US20110218580A1 - Bone fixation system with curved profile threads - Google Patents
Bone fixation system with curved profile threads Download PDFInfo
- Publication number
- US20110218580A1 US20110218580A1 US12/719,316 US71931610A US2011218580A1 US 20110218580 A1 US20110218580 A1 US 20110218580A1 US 71931610 A US71931610 A US 71931610A US 2011218580 A1 US2011218580 A1 US 2011218580A1
- Authority
- US
- United States
- Prior art keywords
- thread
- head
- bone
- implant
- bone fastener
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Threaded wires, pins or screws; Nuts therefor
- A61B17/8625—Shanks, i.e. parts contacting bone tissue
- A61B17/863—Shanks, i.e. parts contacting bone tissue with thread interrupted or changing its form along shank, other than constant taper
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Threaded wires, pins or screws; Nuts therefor
Abstract
Description
- The present disclosure generally relates to a bone fastener such as a bone screw or bone peg for use in orthopedic surgery, preferably for fixing an implant such as a bone plate to bone. The disclosure further relates to an implant system for fixation of bone.
- Bone screws are available in a plurality of variations for different applications. Bone screws which can be secured to a bone plate or a similar implant are also known as locking screws. For locking the bone screw to the bone plate, a head of the bone screw is provided with a thread that mates with a corresponding thread on an inner surface of a plate hole.
- U.S. Patent Publication Nos. 2005/0277937 and 2009/0192550 relate to a typical locking screw which is intended to be secured to a bone plate. The head of the bone screw has a spherical shape and a thread with V-shaped ridges. The thread of the head is a double lead thread which mates with an internal thread of a plate hole. The ridges of the thread provided in the plate hole have a defined angle relative to the plate, whereby the bone screw is correspondingly fixed to the bone plate at a predetermined angle.
- The threaded head of a locking screw may also have a cylindrical or conical shape. U.S. Pat. No. 7,179,260 and U.S. Patent Publication No. 2007/0276386 relate to a bone plate system comprising a locking screw with such a head. The screw head is completely or partially threaded to be received in a threaded plate hole. U.S. Patent Publication No. 2005/0261688 relates to a further bone screw having a conically-tapered and threaded head. The flanks and peaks of the threaded head have a trapezoidal shape for mating with internal threads of a plate hole.
- EP 0 230 678 A1 relates to an endosteal screw-implant used in dentistry comprising a shaft and a conical head with a spherically shaped portion. The shaft of the screw has a thread which is cylindrically shaped and rounded on its external edges for fixing the shaft into a jaw bone.
- The conventional bone fasteners for locking applications have several drawbacks. During the screwing-in operation of the bone fastener head into the implant, the thread of a head of the fastener can tilt and jam within the threaded portion of the implant hole. Thereby, the flanks and peaks of the threaded head and the threaded hole may get damaged. Moreover, splinters from the bone drilling as well as other materials like parts of human tissue can contaminate the edges and grooves of the threads, whereby the thread of the threaded head and the internal thread of the hole of the implant can jam.
- Aspects of the present disclosure are directed to facilitate an easy screwing-in of a threaded bone fastener head into a bone plate or any other implant without jamming.
- According to a first aspect, there is provided a bone fastener for use in orthopedic surgery for fixing an implant to bone, wherein the bone fastener comprises a shaft configured to engage bone and a head having a thread, for example, a helical thread on an outer surface to engage the implant. The thread has a profile in cross section including peaks, wherein the peaks have a curved shape.
- Each curved peak of the bone fastener can form an arc segment. The arc segment may be derived from a regular circle or a symmetrically or asymmetrically deformed circle (e.g., from an ellipse). A radius of curvature of the arc segment can be between 0.05 mm and 3.0 mm, in particular between 0.1 mm and 1.0 mm. An angular range of the arc segment can be between 30° and 200°, in particular between 45° and 180°. Independently therefrom, an angle between a plane including the core diameter of the head and a tangent of the arc segment may be between −10° and 90°, in particular between 0° and 50°. Each curved peak of the bone fastener may be defined by a height h which extends from a plane defined by the core of the head to the top of the peak. This height h of the peak can be between 0.1 mm and 3.0 mm, in particular between 0.15 mm and 1.5 mm.
- The curved peaks can be provided immediately adjacent to each other. Alternatively, the curved peaks can be separated from each other by valleys. In one possible implementation, the valleys have a planar profile. The valleys can also have a rounded, V-shaped, U-shaped or trapezoidally shaped profile in cross section.
- Further, the thread of head can include non-curved (e.g., straight) or curved thread flanks. The flanks may connect the peaks and valleys. Each curved flank may be defined by an arc segment. The flanks may generally have a different curvature (e.g., in the opposite direction and/or of a different curvature radius) than the arc segments defining the peaks.
- The thread of the head may be a multiple thread such as a double thread. Moreover, the thread of the head can have a constant thread pitch. The thread pitch of the thread of the head may be between 0.1 mm and 5.0 mm, in particular between 0.25 mm and 3.0 mm. The thread of the head may have a thread depth between 0.1 mm and 3.0 mm, in particular between 0.15 mm and 1.5 mm.
- The head can have a length between 1.0 mm and 10 mm and a core diameter between 1.0 mm and 20.0 mm. Further, the head may have an outer diameter between 1.0 mm and 20.0 mm. The head can have a generally conical or curved (e.g., spherical) shape. The head may also be cylindrical. Further, the outer diameter of the head can be the same as or greater than the outer diameter of the shaft.
- The shaft of the bone fastener may have a core diameter between 1.0 mm and 20.0 mm. The shaft can be unthreaded or at least partially threaded. Generally, a bone fastener having an at least partially threaded shaft can also be referred to as bone screw, whereas a bone fastener with an unthreaded shaft will be referred to as bone peg. The bone screw can be a self-tapping screw or a self-drilling screw. Alternatively, the shaft may take the form of an un-threaded pin or rod.
- The head can have a constant core diameter. Alternatively, the core of the head can have a conical or curved (e.g., spherical) shape. In all cases, an outer diameter of the thread of the head may gradually change in a curved (e.g., spherical) or tapering manner.
- According to a further aspect, there is provided an implant system for use in orthopedic surgery for fixation of bone. The implant system comprises an implant having an upper surface and a lower surface, at least one hole extending through the upper surface and lower surface, and at least one bone fastener. The at least one bone fastener comprises a shaft configured to engage bone, and a head having a thread on an outer surface to engage the implant, wherein the thread has a profile in cross section including peaks, wherein the peaks have a curved shape.
- Due to the rounded shape of the peaks of the thread of the head of the bone fastener, the engagement of the thread in a hole of the implant is improved. Further, tilting and jamming is avoided during the screwing-in operation of the threaded bone fastener head into the implant.
- In the aspect described above, the at least one plate hole may include an at least partially threaded portion configured to mate with the thread of the head of the at least one bone fastener. Alternatively, a thread in the plate hole may be formed by the thread of the screw thread engaging the plate hole as generally described in DE 43 43 117 A. In both cases, the parameters of the thread provided in the hole can be similar or identical to the parameters of the thread of the head of the bone fastener as defined herein. In particular, the thread of the hole may have a profile in cross section including peaks and valleys, wherein the peaks and/or valleys have a curved shape.
- The at least one hole can include an unthreaded upper portion and a lower threaded portion configured to mate with the thread of the head of the at least one bone fastener. In this case, the upper portion of the at least one hole can have an inward taper with a conical or curved (e.g., spherical) shape.
- The threaded portion of the at least one hole can taper towards the lower surface of the implant. Moreover, the threaded portion of the at least one hole can have a multiple thread (e.g., a double thread).
- The at least one hole can have a central axis which can be oblique relative to a vertical axis of the implant. An angle defined between the central axis and the vertical axis can be between 0° and 60°. Alternatively, the at least one hole may be oblique relative to the upper surface or lower surface of the implant.
- These and other features, aspects and advantageous of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a side view of a first bone fastener embodiment; -
FIG. 2 is a side view of a second bone fastener embodiment; -
FIG. 3 is a side view of a third bone fastener embodiment; -
FIG. 4 is a side view of a fourth bone fastener embodiment; -
FIG. 5 is a detailed view of peaks of the thread of the bone fastener head shown inFIGS. 2 and 4 ; -
FIG. 6 is a cross-sectional view of the screw head shown inFIGS. 1 and 3 ; -
FIG. 7 is a cross-sectional view of a screw head shown inFIGS. 2 and 4 ; -
FIG. 8 is a detailed view of another screw head embodiment; -
FIG. 9 is a detailed view of another screw head embodiment; -
FIG. 10 is a cross-sectional view of a dummy implant embodiment; -
FIG. 11 is a side view of another dummy implant embodiment; -
FIG. 11A is a top view of the plate ofFIG. 11 and; -
FIG. 12 is a cross-sectional view of the implant shown inFIG. 11 . - Referring to
FIG. 1 shown, there is shows a side view of a first embodiment of a bone fastener in the form of a bone screw 10 for use as a locking screw in orthopedic surgery for fixing an implant (not shown inFIG. 1 ) to bone. The bone screw 10 comprises a shaft 12 configured to engage bone and a head 14 having a thread 16 on an outer surface 18 to engage the implant. The bone screw 10 has a length 1 between 10 mm and 300 mm. The head 14 is provided at a distal side of the shaft 12 and a tip 20 is provided at a proximal side of the shaft 12. The tip 20 is formed as a cone having an opening angle s of typically 60° to 120°. In the present embodiment the angle s is approximately 90°. - Further, as illustrated in
FIG. 1 , the shaft has a threaded portion 22. Trapezoidally shaped peaks of the threaded portion 22 are separated by valleys having a planar profile in cross section. The threaded portion 22 of the shaft has a constant thread pitch. The threaded portion 22 extends from the tip 20 to a non-threaded portion 24 adjacent the head end of shaft 12. - The thread of the threaded portion 22 of the shaft is formed as a conventional self-tapping thread, wherein two helically winding cutting grooves 26 are provided at the proximal end of the shaft 12 near the tip 20 for feeding material away. In this cutting area, the shaft 12 has a greater core diameter. However, the outer diameter of the thread of the threaded portion 22 is constant along the whole length of threaded portion 22 in axial direction of the bone screw 10. Thereby, the force during screwing-in the bone screw 10 into bone is reduced.
- As shown in
FIG. 1 , the head 14 of bone screw 10 is adjacent to the non-threaded portion 24 of shaft 12, and the core diameter of the head 14 is greater than the core diameter of the shaft 12. Further, the core of the screw head 14 has a conical shape and an outer diameter of the thread 16 of the head 14 gradually tapers inwardly toward the non-threaded portion 24 of bone screw 10. The thread 16 may be a multiple thread in the form of a double thread (i.e., a double-lead thread). - As also illustrated in
FIG. 1 , the thread 16 of the screw head 14 has a profile in cross section including peaks 28 provided immediately adjacent to each other. Each of the peaks 28 has a curved shape defined by an arc segment derived from a circle. A radius of curvature of the arc segment amounts to 0.25 mm and an angular range of the arc segment is 78°. The thread 16 of the head 14 also has a constant thread pitch of approximately 1 mm. -
FIG. 2 illustrates in a side view another embodiment of a bone screw 30 having a shaft 12 to engage bone and a head 14 to engage an implant. The difference between the bone screw shown inFIG. 1 and the screw 30 shown inFIG. 2 is that the thread 32 is a single-lead thread with the curved peaks 28 of the thread 32 being separated from each other by valleys 34 having a planar profile in cross section. The single thread 32 of the head 14 has the same pitch as each individual thread of the double thread 16 of the screw head shown inFIG. 1 . Moreover, the head 14 again has a conical shape. The shaft 12 of the bone screw 30 is formed in the same manner as the shaft of the bone screw 10 shown inFIG. 1 . As can be seen inFIGS. 1 and 2 , the thread of the bone screw head 14 can extend along the entire length of the head in the axial direction of the screw. -
FIG. 3 shows a side view of a bone screw 36 according to another embodiment. The bone screw 36 is essentially a combination of the screw head 14 having the thread configuration of thread 16 shown inFIG. 1 and a modified shaft 38. The shaft 38 of bone screw 36 comprises a tip 40 at its proximal end, a threaded portion 42 and a non-threaded portion 44. The non-threaded portion 44 is provided adjacent the head end of shaft 38 and is adjacent to screw head 14, and the threaded portion 42 extends from the non-threaded portion 44 to the tip 40. The threaded portion 42 of shaft 38 includes a compression thread which has a large thread depth between 0.1 mm and 3.0 mm, in particular between 0.2 mm and 2.0 mm, and a long thread pitch between 0.1 mm and 5.0 mm, in particular between 0.25 mm and 3.0 mm. As shown inFIG. 3 , the thread 42 of shaft 38 has a smaller core or root diameter than the non-threaded portion 44. However, the outer or major diameter of the threaded portion 42 is greater than the diameter of the non-threaded portion 44. -
FIG. 4 illustrates a side view of an embodiment of a bone screw 46 which is a combination of the screw head 14 having the thread configuration of bone screw 30 shown inFIG. 2 and a shaft 38 formed as the shaft of bone screw 36 shown inFIG. 3 . -
FIG. 5 illustrates in schematic form a detailed view of the thread configuration of an exemplary screw head 14 shown inFIGS. 2 and 4 to illustrate certain geometrical features of the bone screw embodiments. In this configuration, the peaks 28 of the thread 32 have a curved shape and are separated from each other by valleys 34 having a planar profile in cross section. As shown inFIG. 5 , each curved peak 28 forms an arc segment 48. The arc segment can be a segment of a circle (as shown), of an ellipse or of any other curved structure. - The arc segment 48 is defined by a radius of curvature r and a centre point m. This radius of curvature of the arc segment is between 0.05 mm and 3.0 mm, in particular between 0.1 mm and 1.0 mm. Moreover, each arc segment 48 has an angular range w which is between 30° and 200°, in particular between 45° and 180°. As illustrated in
FIG. 5 , the arc segment 48 is not semicircular (i.e. w<180°) and the peak 28 of the arc segment 48 is defined by an angle k between a plane p including the core diameter of the thread 32 of the screw head 14 and a tangent t to the arc segment 48 where it intersects the core. This angle k can be between −10° and 90°, in particular between 0° and 50°. Further, the more strongly inclined portion 50 of the arc segment 48 can be defined by curved flanks 50. Each curved flank 50 connects the valley 34 with the top of peak 28. It should be noted that the flanks 50 may generally have a different curvature than the arc segments 48 defining the peaks 28. Moreover, as shown inFIG. 5 , each curved peak 28 can be defined by a height h which extends from a plane defined by the core of the screw head 14 to the top of peak 28. This height h of the peak 28 can be between 0.1 mm and 3.0 mm, in particular between 0.15 mm and 1.5 mm. -
FIGS. 6 and 7 show a detailed cross-sectional view of screw head 14. The screw head 14 as illustrated inFIG. 6 has the thread configuration of thread 16 according to the screw head shown inFIGS. 1 and 3 , wherein the curved peaks 28 are provided immediately adjacent to each other on the outer surface of head 14.FIG. 7 illustrates the thread configuration of thread 32 according to the screw head shown inFIGS. 2 and 4 , wherein the curved peaks 28 are separated from each other by valleys 34 having a planar profile in cross section. As seen fromFIGS. 6 and 7 , the screw head 14 tapers toward the screw shaft, and has therefore a conical shape. The conical shape of screw head 14 is defined by a cone angle u which is between 10° and 179°. In the present embodiments, the cone angle u is 20° or 30°. - Moreover, the screw head 14 includes a tool holder portion 52 for receiving a tool like a screw driver or the like. The tool holder portion 52 may be formed by a recess 52 which is arranged within the screw head 14 and symmetrically to a central axis 54 of the bone screw. An opening 56 of the recess 52 is arranged in the top surface of the screw head 14. In a cross-sectional view in a plane perpendicular to the central axis 54 of the bone screw, the profile of the tool holder portion 52 forms a star-shaped pattern with rounded peaks and edges, like a torx socket. This tool holder socket 52 has a tapering upper portion 58 with an opening angle o. The opening angle o of this phase 58 of the tool holder socket 52 is between 10° and 179°, in particular 120°.
-
FIG. 8 shows a side view of a further embodiment of a screw head 60 having a thread 62 with peaks 28. The screw head 60 has a constant core diameter and thus forms a cylinder. Further, as shown inFIG. 8 , the outer diameter of the thread 62 of the head 60 gradually tapers. Thus, the thread 62 forms an envelope which has a conical shape defined by an angle α between the outer surface of the envelope 64 and a plane including the core diameter of the head 60 and perpendicular to the central axis 54 of the bone screw. This angle α can be between 10° and 89°, and is in particular 70° to 85°. Further, an angle β between a plane 66 defined by the core of the head 60 and the plane perpendicular to the central axis 54 of the bone screw is 90°. -
FIG. 9 illustrates a side view of a screw head 68 having a thread 70 with peaks 28. The difference between screw head 60 shown inFIG. 8 and screw head 68 shown inFIG. 9 is the fact that the core of the head 68 has a conical shape defined by an angle γ between the central axis 54 of the screw and a plane defined by the conical core of the screw head 68. This angle γ can be between 1° and 50°, and is approximately 10° in the embodiment ofFIG. 9 . Further, the outer diameter of the thread 70 of the head 68 gradually tapers and defines the envelope 64. The envelope 64 also tapers towards the shaft of the bone screw, wherein an angle δ is defined between an outer surface of envelope 64 and the central axis 54 of the bone screw. This angle δ can be between 1° and 50°, and is approximately 20° in the embodiment ofFIG. 9 . -
FIG. 10 illustrates in a cross-sectional view an embodiment of an implant in the form of a dummy bone plate 72 that can be adapted as needed (e.g., in terms of shape, thickness, etc.) for use in orthopedic surgery for fixation of bone. The bone plate 72 has an upper surface 74 and a lower surface 76. Further, as shown inFIG. 10 , the bone plate 72 comprises two holes 78 extending through the upper surface 74 and the lower surface 76 for receiving a bone fastener (e.g., a bone screw as described above and shown inFIGS. 1 to 9 ). The bone plate 72 has a varying thickness along its entire length. - Each hole 78 includes an (optional) upper portion 80 and a lower threaded portion 82 configured to mate with the thread of the head of the bone fastener. The upper portion 80 of each hole 78 has an inward taper 84 generally having a conical or curved (e.g., spherical) shape. The curved or spherical shape of the inward taper 84 of the upper portion 80 can be defined by an segment of a circle or ellipse in cross section with a center point arranged on a position along a central axis 86 of the hole 78.
- The lower portion 82 of each hole 78 tapers toward the lower surface 76 of the bone plate 72. The taper of the threaded portion 82 is defined by a cone angle ε which is between 1° and 179°, in particular between 10° and 120°, and more particularly approximately 20° in the embodiment of
FIG. 10 . As shown inFIG. 10 , the lower threaded portion 82 comprises a thread 88 with curved valleys 90 which are provided immediately adjacent to each other. Further, the thread 88 of hole 78 is a multiple thread (a double thread). In one implementation, an implant system comprises at least the bone plate 72 with the double thread 88 as well as a bone fastening element comprising a head with a single thread (such as any of the bone screws ofFIG. 2 , 4, 7 or 9). -
FIGS. 11 and 11A show another embodiment of an implant in form of a dummy bone plate 92 having several plate holes 78 as illustrated inFIG. 10 with a head portion 94 and a shaft portion 96. As shown in the side view of the bone plate 92 inFIG. 11 , the head portion 94 has a smaller thickness than the shaft portion 96. Further, as shown inFIG. 11A , the bone plate 92 has several screw holes 78 arranged along the plate and oblique relative to the upper surface 74 of the bone plate 92. The bone plate 92 can be adapted as needed (e.g., in terms of shape, thickness, etc.) for use in orthopedic surgery for fixation of bone. -
FIG. 12 illustrates a cross-sectional view A-A of bone plate 92 along the intersection line shown inFIG. 11 . It can be seen fromFIG. 12 that each hole 78 of the bone plate can have a different angular orientation with respect to the bone plate 92. This angular orientation is defined by the central axis 86 of the hole 78 and a vertical axis 98 of the bone plate 92. Therefore, as shown inFIG. 12 , the central axis 86 of the hole 78 can be oblique relative to the vertical axis 98 of the bone plate 92, wherein angles a, b, c, d, e, f are defined between the central axis 86 and the vertical axis 98. These angles can be between 0° and 60°. - An implant system comprising an implant and at least one bone fastener as described above can be used in orthopedic surgery for fixation of bone. The bone fasteners and implants can generally be made of stainless steel, titanium or any other biocompatible material. While the head of the bone fastener includes thread peaks having a rounded shape, the shaft of the bone fastener can be adapted to different applications and may thus be threaded or un-threaded. In the case of a threaded shaft, the thread peaks of the shaft may generally not be rounded. Moreover, in the case a hole of the implant is provided with a thread, this thread may be rounded or non-rounded.
- While the bone plate holes shown herein are circular, they could be elongated and be partially threaded as shown in U.S. Pat. No. 5,709,686 (“the '686 patent”). The threads shown in the '686 patent would be replaced by the curved profile threads described herein.
- The curved peaks of the thread of the head of the bone fastener improve the engagement of the thread in an implant hole. Moreover, tilting and jamming is avoided or at least reduced during the screwing-in operation of the threaded bone fastener head into the implant hole. Thereby, the thread of the bone fastener head and the optionally threaded portion of the implant hole are not damaged (and the patient is not harmed by thread parts which may result from this damage). Further, splinters from the bone drilling as well as further materials like parts of human tissue adhering to the threads have less detrimental effects due to the rounded peaks.
- While the above embodiments have primarily been described in relation to bone screws and bone plates, it will be readily apparent that the techniques presented herein can also be implemented in combination with other types of bone fasteners (such as bone pegs having rod-like or pin-like shafts, wire-like bone fasteners such as Kirschner wires, etc.) as well as other types of implants (such as bone distractors). Accordingly, the present disclosure is not limited to any type of bone fastener or any type of implant.
- The features described in the above description taken in conjunction with the accompanying drawings can be readily combined to result in different embodiments. It will thus be apparent that the disclosure described above may be varied in many ways. Such variations are not to be regarded as a departure from the scope of the disclosure, and all such modifications as would be apparent to one skilled in the art are intended to be included within the scope of the following claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/719,316 US20110218580A1 (en) | 2010-03-08 | 2010-03-08 | Bone fixation system with curved profile threads |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/719,316 US20110218580A1 (en) | 2010-03-08 | 2010-03-08 | Bone fixation system with curved profile threads |
US14/640,630 US9339315B2 (en) | 2010-03-08 | 2015-03-06 | Bone fixation system with curved profile threads |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/640,630 Continuation US9339315B2 (en) | 2010-03-08 | 2015-03-06 | Bone fixation system with curved profile threads |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110218580A1 true US20110218580A1 (en) | 2011-09-08 |
Family
ID=44531979
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/719,316 Abandoned US20110218580A1 (en) | 2010-03-08 | 2010-03-08 | Bone fixation system with curved profile threads |
US14/640,630 Active US9339315B2 (en) | 2010-03-08 | 2015-03-06 | Bone fixation system with curved profile threads |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/640,630 Active US9339315B2 (en) | 2010-03-08 | 2015-03-06 | Bone fixation system with curved profile threads |
Country Status (1)
Country | Link |
---|---|
US (2) | US20110218580A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110230884A1 (en) * | 2008-06-24 | 2011-09-22 | Adam Mantzaris | Hybrid intramedullary fixation assembly and method of use |
US20120197254A1 (en) * | 2008-06-24 | 2012-08-02 | Scott Wolfe | Intramedullary Fixation Assembly and Method of Use |
US8303589B2 (en) | 2008-06-24 | 2012-11-06 | Extremity Medical Llc | Fixation system, an intramedullary fixation assembly and method of use |
US8328806B2 (en) | 2008-06-24 | 2012-12-11 | Extremity Medical, Llc | Fixation system, an intramedullary fixation assembly and method of use |
US8343199B2 (en) | 2008-06-24 | 2013-01-01 | Extremity Medical, Llc | Intramedullary fixation screw, a fixation system, and method of fixation of the subtalar joint |
US20130289630A1 (en) * | 2012-04-26 | 2013-10-31 | Daniel Duane Fritzinger | Conical-spherical thread form for variable angle locking systems |
US20140066998A1 (en) * | 2012-09-06 | 2014-03-06 | Jean-Jacques Martin | Assembly comprising an implantable part designed to be fastened to one or more bones or bone portions to be joined, and at least one screw for fastening the implantable part to said bone(s) |
US20140236245A1 (en) * | 2013-02-20 | 2014-08-21 | Stryker Trauma Sa | Screw thread with flattened peaks |
US8920476B2 (en) | 2008-06-24 | 2014-12-30 | Extremity Medical, Llc | Fixation system, an intramedullary fixation assembly and method of use |
US9017329B2 (en) | 2008-06-24 | 2015-04-28 | Extremity Medical, Llc | Intramedullary fixation assembly and method of use |
US9044282B2 (en) | 2008-06-24 | 2015-06-02 | Extremity Medical Llc | Intraosseous intramedullary fixation assembly and method of use |
US9265543B2 (en) | 2011-12-27 | 2016-02-23 | Pioneer Surgical Technology, Inc. | Bone plate system and method |
US9333021B2 (en) | 2012-11-21 | 2016-05-10 | Pioneer Surgical Technology, Inc. | Tensioning instrument |
JP2018020202A (en) * | 2012-06-27 | 2018-02-08 | シンセス・ゲーエムベーハーSynthes GmbH | System for bone fixation and bone fixation system |
Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3394626A (en) * | 1967-03-17 | 1968-07-30 | Harold L. Oliver | Machine screw threads |
US3495494A (en) * | 1967-07-11 | 1970-02-17 | Cp Corp | Threaded plastic member with a reinforced thread |
US3741205A (en) * | 1971-06-14 | 1973-06-26 | K Markolf | Bone fixation plate |
US5151103A (en) * | 1987-11-03 | 1992-09-29 | Synthes (U.S.A.) | Point contact bone compression plate |
US5156616A (en) * | 1992-02-10 | 1992-10-20 | Meadows Bruce F | Apparatus and method for suture attachment |
US5275601A (en) * | 1991-09-03 | 1994-01-04 | Synthes (U.S.A) | Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment |
FR2701386A1 (en) * | 1993-02-12 | 1994-08-19 | Phusis | bioabsorbable interference screw. |
US5423826A (en) * | 1993-02-05 | 1995-06-13 | Danek Medical, Inc. | Anterior cervical plate holder/drill guide and method of use |
US5607428A (en) * | 1995-05-01 | 1997-03-04 | Lin; Kwan C. | Orthopedic fixation device having a double-threaded screw |
US5709686A (en) * | 1995-03-27 | 1998-01-20 | Synthes (U.S.A.) | Bone plate |
US6030162A (en) * | 1998-12-18 | 2000-02-29 | Acumed, Inc. | Axial tension screw |
US6030389A (en) * | 1997-08-04 | 2000-02-29 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US6129730A (en) * | 1999-02-10 | 2000-10-10 | Depuy Acromed, Inc. | Bi-fed offset pitch bone screw |
US6129728A (en) * | 1998-02-18 | 2000-10-10 | Walter Lorenz Surgical, Inc. | Method and apparatus for mandibular osteosynthesis |
US6162001A (en) * | 1995-07-21 | 2000-12-19 | Goodwin; Jerry J. | Anti-cross threading fastener |
US6206881B1 (en) * | 1995-09-06 | 2001-03-27 | Synthes (Usa) | Bone plate |
US6273889B1 (en) * | 1997-05-09 | 2001-08-14 | Spinal Innovations, Llc | Method of fixing a spine with a fixation plate |
US20010014807A1 (en) * | 1997-08-04 | 2001-08-16 | Erik J. Wagner | System and method for stabilizing the human spine with a bone plate |
US6315564B1 (en) * | 2000-03-21 | 2001-11-13 | Ricardo Levisman | Bone implant |
US6364882B1 (en) * | 2000-02-01 | 2002-04-02 | Hand Innovations, Inc. | Volar fixation system |
US20020058940A1 (en) * | 2000-06-26 | 2002-05-16 | Robert Frigg | Bone plate |
US20020183752A1 (en) * | 2000-01-27 | 2002-12-05 | Beatrice Steiner | Bone plate |
US20030153919A1 (en) * | 2002-02-12 | 2003-08-14 | Harris Peter M. | Self-locking bone screw and implant |
US20030171754A1 (en) * | 2000-05-31 | 2003-09-11 | Nilli Del Medico | Device for fixing bone sections spearated because of a fracture |
US20040073218A1 (en) * | 2002-10-15 | 2004-04-15 | The University Of North Carolina At Chapel Hill | Multi-angular fastening apparatus and method for surgical bone screw/plate systems |
US6726689B2 (en) * | 2002-09-06 | 2004-04-27 | Roger P. Jackson | Helical interlocking mating guide and advancement structure |
US6730091B1 (en) * | 1999-05-03 | 2004-05-04 | Medartis Ag | Blockable bone plate |
US20040167524A1 (en) * | 2002-09-06 | 2004-08-26 | Jackson Roger P. | Anti-splay medical implant closure with central multi-surface insertion and removal aperture |
US6786909B1 (en) * | 1999-10-27 | 2004-09-07 | Sepitec Foundation | Implant for osteosyntheses |
US20040181226A1 (en) * | 2001-06-04 | 2004-09-16 | Michelson Gary K. | Method for installing dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments |
US20040193165A1 (en) * | 2003-03-27 | 2004-09-30 | Hand Innovations, Inc. | Anatomical distal radius fracture fixation plate and methods of using the same |
US20040193269A1 (en) * | 2003-03-31 | 2004-09-30 | Depuy Acromed, Inc. | Anterior lumbar interbody fusion cage with locking plate |
US20040260292A1 (en) * | 2000-02-01 | 2004-12-23 | Hand Innovations, Inc. | Fixation system with multidirectional stabilization pegs |
US20050010226A1 (en) * | 2003-05-30 | 2005-01-13 | Grady Mark P. | Bone plate |
US20050015089A1 (en) * | 2003-03-26 | 2005-01-20 | Young Robert Allan | Locking bone plate |
US20050059970A1 (en) * | 2003-09-17 | 2005-03-17 | Eric Kolb | Bone fixation systems |
US20050065524A1 (en) * | 2003-03-27 | 2005-03-24 | Orbay Jorge L. | Anatomical distal radius fracture fixation plate with fixed-angle K-wire holes defining a three-dimensional surface |
US20050070904A1 (en) * | 2003-09-29 | 2005-03-31 | Darin Gerlach | Bone plates and bone plate assemblies |
US20050143742A1 (en) * | 2002-09-24 | 2005-06-30 | Stryker Trauma Sa | Device for connecting a screw to a support plate |
US20050165400A1 (en) * | 2004-01-26 | 2005-07-28 | Fernandez Alberto A. | Variable angle locked bone fixation system |
US20050165395A1 (en) * | 2004-01-23 | 2005-07-28 | Orbay Jorge L. | System for stabilization of fractures of convex articular bone surfaces including subchondral support structure |
US20050192578A1 (en) * | 2004-02-26 | 2005-09-01 | Horst Steven P. | Bone plates with locking apertures |
US20050192580A1 (en) * | 2004-02-26 | 2005-09-01 | Dalton Brian E. | Polyaxial locking screw plate assembly |
US20050240186A1 (en) * | 2000-02-01 | 2005-10-27 | Orbay Jorge L | Bone fracture fixation systems with both multidirectional and unidirectional fixation devices |
US20050245931A1 (en) * | 2000-02-01 | 2005-11-03 | Orbay Jorge L | Volar fixation system |
US20050261688A1 (en) * | 2004-05-11 | 2005-11-24 | Grady Mark P Jr | Bone plate |
US20050273105A1 (en) * | 2002-12-31 | 2005-12-08 | Depuy Spine, Inc. | Bone plate and screw system allowing bi-directional assembly |
US20050277937A1 (en) * | 2004-06-10 | 2005-12-15 | Leung Takkwong R | Bone plating system |
US20060004362A1 (en) * | 2004-07-02 | 2006-01-05 | Patterson Chad J | Distal radius bone plating system with locking and non-locking screws |
US20060004361A1 (en) * | 2004-06-21 | 2006-01-05 | Garry Hayeck | Bone plate |
US20060009771A1 (en) * | 2000-02-01 | 2006-01-12 | Orbay Jorge L | Bone stabilization system including plate having fixed-angle holes together with unidirectional locking screws and surgeon-directed locking screws |
US20060058796A1 (en) * | 2004-09-14 | 2006-03-16 | Hartdegen Vernon R | Compression brace |
US20060058797A1 (en) * | 2002-12-06 | 2006-03-16 | Claude Mathieu | Device for osteosynthesis |
US20060116678A1 (en) * | 2002-10-09 | 2006-06-01 | Biotech International (Sarl) | Self-locking osteosynthesis device |
US7063701B2 (en) * | 1999-05-05 | 2006-06-20 | Sdgi Holdings, Inc. | Screws of cortical bone having a trailing end configured to cooperatively engage an implant |
US20060142766A1 (en) * | 2002-09-17 | 2006-06-29 | Bernd Schafer | Cervical vertebra plate |
US20060149251A1 (en) * | 2004-12-22 | 2006-07-06 | Tara Ziolo | Bone fixation system |
US20060149264A1 (en) * | 2004-12-20 | 2006-07-06 | Castaneda Javier E | Screw locking systems for bone plates |
US20060149257A1 (en) * | 2002-05-30 | 2006-07-06 | Orbay Jorge L | Fracture fixation device |
US20060195085A1 (en) * | 2005-02-01 | 2006-08-31 | Inion Ltd. | System and method for stabilizing spine |
US20060195104A1 (en) * | 2003-08-08 | 2006-08-31 | Christoph Schlafli | Clamping device |
US20060217722A1 (en) * | 2003-09-08 | 2006-09-28 | Christof Dutoit | Bone-fixation device |
US20060229619A1 (en) * | 2005-03-17 | 2006-10-12 | Orbay Jorge L | Modular fracture fixation plate system with multiple metaphyseal and diaphyseal plates |
US20060235400A1 (en) * | 2003-08-26 | 2006-10-19 | Rolf Schneider | Bone plate |
US20060235399A1 (en) * | 2005-04-14 | 2006-10-19 | Sdgi Holdings, Inc. | Anti-backout mechanism for an implant fastener |
US20060264947A1 (en) * | 2005-05-20 | 2006-11-23 | Orbay Jorge L | Bone fixation system |
US20060263171A1 (en) * | 2003-02-20 | 2006-11-23 | Manfred Schwarz | Self-tapping screw for use in low ductile materials |
US20060276793A1 (en) * | 2005-05-26 | 2006-12-07 | Amedica Corporation | Bone fixation plate with self-locking screws |
US20070083207A1 (en) * | 2005-09-21 | 2007-04-12 | Tara Ziolo | Variable angle bone fixation assembly |
US20070088360A1 (en) * | 2005-09-19 | 2007-04-19 | Orbay Jorge L | Bone stabilization system including multi-directional threaded fixation element |
US20070093835A1 (en) * | 2005-09-19 | 2007-04-26 | Orbay Jorge L | Bone Fixation Plate with Complex Suture Anchor Locations |
US20070276383A1 (en) * | 2006-05-11 | 2007-11-29 | Rayhack L.L.C. | Osteotomy system |
US20080021477A1 (en) * | 2006-03-07 | 2008-01-24 | Strnad Lee A | Orthopedic plate having threaded holes for locking screws or pegs and non-threaded holes for a variable axis locking mechanism |
US20080058815A1 (en) * | 2003-03-26 | 2008-03-06 | Swiss Orthopedic Solutions S.A. | Locking bone plate |
US20080089759A1 (en) * | 2004-11-03 | 2008-04-17 | Heinrich Diekmeyer | Thread For A Screwed Connection |
US20080213065A1 (en) * | 2004-04-30 | 2008-09-04 | Bollhoff Verbindungstechnik Gmbh | Joining assembly including a plastic support member and a plastic threaded element |
US20080234750A1 (en) * | 2007-01-31 | 2008-09-25 | Woods Richard W | Anterior vertebral plate with taper lock screw |
US20080234752A1 (en) * | 2007-03-21 | 2008-09-25 | The University Of North Carolina At Chapel Hill | Surgical plate puller devices and methods for use with surgical bone screw/plate systems |
US20080234757A1 (en) * | 2007-02-27 | 2008-09-25 | Jacofsky Marc C | Modular pedicle screw system |
US20080234751A1 (en) * | 2007-01-31 | 2008-09-25 | Mcclintock Larry E | Anterior vertebral plate with closed thread screw |
US20080288000A1 (en) * | 2007-05-18 | 2008-11-20 | U.S. Spinal Technologies, L.L.C. | Cervical plate locking mechanism and associated surgical method |
US20090036933A1 (en) * | 2007-07-31 | 2009-02-05 | Stryker Spine | System and method for vertebral body plating |
US20090076553A1 (en) * | 2000-09-14 | 2009-03-19 | Dietmar Wolter | Fixation system for bones |
US20090088807A1 (en) * | 2007-09-27 | 2009-04-02 | Castaneda Javier E | Locking Screw System With Relatively Hard Spiked Polyaxial Bushing |
US20090118773A1 (en) * | 2004-09-07 | 2009-05-07 | Anthony James | Minimal thickness bone plate locking mechanism |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0230678A1 (en) | 1986-01-29 | 1987-08-05 | Massimiliano Barcali | Endosteal screw-implant |
GB2211261B (en) * | 1987-10-19 | 1991-03-27 | Nifco Inc | Coupler for coupling together plates |
US5085660A (en) | 1990-11-19 | 1992-02-04 | Lin Kwan C | Innovative locking plate system |
JPH06503155A (en) | 1991-06-25 | 1994-04-07 | ||
WO1995015727A1 (en) | 1993-12-08 | 1995-06-15 | Burke Dennis W | Variable pitch bone screw |
DE4341980B4 (en) | 1993-12-09 | 2005-02-17 | Königsee Implantate und Instrumente zur Ostheosynthese GmbH | Osteosynthetic bone plate |
DE4343117C2 (en) | 1993-12-17 | 1999-11-04 | Dietmar Wolter | Fixation system for bones |
US5601553A (en) | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
US5520690A (en) | 1995-04-13 | 1996-05-28 | Errico; Joseph P. | Anterior spinal polyaxial locking screw plate assembly |
FR2760628B1 (en) | 1997-03-11 | 1999-11-26 | Biotech International | Screws threaded to the head osteosynthesis of bone fragments |
US6019762A (en) | 1998-04-30 | 2000-02-01 | Orthodyne, Inc. | Adjustable length orthopedic fixation device |
DE19858889B4 (en) | 1998-12-19 | 2008-08-07 | Wolter, Dietmar, Prof. Dr.Med. | Fixation system for bones |
AU756798B2 (en) | 1999-03-09 | 2003-01-23 | Synthes Gmbh | Bone plate with conical screw threads |
EP1158915B1 (en) | 1999-03-09 | 2004-09-01 | SYNTHES AG Chur | Bone plate |
AU754857B2 (en) | 1999-09-13 | 2002-11-28 | Synthes Gmbh | Bone plate system |
DE19962317A1 (en) | 1999-09-14 | 2001-03-15 | Dietmar Wolter | Fixation system for bones |
ES2238236T3 (en) | 1999-12-29 | 2005-09-01 | Werner Hermann | Implant element with cutting thread. |
US6235033B1 (en) | 2000-04-19 | 2001-05-22 | Synthes (Usa) | Bone fixation assembly |
US20020156474A1 (en) | 2001-04-20 | 2002-10-24 | Michael Wack | Polyaxial locking plate |
EP1608278B1 (en) | 2003-04-03 | 2009-12-02 | Medartis AG | Housing for a locking element and locking element |
DE20309361U1 (en) | 2003-04-11 | 2003-09-18 | Koenigsee Implantate & Instr | Osteosynthesis, in particular angle-stable radius plate for the surgical treatment of bone fractures |
AU2003242247A1 (en) | 2003-05-03 | 2004-11-26 | Wolfgang Dinkelacker | Bone implant that can be screwed in |
DE20307776U1 (en) | 2003-05-19 | 2004-09-23 | Metz-Stavenhagen, Peter, Dr.med. | Anchoring element for fastening a rod of a device for adjusting a human or animal spine to a vertebral bone |
US20070055249A1 (en) | 2003-06-20 | 2007-03-08 | Jensen David G | Bone plates with intraoperatively tapped apertures |
GB2406056B (en) | 2003-09-17 | 2007-07-11 | Corin Ltd | Prosthetic cup |
US20050085818A1 (en) | 2003-10-17 | 2005-04-21 | Huebner Randall J. | Systems for distal radius fixation |
DE10356904B4 (en) | 2003-11-05 | 2006-05-11 | Königsee Implantate und Instrumente zur Osteosynthese GmbH | Plate for stabilizing distal radius fractures comprises an anatomically performed plate part having a triangular shape which is irregular |
US7867260B2 (en) | 2003-11-05 | 2011-01-11 | Koenigsee Implantate Und Instrumente Zur Osteosynthese Gmbh | Plate used to stabilise distal radius fractures |
DE102004035546A1 (en) | 2004-07-19 | 2006-02-16 | Wolter, Dietmar, Prof. Dr.Med. | Fixation system for bones and packing for a fixation system for bones |
FR2876270B1 (en) | 2004-10-07 | 2009-10-09 | Biotech Internat Sarl | Screw fragments coaptation device or bone parts using a compression effect |
EP1649819A1 (en) | 2004-10-19 | 2006-04-26 | Christian Maier | Bone plate |
DE102005015597A1 (en) | 2004-12-30 | 2006-09-21 | Königsee Implantate und Instrumente zur Osteosynthese GmbH | Variable angle screws connection for osteosynthesis |
DE102005004841B4 (en) | 2004-12-30 | 2009-10-29 | Königsee Implantate und Instrumente zur Osteosynthese GmbH | An osteosynthetic plate having a plurality of bores for receiving bone screws |
DE202005000508U1 (en) | 2005-01-13 | 2005-05-12 | Königsee Implantate und Instrumente zur Osteosynthese GmbH | Small Fragment humeral head plate |
WO2006091827A2 (en) | 2005-02-25 | 2006-08-31 | Regents Of The University Of California | Device and template for canine humeral slide osteotomy |
DE102005015496B4 (en) | 2005-03-31 | 2012-11-15 | Intercus Gmbh | Osteo-synthetic implant with non-interlocking bushings for receiving bone screws |
SE531987C2 (en) | 2006-03-17 | 2009-09-22 | Sven Olerud | Device for attaching and fixing a first member to a second member |
CN101505670B (en) | 2006-07-07 | 2015-05-20 | 瑞博奥公司 | Bone plate with complex, adjacent holes joined by a relief-space |
WO2008007194A2 (en) | 2006-07-07 | 2008-01-17 | Precimed, S.A. | Bone plate with complex, adjacent holes joined by a bend relief zone |
US20080015591A1 (en) | 2006-07-13 | 2008-01-17 | Castaneda Javier E | Threaded Guide for an Orthopedic Fixation Plate |
US20080086136A1 (en) | 2006-08-30 | 2008-04-10 | Bednar Drew A | Percutaneous hip system |
DE102006060935A1 (en) | 2006-12-20 | 2008-06-26 | Wolter, Dietmar F., Prof. Dr. | Force carrier for a bone fixation system |
DE102006060933A1 (en) | 2006-12-20 | 2008-07-10 | Wolter, Dietmar F., Prof. Dr. | bone screw |
DE102006062164A1 (en) | 2006-12-22 | 2008-06-26 | Wolter, Dietmar F., Prof. Dr. | Repositioning and fixation system for bone fragments |
US20080234749A1 (en) | 2007-01-26 | 2008-09-25 | Zimmer Technology, Inc. | Bone plate providing threaded locking head screw capture |
ES2366053T3 (en) | 2007-05-03 | 2011-10-14 | Medartis Ag | Fastener combination of a fixation device with a longitudinal member, with a combination system of this kind as well as a kit osteosynthesis. |
AR061999A1 (en) | 2007-07-18 | 2008-08-10 | Pizzicara Mario Angel | blocked orifice plate combined, stability control and double angulation for broken bones union |
-
2010
- 2010-03-08 US US12/719,316 patent/US20110218580A1/en not_active Abandoned
-
2015
- 2015-03-06 US US14/640,630 patent/US9339315B2/en active Active
Patent Citations (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3394626A (en) * | 1967-03-17 | 1968-07-30 | Harold L. Oliver | Machine screw threads |
US3495494A (en) * | 1967-07-11 | 1970-02-17 | Cp Corp | Threaded plastic member with a reinforced thread |
US3741205A (en) * | 1971-06-14 | 1973-06-26 | K Markolf | Bone fixation plate |
US5151103A (en) * | 1987-11-03 | 1992-09-29 | Synthes (U.S.A.) | Point contact bone compression plate |
US5275601A (en) * | 1991-09-03 | 1994-01-04 | Synthes (U.S.A) | Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment |
US5156616A (en) * | 1992-02-10 | 1992-10-20 | Meadows Bruce F | Apparatus and method for suture attachment |
US5423826A (en) * | 1993-02-05 | 1995-06-13 | Danek Medical, Inc. | Anterior cervical plate holder/drill guide and method of use |
FR2701386A1 (en) * | 1993-02-12 | 1994-08-19 | Phusis | bioabsorbable interference screw. |
US5709686A (en) * | 1995-03-27 | 1998-01-20 | Synthes (U.S.A.) | Bone plate |
US5607428A (en) * | 1995-05-01 | 1997-03-04 | Lin; Kwan C. | Orthopedic fixation device having a double-threaded screw |
US6162001A (en) * | 1995-07-21 | 2000-12-19 | Goodwin; Jerry J. | Anti-cross threading fastener |
US6206881B1 (en) * | 1995-09-06 | 2001-03-27 | Synthes (Usa) | Bone plate |
US6273889B1 (en) * | 1997-05-09 | 2001-08-14 | Spinal Innovations, Llc | Method of fixing a spine with a fixation plate |
US6030389A (en) * | 1997-08-04 | 2000-02-29 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US20010014807A1 (en) * | 1997-08-04 | 2001-08-16 | Erik J. Wagner | System and method for stabilizing the human spine with a bone plate |
US6129728A (en) * | 1998-02-18 | 2000-10-10 | Walter Lorenz Surgical, Inc. | Method and apparatus for mandibular osteosynthesis |
US6030162A (en) * | 1998-12-18 | 2000-02-29 | Acumed, Inc. | Axial tension screw |
US6129730A (en) * | 1999-02-10 | 2000-10-10 | Depuy Acromed, Inc. | Bi-fed offset pitch bone screw |
US6730091B1 (en) * | 1999-05-03 | 2004-05-04 | Medartis Ag | Blockable bone plate |
US7063701B2 (en) * | 1999-05-05 | 2006-06-20 | Sdgi Holdings, Inc. | Screws of cortical bone having a trailing end configured to cooperatively engage an implant |
US6786909B1 (en) * | 1999-10-27 | 2004-09-07 | Sepitec Foundation | Implant for osteosyntheses |
US20020183752A1 (en) * | 2000-01-27 | 2002-12-05 | Beatrice Steiner | Bone plate |
US6669701B2 (en) * | 2000-01-27 | 2003-12-30 | Synthes (Usa) | Bone plate |
US20050245931A1 (en) * | 2000-02-01 | 2005-11-03 | Orbay Jorge L | Volar fixation system |
US20050240186A1 (en) * | 2000-02-01 | 2005-10-27 | Orbay Jorge L | Bone fracture fixation systems with both multidirectional and unidirectional fixation devices |
US6364882B1 (en) * | 2000-02-01 | 2002-04-02 | Hand Innovations, Inc. | Volar fixation system |
US20060009771A1 (en) * | 2000-02-01 | 2006-01-12 | Orbay Jorge L | Bone stabilization system including plate having fixed-angle holes together with unidirectional locking screws and surgeon-directed locking screws |
US20040260292A1 (en) * | 2000-02-01 | 2004-12-23 | Hand Innovations, Inc. | Fixation system with multidirectional stabilization pegs |
US6315564B1 (en) * | 2000-03-21 | 2001-11-13 | Ricardo Levisman | Bone implant |
US20030171754A1 (en) * | 2000-05-31 | 2003-09-11 | Nilli Del Medico | Device for fixing bone sections spearated because of a fracture |
US20020058940A1 (en) * | 2000-06-26 | 2002-05-16 | Robert Frigg | Bone plate |
US6821278B2 (en) * | 2000-06-26 | 2004-11-23 | Synthes Ag Chur | Bone plate |
US20090076553A1 (en) * | 2000-09-14 | 2009-03-19 | Dietmar Wolter | Fixation system for bones |
US20040181226A1 (en) * | 2001-06-04 | 2004-09-16 | Michelson Gary K. | Method for installing dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments |
US20030153919A1 (en) * | 2002-02-12 | 2003-08-14 | Harris Peter M. | Self-locking bone screw and implant |
US20060149257A1 (en) * | 2002-05-30 | 2006-07-06 | Orbay Jorge L | Fracture fixation device |
US6726689B2 (en) * | 2002-09-06 | 2004-04-27 | Roger P. Jackson | Helical interlocking mating guide and advancement structure |
US20040167524A1 (en) * | 2002-09-06 | 2004-08-26 | Jackson Roger P. | Anti-splay medical implant closure with central multi-surface insertion and removal aperture |
US20060142766A1 (en) * | 2002-09-17 | 2006-06-29 | Bernd Schafer | Cervical vertebra plate |
US20050143742A1 (en) * | 2002-09-24 | 2005-06-30 | Stryker Trauma Sa | Device for connecting a screw to a support plate |
US20060116678A1 (en) * | 2002-10-09 | 2006-06-01 | Biotech International (Sarl) | Self-locking osteosynthesis device |
US20040073218A1 (en) * | 2002-10-15 | 2004-04-15 | The University Of North Carolina At Chapel Hill | Multi-angular fastening apparatus and method for surgical bone screw/plate systems |
US20060058797A1 (en) * | 2002-12-06 | 2006-03-16 | Claude Mathieu | Device for osteosynthesis |
US20050273105A1 (en) * | 2002-12-31 | 2005-12-08 | Depuy Spine, Inc. | Bone plate and screw system allowing bi-directional assembly |
US20060263171A1 (en) * | 2003-02-20 | 2006-11-23 | Manfred Schwarz | Self-tapping screw for use in low ductile materials |
US20080058815A1 (en) * | 2003-03-26 | 2008-03-06 | Swiss Orthopedic Solutions S.A. | Locking bone plate |
US20050015089A1 (en) * | 2003-03-26 | 2005-01-20 | Young Robert Allan | Locking bone plate |
US20050065524A1 (en) * | 2003-03-27 | 2005-03-24 | Orbay Jorge L. | Anatomical distal radius fracture fixation plate with fixed-angle K-wire holes defining a three-dimensional surface |
US20040193165A1 (en) * | 2003-03-27 | 2004-09-30 | Hand Innovations, Inc. | Anatomical distal radius fracture fixation plate and methods of using the same |
US20040193269A1 (en) * | 2003-03-31 | 2004-09-30 | Depuy Acromed, Inc. | Anterior lumbar interbody fusion cage with locking plate |
US20050010226A1 (en) * | 2003-05-30 | 2005-01-13 | Grady Mark P. | Bone plate |
US20060195104A1 (en) * | 2003-08-08 | 2006-08-31 | Christoph Schlafli | Clamping device |
US20060235400A1 (en) * | 2003-08-26 | 2006-10-19 | Rolf Schneider | Bone plate |
US20060217722A1 (en) * | 2003-09-08 | 2006-09-28 | Christof Dutoit | Bone-fixation device |
US20050059970A1 (en) * | 2003-09-17 | 2005-03-17 | Eric Kolb | Bone fixation systems |
US20070276386A1 (en) * | 2003-09-29 | 2007-11-29 | Darin Gerlach | Bone plate systems using provisional fixation |
US20050070904A1 (en) * | 2003-09-29 | 2005-03-31 | Darin Gerlach | Bone plates and bone plate assemblies |
US7179260B2 (en) * | 2003-09-29 | 2007-02-20 | Smith & Nephew, Inc. | Bone plates and bone plate assemblies |
US20050165395A1 (en) * | 2004-01-23 | 2005-07-28 | Orbay Jorge L. | System for stabilization of fractures of convex articular bone surfaces including subchondral support structure |
US20050165400A1 (en) * | 2004-01-26 | 2005-07-28 | Fernandez Alberto A. | Variable angle locked bone fixation system |
US20050192578A1 (en) * | 2004-02-26 | 2005-09-01 | Horst Steven P. | Bone plates with locking apertures |
US20050192580A1 (en) * | 2004-02-26 | 2005-09-01 | Dalton Brian E. | Polyaxial locking screw plate assembly |
US20080213065A1 (en) * | 2004-04-30 | 2008-09-04 | Bollhoff Verbindungstechnik Gmbh | Joining assembly including a plastic support member and a plastic threaded element |
US20050261688A1 (en) * | 2004-05-11 | 2005-11-24 | Grady Mark P Jr | Bone plate |
US20090192550A1 (en) * | 2004-06-10 | 2009-07-30 | Ebi, L.P. | Bone plating system |
US20050277937A1 (en) * | 2004-06-10 | 2005-12-15 | Leung Takkwong R | Bone plating system |
US20060004361A1 (en) * | 2004-06-21 | 2006-01-05 | Garry Hayeck | Bone plate |
US20060004362A1 (en) * | 2004-07-02 | 2006-01-05 | Patterson Chad J | Distal radius bone plating system with locking and non-locking screws |
US20090118773A1 (en) * | 2004-09-07 | 2009-05-07 | Anthony James | Minimal thickness bone plate locking mechanism |
US20060058796A1 (en) * | 2004-09-14 | 2006-03-16 | Hartdegen Vernon R | Compression brace |
US20080089759A1 (en) * | 2004-11-03 | 2008-04-17 | Heinrich Diekmeyer | Thread For A Screwed Connection |
US20060149264A1 (en) * | 2004-12-20 | 2006-07-06 | Castaneda Javier E | Screw locking systems for bone plates |
US20060149251A1 (en) * | 2004-12-22 | 2006-07-06 | Tara Ziolo | Bone fixation system |
US20060195085A1 (en) * | 2005-02-01 | 2006-08-31 | Inion Ltd. | System and method for stabilizing spine |
US20060229619A1 (en) * | 2005-03-17 | 2006-10-12 | Orbay Jorge L | Modular fracture fixation plate system with multiple metaphyseal and diaphyseal plates |
US20060235399A1 (en) * | 2005-04-14 | 2006-10-19 | Sdgi Holdings, Inc. | Anti-backout mechanism for an implant fastener |
US20060264947A1 (en) * | 2005-05-20 | 2006-11-23 | Orbay Jorge L | Bone fixation system |
US20060276793A1 (en) * | 2005-05-26 | 2006-12-07 | Amedica Corporation | Bone fixation plate with self-locking screws |
US20070093835A1 (en) * | 2005-09-19 | 2007-04-26 | Orbay Jorge L | Bone Fixation Plate with Complex Suture Anchor Locations |
US20070088360A1 (en) * | 2005-09-19 | 2007-04-19 | Orbay Jorge L | Bone stabilization system including multi-directional threaded fixation element |
US20070083207A1 (en) * | 2005-09-21 | 2007-04-12 | Tara Ziolo | Variable angle bone fixation assembly |
US20080021477A1 (en) * | 2006-03-07 | 2008-01-24 | Strnad Lee A | Orthopedic plate having threaded holes for locking screws or pegs and non-threaded holes for a variable axis locking mechanism |
US20070276383A1 (en) * | 2006-05-11 | 2007-11-29 | Rayhack L.L.C. | Osteotomy system |
US20080234751A1 (en) * | 2007-01-31 | 2008-09-25 | Mcclintock Larry E | Anterior vertebral plate with closed thread screw |
US20080234750A1 (en) * | 2007-01-31 | 2008-09-25 | Woods Richard W | Anterior vertebral plate with taper lock screw |
US20080234757A1 (en) * | 2007-02-27 | 2008-09-25 | Jacofsky Marc C | Modular pedicle screw system |
US20080234752A1 (en) * | 2007-03-21 | 2008-09-25 | The University Of North Carolina At Chapel Hill | Surgical plate puller devices and methods for use with surgical bone screw/plate systems |
US20080288000A1 (en) * | 2007-05-18 | 2008-11-20 | U.S. Spinal Technologies, L.L.C. | Cervical plate locking mechanism and associated surgical method |
US20090036933A1 (en) * | 2007-07-31 | 2009-02-05 | Stryker Spine | System and method for vertebral body plating |
US20090088807A1 (en) * | 2007-09-27 | 2009-04-02 | Castaneda Javier E | Locking Screw System With Relatively Hard Spiked Polyaxial Bushing |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8920476B2 (en) | 2008-06-24 | 2014-12-30 | Extremity Medical, Llc | Fixation system, an intramedullary fixation assembly and method of use |
US20120197254A1 (en) * | 2008-06-24 | 2012-08-02 | Scott Wolfe | Intramedullary Fixation Assembly and Method of Use |
US8303589B2 (en) | 2008-06-24 | 2012-11-06 | Extremity Medical Llc | Fixation system, an intramedullary fixation assembly and method of use |
US8328806B2 (en) | 2008-06-24 | 2012-12-11 | Extremity Medical, Llc | Fixation system, an intramedullary fixation assembly and method of use |
US8343199B2 (en) | 2008-06-24 | 2013-01-01 | Extremity Medical, Llc | Intramedullary fixation screw, a fixation system, and method of fixation of the subtalar joint |
US9289220B2 (en) * | 2008-06-24 | 2016-03-22 | Extremity Medical Llc | Intramedullary fixation assembly and method of use |
US9044282B2 (en) | 2008-06-24 | 2015-06-02 | Extremity Medical Llc | Intraosseous intramedullary fixation assembly and method of use |
US9017329B2 (en) | 2008-06-24 | 2015-04-28 | Extremity Medical, Llc | Intramedullary fixation assembly and method of use |
US8900274B2 (en) | 2008-06-24 | 2014-12-02 | Extremity Medical Llc | Fixation system, an intramedullary fixation assembly and method of use |
US8920453B2 (en) | 2008-06-24 | 2014-12-30 | Extremity Medical, Llc | Fixation system, an intramedullary fixation assembly and method of use |
US20110230884A1 (en) * | 2008-06-24 | 2011-09-22 | Adam Mantzaris | Hybrid intramedullary fixation assembly and method of use |
US9265543B2 (en) | 2011-12-27 | 2016-02-23 | Pioneer Surgical Technology, Inc. | Bone plate system and method |
US20130289630A1 (en) * | 2012-04-26 | 2013-10-31 | Daniel Duane Fritzinger | Conical-spherical thread form for variable angle locking systems |
JP2018020202A (en) * | 2012-06-27 | 2018-02-08 | シンセス・ゲーエムベーハーSynthes GmbH | System for bone fixation and bone fixation system |
US10179013B2 (en) | 2012-06-27 | 2019-01-15 | DePuy Synthes Products, Inc. | Variable angle bone fixation device |
US20140066998A1 (en) * | 2012-09-06 | 2014-03-06 | Jean-Jacques Martin | Assembly comprising an implantable part designed to be fastened to one or more bones or bone portions to be joined, and at least one screw for fastening the implantable part to said bone(s) |
US9561064B2 (en) | 2012-11-21 | 2017-02-07 | Pioneer Surgical Technology, Inc. | Bone plate system and method |
US9333021B2 (en) | 2012-11-21 | 2016-05-10 | Pioneer Surgical Technology, Inc. | Tensioning instrument |
US20140236245A1 (en) * | 2013-02-20 | 2014-08-21 | Stryker Trauma Sa | Screw thread with flattened peaks |
US9107711B2 (en) * | 2013-02-20 | 2015-08-18 | Stryker Trauma Sa | Screw thread with flattened peaks |
Also Published As
Publication number | Publication date |
---|---|
US9339315B2 (en) | 2016-05-17 |
US20150182270A1 (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7325470B2 (en) | Self-centering screw and retaining screw driver for use in surgery | |
US20070233122A1 (en) | Multi-thread bone screw and method | |
US6953462B2 (en) | Apparatus for implantation into bone | |
US6800079B2 (en) | Orthopedic stabilization device and method | |
US5743914A (en) | Bone screw | |
US20050251137A1 (en) | Apparatuses, systems and methods for bone fixation | |
US7037309B2 (en) | Self-tapping screw for small-bone surgery | |
US20040260284A1 (en) | Anti-splay pedicle screw | |
US20060235385A1 (en) | Low profile polyaxial screw | |
US7691133B2 (en) | Systems and methods for bone fixation | |
US20090018589A1 (en) | Bone Screw | |
US20120143193A1 (en) | Device for Osteosynthesis | |
US20080243192A1 (en) | Passive Screw Locking Mechanism | |
US20110184471A1 (en) | Bone anchor with predetermined break point and removal features | |
US20070233116A1 (en) | Bone fixation assembly | |
US20060217717A1 (en) | Methods and devices for stabilizing a bone anchor | |
US20080234763A1 (en) | Surgical compression bone screw | |
US20110015682A1 (en) | Variable axis locking mechanism for use in orthopedic implants | |
US20080140130A1 (en) | Highly-versatile variable-angle bone plate system | |
US20070038219A1 (en) | Bone anchoring element | |
US7682379B2 (en) | Device for osteosynthesis | |
US8105367B2 (en) | Bone plate and bone plate assemblies including polyaxial fasteners | |
US20100114170A1 (en) | Multi-planar taper lock screw with increased rod friction | |
US20080234677A1 (en) | Anti-unscrewing and multi-angular fastening apparatuses and methods for surgical bone screw/plate systems | |
US20130096618A1 (en) | Bone anchor assemblies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STRYKER TRAUMA SA, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWAGER, MANUEL;WIRTH, RENE;CREMER, AXEL BERNHARD;REEL/FRAME:024353/0084 Effective date: 20100420 |
|
AS | Assignment |
Owner name: STRYKER EUROPEAN HOLDINGS V, LLC, MICHIGAN Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER TRAUMA SA;REEL/FRAME:037153/0001 Effective date: 20151008 Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS V, LLC;REEL/FRAME:037153/0168 Effective date: 20151008 |