US20110222143A1 - Fluoroberyllium borate non-linear optical crystals, their growth methods and uses - Google Patents
Fluoroberyllium borate non-linear optical crystals, their growth methods and uses Download PDFInfo
- Publication number
- US20110222143A1 US20110222143A1 US13/113,613 US201113113613A US2011222143A1 US 20110222143 A1 US20110222143 A1 US 20110222143A1 US 201113113613 A US201113113613 A US 201113113613A US 2011222143 A1 US2011222143 A1 US 2011222143A1
- Authority
- US
- United States
- Prior art keywords
- crystal
- mol
- linear optical
- fluoroberyllium borate
- flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/12—Salt solvents, e.g. flux growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/3551—Crystals
Definitions
- the present invention relates to opto-electric functional materials, their growth methods and uses.
- Non-linear optical effect of a crystal is an effect that the frequency of the laser beam will be modified when a laser beam with certain polarization and incidence direction passes through the non-linear optical crystal (such as MBBF).
- the typical sketches of this effect are shown in FIG. 1 and FIG. 2 .
- the crystals with non-linear optical effect are named non-linear optical crystals.
- the non-linear optical effect herein implies the effect such as second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), optical parametric oscillation (OPO), optical parametric amplification (OPA) and the like. Only those crystals without inversion center might exhibit non-linear optical effect.
- the non-linear optical devices can be constructed, for example, second harmonic generator, sum ⁇ difference frequency transformer, optical parametric oscillator and etc.
- the laser generated from the laser generator can achieve frequency transformation by the non-linear optical devices. For example, an infrared laser beam (e.g.
- the effective SHG output wavelengths of the three crystals mentioned above have some limitations in the UV spectrum region.
- the double refractive index is too small to achieve phase matching at short wavelength, therefore it is not able to achieve the effective SHG output in the same region.
- the UV cut-off is 350 nm, thus it is also not capable to generate UV harmonic laser.
- KBe 2 BO 3 F 2 (abbv. KBBF) is the only non-linear optical crystal which is capable for direct SHG output in the deep UV region.
- This crystal is invented and developed by R&D Center for Crystals, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, a group under Academician C.T. Chen's leadership.
- the KBBF crystal is constructed with planar triangular (BO 3 ) group and tetrahedral (BeO 3 F) group, wherein the three O atoms of (BO 3 ) group connect to Be atom respectively to form a 2-dimensional infinite net and the K + ions locate between the planes, which interconnect by electrostatic force.
- Non-linear optical effect of the crystal is mainly contributed by (BO 3 ) group.
- the (BO 3 ) groups arrange in planes in the crystal lattice and they parallel with each other and are vertical to the crystal c axis, which allows for the superior non-linear optical properties of the crystal.
- the absorption edge of this crystal is 155 nm, the double refractive index thereof is about 0.07, and the phase matching region can be expanded to 170 nm.
- the KBBF crystal has achieved fifth harmonic generation output of the Ti:sapphire laser (157 nm-160 nm) [see J. Opt. Soc. Am. B (2004), 21(2)].
- the present invention is aimed to provide fluoroberyllium borate non-linear optical crystals applicable to meet the need of laser frequency modification in the UV region, which are used to construct the non-linear optical devices.
- the crystals can achieve the second, third, fourth, fifth harmonic generations of Nd:YAG laser and even achieve SHG output with the wavelength less than 200 nm
- the present invention is aimed to provide a method that is fast and convenient for growing the fluoroberyllium borate non-linear optical crystals.
- the present invention is aimed to provide the uses of the fluoroberyllium borate non-linear optical crystals.
- the crystals are capable of achieving the second, third, fourth, fifth harmonic generations of Nd:YAG laser and even achieving SHG output with the wavelength less than 200 nm.
- the fluoroberyllium borate non-linear optical crystals will have wide range of uses in many fields of non-linear optical technique (for example, electrooptical devices, pyroelectric devices, harmonic generators, optical parametric oscillators, optical parametric amplifiers, optical waveguide devices and so on).
- the crystals are to explore the nonlinear optical uses in vacuum-UV region.
- the present invention provides a flux method for growing fluoroberyllium borate non-linear optical crystals, the steps thereof are described as follows.
- a fluoroberyllium borate compound and a flux are mixed in proportion. Then the mixture is heated with a rate of 10-30° C./hour up to 750-800° C., kept at this temperature for 10-40 hours, then cooled to the temperature of 2-10° C. above the saturating point. Thus the solution containing fluoroberyllium borate and flux with high temperature is prepared.
- the general formula of the fluoroberyllium borate compounds is MBe 2 B0 3 F 2 , wherein M is Rb or Cs.
- the flux is a mixture of M2CO 3 , B 2 O 3 and M′F, wherein M′ is Li, Na or M.
- the seed crystal fixed on the end of the crystal hanging bar is put into the fluoroberyllium borate solution with high temperature which is prepared in step (1) while the crystal hanging bar is rotated with a rate of 0-100 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 0.5-5° C./day.
- the desired crystals can be obtained after finishing cooling.
- the crystals are put away from the solution surface, and cooled with a rate of 5-50° C./hour down to the room temperature, so that the fluoroberyllium borate non-linear optical crystals are obtained.
- the obtained fluoroberyllium borate non-linear optical crystal is rubidium fluoroberyllium borate non-linear optical crystal with the formula RbBe 2 BO 3 F 2 .
- M′ is Li
- M′ is Na
- M′ is M
- step (2) the direction of the seed crystal fixed onto the crystal hanging bar is chosen randomly.
- the mode of rotating the crystal hanging bar is single or reversible direction.
- the period for each single direction lasts for 1-10 minutes, and the pause between two different rotating directions is 0.5-1 minutes.
- the present invention provides the uses of the fluoroberyllium borate non-linear optical crystals, which is applicable for the laser with the wavelength of 1.064 ⁇ m to achieve the output device of the second, third, fourth, fifth and sixth harmonic generations.
- the fluoroberyllium borate crystals is rubidium fluoroberyllium borate non-linear optical crystals having the formula RbBe 2 BO 3 F 2 , or cesium fluoroberyllium borate non-linear optical crystals having the formula CsBe 2 BO 3 F 2 .
- the uses also include output devices for harmonic generations with the wavelength less than 200 nm.
- the harmonic generation devices include the harmonic generator, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices applicable for the UV region.
- the harmonic generation devices are the ones converting lasers from IR to UV region, such as optical parametric oscillators and optical parametric amplifiers.
- the synthesis of the compounds RbBe 2 BO 3 F 2 (abbv. RBBF) and CsBe 2 BO 3 F 2 (abbv. CBBF) and the growth of the crystals thereof have been disclosed herein.
- the fluoroberyllium borates i.e. rubidium fluoroberyllium borate (RbBe 2 BO 3 F 2 ) and cesium fluoroberyllium borate (CsBe 2 BO 3 F 2 ), can be synthesized by solid state reaction method and sintering at high temperature.
- the reaction equation are described as follows:
- the structure of the compounds is similar to that of KBBF, which has the primary feature described as follows: one beryllium atom, three oxygen atoms and one fluorine atom form BeO 3 F tetrahedron, two of which connect with one BO 3 planar triangle to construct planar six-ring structure, wherein each oxygen atom connects to two beryllium atom or connects to one beryllium atom and one boron atom.
- the planar six-rings interconnect each other by B—O bond or Be—O bond in order to form the infinite planar net structure, wherein the fluorine atoms are located above or below the planar net.
- the BO 3 groups in this structure parallel to each other, while the BeO 3 F groups are inverted to each other in the space, which means each BeO 3 F group with F atom below the plane will have a corresponding BeO 3 F group with F atom above the plane.
- the macro-SHG-coefficient of MBBF is mainly attributed to the BO 3 groups, but not to the BeO 3 F groups.
- the parallel arrangement structure of BO 3 groups advantageously produces large macro-SHG-coefficient.
- the binding between the oxygen atom and the beryllium atom eliminates the dangling bond in the BO 3 groups, so that the UV absorption edge of MBBF is pushed towards 155 nm.
- the UV cut-off wavelength of MBBF is ⁇ 155 nm.
- the MBBF crystals will have wide range of uses in many fields of non-linear optical technique field (harmonic generators, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices) and will explore nonlinear optical uses in vacuum-UV region.
- the above reagents weighted exactly in the operation box are put into the agate mortar and mixed well by grinding carefully. Then the mixture is put into the covered platinum crucible with the diameter of 60 mm ⁇ 60 mm, pressed firmly, placed into the muffle furnace (the furnace is placed in a ventilating cabinet, and the vent thereof works by the water tank), and then heated up to 720° C. and sintered at this temperature for 48 hours. At the beginning of heating, the temperature must rise slowly enough in order to avoid changing the ratio of the reagents due to decomposition and improve the process of the solid phase reaction. The product is then cooled to the room temperature.
- the product After being grinded in the operation box, the product is put into the crucible again, pressed firmly, and then placed into the muffle furnace, burned at the temperature of 720° C. until it is getting constant weight.
- X-ray powder diffraction is applied for characterizing the purity and quality of the final product.
- the above materials weighted exactly in the operation box are put into the agate mortar and mixed well by grinding carefully. Then the mixture is put into the covered platinum crucible with the diameter of 60 mm ⁇ 60 mm, pressed firmly, placed into the muffle furnace (the furnace is placed in a ventilating cabinet, and the vent thereof works by the water tank), and then heated up to 720° C. and sintered at this temperature for 48 hours. At the beginning of heating, the temperature must rise slowly enough in order to avoid deflecting the ratio of the reagents due to decomposition and improve the process of the solid phase reaction. The product is then cooled to the room temperature.
- the product After being grinded in the operation box, the product is put into the crucible again, pressed firmly, and then placed into the muffle furnace, burned at the temperature of 720° C. until it is getting constant weight.
- X-ray powder diffraction is applied for characterizing the purity and quality of the final product.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and LiF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.3 mol Rb 2 CO 3 , 0.75 mol B 2 O 3 , 0.3 mol LiF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystals hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and LiF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.6 mol Rb 2 CO 3 , 2 mol B 2 O 3 , 1 mol LiF.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and LiF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.75 mol Rb 2 CO 3 , 3.5 mol B 2 O 3 , 1.5 mol LiF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 10° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and NaF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.3 mol Rb 2 CO 3 , 0.75 mol B 2 O 3 , 0.4 mol NaF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 0.5-5° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 35° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystals is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and NaF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.6 mol Rb 2 CO 3 , 2 mol B 2 O 3 , 1 mol NaF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1.5° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 40° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and NaF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.75 mol Rb 2 CO 3 , 3.5 mol B 2 O 3 , 1.8 mol NaF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and RbF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.3 mol Rb 2 CO 3 , 0.75 mol B 2 O 3 , 0.3 mol RbF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of PC/day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and RbF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.6 mol Rb 2 CO 3 , 2 mol B 2 O 3 , 1.5 mol RbF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 5-50° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing RBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb 2 CO 3 (actually Rb 2 O does work in high temperature), B 2 O 3 and RbF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing RBBF is added the flux of 0.75 mol Rb 2 CO 3 , 3.5 mol B 2 O 3 , 2 mol RbF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and LiF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.3 mol Cs 2 CO 3 , 0.75 mol B 2 O 3 , 0.3 mol LiF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystals fixed on the crystals hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and LiF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing C—BBF is added the flux of 0.6 mol Cs 2 CO 3 , 2 mol B 2 O 3 , 1 mol LiF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 5-50° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and LiF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.75 mol Cs 2 CO 3 , 3.5 mol B 2 O 3 , 1.5 mol LiF.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and NaF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.3 mol Cs 2 CO 3 , 0.75 mol B 2 O 3 , 0.4 mol NaF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 0.5-5° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 35° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and NaF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.6 mol Cs 2 CO 3 , 2 mol B 2 O 3 , 1 mol NaF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1.5° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 40° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and NaF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.75 mol Cs 2 CO 3 , 3.5 mol B 2 O 3 , 1.8 mol NaF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystals hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and CsF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.3 mol Cs 2 CO 3 , 0.75 mol B 2 O 3 , 0.3 mol CsF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate-of 1° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and CsF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.6 mol Cs 2 CO 3 , 2 mol B 2 O 3 , 1.5 mol CsF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 5-50° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- the flux method is applied for growing CBBF crystal.
- the equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller.
- the detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs 2 CO 3 (actually Cs 2 O does work in high temperature), B 2 O 3 and CsF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs 2 CO 3 , 2 mol BeO, 2 mol BeF, 2 mol H 3 BO 3 ) for synthesizing CBBF is added the flux of 0.75 mol Cs 2 CO 3 , 3.5 mol B 2 O 3 , 2 mol CsF.
- the mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point.
- the seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm.
- the solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day.
- the desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- FIG. 1 illustrates the typical sketch of the nonlinear optical effect.
- the basic laser with certain wavelength is generated by the laser generator 1 , the polarized direction of which is modified to some direction by the half-wave plate 4 .
- the emergent light will include the basic laser with the frequency of ⁇ and the SHG laser with the frequency of ⁇ , respectively. Then these two lasers are to be separated by the dispersion prism 8 , so that the output of the SHG laser will be obtained.
- the output of the sum ⁇ difference frequency generation can be also achieved by applying the MBBF crystals, i.e. when the two laser beams with the frequencies ⁇ 1 and ⁇ 2 respectively pass through the crystals according to the certain angle and polarized direction, the other two laser beams with the frequencies of ⁇ 1 + ⁇ 2 and ⁇ 1 ⁇ 2 are able to be obtained. Therefore, the lasers of the third, fourth and fifth harmonic generations can be acquired.
- FIG. 2 shows the typical sketch of this non-linear optical effect.
- the basic laser with certain wavelength is generated by the laser generator 1 , the polarized direction of which is modified to some direction by the half-wave plate 4 .
- the emergent light will include the basic lasers with the frequencies of ⁇ 1 , ⁇ 2 , and the SHG lasers with the frequencies of ⁇ 1 + ⁇ 2 and ⁇ 1 ⁇ 2 , respectively. Then these two lasers are to be separated by the dispersion prism 8 , so that the output of the SHG laser will be obtained.
- a branch of laser beam with continuously adjustable frequency can be obtained by modifying the phase matching angle ⁇ of the RBBF, CBBF crystals.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
A fluoroberyllium borate non-linear optical single crystal is represented by a molecular formula of MBe2BO3F2, wherein M is Rb or Cs. The crystal can be grown by the flux method comprising the steps of mixing a fluoroberyllium borate compound and a flux in proportion, heating the mixture up to 750-800° C., keeping at this temperature and then cooling it to the temperature of 2-10° C. above the saturating point to obtain a fluoroberyllium borate solution at high temperature; putting the seed crystal fixed on the end of a crystal hanging bar into the fluoroberyllium borate solution at high temperature, rotating the crystal hanging bar, cooling the melt solution to its saturating point, then cooling it again slowly, pulling the obtained crystal out of the solution surface, cooling it to room temperature, then obtaining the present fluoroberyllium borate non-linear optical crystal. The crystal has nonlinear optical effect, broad transmittance wave and UV cut-off edge at 150 nm; neither deliquesces nor dissolves in dilute hydrochloric acid or dilute nitric acid; and has good chemical stability. The present crystal is applicable to the need of harmonic generations in the UV range and can be used to make nonlinear optical devices, achieve the output device for the second, third, fourth, fifth or sixth harmonic generations of Nd:YAG laser. They can be also used in harmonic generation devices of other laser wavelength and to generate coherent light with wavelength at or less than 266 nm.
Description
- This application is a Continuation of U.S. patent application Ser. No. 12/376,559, filed on Feb. 5, 2009, which is a U.S. National Phase Application of International Patent Application Number PCT/CN2006/002406, filed Sep. 15, 2006, the disclosures of which are incorporated herein by reference.
- The present invention relates to opto-electric functional materials, their growth methods and uses. In particular, the present invention relates to non-linear optical materials, specifically, fluoroberyllium borate non-linear optical crystals (MBe2BO3F2 M=Rb,Cs, abbv. MBBF), their growth methods and uses. If M=Rb, the fluoroberyllium borate is rubidium fluoroberyllium borate having the formula RbBe2BO3F2, abbv. RBBF. If M=Cs, the fluoroberyllium borate is cesium fluoroberyllium borate having the formula CsBe2BO3F2, abbv. CBBF.
- Non-linear optical effect of a crystal is an effect that the frequency of the laser beam will be modified when a laser beam with certain polarization and incidence direction passes through the non-linear optical crystal (such as MBBF). The typical sketches of this effect are shown in
FIG. 1 andFIG. 2 . - The crystals with non-linear optical effect are named non-linear optical crystals. The non-linear optical effect herein implies the effect such as second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), optical parametric oscillation (OPO), optical parametric amplification (OPA) and the like. Only those crystals without inversion center might exhibit non-linear optical effect. Using the non-linear optical effect of. the crystals, the non-linear optical devices can be constructed, for example, second harmonic generator, sum\difference frequency transformer, optical parametric oscillator and etc. The laser generated from the laser generator can achieve frequency transformation by the non-linear optical devices. For example, an infrared laser beam (e.g. 1064 nm) can be transformed to the spectrum region of visible, UV or even deep-UV (with the wavelength less than 200 nm) lasers through the non-linear optical crystals. Thus the non-linear optical crystals have great potential in the laser technique field. Nowadays, there are three kinds of inorganic non-linear optical crystals which are the most widely used ones in this wavelength region, i.e. the low temperature phase of barium meta-borate (β-BaB2O4, abbv. BBO), lithium triborate (LiB3O5, abbv. LBO) and potassium titaniol phosphate (KTiOPO4, abbv. KTP). However, the effective SHG output wavelengths of the three crystals mentioned above have some limitations in the UV spectrum region. For BBO, it is because that (1) (B306) group with large conjugated π orbital characteristics allows for the red shift of the band gap of the group, which results in the absorption edge of BBO crystals at 189 nm; (2) due to the limitation of the UV absorption edge, the crystals are not capable to generate harmonic laser with wavelength less than 193 nm; (3) the double refractive index of the BBO is Δn≈0.12 resulted from the planar (B3O6) group, and the large double refractive index leads to an acceptance angle of Δθ=0.45 mrad at fourth harmonic generation, which is too small for the practical uses of the devices. For LBO, the double refractive index is too small to achieve phase matching at short wavelength, therefore it is not able to achieve the effective SHG output in the same region. As to KTP, the UV cut-off is 350 nm, thus it is also not capable to generate UV harmonic laser. [BBO(β-BaB2O4), see Science in China B28, 235, 1985; LBO(LiB3O5) crystals, see Patents for Inventions in China 88102084; KTP (KTi0PO4), Handbook of Nonlinear Optical crystals].
- So far, KBe2BO3F2 (abbv. KBBF) is the only non-linear optical crystal which is capable for direct SHG output in the deep UV region. This crystal is invented and developed by R&D Center for Crystals, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, a group under Academician C.T. Chen's leadership.
- The KBBF crystal is constructed with planar triangular (BO3) group and tetrahedral (BeO3F) group, wherein the three O atoms of (BO3) group connect to Be atom respectively to form a 2-dimensional infinite net and the K+ ions locate between the planes, which interconnect by electrostatic force. Non-linear optical effect of the crystal is mainly contributed by (BO3) group. The (BO3) groups arrange in planes in the crystal lattice and they parallel with each other and are vertical to the crystal c axis, which allows for the superior non-linear optical properties of the crystal. The absorption edge of this crystal is 155 nm, the double refractive index thereof is about 0.07, and the phase matching region can be expanded to 170 nm. With prism-coupling technique, the KBBF crystal has achieved fifth harmonic generation output of the Ti:sapphire laser (157 nm-160 nm) [see J. Opt. Soc. Am. B (2004), 21(2)].
- Accordingly, the present invention is aimed to provide fluoroberyllium borate non-linear optical crystals applicable to meet the need of laser frequency modification in the UV region, which are used to construct the non-linear optical devices. The crystals can achieve the second, third, fourth, fifth harmonic generations of Nd:YAG laser and even achieve SHG output with the wavelength less than 200 nm
- Also, the present invention is aimed to provide a method that is fast and convenient for growing the fluoroberyllium borate non-linear optical crystals.
- Additionally, the present invention is aimed to provide the uses of the fluoroberyllium borate non-linear optical crystals. The crystals are capable of achieving the second, third, fourth, fifth harmonic generations of Nd:YAG laser and even achieving SHG output with the wavelength less than 200 nm. Thus it's expectable that the fluoroberyllium borate non-linear optical crystals will have wide range of uses in many fields of non-linear optical technique (for example, electrooptical devices, pyroelectric devices, harmonic generators, optical parametric oscillators, optical parametric amplifiers, optical waveguide devices and so on). Furthermore, the crystals are to explore the nonlinear optical uses in vacuum-UV region.
- The present invention provides fluoroberyllium borate non-linear optical crystals belonging to rhombohedral system, R32 space group, which have the general formula MBe2BO3F2, wherein M=Rb or Cs. The crystals with the melting point of 1000° C. and Mohs' hardness of 4-6, neither deliquesce in air nor dissolve in dilute hydrochloric acid or dilute nitric acid. If M=Rb, the fluoroberyllium borate non-linear optical crystal is rubidium fluoroberyllium borate crystal, which has the formula RbBe2B03F2, the molecular weight of 200.2982 and the cell parameters of a=4.43987(3)Å, b=4.43987(3)Å, c=19.769(2)Å, α=β=90°, γ=120°, v=337.49(6)Å3, Z=3. If M=Cs, the fluoroberyllium borate non-linear optical crystal is cesium fluoroberyllium borate crystal, which has the formula CsBe2B03F2, the molecular weight of 247.7358 and cell parameters of a=4.4543(6)Å, b=4.4543(6)Å, c=21.279(3)Å, α=β=90°, γ=120°, v=365.63 Å3, Z=3.
- The present invention provides a flux method for growing fluoroberyllium borate non-linear optical crystals, the steps thereof are described as follows.
- A fluoroberyllium borate compound and a flux are mixed in proportion. Then the mixture is heated with a rate of 10-30° C./hour up to 750-800° C., kept at this temperature for 10-40 hours, then cooled to the temperature of 2-10° C. above the saturating point. Thus the solution containing fluoroberyllium borate and flux with high temperature is prepared.
- The general formula of the fluoroberyllium borate compounds is MBe2B03F2, wherein M is Rb or Cs.
- The flux is a mixture of M2CO3, B2O3 and M′F, wherein M′ is Li, Na or M.
- The molar ratio of the fluoroberyllium borate compounds and the flux is MBe2BO3F2:M2CO3:B2O3:M′F=1:(0.3-0.75):(0.6-3.5):(0.3-2);
- (2) the seed crystal fixed on the end of the crystal hanging bar is put into the fluoroberyllium borate solution with high temperature which is prepared in step (1) while the crystal hanging bar is rotated with a rate of 0-100 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 0.5-5° C./day. The desired crystals can be obtained after finishing cooling. Then the crystals are put away from the solution surface, and cooled with a rate of 5-50° C./hour down to the room temperature, so that the fluoroberyllium borate non-linear optical crystals are obtained.
- If M=Rb, the obtained fluoroberyllium borate non-linear optical crystal is rubidium fluoroberyllium borate non-linear optical crystal with the formula RbBe2BO3F2. If M=Cs, the obtained fluoroberyllium borate non-linear optical crystal is cesium fluoroberyllium borate non-linear optical crystal with the formula CsBe2BO3F2.
- If M′ is Li, the molar ratio of the fluoroberyllium borate compounds and the flux containing LiF is MBe2BO3F2:M2CO3:B2O3:LiF=1: (0.3-0.75):(0.6-3.5):(0.3-1.5).
- If M′ is Na, the molar ratio of the fluoroberyllium borate compounds and the flux containing NaF is MBe2BO3F2:M2CO3:B2O3:NaF=1: (0.3-0.75):(0.6-3.5):(0.4-1.8).
- If M′ is M, the molar ratio of the fluoroberyllium borate compounds and the flux containing MF is MBe2BO3F2:M2CO3:B2O3:LiF=1: (0.3-0.75):(0.6-3.5):(0.3-2)
- In the step (2), the direction of the seed crystal fixed onto the crystal hanging bar is chosen randomly.
- In the step (2), the mode of rotating the crystal hanging bar is single or reversible direction. In the reversible direction mode, the period for each single direction lasts for 1-10 minutes, and the pause between two different rotating directions is 0.5-1 minutes.
- The present invention provides the uses of the fluoroberyllium borate non-linear optical crystals, which is applicable for the laser with the wavelength of 1.064 μm to achieve the output device of the second, third, fourth, fifth and sixth harmonic generations. The fluoroberyllium borate crystals is rubidium fluoroberyllium borate non-linear optical crystals having the formula RbBe2BO3F2, or cesium fluoroberyllium borate non-linear optical crystals having the formula CsBe2BO3F2.
- The uses also include output devices for harmonic generations with the wavelength less than 200 nm. The harmonic generation devices include the harmonic generator, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices applicable for the UV region. The harmonic generation devices are the ones converting lasers from IR to UV region, such as optical parametric oscillators and optical parametric amplifiers.
- The RbBe2BO3F2 and CsBe2BO3F2 having the similar structure to KBBF, are the isostructural substance with different elements of KBBF. The synthesis of the compounds RbBe2BO3F2 (abbv. RBBF) and CsBe2BO3F2 (abbv. CBBF) and the growth of the crystals thereof have been disclosed herein. RbBe2BO3F and CsBe2BO3F2 compounds have been reported in Zhurnal Strukturnoi Khimii (1975, 16, 1050-1053) referring to both of which belong to the monoclinic system, C2 space group, and according to the new structure analysis, the two obtained crystals mentioned above belong to the rhombohedral system, R32 space group, and the cell parameters thereof are described as follows: for RBBF, a=4.43987(3)Å, b=4.43987(3)Å, c=19.769(2)Å, α=β=90°, γ=120°, v=337.49(6)Å3, Z=3, for CBBF, a=4.4543(6)Å, b=4.4543(6)Å, c=21.279(3)Å, α=β=90°, γ=120°, v=365.63 Å3, Z=3. It is also demonstrated that these two kinds of crystals belong to uni-axis system according to the polarized microscope interference image of them along the z axis. The UV adsorption edge of the crystals is 150 nm, and the SHG effect thereof is at the same level as the one of KBBF crystal.
- The fluoroberyllium borates, i.e. rubidium fluoroberyllium borate (RbBe2BO3F2) and cesium fluoroberyllium borate (CsBe2BO3F2), can be synthesized by solid state reaction method and sintering at high temperature. The reaction equation are described as follows:
-
Rb2CO3+2BeO+2BeF2+2H3BO3=2RbBe2BO3F2+CO2↑+3H2O↑ -
Rb2CO3+2BeO+2BeF2+B2O3=2RbBe2BO3F2+CO2↑ -
Cs2CO3+2BeO+2BeF2+2H3BO3=2CsBe2BO3F2+CO2↑+3H2O↑ -
Cs2CO3+2BeO+2BeF2+B2O3=2CsBe2BO3F2+CO2↑ - The detailed synthesis processes are seen in Examples 1 and 2.
- The polycrystalline powders of RBBF and CBBF synthesized by solid state reaction have been affirmed that the SHG effects thereof are at the same level as that of KBBF as measured by the powder SHG test.
- The flux method has been chosen for the crystal growth, wherein M2CO3, B2O3, and fluorides such as LiF, NaF, MF are used as the flux, the platinum crucibles are selected to be the containers, resistance wires are used as the heating element and A1-708P is used as an automatic programmable temperature controllers for the heating-controlling system, so that the single crystals of MBBF(M=Rb,Cs) are successfully grown. The chemicals by the molar ratio of RF:MBBF:M2O:B2O3=(2-4):1:(1-1.5):(1.5-3) (R═Li,Na,M; M=Rb,Cs) are put into a home-made crystal growing furnace, heated to 750° C. and kept for more than 10 hours for the well mixing. Then the product is cooled to 650° C. with a rate of 1-3° C./day so that the crystals are obtained.
- It is confirmed by single crystal structure test that the two compounds belong to the R32 space group and have the following cell parameters: for RBBF, a=4.43987(3)Å, b=4.43987(3)Å, c=19.769(2)Å, α=β=90°, γ=120°, v=337.49(6)Å3, Z=3; for CBBF, α=4.4543(6)Å, b=4.4543(6)Å, c=21.279(3)Å, α=β=90°, γ=120°, v=365.63 Å3, Z=3. As shown in
FIG. 2 , the structure of the compounds is similar to that of KBBF, which has the primary feature described as follows: one beryllium atom, three oxygen atoms and one fluorine atom form BeO3F tetrahedron, two of which connect with one BO3 planar triangle to construct planar six-ring structure, wherein each oxygen atom connects to two beryllium atom or connects to one beryllium atom and one boron atom. The planar six-rings interconnect each other by B—O bond or Be—O bond in order to form the infinite planar net structure, wherein the fluorine atoms are located above or below the planar net. The BO3 groups in this structure parallel to each other, while the BeO3F groups are inverted to each other in the space, which means each BeO3F group with F atom below the plane will have a corresponding BeO3F group with F atom above the plane. Thus the macro-SHG-coefficient of MBBF is mainly attributed to the BO3 groups, but not to the BeO3F groups. The parallel arrangement structure of BO3 groups advantageously produces large macro-SHG-coefficient. Furthermore, the binding between the oxygen atom and the beryllium atom eliminates the dangling bond in the BO3 groups, so that the UV absorption edge of MBBF is pushed towards 155 nm. The UV cut-off wavelength of MBBF is λ≈155 nm. - MBBF (M=Rb, Cs) crystals belong to the negative uni-axis crystals, D3 point D3group, which have two SHG-coefficients, d11 and d14, wherein d14 (of MBBF) is small and negligible. It is confirmed by the powder SHG method that MBBF crystals can achieve the SHG of Nd:YAG laser (λ=1.0641 μm), and the powder SHG effect thereof is at the same level as that of the KBBF.
- MBBF (M=Rb, Cs) crystals can achieve the SHG of Nd:YAG laser (λ=1.064 μm). Theoretically speaking, it can be predictable for MBBF to achieve the second, third, fourth and fifth harmonic generations of Nd:YAG laser (λ=1.064 μm) and harmonic generation output of the wavelength less than 200 nm due to the structural similarities between the MBBF crystals and KBBF. Thus, it can be expectable that the MBBF crystals will have wide range of uses in many fields of non-linear optical technique field (harmonic generators, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices) and will explore the nonlinear optical uses in vacuum-UV region. Furthermore, the MBBF crystals with melting point at 1000° C. neither deliquesce in the air nor dissolve in dilute hydrochloric acid or dilute nitric acid.
- The advantages for the growth methods and uses of fluoroberyllium borate non-linear optical crystals disclosed herein are described as follows: the crystal growth methods used herein are fast and convenient, and the obtained crystals are able to achieve the second, third, fourth and fifth harmonic generations of Nd:YAG laser (λ=1.064 μm) and harmonic generation output of wavelength less than 200 nm. Thus it is expectable that the MBBF crystals will have wide range of uses in many fields of non-linear optical technique field (harmonic generators, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices) and will explore nonlinear optical uses in vacuum-UV region.
-
FIG. 1 illustrates the typical sketch of MBBF (M=Rb or Cs) crystals used as SHG crystals, wherein 1 is the laser generator, 2 and 3 are the reflection mirrors, 4 is the half-wave plate, 5 and 6 are the lens, 7 is the non-linear optical crystals MBBF(M=Rb or Cs), 8 is the dispersive prism, and ω, 2ω are the basic laser and SHG laser, respectively. -
FIG. 2 illustrates the typical sketch of MBBF(M=Rb or Cs) crystals used as other non-linear optical devices, wherein 1 is the laser generator, 2 and 3 are the reflection mirrors, 4 is the half-wave plate, 5 and 6 are the lens, 7 is the non-linear optical crystals MBBF(M=Rb or Cs), 8 is the dispersive prism, ω1, ω2 are the basic laser and ω1±ω2 are the SFG and DFG lasers, respectively. -
FIG. 3 illustrates the crystal structure sketch of MBBF (M=Rb or Cs) crystals. - The reagents and the amount thereof for synthesizing RbBe2BO3F2 are illustrated as follows:
-
Rb2CO3 57.743 g (0.25 mol) BeO 12.506 g (0.5 mol) BeF2 23.506 g (0.5 mol) H3BO3 30.915 g (0.5 mol) - The steps of the operation are described as follows:
- The above reagents weighted exactly in the operation box are put into the agate mortar and mixed well by grinding carefully. Then the mixture is put into the covered platinum crucible with the diameter of 60 mm×60 mm, pressed firmly, placed into the muffle furnace (the furnace is placed in a ventilating cabinet, and the vent thereof works by the water tank), and then heated up to 720° C. and sintered at this temperature for 48 hours. At the beginning of heating, the temperature must rise slowly enough in order to avoid changing the ratio of the reagents due to decomposition and improve the process of the solid phase reaction. The product is then cooled to the room temperature. After being grinded in the operation box, the product is put into the crucible again, pressed firmly, and then placed into the muffle furnace, burned at the temperature of 720° C. until it is getting constant weight. X-ray powder diffraction is applied for characterizing the purity and quality of the final product.
- The reagents and the amount thereof for synthesizing CsBe2BO3F2 are illustrated as follows:
-
Cs2CO3 61.934 g (0.25 mol) BeO 12.506 g (0.5 mol) BeF2 23.506 g (0.5 mol) H3BO3 30.915 g (0.5 mol) - The steps of operation are described as follows:
- The above materials weighted exactly in the operation box are put into the agate mortar and mixed well by grinding carefully. Then the mixture is put into the covered platinum crucible with the diameter of 60 mm×60 mm, pressed firmly, placed into the muffle furnace (the furnace is placed in a ventilating cabinet, and the vent thereof works by the water tank), and then heated up to 720° C. and sintered at this temperature for 48 hours. At the beginning of heating, the temperature must rise slowly enough in order to avoid deflecting the ratio of the reagents due to decomposition and improve the process of the solid phase reaction. The product is then cooled to the room temperature. After being grinded in the operation box, the product is put into the crucible again, pressed firmly, and then placed into the muffle furnace, burned at the temperature of 720° C. until it is getting constant weight. X-ray powder diffraction is applied for characterizing the purity and quality of the final product.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and LiF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.3 mol Rb2CO3, 0.75 mol B2O3, 0.3 mol LiF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystals hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and LiF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.6 mol Rb2CO3, 2 mol B2O3, 1 mol LiF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and LiF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.75 mol Rb2CO3, 3.5 mol B2O3, 1.5 mol LiF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 10° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and NaF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.3 mol Rb2CO3, 0.75 mol B2O3, 0.4 mol NaF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 0.5-5° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 35° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystals is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and NaF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.6 mol Rb2CO3, 2 mol B2O3, 1 mol NaF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1.5° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 40° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and NaF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.75 mol Rb2CO3, 3.5 mol B2O3, 1.8 mol NaF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and RbF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.3 mol Rb2CO3, 0.75 mol B2O3, 0.3 mol RbF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of PC/day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and RbF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.6 mol Rb2CO3, 2 mol B2O3, 1.5 mol RbF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 5-50° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing RBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected RBBF (the product obtained in Example 1) or the raw materials for synthesizing RBBF is charged the flux Rb2CO3 (actually Rb2O does work in high temperature), B2O3 and RbF, and the mixing ratio is described as follows: to 1 mol RBBF or the raw materials (1 mol Rb2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing RBBF is added the flux of 0.75 mol Rb2CO3, 3.5 mol B2O3, 2 mol RbF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the rubidium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and LiF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.3 mol Cs2CO3, 0.75 mol B2O3, 0.3 mol LiF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystals fixed on the crystals hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and LiF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing C—BBF is added the flux of 0.6 mol Cs2CO3, 2 mol B2O3, 1 mol LiF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 5-50° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and LiF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.75 mol Cs2CO3, 3.5 mol B2O3, 1.5 mol LiF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperatures while rotating the crystals hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and NaF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.3 mol Cs2CO3, 0.75 mol B2O3, 0.4 mol NaF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 0.5-5° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 35° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and NaF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.6 mol Cs2CO3, 2 mol B2O3, 1 mol NaF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1.5° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 40° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and NaF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.75 mol Cs2CO3, 3.5 mol B2O3, 1.8 mol NaF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystals hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and CsF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.3 mol Cs2CO3, 0.75 mol B2O3, 0.3 mol CsF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 20 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate-of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 20° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and CsF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.6 mol Cs2CO3, 2 mol B2O3, 1.5 mol CsF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 20° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 10 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 1° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 5-50° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- The flux method is applied for growing CBBF crystal. The equipment for crystal growth consists of the home-made furnace with resistance wire heating elements and the Model A1-708P automatic programmable temperature controller. The detailed operations are described as follows: to the selected CBBF (the product obtained in Example 2) or the raw materials for synthesizing CBBF is charged the flux Cs2CO3 (actually Cs2O does work in high temperature), B2O3 and CsF, and the mixing ratio is described as follows: to 1 mol CBBF or the raw materials (1 mol Cs2CO3, 2 mol BeO, 2 mol BeF, 2 mol H3BO3) for synthesizing CBBF is added the flux of 0.75 mol Cs2CO3, 3.5 mol B2O3, 2 mol CsF. The mixture is put into the platinum crucible, and then heated in the home-made furnace up to 750° C. with a rate of 10° C./hour. When the mixture melts well, it is cooled to the temperature of 5-10° C. above the saturating point. The seed crystal fixed on the crystal hanging bar is put into the solution of fluoroberyllium borate and the flux with high temperature while rotating the crystal hanging bar with a rate of 30 rpm. The solution is cooled to its saturating point, and then cooled again with a slow rate of 2° C./day. The desired crystal can be obtained after finishing cooling, then the crystal is pulled out of solution surface, cooled to the room temperature with a rate of 30° C./hour, and finally the cesium fluoroberyllium borate non-linear optical crystal is obtained.
- For the uses of MBBF crystals as SHG crystals,
FIG. 1 illustrates the typical sketch of the nonlinear optical effect. The basic laser with certain wavelength is generated by thelaser generator 1, the polarized direction of which is modified to some direction by the half-wave plate 4. When the laser beams pass through theMBBF crystals 7 placed in the certain direction, the emergent light will include the basic laser with the frequency of ω and the SHG laser with the frequency of ω, respectively. Then these two lasers are to be separated by thedispersion prism 8, so that the output of the SHG laser will be obtained. - The output of the sum\difference frequency generation can be also achieved by applying the MBBF crystals, i.e. when the two laser beams with the frequencies ω1 and ω2 respectively pass through the crystals according to the certain angle and polarized direction, the other two laser beams with the frequencies of ω1+ω2 and ω1−ω2 are able to be obtained. Therefore, the lasers of the third, fourth and fifth harmonic generations can be acquired.
FIG. 2 shows the typical sketch of this non-linear optical effect. The basic laser with certain wavelength is generated by thelaser generator 1, the polarized direction of which is modified to some direction by the half-wave plate 4. When the laser beams pass through theMBBF crystals 7 placed in the certain direction, the emergent light will include the basic lasers with the frequencies of ω1, ω2, and the SHG lasers with the frequencies of ω1+ω2 and ω1−ω2, respectively. Then these two lasers are to be separated by thedispersion prism 8, so that the output of the SHG laser will be obtained. - Furthermore, while a pump laser is incident onto the RBBF, CBBF crystals in the OPO and OPA devices, a branch of laser beam with continuously adjustable frequency can be obtained by modifying the phase matching angle θ of the RBBF, CBBF crystals.
Claims (9)
1-8. (canceled)
9. A non-linear optical device comprising a fluoroberyllium borate non-linear optical crystal, having a molecular formula of MBe2BO3F2, wherein:
M is selected from the group consisting of Rb and Cs,
the crystal belongs to a rhombohedral system and an R32 space group, and the crystal enables achievement of at least one of second harmonic, third harmonic, fourth harmonic, fifth harmonic or sixth harmonic generations of lasers whose wavelength is 1.064 μm.
10. A non-linear optical device comprising a fluoroberyllium borate non-linear optical crystal, having a molecular formula of MBe2BO3F2, wherein:
M is selected from the group consisting of Rb and Cs,
the crystal belongs to a rhombohedral system and an R32 space group, the crystal enables achievement of at least one of second harmonic, third harmonic, fourth harmonic, fifth harmonic or sixth harmonic generations of lasers, wherein the wavelengths of generated lasers are less than 200 nm.
11. The non-linear optical device according to claim 9 , wherein the device is selected from the group consisting of electrooptical devices, pyroelectric devices, harmonic generators, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices for the UV region.
12. The non-linear optical device according to claim 9 , wherein the device is selected from the group consisting of optical parametric oscillators and optical parametric amplifiers for from the IR to the UV region.
13. The non-linear optical device according to claim 9 , wherein the fluoroberyllium borate non-linear optical crystal is selected from the group consisting of a rubidium fluoroberyllium borate crystal having a molecular formula of RbBe2BO3F2 and a cesium fluoroberyllium borate, having a molecular formula of CsBe2BO3F2.
14. The non-linear optical device according to claim 10 , wherein the device is selected from the group consisting of electrooptical devices, pyroelectric devices, harmonic generators, optical parametric oscillators, optical parametric amplifiers and optical waveguide devices for the UV region.
15. The non-linear optical device according to claim 10 , wherein the device is selected from the group consisting of optical parametric oscillators and optical parametric amplifiers for from the IR to the UV region.
16. The non-linear optical device according to claim 10 , wherein the fluoroberyllium borate non-linear optical crystal is selected from the group consisting of a rubidium fluoroberyllium borate crystal having a molecular formula of RbBe2BO3F2 and a cesium fluoroberyllium borate, having a molecular formula of CsBe2BO3F2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/113,613 US20110222143A1 (en) | 2006-09-15 | 2011-05-23 | Fluoroberyllium borate non-linear optical crystals, their growth methods and uses |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2006/002406 WO2008034283A1 (en) | 2006-09-15 | 2006-09-15 | Beryllium borate fluoride salt nonlinear optical crystal, its growth method and uses |
US12/376,559 US8023180B2 (en) | 2006-09-15 | 2006-09-15 | Fluoroberyllium borate non-linear optical crystals and their growth and applications |
US13/113,613 US20110222143A1 (en) | 2006-09-15 | 2011-05-23 | Fluoroberyllium borate non-linear optical crystals, their growth methods and uses |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/376,559 Continuation US8023180B2 (en) | 2006-09-15 | 2006-09-15 | Fluoroberyllium borate non-linear optical crystals and their growth and applications |
PCT/CN2006/002406 Continuation WO2008034283A1 (en) | 2006-09-15 | 2006-09-15 | Beryllium borate fluoride salt nonlinear optical crystal, its growth method and uses |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110222143A1 true US20110222143A1 (en) | 2011-09-15 |
Family
ID=39200143
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/376,559 Expired - Fee Related US8023180B2 (en) | 2006-09-15 | 2006-09-15 | Fluoroberyllium borate non-linear optical crystals and their growth and applications |
US13/113,613 Abandoned US20110222143A1 (en) | 2006-09-15 | 2011-05-23 | Fluoroberyllium borate non-linear optical crystals, their growth methods and uses |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/376,559 Expired - Fee Related US8023180B2 (en) | 2006-09-15 | 2006-09-15 | Fluoroberyllium borate non-linear optical crystals and their growth and applications |
Country Status (3)
Country | Link |
---|---|
US (2) | US8023180B2 (en) |
JP (1) | JP4901958B2 (en) |
WO (1) | WO2008034283A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9740081B1 (en) | 2015-02-20 | 2017-08-22 | Iowa State Research Foundation, Inc. | Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8023180B2 (en) | 2006-09-15 | 2011-09-20 | Technical Institute Of Physics And Chemistry Chinese Academy Of Sciences | Fluoroberyllium borate non-linear optical crystals and their growth and applications |
CN102828245B (en) * | 2011-06-15 | 2014-12-31 | 中国科学院理化技术研究所 | Calcium sodium fluoroboroberyllate nonlinear optical crystal and growth method and application thereof |
CN102828246B (en) * | 2011-06-15 | 2014-12-10 | 中国科学院理化技术研究所 | Strontium sodium fluoroboroberyllate nonlinear optical crystal and growth method and application thereof |
CN103114334B (en) * | 2011-11-17 | 2015-07-08 | 中国科学院新疆理化技术研究所 | Compound tetrahydroxy barium borate and tetrahydroxy barium borate nonlinear optical crystal as well as preparation method and application |
CN103361725B (en) * | 2012-03-26 | 2016-06-29 | 中国科学院新疆理化技术研究所 | Compound chloroboric acid lead barium and chloroboric acid lead barium nonlinear optical crystal and preparation method and purposes |
CN102650075B (en) * | 2012-04-25 | 2014-12-17 | 中国科学院福建物质结构研究所 | Non-linear optical crystal cadmium fluoroborate |
CN104178811B (en) * | 2013-05-21 | 2017-02-08 | 中国科学院理化技术研究所 | Potassium fluoborate and potassium fluoborate nonlinear optical crystal and preparation method and application thereof |
CN104651933B (en) * | 2013-11-21 | 2017-04-19 | 中国科学院新疆理化技术研究所 | Chlorine barium borate, chlorine barium borate nonlinear optical crystal, and preparation method and uses of chlorine barium borate nonlinear optical crystal |
JP5679386B1 (en) * | 2014-02-24 | 2015-03-04 | レーザーテック株式会社 | Laser light source device and inspection device |
CN105624780B (en) * | 2015-09-29 | 2018-06-15 | 中国科学院福建物质结构研究所 | Nonlinear optical crystal fluoboric acid beryllium and its preparation method and application |
CN105624785B (en) * | 2015-09-29 | 2018-11-06 | 中国科学院福建物质结构研究所 | Nonlinear optical crystal NaCaBe2B2O6 ammonium and its preparation method and application |
US10564514B1 (en) * | 2018-12-04 | 2020-02-18 | Xinjiang Technical Institute Of Physics & Chemistry, Chinese Academy Of Sciences | Nonlinear optical crystal of cesium fluorooxoborate, and method of preparation and use thereof |
CN115198343B (en) * | 2021-04-09 | 2023-11-28 | 中国科学院理化技术研究所 | Scandium rubidium lithium fluosilicate nonlinear optical crystal and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6500364B2 (en) * | 2001-03-12 | 2002-12-31 | Reytech Corporation | Nonlinear optical (NLO) beryllate materials |
US7731795B2 (en) * | 2005-12-02 | 2010-06-08 | Clemson University | Rhombohedral fluoroberyllium borate crystals and hydrothermal growth thereof for use in laser and non-linear optical applications and devices |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038352C (en) | 1994-04-15 | 1998-05-13 | 中国科学院福建物质结构研究所 | Non-linear optical crystal strontium boroberyllate |
CN1076054C (en) | 1998-02-11 | 2001-12-12 | 中国科学院福建物质结构研究所 | Non-linear optical crystal Ba2Be2B2O7 |
US8023180B2 (en) | 2006-09-15 | 2011-09-20 | Technical Institute Of Physics And Chemistry Chinese Academy Of Sciences | Fluoroberyllium borate non-linear optical crystals and their growth and applications |
-
2006
- 2006-09-15 US US12/376,559 patent/US8023180B2/en not_active Expired - Fee Related
- 2006-09-15 JP JP2009527674A patent/JP4901958B2/en not_active Expired - Fee Related
- 2006-09-15 WO PCT/CN2006/002406 patent/WO2008034283A1/en active Application Filing
-
2011
- 2011-05-23 US US13/113,613 patent/US20110222143A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6500364B2 (en) * | 2001-03-12 | 2002-12-31 | Reytech Corporation | Nonlinear optical (NLO) beryllate materials |
US7731795B2 (en) * | 2005-12-02 | 2010-06-08 | Clemson University | Rhombohedral fluoroberyllium borate crystals and hydrothermal growth thereof for use in laser and non-linear optical applications and devices |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9740081B1 (en) | 2015-02-20 | 2017-08-22 | Iowa State Research Foundation, Inc. | Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials |
Also Published As
Publication number | Publication date |
---|---|
US8023180B2 (en) | 2011-09-20 |
WO2008034283A1 (en) | 2008-03-27 |
JP4901958B2 (en) | 2012-03-21 |
US20100142032A1 (en) | 2010-06-10 |
JP2010503879A (en) | 2010-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8023180B2 (en) | Fluoroberyllium borate non-linear optical crystals and their growth and applications | |
Mori et al. | New nonlinear optical crystal: Cesium lithium borate | |
US7198738B2 (en) | Cesium-lithium-borate crystal and its application to frequency conversion of laser light | |
CN100526521C (en) | Beryllium fluoroborate nonlinear optical crystal, and growing method and application thereof | |
Jiang et al. | Large crystal growth and new crystal exploration of mid-infrared second-order nonlinear optical materials | |
US10626519B2 (en) | Lead oxychloride, infrared nonlinear optical crystal, and preparation method thereof | |
Furuya et al. | Crystal growth and characterization of GdxY1− xCa4O (BO3) 3 crystal | |
US5523026A (en) | Nonlinear optical (NLO) crystal strontium Beryllatoborate SR2 Be2 2 O7 | |
Gheorghe et al. | Incongruent Melting La x Y y Sc4-xy (BO3) 4: LYSB Nonlinear Optical Crystal Grown by the Czochralski Method | |
CN102828245B (en) | Calcium sodium fluoroboroberyllate nonlinear optical crystal and growth method and application thereof | |
CN102828246B (en) | Strontium sodium fluoroboroberyllate nonlinear optical crystal and growth method and application thereof | |
Liu et al. | Anisotropy of nonlinear optical properties in monoclinic SmxY1-xCa4O (BO3) 3 crystals | |
CN101295118A (en) | Nonlinear optical crystal boric acid lutetium lanthanum scandium | |
JPH09512354A (en) | Nonlinear crystals and their use | |
Vivien et al. | Crystal growth and optical properties of rare earth calcium oxoborates | |
CN105133016A (en) | Preparation method and application of lithium vanadate nonlinear optical crystal | |
US5343327A (en) | RbNbB2 O6 crystal and its nonlinear optical devices | |
Feng et al. | A novel UV nonlinear optical crystal material: K 21 Yb 8 B 45 O 90 | |
US5381754A (en) | CsB3 O5 crystal and its nonlinear optical devices | |
Xu et al. | Growth and optical properties of a new nonlinear optical lanthanum calcium borate crystal | |
US6441949B1 (en) | Polyborates useful for optical frequency conversion | |
Liu et al. | Growth, nonlinear optical and self-frequency-doubled properties of LaGdCOB and Nd: LaGdCOB single crystals | |
US5940417A (en) | CsB3 O 5 crystal and its nonlinear optical devices | |
Klos et al. | Structure deformation in GdCOB single crystals grown by the Czochralski method | |
JPH09258283A (en) | Optical wavelength conversion method and optical wavelength conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TECHNICAL INSTITUTE OF PHYSICS AND CHEMISTRY CHINE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, CHUANGTIAN;WEN, XIAOHONG;LI, RUKANG;AND OTHERS;REEL/FRAME:026326/0920 Effective date: 20081209 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |