol, 84, pages 2985-2989. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603919B2 (en) 2009-03-31 2017-03-28 Japan As Represented By The Director-General Of National Institute Of Infectious Diseases Method for prophylaxis of influenza using vaccine for intranasal administration

Also Published As

Publication number Publication date
WO2007067517A2 (en) 2007-06-14
US20070224219A1 (en) 2007-09-27
JP2013075920A (en) 2013-04-25
EP1957101A2 (en) 2008-08-20
EP1957101A4 (en) 2010-04-07
CA2632516A1 (en) 2007-06-14
CA2632516C (en) 2018-05-15
WO2007067517A3 (en) 2008-01-31
US7943147B2 (en) 2011-05-17
AU2006322073A1 (en) 2007-06-14
JP2009518410A (en) 2009-05-07
US20150064216A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US7943147B2 (en) dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
Strizova et al. Principles and challenges in anti-COVID-19 vaccine development
AU646257B2 (en) Oral vaccine comprising antigen surface-associated with red blood cells
Kim et al. Influenza vaccines: Past, present, and future
US6372223B1 (en) Influenza virus vaccine composition
Kopecky-Bromberg et al. Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine
Chen et al. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization
US10881723B2 (en) Vaccine containing immobilized virus particles
Vemula et al. Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time
Kumar et al. Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus
Lin et al. Nanoparticular CpG-adjuvanted SARS-CoV-2 S1 protein elicits broadly neutralizing and Th1-biased immunoreactivity in mice
Silveira et al. Quillaja brasiliensis nanoparticle adjuvant formulation improves the efficacy of an inactivated trivalent influenza vaccine in mice
AU2013206335B2 (en) dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
JP7475828B2 (en) A seasonal influenza vaccine capable of inducing virus-specific antibodies in the nasal cavity
Choi et al. Importance of adjuvant selection in tuberculosis vaccine development: exploring basic mechanisms and clinical implications
Sonoyama et al. Results from a preclinical study in rodents and a Phase 1/2, randomized, double-blind, placebo-controlled, parallel-group study of COVID-19 vaccine S-268019-a in Japanese adults
US20230295582A1 (en) Influenza virus backbone
Duggal et al. COVID-19 VACCINES; A COMPARATIVE ANALYSIS OF THEIR DISTINGUISHING CHARACTERISTICS EFFICACY, EFFECTIVENESS AND ADVERSE EFFECTS
Jiang Recommendations for prevention of influenza A virus in children between three and five years old in China, 2022–2023
WO2022006259A1 (en) Immunostimulatory compositions and methods
CN106163554B (en) Rabies composition containing PIKA adjuvant
WO2014176530A1 (en) Vaccination methods
CN101410133A (en) dsRNAs as influenza virus vaccine adjuvants or immuno-stimulants
JP2016132636A (en) Antibody inducer against virus infections for land animals other than human, and adjuvant thereof
Huckriede et al. IntrAnASAL deLIVery oF InFLuenzA SuBunIt VAccIne ForMuLAted WItH GeM PArtIcLeS AS An AdJuVAnt

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION