US20110206633A1 - Polymer conjugates of cd-np peptides - Google Patents

Polymer conjugates of cd-np peptides Download PDF

Info

Publication number
US20110206633A1
US20110206633A1 US13119219 US200913119219A US2011206633A1 US 20110206633 A1 US20110206633 A1 US 20110206633A1 US 13119219 US13119219 US 13119219 US 200913119219 A US200913119219 A US 200913119219A US 2011206633 A1 US2011206633 A1 US 2011206633A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
cd
np
conjugate
peptide
ch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13119219
Inventor
Mary J. Bossard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nektar Therapeutics
Original Assignee
Nektar Therapeutics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol

Abstract

The invention provides CD-NP peptides that are chemically modified by covalent attachment of a water soluble oligomer. A conjugate of the invention, when administered by any of a number of administration routes, exhibits characteristics that are different from the characteristics of the peptide not attached to the water soluble oligomer.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/192,533, filed 19 Sep. 2008, the disclosure of which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • Among other things, the present invention relates to conjugates comprising a CD-NP peptide moiety covalently attached to one or more water-soluble polymers.
  • BACKGROUND OF THE INVENTION
  • Brain-type natriuretic peptide (BNP, also called nesiritide) is one of a family of peptides that are involved in cardiovascular, renal, and endocrine homeostasis. It was discovered in 1988, almost a decade after the discovery of atrial natriuretic peptide (ANP). Although it was first isolated from porcine brain, it is known for its activity at receptors in vascular smooth muscle and endothelial cells. BNP is an endogenous peptide produced by the heart. It is first produced as prepro-BNP and is subsequently shortened twice to the active form, a 32-amino acid peptide with one disulfide bond.
  • BNP binds to the natriuretic peptide receptor A (NPR-A), a membrane bound protein on the cell surface. The binding event triggers the synthesis of cGMP in the cytosol by guanylate cyclase. It is through this secondary messenger that BNP accomplishes the cardio-vascular, renal, and endocrine effects with which it is associated. Regulation of BNP is accomplished by several different means. BNP molecules that bind to NPR-A and stimulate cGMP production are removed from circulation, but there are other means by which BNP is eliminated without invoking a response. The most common means of removal is through binding to the clearance receptor, natriuretic peptide receptor C(NPR-C). Upon binding to NPR-C, the peptide is taken into the cell and cleaved enzymatically. The next major means of clearance is degradation by neutral endopeptidase (NEP), which is a membrane-bound enzyme on the cell surface. Finally, BNP is removed to a small extent by renal filtration.
  • Under normal conditions, BNP is produced in low amounts in the atria and ventricles. However, when the ventricles are stretched during cardiac decompensation, the amount of BNP that is produced increases greatly. Although the atria are still involved, the ventricles become the main site of production. The heart produces BNP in response to a stretching of the ventricles that occurs during decompensation at the outset of congestive heart failure (CHF). The effects of BNP include natriuresis, diuresis, vasodilation, and a lowering of diastolic blood pressure. These effects are brought about through the actions of a secondary messenger, cyclic guanosine monophosphate (cGMP). Production of cGMP is triggered when BNP interacts with the natriuretic peptide receptor A (NPR-A) which is a membrane-bound receptor located on the surface of endothelial cells in blood vessels, kidneys, and lungs. Plasma concentration of BNP incrementally increases with increased severity of CHF. Despite this increase, the beneficial effects of BNP are blunted in severe CHF, raising the possibility of a relative deficiency state in overt CHF. Alternatively, as the assays currently employed to measure plasma concentration of BNP do not specifically differentiate between pre-pro BNP and the mature form, this pro-hormone may not be adequately processed to its mature form in overt CHF. Therefore, either the amount of BNP that the heart can produce is overcome or prepro-BNP is not adequately converted into its active form, thus reducing its beneficial actions. Because of its early production at the onset of heart disease, BNP has become important as a diagnostic marker to detect patients who are at high risk of developing CHF.
  • BNP functions to relieve cardiac decompensation in several ways. BNP leads to the excretion of sodium and an increase in urine output, which lessen congestion. It also functions as a vasodilator, the effects of which are enhanced by several other actions. Most notable of these functions are the roles BNP plays in the interference of the renin-angiotensin-aldosterone system (RAAS). It leads to inhibition of renin, which is a key enzyme in the generation of the vasoconstrictive peptide angiotensin. It inhibits the overgrowth of epithelial cells lining vascular tissue, which left unchecked, can greatly reduce blood flow. A final way that BNP functions to relieve cardiac decompensation is its lusitropic effects. It improves myocardial relaxation of the ventricles, resulting in lower diastolic blood pressure.
  • In 2001, human BNP was approved by the FDA under the trade name NATRECOR (nesiritide), for the treatment of acute congestive heart failure. NATRECOR was the first drug approved for the treatment of CHF in over twelve years. It is administered by intravenous continuous infusion over a period of 48 hours. As the drug is expensive and requires hospitalization, NATRECOR is only used for the most acute cases.
  • A novel chimeric version of natriuretic peptide has been created by combining portions of C-type natriuretic peptide (CNP) with Dendroaspis natriuretic peptide. CD-NP consists of the 22-amino acid human C-type natriuretic peptide and the 15-amino acid C-terminus of Dendroaspis NP. CNP is less hypotensive than the B-type natriuretic peptide but affects venodilation. Dendroaspis is a potent natriuretic and diuretic peptide that is hypotensive but functions via a separate guanylyl cyclase receptor compared to CNP. Another chimeric peptide, CU-NP, which is a combination of C-type natriuretic peptide and urodilantin, has also been identified through in vivo studies to have renal benefits without inducing significant hypotension and is in pre-clinical development.
  • Normally, peptides suffer from a short in vivo half life, sometimes mere minutes, making them generally impractical, in their native form, for administration. Thus there exists a need in the art for modified CD-NP peptides having an enhanced half-life and/or reduced clearance as well as additional advantages as compared to the CD-NP peptides in their unmodified form.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides conjugates comprising a CD-NP or CU-NP peptide moiety covalently attached to one or more water-soluble polymers. The water-soluble polymer may be stably bound to the CD-NP or CU-NP peptide moiety, or it may be releasably attached to the CD-NP or CU-NP peptide moiety.
  • The invention further provides methods of synthesizing such CD-NP or CU-NP peptide polymer conjugates and compositions comprising such conjugates. The invention further provides methods of treating, preventing, or ameliorating a disease, disorder or condition in a mammal comprising administering a therapeutically effective amount of a CD-NP or CU-NP peptide polymer conjugate of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. BNP2.1. PEGylation rate of BNP-32 with mPEG2-40 kDa Butyr-ALD.
  • FIG. BNP2.2. Typical purification profile for the 40 kDa mPEG2-Butyr-ALD mono-PEG conjugate of BNP-32.
  • FIG. BNP2.3. HPLC analysis of the 40 kDa mPEG2-Butyr-ALD mono-PEG conjugate of BNP-32.
  • FIG. BNP2.4. MALDI-TOF analysis of the 40 kDa mPEG2-Butyr-ALD mono-PEG conjugate of BNP-32.
  • FIG. BNP2.5. SDS-PAGE analysis of BNP-32 and purified [mono]-[mPEG2-Butyr-ALD-40K]-[BNP-32] conjugate.
  • FIG. BNP4.1. Typical cation-exchange purification profile of [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32].
  • FIG. BNP4.2. SDS-PAGE (4-12% Bis-Tris-Nu-PAGE, Invitrogen) analysis of BNP-32 and the purified [mono]-[mPEG2-Butyr-ALD-40K]-[BNP-32] conjugate.
  • FIG. BNP4.3. RP-HPLC analysis of the purified [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32] conjugate.
  • FIG. BNP4.4. MALDI-TOF analysis of the purified [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32] conjugate.
  • FIG. BNP5.1. Typical first cation-exchange purification profile for [mono]-[mPEG-SBC-30K]-[BNP-32].
  • FIG. BNP5.2. SDS-PAGE analysis of the purified [mono]-[mPEG-SBC-30K]-[BNP-32] conjugate.
  • FIG. BNP5.3. RP-HPLC analysis of the purified [mono]-[mPEG-SBC-30K]-[BNP-32] conjugate.
  • FIG. BNP5.4. MALDI-TOF analysis of the purified [mono]-[mPEG-SBC-30K]-[BNP-32] conjugate.
  • FIG. BNP6.1. Typical first cation-exchange purification profile of [mPEG2-C2-fmoc-NHS-40K].
  • FIG. BNP6.2. SDS-PAGE analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate.
  • FIG. BNP6.3. RP-HPLC analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate.
  • FIG. BNP6.4. MALDI-TOF analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate.
  • FIG. BNP7.1 shows the mean plasma concentration-time profiles of for C2-FMOC-PEG2-40K-BNP, its corresponding metabolite and released BNP.
  • FIG. BNP7.2 shows the non-released PEG-BNP levels after the administration of the two non-releasable PEG constructs (ButyrALD-40K-BNP, ButyrALD-10K-BNP).
  • DETAILED DESCRIPTION
  • As used in this specification and the intended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a polymer” includes a single polymer as well as two or more of the same or different polymers, reference to “an optional excipient” or to “a pharmaceutically acceptable excipient” refers to a single optional excipient as well as two or more of the same or different optional excipients, and the like.
  • In describing and claiming one or more embodiments of the present invention, the following terminology will be used in accordance with the definitions described below.
  • As used herein, the terms “CD-NP peptide” and “CD-NP peptides” mean one or more peptides having demonstrated or potential use in treating, preventing, or ameliorating one or more diseases, disorders, or conditions in a subject in need thereof, as well as related peptides. These terms may be used to refer to CD-NP peptides prior to conjugation to a water-soluble polymer as well as following the conjugation. CD-NP peptides include, but are not limited to, those disclosed herein, including in Table 1. CD-NP peptides include peptides found to have use in treating, preventing, or ameliorating one or more diseases, disorders, or conditions after the time of filing of this application. Related peptides include fragments of CD-NP peptides, CD-NP peptide variants, and CD-NP peptide derivatives that retain some or all of the CD-NP activities of the CD-NP peptide. As will be known to one of skill in the art, as a general principle, modifications may be made to peptides that do not alter, or only partially abrogate, the properties and activities of those peptides. In some instances, modifications may be made that result in an increase in CD-NP activities. Thus, in the spirit of the invention, the terms “CD-NP peptide” and “CD-NP peptides” are meant to encompass modifications to the CD-NP peptides defined and/or disclosed herein that do not alter, only partially abrogate, or increase the CD-NP activities of the parent peptide. The embodiments herein refer to CD-NP. However, it is envisaged that other netriuretic peptides, including, but not limited to, CU-NP, may be used in these embodiments.
  • TABLE 1
    SEQ ID 
    Name Sequence NO:
    BNP SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH 1
    CD-NP GLSKGCFGLKLDRIGSMSGLGCPSLRDPRPNAPS 2
    TSA
    CU-NP Thr-Ala-Pro-Arg-Ser-Leu-Arg-Arg- 3
    Ser-Ser-Cys-Phe-Gly-Leu-Lys-Leu-
    Asp-Arg-Ile-Gly-Ser-
    Met-Ser-Gly-Leu-Gly-Cys-Asn-Ser-
    Phe-Arg-Tyr with a disulfide 
    bridge.
  • The term “CD-NP activity” as used herein refers to a demonstrated or potential biological activity whose effect is consistent with a desirable CD-NP outcome in humans, or to desired effects in non-human mammals or in other species or organisms. A given CD-NP peptide may have one or more CD-NP activities, however the term “CD-NP activities” as used herein may refer to a single CD-NP activity or multiple CD-NP activities. “CD-NP activity” includes the ability to induce a response in vitro, and may be measured in vivo or in vitro. For example, a desirable effect may be assayed in cell culture, or by clinical evaluation, EC50 assays, IC50 assays, or dose response curves. In vitro or cell culture assays, for example, are commonly available and known to one of skill in the art for many CD-NP peptides as defined and/or disclosed herein. CD-NP activity includes treatment, which may be prophylactic or ameliorative, or prevention of a disease, disorder, or condition. Treatment of a disease, disorder or condition can include improvement of a disease, disorder or condition by any amount, including elimination of a disease, disorder or condition.
  • Natriuretic peptide conjugates of the invention may induce the cardiovascular, renal, and/or endocrine effects that are associated with the native peptide. Cell based assays may be used to show which conjugates are proficient agonists of the human natriuretic peptide receptor A, leading to the suitable production of cGMP. Biochemical assays may be used to show which conjugates offer the suitable protection against proteolytic enzymes. In vivo experiments may be used to show which conjugates afford a desirable bioavailability. Conjugates can be tested in established dog models. Conjugates may be subjected to detailed pharmacokinetic, pharmacodynamic, and toxicity studies in rats and dogs. Conjugates according to embodiments of the present invention will be useful for the treatment of early-stage, chronic, and acute congestive heart failure.
  • Conjugates of the invention can be tested for agonist activity at the human natriuretic peptide receptor A (NPR-A) in vitro. The vasorelaxant, natriuretic, and diuretic properties of BNP are ascribed to a secondary messenger, cyclic GMP (cGMP). The production of cGMP is accomplished by guanylate cyclase, an enzyme that is activated when BNP binds to NPR-A. cGMP production can be measured in cultures of human aortic endothelial cells that endogenously express NPR-A. Thus, the relative activity of the CD-NP conjugates can be determined by the level of cGMP production in these cells.
  • The conjugates can be tested for oral bioavailability. Oral bioavailability of the conjugates can be tested in rats, for example. The conjugates can be administered to the gastrointestinal tract by oral gavage and the presence of conjugates in the bloodstream can be assayed using available radioimmunoassay procedures.
  • As used herein, the terms “peptide,” “polypeptide,” and “protein,” refer to polymers comprised of amino acid monomers linked by amide bonds. Peptides may include the standard 20 α-amino acids that are used in protein synthesis by cells (i.e. natural amino acids), as well as non-natural amino acids (non-natural amino acids may be found in nature, but not used in protein synthesis by cells, e.g., ornithine, citrulline, and sarcosine, or may be chemically synthesized), amino acid analogs, and peptidomimetics. Spatola, (1983) in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Weinstein, ed., Marcel Dekker, New York, p. 267. The amino acids may be D- or L-optical isomers. Peptides may be formed by a condensation or coupling reaction between the α-carbon carboxyl group of one amino acid and the amino group of another amino acid. The terminal amino acid at one end of the chain (amino terminal) therefore has a free amino group, while the terminal amino acid at the other end of the chain (carboxy terminal) has a free carboxyl group. Alternatively, the peptides may be non-linear, branched peptides or cyclic peptides. Moreover, the peptides may optionally be modified or protected with a variety of functional groups or protecting groups, including on the amino and/or carboxy terminus.
  • Amino acid residues in peptides are abbreviated as follows: Phenylalanine is Phe or F; Leucine is Leu or L; Isoleucine is Ile or I; Methionine is Met or M; Valine is Val or V; Serine is Ser or S; Proline is Pro or P; Threonine is Thr or T; Alanine is Ala or A; Tyrosine is Tyr or Y; Histidine is His or H; Glutamine is Gln or Q; Asparagine is Asn or N; Lysine is Lys or K; Aspartic Acid is Asp or D; Glutamic Acid is Glu or E; Cysteine is Cys or C; Tryptophan is Trp or W; Arginine is Arg or R; and Glycine is Gly or G.
  • The terms “CD-NP peptide fragment” or “fragments of CD-NP peptides” refer to a polypeptide that comprises a truncation at the amino-terminus and/or a truncation at the carboxyl-terminus of a CD-NP peptide as defined herein. The terms “CD-NP peptide fragment” or “fragments of CD-NP peptides” also encompasses amino-terminal and/or carboxyl-terminal truncations of CD-NP peptide variants and CD-NP peptide derivatives. CD-NP peptide fragments may be produced by synthetic techniques known in the art or may arise from in vivo protease activity on longer peptide sequences. It will be understood that CD-NP peptide fragments retain some or all of the CD-NP activities of the CD-NP peptides.
  • As used herein, the terms “CD-NP peptide variants” or “variants of CD-NP peptides” refer to CD-NP peptides having one or more amino acid substitutions, including conservative substitutions and non-conservative substitutions, amino acid deletions (either internal deletions and/or C- and/or N-terminal truncations), amino acid additions (either internal additions and/or C- and/or N-terminal additions, e.g., fusion peptides), or any combination thereof. Variants may be naturally occurring (e.g. homologs or orthologs), or non-natural in origin. The term “CD-NP peptide variants” may also be used to refer to CD-NP peptides incorporating one or more non-natural amino acids, amino acid analogs, and peptidomimetics. It will be understood that, in accordance with the invention, CD-NP peptide fragments retain some or all of the CD-NP activities of the CD-NP peptides.
  • The terms “CD-NP peptide derivatives” or “derivatives of CD-NP peptides” as used herein refer to CD-NP peptides, CD-NP peptide fragments, and CD-NP peptide variants that have been chemically altered other than through covalent attachment of a water-soluble polymer. It will be understood that, in accordance with the invention, CD-NP peptide derivatives retain some or all of the CD-NP activities of the CD-NP peptides.
  • As used herein, the terms “amino terminus protecting group” or “N-terminal protecting group,” “carboxy terminus protecting group” or “C-terminal protecting group;” or “side chain protecting group” refer to any chemical moiety capable of addition to and optionally removal from a functional group on a peptide (e.g., the N-terminus, the C-terminus, or a functional group associated with the side chain of an amino acid located within the peptide) to allow for chemical manipulation of the peptide.
  • “PEG,” “polyethylene glycol” and “poly(ethylene glycol)” as used herein, are interchangeable and encompass any nonpeptidic water-soluble poly(ethylene oxide). Typically, PEGs for use in accordance with the invention comprise the following structure “—(OCH2CH2)n—” where (n) is 2 to 4000. As used herein, PEG also includes “—CH2CH2—O(CH2CH2O)n—CH2CH2—” and “—(OCH2CH2)nO—,” depending upon whether or not the terminal oxygens have been displaced. Throughout the specification and claims, it should be remembered that the term “PEG” includes structures having various terminal or “end capping” groups and so forth. The term “PEG” also means a polymer that contains a majority, that is to say, greater than 50%, of —OCH2CH2— repeating subunits. With respect to specific forms, the PEG can take any number of a variety of molecular weights, as well as structures or geometries such as “branched,” “linear,” “forked,” “multifunctional,” and the like, to be described in greater detail below.
  • The terms “end-capped” and “terminally capped” are interchangeably used herein to refer to a terminal or endpoint of a polymer having an end-capping moiety. Typically, although not necessarily, the end-capping moiety comprises a hydroxy or C1-20 alkoxy group, more preferably a C1-10 alkoxy group, and still more preferably a C1-5 alkoxy group. Thus, examples of end-capping moieties include alkoxy (e.g., methoxy, ethoxy and benzyloxy), as well as aryl, heteroaryl, cyclo, heterocyclo, and the like. It must be remembered that the end-capping moiety may include one or more atoms of the terminal monomer in the polymer [e.g., the end-capping moiety “methoxy” in CH3—O—(CH2CH2O)n— and CH3(OCH2CH2)n—]. In addition, saturated, unsaturated, substituted and unsubstituted forms of each of the foregoing are envisioned. Moreover, the end-capping group can also be a silane. The end-capping group can also advantageously comprise a detectable label. When the polymer has an end-capping group comprising a detectable label, the amount or location of the polymer and/or the moiety (e.g., active agent) to which the polymer is coupled can be determined by using a suitable detector. Such labels include, without limitation, fluorescers, chemiluminescers, moieties used in enzyme labeling, colorimetric (e.g., dyes), metal ions, radioactive moieties, gold particles, quantum dots, and the like. Suitable detectors include photometers, films, spectrometers, and the like. The end-capping group can also advantageously comprise a phospholipid. When the polymer has an end-capping group comprising a phospholipid, unique properties are imparted to the polymer and the resulting conjugate. Exemplary phospholipids include, without limitation, those selected from the class of phospholipids called phosphatidylcholines. Specific phospholipids include, without limitation, those selected from the group consisting of dilauroylphosphatidylcholine, dioleylphosphatidylcholine, dipalmitoylphosphatidylcholine, disteroylphosphatidylcholine, behenoylphosphatidylcholine, arachidoylphosphatidylcholine, and lecithin.
  • The term “targeting moiety” is used herein to refer to a molecular structure that helps the conjugates of the invention to localize to a targeting area, e.g., help enter a cell, or bind a receptor. Preferably, the targeting moiety comprises of vitamin, antibody, antigen, receptor, DNA, RNA, sialyl Lewis X antigen, hyaluronic acid, sugars, cell specific lectins, steroid or steroid derivative, RGD peptide, ligand for a cell surface receptor, serum component, or combinatorial molecule directed against various intra- or extracellular receptors. The targeting moiety may also comprise a lipid or a phospholipid. Exemplary phospholipids include, without limitation, phosphatidylcholines, phospatidylserine, phospatidylinositol, phospatidylglycerol, and phospatidylethanolamine. These lipids may be in the form of micelles or liposomes and the like. The targeting moiety may further comprise a detectable label or alternately a detectable label may serve as a targeting moiety. When the conjugate has a targeting group comprising a detectable label, the amount and/or distribution/location of the polymer and/or the moiety (e.g., active agent) to which the polymer is coupled can be determined by using a suitable detector. Such labels include, without limitation, fluorescers, chemiluminescers, moieties used in enzyme labeling, colorimetric (e.g., dyes), metal ions, radioactive moieties, gold particles, quantum dots, and the like.
  • “Non-naturally occurring” with respect to a polymer as described herein, means a polymer that in its entirety is not found in nature. A non-naturally occurring polymer of the invention may, however, contain one or more monomers or segments of monomers that are naturally occurring, so long as the overall polymer structure is not found in nature.
  • The term “water soluble” as in a “water-soluble polymer” is any polymer that is soluble in water at room temperature. Typically, a water-soluble polymer will transmit at least about 75%, more preferably at least about 95%, of light transmitted by the same solution after filtering. On a weight basis, a water-soluble polymer will preferably be at least about 35% (by weight) soluble in water, more preferably at least about 50% (by weight) soluble in water, still more preferably about 70% (by weight) soluble in water, and still more preferably about 85% (by weight) soluble in water. It is most preferred, however, that the water-soluble polymer is about 95% (by weight) soluble in water or completely soluble in water.
  • “Hydrophilic,” e.g, in reference to a “hydrophilic polymer,” refers to a polymer that is characterized by its solubility in and compatability with water. In non-cross linked form, a hydrophilic polymer is able to dissolve in, or be dispersed in water. Typically, a hydrophilic polymer possesses a polymer backbone composed of carbon and hydrogen, and generally possesses a high percentage of oxygen in either the main polymer backbone or in pendent groups substituted along the polymer backbone, thereby leading to its “water-loving” nature. The water-soluble polymers of the present invention are typically hydrophilic, e.g., non-naturally occurring hydrophilic.
  • Molecular weight in the context of a water-soluble polymer, such as PEG, can be expressed as either a number average molecular weight or a weight average molecular weight. Unless otherwise indicated, all references to molecular weight herein refer to the weight average molecular weight. Both molecular weight determinations, number average and weight average, can be measured using gel permeation chromatography or other liquid chromatography techniques. Other methods for measuring molecular weight values can also be used, such as the use of end-group analysis or the measurement of colligative properties (e.g., freezing-point depression, boiling-point elevation, and osmotic pressure) to determine number average molecular weight, or the use of light scattering techniques, ultracentrifugation or viscometry to determine weight average molecular weight. The polymers of the invention are typically polydisperse (i.e., number average molecular weight and weight average molecular weight of the polymers are not equal), possessing low polydispersity values of preferably less than about 1.2, more preferably less than about 1.15, still more preferably less than about 1.10, yet still more preferably less than about 1.05, and most preferably less than about 1.03.
  • The term “active” or “activated” when used in conjunction with a particular functional group refers to a reactive functional group that reacts readily with an electrophile or a nucleophile on another molecule. This is in contrast to those groups that require strong catalysts or highly impractical reaction conditions in order to react (i.e., a “non-reactive” or “inert” group).
  • As used herein, the term “functional group” or any synonym thereof is meant to encompass protected forms thereof as well as unprotected forms.
  • The terms “spacer moiety,” “linkage” and “linker” are used herein to refer to an atom or a collection of atoms optionally used to link interconnecting moieties such as a terminus of a polymer segment and a CD-NP peptide or an electrophile or nucleophile of a CD-NP peptide. The spacer moiety may be hydrolytically stable or may include a physiologically hydrolyzable or enzymatically degradable linkage. Unless the context clearly dictates otherwise, a spacer moiety optionally exists between any two elements of a compound (e.g., the provided conjugates comprising a residue of a CD-NP peptide and a water-soluble polymer that can be attached directly or indirectly through a spacer moiety):
  • A “monomer” or “mono-conjugate,” in reference to a polymer conjugate of a CD-NP peptide, refers to a CD-NP peptide having only one water-soluble polymer molecule covalently attached thereto, whereas a CD-NP peptide “dimer” or “di-conjugate” is a polymer conjugate of a CD-NP peptide having two water-soluble polymer molecules covalently attached thereto, and so forth.
  • “Alkyl” refers to a hydrocarbon, typically ranging from about 1 to 15 atoms in length. Such hydrocarbons are preferably but not necessarily saturated and may be branched or straight chain, although typically straight chain is preferred. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, 2-methylbutyl, 2-ethylpropyl, 3-methylpentyl, and the like. As used herein, “alkyl” includes cycloalkyl as well as cycloalkylene-containing alkyl.
  • “Lower alkyl” refers to an alkyl group containing from 1 to 6 carbon atoms, and may be straight chain or branched, as exemplified by methyl, ethyl, n-butyl, i-butyl, and t-butyl.
  • “Cycloalkyl” refers to a saturated or unsaturated cyclic hydrocarbon chain, including bridged, fused, or Spiro cyclic compounds, preferably made up of 3 to about 12 carbon atoms, more preferably 3 to about 8 carbon atoms. “Cycloalkylene” refers to a cycloalkyl group that is inserted into an alkyl chain by bonding of the chain at any two carbons in the cyclic ring system.
  • “Alkoxy” refers to an —O—R group, wherein R is alkyl or substituted alkyl, preferably C1-6 alkyl (e.g., methoxy, ethoxy, propyloxy, and so forth).
  • The term “substituted” as in, for example, “substituted alkyl,” refers to a moiety (e.g., an alkyl group) substituted with one or more noninterfering substituents, such as, but not limited to: alkyl; C3-8 cycloalkyl, e.g., cyclopropyl, cyclobutyl, and the like; halo, e.g., fluoro, chloro, bromo, and iodo; cyano; alkoxy, lower phenyl; substituted phenyl; and the like. “Substituted aryl” is aryl having one or more noninterfering groups as a substituent. For substitutions on a phenyl ring, the substituents may be in any orientation (i.e., ortho, meta, or para).
  • “Noninterfering substituents” are those groups that, when present in a molecule, are typically nonreactive with other functional groups contained within the molecule.
  • “Aryl” means one or more aromatic rings, each of 5 or 6 core carbon atoms. Aryl includes multiple aryl rings that may be fused, as in naphthyl or unfused, as in biphenyl. Aryl rings may also be fused or unfused with one or more cyclic hydrocarbon, heteroaryl, or heterocyclic rings. As used herein, “aryl” includes heteroaryl.
  • “Heteroaryl” is an aryl group containing from one to four heteroatoms, preferably sulfur, oxygen, or nitrogen, or a combination thereof. Heteroaryl rings may also be fused with one or more cyclic hydrocarbon, heterocyclic, aryl, or heteroaryl rings.
  • “Heterocycle” or “heterocyclic” means one or more rings of 5-12 atoms, preferably 5-7 atoms, with or without unsaturation or aromatic character and having at least one ring atom that is not a carbon. Preferred heteroatoms include sulfur, oxygen, and nitrogen.
  • “Substituted heteroaryl” is heteroaryl having one or more noninterfering groups as substituents.
  • “Substituted heterocycle” is a heterocycle having one or more side chains formed from noninterfering substituents.
  • An “organic radical” as used herein shall include alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, and substituted aryl.
  • “Electrophile” and “electrophilic group” refer to an ion or atom or collection of atoms, that may be ionic, having an electrophilic center, i.e., a center that is electron seeking, capable of reacting with a nucleophile.
  • “Nucleophile” and “nucleophilic group” refers to an ion or atom or collection of atoms that may be ionic having a nucleophilic center, i.e., a center that is seeking an electrophilic center or with an electrophile.
  • A “physiologically cleavable” or “hydrolyzable” or “degradable” bond is a bond that reacts with water (i.e., is hydrolyzed) under physiological conditions. The tendency of a bond to hydrolyze in water will depend not only on the general type of linkage connecting two central atoms but also on the substituents attached to these central atoms. Appropriate hydrolytically unstable or weak linkages include but are not limited to carboxylate ester, phosphate ester, anhydrides, acetals, ketals, acyloxyalkyl ether, imines, orthoesters, peptides and oligonucleotides.
  • “Releasably attached,” e.g., in reference to a CD-NP peptide releasably attached to a water-soluble polymer, refers to a CD-NP peptide that is covalently attached via a linker that includes a degradable linkage as disclosed herein, wherein upon degradation (e.g., hydrolysis), the CD-NP peptide is released. The CD-NP peptide thus released will typically correspond to the unmodified parent or native CD-NP peptide, or may be slightly altered, e.g., possessing a short organic tag. Preferably, the unmodified parent CD-NP peptide is released.
  • An “enzymatically degradable linkage” means a linkage that is subject to degradation by one or more enzymes.
  • A “hydrolytically stable” linkage or bond refers to a chemical bond, typically a covalent bond, that is substantially stable in water, that is to say, does not undergo hydrolysis under physiological conditions to any appreciable extent over an extended period of time. Examples of hydrolytically stable linkages include, but are not limited to, the following: carbon-carbon bonds (e.g., in aliphatic chains), ethers, amides, urethanes, and the like. Generally, a hydrolytically stable linkage is one that exhibits a rate of hydrolysis of less than about 1-2% per day under physiological conditions. Hydrolysis rates of representative chemical bonds can be found in most standard chemistry textbooks. It must be pointed out that some linkages can be hydrolytically stable or hydrolyzable, depending upon (for example) adjacent and neighboring atoms and ambient conditions. One of ordinary skill in the art can determine whether a given linkage or bond is hydrolytically stable or hydrolyzable in a given context by, for example, placing a linkage-containing molecule of interest under conditions of interest and testing for evidence of hydrolysis (e.g., the presence and amount of two molecules resulting from the cleavage of a single molecule). Other approaches known to those of ordinary skill in the art for determining whether a given linkage or bond is hydrolytically stable or hydrolyzable can also be used.
  • The terms “pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to an excipient that may optionally be included in the compositions of the invention and that causes no significant adverse toxicological effects to the patient.
  • “Pharmacologically effective amount,” “physiologically effective amount,” and “therapeutically effective amount” are used interchangeably herein to mean the amount of a polymer-(CD-NP peptide) conjugate that is needed to provide a desired level of the conjugate (or corresponding unconjugated CD-NP peptide) in the bloodstream or in the target tissue. The precise amount will depend upon numerous factors, e.g., the particular CD-NP peptide, the components and physical characteristics of the CD-NP composition, intended patient population, individual patient considerations, and the like, and can readily be determined by one skilled in the art, based upon the information provided herein.
  • “Multi-functional” means a polymer having three or more functional groups contained therein, where the functional groups may be the same or different. Multi-functional polymeric reagents of the invention will typically contain from about 3-100 functional groups, or from 3-50 functional groups, or from 3-25 functional groups, or from 3-15 functional groups, or from 3 to 10 functional groups, or will contain 3, 4, 5, 6, 7, 8, 9 or 10 functional groups within the polymer backbone. A “difunctional” polymer means a polymer having two functional groups contained therein, either the same (i.e., homodifunctional) or different (i.e., heterodifunctional).
  • The terms “subject,” “individual,” or “patient” are used interchangeably herein and refer to a vertebrate, preferably a mammal. Mammals include, but are not limited to, murines, rodents, simians, humans, farm animals, sport animals, and pets.
  • “Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not.
  • “Substantially” (unless specifically defined for a particular context elsewhere or the context clearly dictates otherwise) means nearly totally or completely, for instance, satisfying one or more of the following: greater than 50%, 51% or greater, 75% or greater, 80% or greater, 90% or greater, and 95% or greater of the condition.
  • Unless the context clearly dictates otherwise, when the term “about” precedes a numerical value, the numerical value is understood to mean the stated numerical value and also ±10% of the stated numerical value.
  • Turning now to one or more aspects of the invention, conjugates are provided, the conjugates comprising a CD-NP peptide covalently attached (either directly or through a spacer moiety or linker) to a water-soluble polymer. The conjugates generally have the following formula:

  • CD-NP-[-X-POLY]k
  • wherein CD-NP is a CD-NP peptide as defined herein, X is a covalent bond or is a spacer moiety or linker, POLY is a water soluble polymer, and k in an integer ranging from 1-10, preferably 1-5, and more preferably 1-3.
  • CD-NP Peptides
  • As previously stated, the conjugates of the invention comprise a CD-NP peptide as disclosed and/or defined herein. CD-NP peptides include those currently known to have demonstrated or potential use in treating, preventing, or ameliorating one or more diseases, disorders, or conditions in a subject in need thereof as well as those discovered after the filing of this application. CD-NP peptides also include related peptides.
  • The CD-NP peptides of the invention may comprise any of the 20 natural amino acids, and/or non-natural amino acids, amino acid analogs, and peptidomimetics, in any combination. The peptides may be composed of D-amino acids or L-amino acids, or a combination of both in any proportion. In addition to natural amino acids, the CD-NP peptides may contain, or may be modified to include, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or more non-natural amino acids. Exemplary non-natural amino acids and amino acid analogs that can be use with the invention include, but are not limited to, 2-aminobutyric acid, 2-aminoisobutyric acid, 3-(1-naphthyl)alanine, 3-(2-naphthyl)alanine, 3-methylhistidine, 3-pyridylalanine, 4-chlorophenylalanine, 4-fluorophenylalanine, 4-hydroxyproline, 5-hydroxylysine, alloisoleucine, citrulline, dehydroalanine, homoarginine, homocysteine, homoserine, hydroxyproline, N-acetylserine, N-formylmethionine, N-methylglycine, N-methylisoleucine, norleucine, N-α-methylarginine, O-phosphoserine, ornithine, phenylglycine, pipecolinic acid, piperazic acid, pyroglutamine, sarcosine, valanine, β-alanine, and β-cyclohexylalanine.
  • The CD-NP peptides may be, or may be modified to be, linear, branched, or cyclic, with our without branching.
  • Additionally, the CD-NP peptides may optionally be modified or protected with a variety of functional groups or protecting groups, including amino terminus protecting groups and/or carboxy terminus protecting groups. Protecting groups, and the manner in which they are introduced and removed are described, for example, in “Protective Groups in Organic Chemistry,” Plenum Press, London, N.Y. 1973; and. Greene et al., “PROTECTIVE GROUPS IN ORGANIC SYNTHESIS” 3rd Edition, John Wiley and Sons, Inc., New York, 1999. Numerous protecting groups are known in the art. An illustrative, non-limiting list of protecting groups includes methyl, formyl, ethyl, acetyl, t-butyl, anisyl, benzyl, trifluoroacetyl, N-hydroxysuccinimide, t-butoxycarbonyl, benzoyl, 4-methylbenzyl, thioanizyl, thiocresyl, benzyloxymethyl, 4-nitrophenyl, benzyloxycarbonyl, 2-nitrobenzoyl, 2-nitrophenylsulphenyl, 4-toluenesulphonyl, pentafluorophenyl, diphenylmethyl, 2-chlorobenzyloxycarbonyl, 2,4,5-trichlorophenyl, 2-bromobenzyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, triphenylmethyl, and 2,2,5,7,8-pentamethyl-chroman-6-sulphonyl. For discussions of various different types of amino- and carboxy-protecting groups, see, for example, U.S. Pat. No. 5,221,736 (issued Jun. 22, 1993); U.S. Pat. No. 5,256,549 (issued Oct. 26, 1993); U.S. Pat. No. 5,049,656 (issued Sep. 17, 1991); and U.S. Pat. No. 5,521,184 (issued May 28, 1996).
  • The CD-NP peptides contain, or may be modified to contain, functional groups to which a water-soluble polymer may be attached, either directly or through a spacer moiety or linker. Functional groups include, but are not limited to, the N-terminus of the CD-NP peptide, the C-terminus of the CD-NP peptide, and any functional groups on the side chain of an amino acid, e.g. lysine, cysteine, histidine, aspartic acid, glutamic acid, tyrosine, arginine, serine, methionine, and threonine, present in the CD-NP peptide.
  • The CD-NP peptides can be prepared by any means known in the art, including non-recombinant and recombinant methods, or they may, in some instances, be commercially available. Chemical or non-recombinant methods include, but are not limited to, solid phase peptide synthesis (SPPS), solution phase peptide synthesis, native chemical ligation, intein-mediated protein ligation, and chemical ligation, or a combination thereof. In a preferred embodiment, the CD-NP peptides are synthesized using standard SPPS, either manually or by using commercially available automated SPPS synthesizers.
  • SPPS has been known in the art since the early 1960's (Merrifield, R. B., J. Am. Chem. Soc., 85:2149-2154 (1963)), and is widely employed. (See also, Bodanszky, Principles of Peptide Synthesis, Springer-Verlag, Heidelberg (1984)). There are several known variations on the general approach. (See, for example, “Peptide Synthesis, Structures, and Applications” © 1995 by Academic Press, Chapter 3 and White (2003) Fmoc Solid Phase Peptide Synthesis, A practical Approach, Oxford University Press, Oxford). Very briefly, in solid phase peptide synthesis, the desired C-terminal amino acid residue is coupled to a solid support. The subsequent amino acid to be added to the peptide chain is protected on its amino terminus with Boc, Fmoc, or other suitable protecting group, and its carboxy terminus is activated with a standard coupling reagent. The free amino terminus of the support-bound amino acid is allowed to react with the carboxy-terminus of the subsequent amino acid, coupling the two amino acids. The amino terminus of the growing peptide chain is deprotected, and the process is repeated until the desired polypeptide is completed. Side chain protecting groups may be utilized as needed.
  • Alternatively, the CD-NP peptides may be prepared recombinantly. Exemplary recombinant methods used to prepare CD-NP peptides include the following, among others, as will be apparent to one skilled in the art. Typically, a CD-NP peptide as defined and/or described herein is prepared by constructing the nucleic acid encoding the desired peptide or fragment, cloning the nucleic acid into an expression vector, transforming a host cell (e.g., plant, bacteria such as Escherichia coli, yeast such as Saccharomyces cerevisiae, or mammalian cell such as Chinese hamster ovary cell or baby hamster kidney cell), and expressing the nucleic acid to produce the desired peptide or fragment. The expression can occur via exogenous expression or via endogenous expression (when the host cell naturally contains the desired genetic coding). Methods for producing and expressing recombinant polypeptides in vitro and in prokaryotic and eukaryotic host cells are known to those of ordinary skill in the art. See, for example, U.S. Pat. No. 4,868,122, and Sambrook et al., Molecular Cloning—A Laboratory Manual (Third Edition), Cold Spring Harbor Laboratory Press (2001).
  • To facilitate identification and purification of the recombinant peptide, nucleic acid sequences that encode an epitope tag or other affinity binding sequence can be inserted or added in-frame with the coding sequence, thereby producing a fusion peptide comprised of the desired CD-NP peptide and a peptide suited for binding. Fusion peptides can be identified and purified by first running a mixture containing the fusion peptide through an affinity column bearing binding moieties (e.g., antibodies) directed against the epitope tag or other binding sequence in the fusion peptide, thereby binding the fusion peptide within the column. Thereafter, the fusion peptide can be recovered by washing the column with the appropriate solution (e.g., acid) to release the bound fusion peptide. Optionally, the tag may subsequently be removed by techniques known in the art. The recombinant peptide can also be identified and purified by lysing the host cells, separating the peptide, e.g., by size exclusion chromatography, and collecting the peptide. These and other methods for identifying and purifying recombinant peptides are known to those of ordinary skill in the art.
  • Related Peptides
  • It will be appreciated and understood by one of skill in the art that certain modifications can be made to the CD-NP peptides defined and/or disclosed herein that do not alter, or only partially abrogate, the properties and activities of these CD-NP peptides. In some instances, modifications may be made that result in an increase in CD-NP activities. Additionally, modifications may be made that increase certain biological and chemical properties of the CD-NP peptides in a beneficial way, e.g. increased in vivo half life, increased stability, decreased susceptibility to proteolytic cleavage, etc. Thus, in the spirit and scope of the invention, the term “CD-NP peptide” is used herein in a manner to include not only the CD-NP peptides defined and/or disclosed herein, but also related peptides, i.e. peptides that contain one or more modifications relative to the CD-NP peptides defined and/or disclosed herein, wherein the modification(s) do not alter, only partially abrogate, or increase the CD-NP activities as compared to the parent peptide.
  • Related peptides include, but are not limited to, fragments of CD-NP peptides, CD-NP peptide variants, and CD-NP peptide derivatives. Related peptides also include any and all combinations of these modifications. In a non-limiting example, a related peptide may be a fragment of a CD-NP peptide as disclosed herein having one or more amino acid substitutions. Thus it will be understood that any reference to a particular type of related peptide is not limited to a CD-NP peptide having only that particular modification, but rather encompasses a CD-NP peptide having that particular modification and optionally any other modification.
  • Related peptides may be prepared by action on a parent peptide or a parent protein (e.g. proteolytic digestion to generate fragments) or through de novo preparation (e.g. solid phase synthesis of a peptide having a conservative amino acid substitution relative to the parent peptide). Related peptides may arise by natural processes (e.g. processing and other post-translational modifications) or may be made by chemical modification techniques. Such modifications are well-known to those of skill in the art.
  • A related peptide may have a single alteration or multiple alterations relative to the parent peptide. Where multiple alterations are present, the alterations may be of the same type or a given related peptide may contain different types of modifications. Furthermore, modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the N- or C-termini.
  • As previously noted, related peptides include fragments of the CD-NP peptides defined and/or disclosed herein, wherein the fragment retains some of or all of at least one CD-NP activity of the parent peptide. The fragment may also exhibit an increase in at least one CD-NP activity of the parent peptide. In certain embodiments of the invention, CD-NP peptides include related peptides having at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 contiguous amino acid residues, or more than 125 contiguous amino acid residues, of any of the CD-NP peptides disclosed, herein, including in Table 1. In other embodiments of the invention, CD-NP peptides include related peptides having 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acid residues deleted from the N-terminus and/or having 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acid residues deleted from the C-terminus of any of the CD-NP peptides disclosed herein, including in Table 1.
  • Related peptides also include variants of the CD-NP peptides defined and/or disclosed herein, wherein the variant retains some of or all of at least one CD-NP activity of the parent peptide. The variant may also exhibit an increase in at least one CD-NP activity of the parent peptide. In certain embodiments of the invention, CD-NP peptides include variants having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 conservative and/or non-conservative amino acid substitutions relative to the CD-NP peptides disclosed herein, including in Table 1. Desired amino acid substitutions, whether conservative or non-conservative, can be determined by those skilled in the art.
  • In certain embodiments of the invention, CD-NP peptides include variants having conservative amino substitutions; these substitutions will produce a CD-NP peptide having functional and chemical characteristics similar to those of the parent peptide. In other embodiments, CD-NP peptides include variants having non-conservative amino substitutions; these substitutions will produce a CD-NP peptide having functional and chemical characteristics that may differ substantially from those of the parent peptide. In certain embodiments of the invention, CD-NP peptide variants have both conservative and non-conservative amino acid substitutions. In other embodiments, each amino acid residue may be substituted with alanine.
  • Natural amino acids may be divided into classes based on common side chain properties: nonpolar (Gly, Ala, Val, Leu, Ile, Met); polar neutral (Cys, Ser, Thr, Pro, Asn, Gln); acidic (Asp, Glu); basic (His, Lys, Arg); and aromatic (Trp, Tyr, Phe). By way of example, non-conservative amino acid substitutions may involve the substitution of an amino acid of one class for that of another, and may be introduced in regions of the peptide not critical for CD-NP activity.
  • Preferably, amino acid substitutions are conservative. Conservative amino acid substitutions may involve the substitution of an amino acid of one class for that of the same class. Conservative amino acid substitutions may also encompass non-natural amino acid residues, including peptidomimetics and other atypical forms of amino acid moieties, and may be incorporated through chemical peptide synthesis,
  • Amino acid substitutions may be made with consideration to the hydropathic index of amino acids. The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte et al., 1982, J. Mol. Biol. 157:105-31). Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. The hydropathic indices are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
  • It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.
  • It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. The greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its biological properties. According to U.S. Pat. No. 4,554,101, incorporated herein by reference, the following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); and tryptophan (−3.4). In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.
  • In certain embodiments of the invention, CD-NP peptides include variants having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acid deletions relative to the CD-NP peptides disclosed herein, including in Table 1. The deleted amino acid(s) may be at the N- or C-terminus of the peptide, at both termini, at an internal location or locations within the peptide, or both internally and at one or both termini. Where the variant has more than one amino acid deletion, the deletions may be of contiguous amino acids or of amino acids at different locations within the primary amino acid sequence of the parent peptide.
  • In other embodiments of the invention, CD-NP peptides include variants having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acid additions relative to the CD-NP peptides disclosed herein, including in Table 1. The added amino acid(s) may be at the N- or C-terminus of the peptide, at both termini, at an internal location or locations within the peptide, or both internally and at one or both termini. Where the variant has more than one amino acid addition, the amino acids may be added contiguously, or the amino acids may be added at different locations within the primary amino acid sequence of the parent peptide.
  • Addition variants also include fusion peptides. Fusions can be made either at the N-terminus or at the C-terminus of the CD-NP peptides disclosed herein, including in Table 1. In certain embodiments, the fusion peptides have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acid additions relative to the CD-NP peptides disclosed herein, including in Table 1. Fusions may be attached directly to the CD-NP peptide with no connector molecule or may be through a connector molecule. As used in this context, a connector molecule may be an atom or a collection of atoms optionally used to link a CD-NP peptide to another peptide. Alternatively, the connector may be an amino acid sequence designed for cleavage by a protease to allow for the separation of the fused peptides.
  • The CD-NP peptides of the invention may be fused to peptides designed to improve certain qualities of the CD-NP peptide, such as CD-NP activity, circulation time, or reduced aggregation. CD-NP peptides may be fused to an immunologically active domain, e.g. an antibody epitope, to facilitate purification of the peptide, or to increase the in vivo half life of the peptide. Additionally, CD-NP peptides may be fused to known functional domains, cellular localization sequences, or peptide permeant motifs known to improve membrane transfer properties.
  • In certain embodiments of the invention, CD-NP peptides also include variants incorporating one or more non-natural amino acids, amino acid analogs, and peptidomimetics. Thus the present invention encompasses compounds structurally similar to the CD-NP peptides defined and/or disclosed herein, which are formulated to mimic the key portions of the CD-NP peptides of the present invention. Such compounds may be used in the same manner as the CD-NP peptides of the invention. Certain mimetics that mimic elements of protein secondary and tertiary structure have been previously described. Johnson et al., Biotechnology and Pharmacy, Pezzuto et al. (Eds.), Chapman and Hall, NY, 1993. The underlying rationale behind the use of peptide mimetics is that the peptide backbone of proteins exists chiefly to orient amino acid side chains in such a way as to facilitate molecular interactions. A peptide mimetic is thus designed to permit molecular interactions similar to the parent peptide. Mimetics can be constructed to achieve a similar spatial orientation of the essential elements of the amino acid side chains. Methods for generating specific structures have been disclosed in the art. For example, U.S. Pat. Nos. 5,446,128, 5,710,245, 5,840,833, 5,859,184, 5,440,013; 5,618,914, 5,670,155, 5,475,085, 5,929,237, 5,672,681 and 5,674,976, the contents of which are hereby incorporated by reference, all disclose peptidomimetics structures that may have improved properties over the parent peptide, for example they may be conformationally restricted, be more thermally stable, exhibit increased resistance to degredation, etc.
  • In another embodiment, related peptides comprise or consist of a peptide sequence that is at least 70% identical to any of the CD-NP peptides disclosed herein, including in Table 1. In additional embodiments, related peptides are at least 75% identical, at least 80% identical, at least 85% identical, 90% identical, at least 91% identical, at least 92% identical, 93% identical, at least 94% identical, at least 95% identical, 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to any of the CD-NP peptides disclosed herein, including in Table 1.
  • Sequence identity (also known as % homology) of related polypeptides can be readily calculated by known methods. Such methods include, but are not limited to those described in Computational Molecular Biology (A. M. Lesk, ed., Oxford University Press 1988); Biocomputing: Informatics and Genome Projects (D. W. Smith, ed., Academic Press 1993); Computer Analysis of Sequence Data (Part 1, A. M. Griffin and H. G. Griffin, eds., Humana Press 1994); G. von Heinle, Sequence Analysis in Molecular Biology (Academic Press 1987); Sequence Analysis Primer (M. Gribskov and J. Devereux, eds., M. Stockton Press 1991); and Carillo et al., 1988, SIAM J. Applied Math., 48:1073.
  • Preferred methods to determine sequence identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine sequence identity are described in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., 1984, Nucleic Acids Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.), BLASTP, BLASTN, and FASTA (Altschul et al., 1990, J. Mol. Biol. 215:403-10). The BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (Altschul et al., BLAST Manual (NCB NLM NIH, Bethesda, Md.); Altschul et al., 1990, supra). The well-known Smith Waterman algorithm may also be used to determine identity.
  • For example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, Madison, Wis.), two polypeptides for which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the “matched span,” as determined by the algorithm). A gap opening penalty (which is calculated as 3× the average diagonal; the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 0.1× the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. A standard comparison matrix is also used by the algorithm (see Dayhoff et al., 5 Atlas of Protein Sequence and Structure (Supp. 3 1978)(PAM250 comparison matrix); Henikoff et al., 1992, Proc. Natl. Acad. Sci. USA 89:10915-19 (BLOSUM 62 comparison matrix)). The particular choices to be made with regard to algorithms, gap opening penalties, gap extension penalties, comparison matrices, and thresholds of similarity will be readily apparent to those of skill in the art and will depend on the specific comparison to be made.
  • Related peptides also include derivatives of the CD-NP peptides defined and/or disclosed herein, wherein the variant retains some of or all of at least one CD-NP activity of the parent peptide. The derivative may also exhibit an increase in at least one CD-NP activity of the parent peptide. Chemical alterations of CD-NP peptide derivatives include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, T. E. Creighton, Proteins, Structure and Molecular Properties, 2nd ed., W.H. Freeman and Company, New York (1993); Posttranslational Covalent Modification of Proteins, B. C. Johnson, ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth. Enzymol 182:626-46 (1990); Rattan et al., Ann. N.Y. Acad. Sci. 663:48-62, 1992).
  • CD-NP peptide derivatives also include molecules formed by the deletion of one or more chemical groups from the parent peptide. Methods for preparing chemically modified derivatives of the CD-NP peptides defined and/or disclosed herein are known to one of skill in the art.
  • In some embodiments of the invention, the CD-NP peptides may be modified with one or more methyl or other lower alkyl groups at one or more positions of the CD-NP peptide sequence. Examples of such groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, etc. In certain preferred embodiments, arginine, lysine, and histidine residues of the CD-NP peptides are modified with methyl or other lower alkyl groups.
  • In other embodiments of the invention, the CD-NP peptides may be modified with one or more glycoside moieties relative to the parent peptide. Although any glycoside can be used, in certain preferred embodiments the CD-NP peptide is modified by introduction of a monosaccharide, a disaccharide, or a trisaccharide or it may contain a glycosylation sequence found in natural peptides or proteins in any mammal. The saccharide may be introduced at any position, and more than one glycoside may be introduced. Glycosylation may occur on a naturally occurring amino acid residue in the CD-NP peptide, or alternatively, an amino acid may be substituted with another for modification with the saccharide.
  • Glycosylated CD-NP peptides may be prepared using conventional Fmoc chemistry and solid phase peptide synthesis techniques, e.g., on resin, where the desired protected glycoamino acids are prepared prior to peptide synthesis and then introduced into the peptide chain at the desired position during peptide synthesis. Thus, the CD-NP peptide polymer conjugates may be conjugated in vitro. The glycosylation may occur before deprotection. Preparation of aminoacid glycosides is described in U.S. Pat. No. 5,767,254, WO 2005/097158, and Doores, K., et al., Chem. Commun., 1401-1403, 2006, which are incorporated herein by reference in their entireties. For example, alpha and beta selective glycosylations of serine and threonine residues are carried out using the Koenigs-Knorr reaction and Lemieux's in situ anomerization methodology with Schiff base intermediates. Deprotection of the Schiff base glycoside is then carried out using mildly acidic conditions or hydrogenolysis. A composition, comprising a glycosylated CD-NP peptide conjugate made by stepwise solid phase peptide synthesis involving contacting a growing peptide chain with protected amino acids in a stepwise manner, wherein at least one of the protected amino acids is glycosylated, followed by water-soluble polymer conjugation, may have a purity of at least 95%, such as at least 97%, or at least 98%, of a single species of the glycosylated and conjugated CD-NP peptide.
  • Monosaccharides that may be used for introduction at one or more amino acid residues of the CD-NP peptides defined and/or disclosed herein include glucose (dextrose), fructose, galactose, and ribose. Additional monosaccharides suitable for use include glyceraldehydes, dihydroxyacetone, erythrose, threose, erythrulose, arabinose, lyxose, xylose, ribulose, xylulose, allose, altrose, mannose, N-Acetylneuraminic acid, fucose, N-Acetylgalactosamine, and N-Acetylglucosamine, as well as others. Glycosides, such as mono-, di-, and trisaccharides for use in modifying a CD-NP peptide, may be naturally occurring or may be synthetic. Disaccharides that may be used for introduction at one or more amino acid residues of the CD-NP peptides defined and/or disclosed herein include sucrose, lactose, maltose, trehalose, melibiose, and cellobiose, among others. Trisaccharides include acarbose, raffinose, and melezitose.
  • In further embodiments of the invention, the CD-NP peptides defined and/or disclosed herein may be chemically coupled to biotin. The biotin/thereapeutic peptide molecules can then to bind to avidin.
  • As previously noted, modifications may be made to the CD-NP peptides defined and/or disclosed herein that do not alter, or only partially abrogate, the properties and activities of these CD-NP peptides. In some instances, modifications may be made that result in an increase in CD-NP activity. Thus, included in the scope of the invention are modifications to the CD-NP peptides disclosed herein, including in Table 1, that retain at least 1%, at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, and any range derivable therein, such as, for example, at least 70% to at least 80%, and more preferably at least 81% to at least 90%; or even more preferably, between at least 91% and at least 99% of the CD-NP activity relative to the unmodified CD-NP peptide. Also included in the scope of the invention are modification to the CD-NP peptides disclosed herein, including in Table 1, that have greater than 100%, greater than 110%, greater than 125%, greater than 150%, greater than 200%, or greater than 300%, or greater than 10-fold or greater than 100-fold, and any range derivable therein, of the CD-NP activity relative to the unmodified CD-NP peptide.
  • The level of CD-NP activity of a given CD-NP peptide, or a modified CD-NP peptide, may be determined by any suitable in vivo or in vitro assay. For example, CD-NP activity may be assayed in cell culture, or by clinical evaluation, EC50 assays, IC50 assays, or dose response curves. In vitro or cell culture assays, for example, are commonly available and known to one of skill in the art for many CD-NP peptides as disclosed herein, including in Table 1. It will be understood by one of skill in the art that the percent activity of a modified CD-NP peptide relative to its unmodified parent can be readily ascertained through a comparison of the activity of each as determined through the assays disclosed herein or as known to one of skill in the art.
  • One of skill in the art will be able to determine appropriate modifications to the CD-NP peptides defined and/or disclosed herein, including those disclosed herein, including in Table 1. For identifying suitable areas of the CD-NP peptides that may be changed without abrogating their CD-NP activities, one of skill in the art may target areas not believed to be essential for activity. For example, when similar peptides with comparable activities exist from the same species or across other species, one of skill in the art may compare those amino acid sequences to identify residues that are conserved among similar peptides. It will be understood that changes in areas of a CD-NP peptide that are not conserved relative to similar peptides would be less likely to adversely affect the thereapeutic activity. One skilled in the art would also know that, even in relatively conserved regions, one may substitute chemically similar amino acids while retaining CD-NP activity. Therefore, even areas that may be important for biological activity and/or for structure may be subject to amino acid substitutions without destroying the CD-NP activity or without adversely affecting the peptide structure.
  • Additionally, as appropriate, one of skill in the art can review structure-function studies identifying residues in similar peptides that are important for activity or structure. In view of such a comparison, one can predict the importance of an amino acid residue in a CD-NP peptide that corresponds to an amino acid residue that is important for activity or structure in similar peptides. One of skill in the art may opt for amino acid substitutions within the same class of amino acids for such predicted important amino acid residues of the CD-NP peptides.
  • Also, as appropriate, one of skill in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar peptides. In view of such information, one of skill in the art may predict the alignment of amino acid residues of a CD-NP peptide with respect to its three dimensional structure. One of skill in the art may choose not to make significant changes to amino acid residues predicted to be on the surface of the peptide, since such residues may be involved in important interactions with other molecules. Moreover, one of skill in the art may generate variants containing a single amino acid substitution at each amino acid residue for test purposes. The variants could be screened using CD-NP activity assays known to those with skill in the art. Such variants could be used to gather information about suitable modifications. For example, where a change to a particular amino acid residue resulted in abrogated, undesirably reduced, or unsuitable activity, variants with such a modification would be avoided. In other words, based on information gathered from routine experimentation, one of skill in the art can readily determine the amino acids where further modifications should be avoided either alone or in combination with other modifications.
  • One of skill in the art may also select suitable modifications based on secondary structure predication. A number of scientific publications have been devoted to the prediction of secondary structure. See Moult, 1996, Curr. Opin. Biotechnol. 7:422-27; Chou et al., 1974, Biochemistry 13:222-45; Chou et al., 1974, Biochemistry 113:211-22; Chou et al., 1978, Adv. Enzymol. Relat. Areas Mol. Biol. 47:45-48; Chou et al., 1978, Ann. Rev. Biochem. 47:251-276; and Chou et al., 1979, Biophys. J. 26:367-84. Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two peptides or proteins which have a sequence identity of greater than 30%, or similarity greater than 40%, often have similar structural topologies. Recent growth of the protein structural database (PDB, http://www.rcsb.org/pdb/home/home.do) has provided enhanced predictability of secondary, tertiary, and quarternary structure, including the potential number of folds within the structure of a peptide or protein. See Holm et al., 1999, Nucleic Acids Res. 27:244-47. It has been suggested that there are a limited number of folds in a given peptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate (Brenner et al., 1997, Curr. Opin. Struct. Biol. 7:369-76).
  • Additional methods of predicting secondary structure include “threading” (Jones, 1997, Curr. Opin. Struct. Biol. 7:377-87; Sippl et al., 1996, Structure 4:15-19), “profile analysis” (Bowie et al., 1991, Science, 253:164-70; Gribskov et al., 1990, Methods Enzymol. 183:146-59; Gribskov et al., 1987, Proc. Nat. Acad. Sci. U.S.A. 84:4355-58), and “evolutionary linkage” (See Holm et al., supra, and Brenner et al., supra).
  • CD-NP Peptide Conjugates
  • As described above, a conjugate of the invention comprises a water-soluble polymer covalently attached (either directly or through a spacer moiety or linker) to a CD-NP peptide. Typically, for any given conjugate, there will be about one to five water-soluble polymers covalently attached to a CD-NP peptide (wherein for each water-soluble polymer, the water-soluble polymer can be attached either directly to the CD-NP peptide or through a spacer moiety).
  • To elaborate, a CD-NP peptide conjugate of the invention typically has about 1, 2, 3, or 4 water-soluble polymers individually attached to a CD-NP peptide. That is to say, in certain embodiments, a conjugate of the invention will possess about 4 water-soluble polymers individually attached to a CD-NP peptide, or about 3 water-soluble polymers individually attached to a CD-NP peptide, or about 2 water-soluble polymers individually attached to a CD-NP peptide, or about 1 water-soluble polymer attached to a CD-NP peptide. The structure of each of the water-soluble polymers attached to the CD-NP peptide may be the same or different. One CD-NP peptide conjugate in accordance with the invention is one having a water-soluble polymer releasably attached to the CD-NP peptide, particularly at the N-terminus of the CD-NP peptide. Another CD-NP peptide conjugate in accordance with the invention is one having a water-soluble polymer stably attached to the CD-NP peptide, particularly at the N-terminus of the CD-NP peptide. Another CD-NP peptide conjugate is one having a water-soluble polymer releasably attached to the CD-NP peptide, particularly at the C-terminus of the CD-NP peptide. Another CD-NP peptide conjugate in accordance with the invention is one having a water-soluble polymer stably attached to the CD-NP peptide, particularly at the C-terminus of the CD-NP peptide. Other CD-NP peptide conjugates in accordance with the invention are those having a water-soluble polymer releasably or stably attached to an amino acid within the CD-NP peptide. Additional water-soluble polymers may be releasably or stably attached to other sites on the CD-NP peptide, e.g., such as one or more additional sites. For example, a CD-NP peptide conjugate having a water-soluble polymer releasably attached to the N-terminus may additionally possess a water-soluble polymer stably attached to a lysine residue. In one embodiment, one or more amino acids may be inserted, at the N- or C-terminus, or within the peptide to releasably or stably attach a water soluble polymer. One preferred embodiment of the present invention is a mono-CD-NP peptide polymer conjugate, i.e., a CD-NP peptide having one water-soluble polymer covalently attached thereto. In an even more preferred embodiment, the water-soluble polymer is one that is attached to the CD-NP peptide at its N-terminus.
  • In another embodiment of the invention, a CD-NP peptide polymer conjugate of the invention is absent a metal ion, i.e., the CD-NP peptide is not chelated to a metal ion.
  • For the CD-NP peptide polymer conjugates described herein, the CD-NP peptide may optionally possess one or more N-methyl substituents. Alternatively, for the CD-NP peptide polymer conjugates described herein, the CD-NP peptide may be glycosylated, e.g., having a mono- or disaccharide, or naturally-occurring amino acid glycosylation covalently attached to one or more sites thereof.
  • As discussed herein, the compounds of the present invention may be made by various methods and techniques known and available to those skilled in the art.
  • The Water-Soluble Polymer
  • A conjugate of the invention comprises a CD-NP peptide attached, stably or releasably, to a water-soluble polymer. The water-soluble polymer is typically hydrophilic, nonpeptidic, and biocompatible. A substance is considered biocompatible if the beneficial effects associated with use of the substance alone or with another substance (e.g., an active agent such a CD-NP peptide) in connection with living tissues (e.g., administration to a patient) outweighs any deleterious effects as evaluated by a clinician, e.g., a physician. A substance is considered nonimmunogenic if the intended use of the substance in vivo does not produce an undesired immune response (e.g., the formation of antibodies) or, if an immune response is produced, that such a response is not deemed clinically significant or important as evaluated by a clinician. Typically, the water-soluble polymer is hydrophilic, biocompatible and nonimmunogenic.
  • Further the water-soluble polymer is typically characterized as having from 2 to about 300 termini, preferably from 2 to 100 termini, and more preferably from about 2 to 50 termini. Examples of such polymers include, but are not limited to, poly(alkylene glycols) such as polyethylene glycol (PEG), poly(propylene glycol) (“PPG”), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxyalkylmethacrylamide), poly(hydroxyalkylmethacrylate), poly(saccharides), poly(α-hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazoline, poly(N-acryloylmorpholine), and combinations of any of the foregoing, including copolymers and terpolymers thereof.
  • The water-soluble polymer is not limited to a particular structure and may possess a linear architecture (e.g., alkoxy PEG or bifunctional PEG), or a non-linear architecture, such as branched, forked, multi-armed (e.g., PEGs attached to a polyol core), or dendritic (i.e. having a densely branched structure with numerous end groups). Moreover, the polymer subunits can be organized in any number of different patterns and can be selected, e.g., from homopolymer, alternating copolymer, random copolymer, block copolymer, alternating tripolymer, random tripolymer, and block tripolymer.
  • One particularly preferred type of water-soluble polymer is a polyalkylene oxide, and in particular, polyethylene glycol (or PEG). Generally, a PEG used to prepare a CD-NP peptide polymer conjugate of the invention is “activated” or reactive. That is to say, the activated PEG (and other activated water-soluble polymers collectively referred to herein as “polymeric reagents”) used to form a CD-NP peptide conjugate comprises an activated functional group suitable for coupling to a desired site or sites on the CD-NP peptide. Thus, a polymeric reagent for use in preparing a CD-NP peptide conjugate includes a functional group for reaction with the CD-NP peptide.
  • Representative polymeric reagents and methods for conjugating such polymers to an active moiety are known in the art, and are, e.g., described in Harris, J. M. and Zalipsky, S., Eds, Poly(ethylene glycol), Chemistry and Biological Applications, ACS, Washington, 1997; Veronese, F., and J. M Harris, eds., Peptide and Protein PEGylation, Advanced Drug Delivery Reviews, 54(4); 453-609 (2002); Zalipsky, S., et al., “Use of Functionalized Poly(Ethylene Glycols) for Modification of Polypeptides” in Polyethylene Glycol Chemistry: Biotechnical and Biomedical Applications, J. M. Harris, ed., Plenus Press, New York (1992); Zalipsky (1995) Advanced Drug Reviews 16:157-182, and in Roberts, et al., Adv. Drug Delivery Reviews, 54, 459-476 (2002).
  • Additional PEG reagents suitable for use in forming a conjugate of the invention, and methods of conjugation are described in the Pasut. G., et al., Expert Opin. Ther. Patents (2004), 14(5). PEG reagents suitable for use in the present invention also include those available from NOF Corporation, as described generally on the NOF website (http://nofamerica.net/store/). Products listed therein and their chemical structures are expressly incorporated herein by reference. Additional PEGs for use in forming a CD-NP peptide conjugate of the invention include those available from Polypure (Norway) and from QuantaBioDesign LTD (Ohio), where the contents of their catalogs with respect to available PEG reagents are expressly incorporated herein by reference. In addition, water soluble polymer reagents useful for preparing peptide conjugates of the invention can be prepared synthetically. Descriptions of the water soluble polymer reagent synthesis can be found in, for example, U.S. Pat. Nos. 5,252,714, 5,650,234, 5,739,208, 5,932,462, 5,629,384, 5,672,662, 5,990,237, 6,448,369, 6,362,254, 6,495,659, 6,413,507, 6,376,604, 6,348,558, 6,602,498, and 7,026,440.
  • Typically, the weight-average molecular weight of the water-soluble polymer in the conjugate is from about 100 Daltons to about 150,000 Daltons. Exemplary ranges include weight-average molecular weights in the range of from about 250 Daltons to about 80,000 Daltons, from 500 Daltons to about 80,000 Daltons, from about 500 Daltons to about 65,000 Daltons, from about 500 Daltons to about 40,000 Daltons, from about 750 Daltons to about 40,000 Daltons, from about 1000 Daltons to about 30,000 Daltons. In a preferred embodiment, the weight average molecular weight of the water-soluble polymer in the conjugate ranges from about 1000 Daltons to about 10,000 Daltons. In certain other preferred embodiments, the range is from about 1000 Daltons to about 5000 Daltons, from about 5000 Daltons to about 10,000 Daltons, from about 2500 Daltons to about 7500 Daltons, from about 1000 Daltons to about 3000 Daltons, from about 3000 Daltons to about 7000 Daltons, or from about 7000 Daltons to about 10,000 Daltons. In a further preferred embodiment, the weight average molecular weight of the water-soluble polymer in the conjugate ranges from about 20,000 Daltons to about 40,000 Daltons. In other preferred embodiments, the range is from about 20,000 Daltons to about 30,000 Daltons, from about 30,000 Daltons to about 40,000 Daltons, from about 25,000 Daltons to about 35,000 Daltons, from about 20,000 Daltons to about 26,000 Daltons, from about 26,000 Daltons to about 34,000 Daltons, or from about 34,000 Daltons to about 40,000 Daltons.
  • For any given water-soluble polymer, a molecular weight in one or more of these ranges is typical. Generally, a CD-NP peptide conjugate in accordance with the invention, when intended for subcutaneous or intravenous administration, will comprise a PEG or other suitable water-soluble polymer having a weight average molecular weight of about 20,000 Daltons or greater, while a CD-NP peptide conjugate intended for pulmonary administration will generally, although not necessarily, comprise a PEG polymer having a weight average molecular weight of about 20,000 Daltons or less.
  • Exemplary weight-average molecular weights for the water-soluble polymer include about 100 Daltons, about 200 Daltons, about 300 Daltons, about 400 Daltons, about 500 Daltons, about 600 Daltons, about 700 Daltons, about 750 Daltons, about 800 Daltons, about 900 Daltons, about 1,000 Daltons, about 1,500 Daltons, about 2,000 Daltons, about 2,200 Daltons, about 2,500 Daltons, about 3,000 Daltons, about 4,000 Daltons, about 4,400 Daltons, about 4,500 Daltons, about 5,000 Daltons, about 5,500 Daltons, about 6,000 Daltons, about 7,000 Daltons, about 7,500 Daltons, about 8,000 Daltons, about 9,000 Daltons, about 10,000 Daltons, about 11,000 Daltons, about 12,000 Daltons, about 13,000 Daltons, about 14,000 Daltons, about 15,000 Daltons, about 20,000 Daltons, about 22,500 Daltons, about 25,000 Daltons, about 30,000 Daltons, about 35,000 Daltons, about 40,000 Daltons, about 45,000 Daltons, about 50,000 Daltons, about 55,000 Daltons, about 60,000 Daltons, about 65,000 Daltons, about 70,000 Daltons, and about 75,000 Daltons.
  • Branched versions of the water-soluble polymer (e.g., a branched 40,000 Dalton water-soluble polymer comprised of two 20,000 Dalton polymers or the like) having a total molecular weight of any of the foregoing can also be used. In one or more particular embodiments, depending upon the other features of the subject CD-NP peptide polymer conjugate, the conjugate is one that does not have one or more attached PEG moieties having a weight-average molecular weight of less than about 6,000 Daltons.
  • In instances in which the water-soluble polymer is a PEG, the PEG will typically comprise a number of (OCH2CH2) monomers. As used herein, the number of repeat units is typically identified by the subscript “n” in, for example, “(OCH2CH2)n.” Thus, the value of (n) typically falls within one or more of the following ranges: from 2 to about 3400, from about 100 to about 2300, from about 100 to about 2270, from about 136 to about 2050, from about 225 to about 1930, from about 450 to about 1930, from about 1200 to about 1930, from about 568 to about 2727, from about 660 to about 2730, from about 795 to about 2730, from about 795 to about 2730, from about 909 to about 2730, and from about 1,200 to about 1,900. Preferred ranges of n include from about 10 to about 700, and from about 10 to about 1800. For any given polymer in which the molecular weight is known, it is possible to determine the number of repeating units (i.e., “n”) by dividing the total weight-average molecular weight of the polymer by the molecular weight of the repeating monomer.
  • With regard to the molecular weight of the water-soluble polymer, in one or more embodiments of the invention, depending upon the other features of the particular CD-NP peptide conjugate, the conjugate comprises a CD-NP peptide covalently attached to a water-soluble polymer having a molecular weight greater than about 2,000 Daltons.
  • A polymer for use in the invention may be end-capped, that is, a polymer having at least one terminus capped with a relatively inert group, such as a lower alkoxy group (i.e., a C1-6 alkoxy group) or a hydroxyl group. One frequently employed end-capped polymer is methoxy-PEG (commonly referred to as mPEG), wherein one terminus of the polymer is a methoxy (—OCH3) group. The -PEG- symbol used in the foregoing generally represents the following structural unit: —CH2CH2O—(CH2CH2O)n—CH2CH2—, where (n) generally ranges from about zero to about 4,000.
  • Multi-armed or branched PEG molecules, such as those described in U.S. Pat. No. 5,932,462, are also suitable for use in the present invention. For example, the PEG may be described generally according to the structure:
  • Figure US20110206633A1-20110825-C00001
  • where polya and polyb are PEG backbones (either the same or different), such as methoxy poly(ethylene glycol); R″ is a non-reactive moiety, such as H, methyl or a PEG backbone; and P and Q are non-reactive linkages. In one embodiment, the branched PEG molecule is one that includes a lysine residue, such as the following reactive PEG suitable for use in forming a CD-NP peptide conjugate. Although the branched PEG below is shown with a reactive succinimidyl group, this represents only one of a myriad of reactive functional groups suitable for reacting with a CD-NP peptide.
  • Figure US20110206633A1-20110825-C00002
  • In some instances, the polymeric reagent (as well as the corresponding conjugate prepared from the polymeric reagent) may lack a lysine residue in which the polymeric portions are connected to amine groups of the lysine via a “—OCH2CONHCH2CO—” group. In still other instances, the polymeric reagent (as well as the corresponding conjugate prepared from the polymeric reagent) may lack a branched water-soluble polymer that includes a lysine residue (wherein the lysine residue is used to effect branching).
  • Additional branched-PEGs for use in forming a CD-NP peptide conjugate of the present invention include those described in co-owned U.S. Patent Application Publication No. 2005/0009988. Representative branched polymers described therein include those having the following generalized structure:
  • Figure US20110206633A1-20110825-C00003
  • where POLY1 is a water-soluble polymer; POLY2 is a water-soluble polymer; (a) is 0, 1, 2 or 3; (b) is 0, 1, 2 or 3; (e) is 0, 1, 2 or 3; (f′) is 0, 1, 2 or 3; (g′) is 0, 1, 2 or 3; (h) is 0, 1, 2 or 3; (j) is 0 to 20; each R1 is independently H or an organic radical selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl and substituted aryl; X1, when present, is a spacer moiety; X2, when present, is a spacer moiety; X5, when present, is a spacer moiety; X6, when present, is a spacer moiety; X7, when present, is a spacer moiety; X8, when present, is a spacer moiety; R5 is a branching moiety; and Z is a reactive group for coupling to a CD-NP peptide, optionally via an intervening spacer. POLY1 and POLY2 in the preceding branched polymer structure may be different or identical, i.e., are of the same polymer type (structure) and molecular weight.
  • A preferred branched polymer falling into the above classification suitable for use in the present invention is:
  • Figure US20110206633A1-20110825-C00004
  • where (m) is 2 to 4000, and (f) is 0 to 6 and (n) is 0 to 20.
  • Branched polymers suitable for preparing a conjugate of the invention also include those represented more generally by the formula R(POLY)y, where R is a central or core molecule from which extends 2 or more POLY arms such as PEG. The variable y represents the number of POLY arms, where each of the polymer arms can independently be end-capped or alternatively, possess a reactive functional group at its terminus. A more explicit structure in accordance with this embodiment of the invention possesses the structure, R(POLY-Z)y, where each Z is independently an end-capping group or a reactive group, e.g., suitable for reaction with a CD-NP peptide. In yet a further embodiment when Z is a reactive group, upon reaction with a CD-NP peptide, the resulting linkage can be hydrolytically stable, or alternatively, may be degradable, i.e., hydrolyzable. Typically, at least one polymer arm possesses a terminal functional group suitable for reaction with, e.g., a CD-NP peptide. Branched PEGs such as those represented generally by the formula, R(PEG)y above possess 2 polymer arms to about 300 polymer arms (i.e., n ranges from 2 to about 300). Preferably, such branched PEGs typically possess from 2 to about 25 polymer arms, such as from 2 to about 20 polymer arms, from 2 to about 15 polymer arms, or from 3 to about 15 polymer arms. Multi-armed polymers include those having 3, 4, 5, 6, 7 or 8 arms.
  • Core molecules in branched PEGs as described above include polyols, which are then further functionalized. Such polyols include aliphatic polyols having from 1 to 10 carbon atoms and from 1 to 10 hydroxyl groups, including ethylene glycol, alkane diols, alkyl glycols, alkylidene alkyl diols, alkyl cycloalkane diols, 1,5-decalindiol, 4,8-bis(hydroxymethyl)tricyclodecane, cycloalkylidene diols, dihydroxyalkanes, trihydroxyalkanes, and the like. Cycloaliphatic polyols may also be employed, including straight chained or closed-ring sugars and sugar alcohols, such as mannitol, sorbitol, inositol, xylitol, quebrachitol, threitol, arabitol, erythritol, adonitol, ducitol, facose, ribose, arabinose, xylose, lyxose, rhamnose, galactose, glucose, fructose, sorbose, mannose, pyranose, altrose, talose, tagitose, pyranosides, sucrose, lactose, maltose, and the like. Additional aliphatic polyols include derivatives of glyceraldehyde, glucose, ribose, mannose, galactose, and related stereoisomers. Other core polyols that may be used include crown ether, cyclodextrins, dextrins and other carbohydrates such as starches and amylose. Typical polyols include glycerol, pentaerythritol, sorbitol, and trimethylolpropane.
  • As will be described in more detail in the linker section below, although any of a number of linkages can be used to covalently attach a polymer to a CD-NP peptide, in certain instances, the linkage is degradable, designated herein as LD, that is to say, contains at least one bond or moiety that hydrolyzes under physiological conditions, e.g., an ester, hydrolyzable carbamate, carbonate, or other such group. In other instances, the linkage is hydrolytically stable.
  • Illustrative multi-armed PEGs having 3 arms, 4 arms, and 8 arms are known and are available commercially and/or can be prepared following techniques known to those skilled in the art. Multi-armed activated polymers for use in the method of the invention include those corresponding to the following structure, where E represents a reactive group suitable for reaction with a reactive group on the CD-NP peptide. In one or more embodiments, E is an —OH (for reaction with a CD-NP peptide carboxy group or equivalent), a carboxylic acid or equivalent (such as an active ester), a carbonic acid (for reaction with CD-NP peptide —OH groups), or an amino group.
  • Figure US20110206633A1-20110825-C00005
  • In the structure above, PEG is —(CH2CH2O)nCH2CH2—, and m is selected from 3, 4, 5, 6, 7, and 8. In certain embodiments, typical linkages are ester, carboxyl and hydrolyzable carbamate, such that the polymer-portion of the conjugate is hydrolyzed in vivo to release the CD-NP peptide from the intact polymer conjugate. In such instances, the linker L is designated as LD.
  • Alternatively, the polymer may possess an overall forked structure as described in U.S. Pat. No. 6,362,254. This type of polymer segment is useful for reaction with two CD-NP peptide moieties, where the two CD-NP peptide moieties are positioned a precise or predetermined distance apart.
  • In any of the representative structures provided herein, one or more degradable linkages may additionally be contained in the polymer segment, POLY, to allow generation in vivo of a conjugate having a smaller PEG chain than in the initially administered conjugate. Appropriate physiologically cleavable (i.e., releasable) linkages include but are not limited to ester, carbonate ester, carbamate, sulfate, phosphate, acyloxyalkyl ether, acetal, and ketal. Such linkages when contained in a given polymer segment will often be stable upon storage and upon initial administration.
  • The PEG polymer used to prepare a CD-NP peptide polymer conjugate may comprise a pendant PEG molecule having reactive groups, such as carboxyl or amino, covalently attached along the length of the PEG rather than at the end of the PEG chain(s). The pendant reactive groups can be attached to the PEG directly or through a spacer moiety, such as an alkylene group.
  • In certain embodiments, a CD-NP peptide polymer conjugate according to one aspect of the invention is one comprising a CD-NP peptide releasably attached, preferably at its N-terminus, to a water-soluble polymer. Hydrolytically degradable linkages, useful not only as a degradable linkage within a polymer backbone, but also, in the case of certain embodiments of the invention, for covalently attaching a water-soluble polymer to a CD-NP peptide, include: carbonate; imine resulting, for example, from reaction of an amine and an aldehyde (see, e.g., Ouchi et al. (1997) Polymer Preprints 38(1):582-3); phosphate ester, formed, for example, by reacting an alcohol with a phosphate group; hydrazone, e.g., formed by reaction of a hydrazide and an aldehyde; acetal, e.g., formed by reaction of an aldehyde and an alcohol; orthoester, formed, for example, by reaction between a formate and an alcohol; and esters, and certain urethane (carbamate) linkages.
  • Illustrative PEG reagents for use in preparing a releasable CD-NP peptide conjugate in accordance with the invention are described in U.S. Pat. Nos. 6,348,558, 5,612,460, 5,840,900, 5,880,131, and 6,376,470.
  • Additional PEG reagents for use in the invention include hydrolyzable and/or releasable PEGs and linkers such as those described in U.S. Patent Application Publication No. 2006-0293499. In the resulting conjugate, the CD-NP peptide and the polymer are each covalently attached to different positions of the aromatic scaffold, e.g., Fmoc or FMS structure, and are releasable under physiological conditions. Generalized structures corresponding to the polymers described therein are provided below.
  • For example, one such polymeric reagent comprises the following structure:
  • Figure US20110206633A1-20110825-C00006
  • where POLY1 is a first water-soluble polymer; POLY2 is a second water-soluble polymer; X1 is a first spacer moiety; X2 is a second spacer moiety;
  • Figure US20110206633A1-20110825-C00007
  • is an aromatic-containing moiety bearing an ionizable hydrogen atom, Hα; R1 is H or an organic radical; R2 is H or an organic radical; and (FG) is a functional group capable of reacting with an amino group of an active agent to form a releasable linkage, such as a carbamate linkage (such as N-succinimidyloxy, 1-benzotriazolyloxy, oxycarbonylimidazole, —O—C(O)—Cl, O—C(O)—Br, unsubstituted aromatic carbonate radicals and substituted aromatic carbonate radicals). The polymeric reagent can include one, two, three, four or more electron altering groups attached to the aromatic-containing moiety.
  • Preferred aromatic-containing moieties are bicyclic and tricyclic aromatic hydrocarbons. Fused bicyclic and tricyclic aromatics include pentalene, indene, naphthalene, azulene, heptalene, biphenylene, as-indacene, s-indacene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, and fluoranthene.
  • A preferred polymer reagent possesses the following structure,
  • Figure US20110206633A1-20110825-C00008
  • where mPEG corresponds to CH3O—(CH2CH2O)nCH2CH2—, X1 and X2 are each independently a spacer moiety having an atom length of from about 1 to about 18 atoms, n ranges from 10 to 1800, p is an integer ranging from 1 to 8, R1 is H or lower alkyl, R2 is H or lower alkyl, and Ar is an aromatic hydrodrocarbon, preferably a bicyclic or tricyclic aromatic hydrocarbon. FG is as defined above. Preferably, FG corresponds to an activated carbonate ester suitable for reaction with an amino group on CD-NP peptide. Preferred spacer moieties, X1 and X2, include —NH—C(O)—CH2—O—, —NH—C(O)—(CH2)q—O—, —NH—C(O)—(CH2)q—C(O)—NH—, C(O)—(CH2)q—, and —C(O)—NH—, where q is selected from 2, 3, 4, and 5. Preferably, although not necessarily, the nitrogen in the preceding spacers is proximal to the PEG rather than to the aromatic moiety.
  • Another such branched (2-armed) polymeric reagent comprised of two electron altering groups comprises the following structure:
  • Figure US20110206633A1-20110825-C00009
  • wherein each of POLY1, POLY2, X1, X2, R1, R2,
  • Figure US20110206633A1-20110825-C00010
  • and (FG) is as defined immediately above, and Re1 is a first electron altering group; and Re2 is a second electron altering group. An electron altering group is a group that is either electron donating (and therefore referred to as an “electron donating group”), or electron withdrawing (and therefore referred to as an “electron withdrawing group”). When attached to the aromatic-containing moiety bearing an ionizable hydrogen atom, an electron donating group is a group having the ability to position electrons away from itself and closer to or within the aromatic-containing moiety. When attached to the aromatic-containing moiety bearing an ionizable hydrogen atom, an electron withdrawing group is a group having the ability to position electrons toward itself and away from the aromatic-containing moiety. Hydrogen is used as the standard for comparison in the determination of whether a given group positions electrons away or toward itself. Preferred electron altering groups include, but are not limited to, —CF3, —CH2CF3, —CH2C6F5, —CN, —NO2, —S(O)R, —S(O)Aryl, —S(O2)R, —S(O2)Aryl, —S(O2)OR, —S(O2)OAryl, —S(O2)NHR, —S(O2)NHAryl, —C(O)R, —C(O)Aryl, —C(O)OR, —C(O)NHR, and the like, wherein R is H or an organic radical.
  • An additional branched polymeric reagent suitable for use in the present invention comprises the following structure:
  • Figure US20110206633A1-20110825-C00011
  • where POLY1 is a first water-soluble polymer; POLY2 is a second water-soluble polymer; X1 is a first spacer moiety; X2 is a second spacer moiety; Ar1 is a first aromatic moiety; Ar2 is a second aromatic moiety; Hα is an ionizable hydrogen atom; R1 is H or an organic radical; R2 is H or an organic radical; and (FG) is a functional group capable of reacting with an amino group of CD-NP peptide to form a releasable linkage, such as carbamate linkage.
  • Another exemplary polymeric reagent comprises the following structure:
  • Figure US20110206633A1-20110825-C00012
  • wherein each of POLY1, POLY2, X1, X2, Ar1, Ar2, Hα, R1, R2, and (FG) is as previously defined, and Re1 is a first electron altering group. While stereochemistry is not specifically shown in any structure provided herein, the provided structures contemplate both enantiomers, as well as compositions comprising mixtures of each enantiomer in equal amounts (i.e., a racemic mixture) and unequal amounts.
  • Yet an additional polymeric reagent for use in preparing a CD-NP peptide conjugate possesses the following structure:
  • Figure US20110206633A1-20110825-C00013
  • wherein each of POLY1, POLY2, X1, X2, Ar1, Ar2, Hα, R1, R2, and (FG) is as previously defined, and Re1 is a first electron altering group; and Re2 is a second electron altering group.
  • A preferred polymeric reagent comprises the following structure:
  • Figure US20110206633A1-20110825-C00014
  • wherein each of POLY1, POLY2, X1, X2, R1, R2, Hα and (FG) is as previously defined, and, as can be seen from the structure above, the aromatic moiety is a fluorene. The POLY arms substituted on the fluorene can be in any position in each of their respective phenyl rings, i.e., POLY1-X1— can be positioned at any one of carbons 1, 2, 3, and 4, and POLY2-X2— can be in any one of positions 5, 6, 7, and 8.
  • Yet another preferred fluorene-based polymeric reagent comprises the following structure:
  • Figure US20110206633A1-20110825-C00015
  • wherein each of POLY1, POLY2, X1, X2, R1, R2, Hα and (FG) is as previously defined, and Re1 is a first electron altering group; and Re2 is a second electron altering group as described above.
  • Yet another exemplary polymeric reagent for conjugating to a CD-NP peptide comprises the following fluorene-based structure:
  • Figure US20110206633A1-20110825-C00016
  • wherein each of POLY1, R2, X1, X2, R1, R2, Hα and (FG) is as previously defined, and Re1 is a first electron altering group; and Re2 is a second electron altering group.
  • Particular fluorene-based polymeric reagents for forming a releasable CD-NP peptide polymer conjugate in accordance with the invention include the following:
  • Figure US20110206633A1-20110825-C00017
  • Still another exemplary polymeric reagent comprises the following structure:
  • Figure US20110206633A1-20110825-C00018
  • wherein each of POLY1, POLY2, X1, X2, R1, R2, Hα and (FG) is as previously defined, and Re1 is a first electron altering group; and Re2 is a second electron altering group. Branched reagents suitable for preparing a releasable CD-NP peptide conjugate include N-{di(mPEG(20,000)oxymethylcarbonylamino)fluoren-9-ylmethoxycarbonyloxy}succinimide, N-[2,7 di (4 mPEG(10,000)aminocarbonylbutyrylamino)fluoren-9 ylmethoxycarbonyloxy]-succinimide (“G2PEG2Fmoc20k-NHS”), and PEG2-CAC-Fmoc4k-BTC. Of course, PEGs of any molecular weight as set forth herein may be employed in the above structures, and the particular activating groups described above are not meant to be limiting in any respect, and may be substituted by any other suitable activating group suitable for reaction with a reactive group present on the CD-NP peptide.
  • Those of ordinary skill in the art will recognize that the foregoing discussion describing water-soluble polymers for use in forming a CD-NP peptide conjugate is by no means exhaustive and is merely illustrative, and that all polymeric materials having the qualities described above are contemplated. As used herein, the term “polymeric reagent” generally refers to an entire molecule, which can comprise a water-soluble polymer segment, as well as additional spacers and functional groups.
  • The Linkage
  • The particular linkage between the CD-NP peptide and the water-soluble polymer depends on a number of factors. Such factors include, for example, the particular linkage chemistry employed, the particular spacer moieties utilized, if any, the particular CD-NP peptide, the available functional groups within the CD-NP peptide (either for attachment to a polymer or conversion to a suitable attachment site), and the possible presence of additional reactive functional groups or absence of functional groups within the CD-NP peptide due to modifications made to the peptide such as methylation and/or glycosylation, and the like.
  • In one or more embodiments of the invention, the linkage between the CD-NP peptide and the water-soluble polymer is a releasable linkage. That is, the water-soluble polymer is cleaved (either through hydrolysis, an enzymatic processes, or otherwise), thereby resulting in an unconjugated CD-NP peptide. Preferably, the releasable linkage is a hydrolytically degradable linkage, where upon hydrolysis, the CD-NP peptide, or a slightly modified version thereof, is released. The releasable linkage may result in the water-soluble polymer (and any spacer moiety) detaching from the CD-NP peptide in vivo (and in vitro) without leaving any fragment of the water-soluble polymer (and/or any spacer moiety or linker) attached to the CD-NP peptide. Exemplary releasable linkages include carbonate, carboxylate ester, phosphate ester, thiolester, anhydrides, acetals, ketals, acyloxyalkyl ether, imines, carbamates, and orthoesters. Such linkages can be readily formed by reaction of the CD-NP peptide and/or the polymeric reagent using coupling methods commonly employed in the art. Hydrolyzable linkages are often readily formed by reaction of a suitably activated polymer with a non-modified functional group contained within the CD-NP peptide. Preferred positions for covalent attachment of a water-soluble polymer induce the N-terminal, the C-terminal, as well as the internal lysines. Preferred releasable linkages include carbamate and ester.
  • Generally speaking, a preferred CD-NP peptide conjugate of the invention will possess the following generalized structure:
  • Figure US20110206633A1-20110825-C00019
  • where POLY is a water-soluble polymer such as any of the illustrative polymeric reagents provided in Tables 2-4 herein, X is a linker, and in some embodiments a hydrolyzable linkage (LD), and k is an integer selected from 1, 2, and 3, and in some instances 4, 5, 6, 7, 8, 9 and 10. In the generalized structure above, where X is LD, LD refers to the hydrolyzable linkage per se (e.g., a carbamate or an ester linkage), while “POLY” is meant to include the polymer repeat units, e.g., CH3(OCH2CH2)n—. In a preferred embodiment of the invention, at least one of the water-soluble polymer molecules is covalently attached to the N-terminus of CD-NP peptide. In one embodiment of the invention, k equals 1 and X is —O—C(O)—NH—, where the —NH— is part of the CD-NP peptide residue and represents an amino group thereof.
  • Although releasable linkages are exemplary, the linkage between the CD-NP peptide and the water-soluble polymer (or the linker moiety that is attached to the polymer) may be a hydrolytically stable linkage, such as an amide, a urethane (also known as carbamate), amine, thioether (also known as sulfide), or urea (also known as carbamide). One such embodiment of the invention comprises a CD-NP peptide having a water-soluble polymer such as PEG covalently attached at the N-terminus of CD-NP peptide. In such instances, alkylation of the N-terminal residue permits retention of the charge on the N-terminal nitrogen.
  • With regard to linkages, in one or more embodiments of the invention, a conjugate is provided that comprises a CD-NP peptide covalently attached at an amino acid residue, either directly or through a linker comprised of one or more atoms, to a water-soluble polymer.
  • The conjugates (as opposed to an unconjugated CD-NP peptide) may or may not possess a measurable degree of CD-NP peptide activity. That is to say, a conjugate in accordance with the invention will typically possess anywhere from about 0% to about 100% or more of the CD-NP activity of the unmodified parent CD-NP peptide. Typically, compounds possessing little or no CD-NP activity contain a releasable linkage connecting the polymer to the CD-NP peptide, so that regardless of the lack of CD-NP activity in the conjugate, the active parent molecule (or a derivative thereof having CD-NP activity) is released by cleavage of the linkage (e.g., hydrolysis upon aqueous-induced cleavage of the linkage). Such activity may be determined using a suitable in vivo or in vitro model, depending upon the known activity of the particular moiety having CD-NP peptide activity employed.
  • Optimally, cleavage of a linkage is facilitated through the use of hydrolytically cleavable and/or enzymatically cleavable linkages such as urethane, amide, certain carbamate, carbonate or ester-containing linkages. In this way, clearance of the conjugate via cleavage of individual water-soluble polymer(s) can be modulated by selecting the polymer molecular size and the type of functional group for providing the desired clearance properties. In certain instances, a mixture of polymer conjugates is employed where the polymers possess structural or other differences effective to alter the release (e.g., hydrolysis rate) of the CD-NP peptide, such that one can achieve a desired sustained delivery profile.
  • One of ordinary skill in the art can determine the proper molecular size of the polymer as well as the cleavable functional group, depending upon several factors including the mode of administration. For example, one of ordinary skill in the art, using routine experimentation, can determine a proper molecular size and cleavable functional group by first preparing a variety of polymer-CD-NP peptide conjugates with different weight-average molecular weights, degradable functional groups, and chemical structures, and then obtaining the clearance profile for each conjugate by administering the conjugate to a patient and taking periodic blood and/or urine samples. Once a series of clearance profiles has been obtained for each tested conjugate, a conjugate or mixture of conjugates having the desired clearance profile(s) can be determined.
  • For conjugates possessing a hydrolytically stable linkage that couples the CD-NP peptide to the water-soluble polymer, the conjugate will typically possess a measurable degree of CD-NP activity. For instance, such conjugates are typically characterized as having a CD-NP activity satisfying one or more of the following percentages relative to that of the unconjugated CD-NP peptide: at least 2%, at least 5%, at least 10%, at least 15%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 100%, more than 105%, more than 10-fold, or more than 100-fold (when measured in a suitable model, such as those presented here and/or known in the art). Often, conjugates having a hydrolytically stable linkage (e.g., an amide linkage) will possess at least some degree of the CD-NP activity of the unmodified parent CD-NP peptide.
  • Exemplary conjugates in accordance with the invention will now be described. Amino groups on a CD-NP peptide provide a point of attachment between the CD-NP peptide and the water-soluble polymer. For example, a CD-NP peptide may comprise one or more lysine residues, each lysine residue containing an ε-amino group that may be available for conjugation, as well as the amino terminus.
  • There are a number of examples of suitable water-soluble polymeric reagents useful for forming covalent linkages with available amines of a CD-NP peptide. Certain specific examples, along with the corresponding conjugates, are provided in Table 2 below. In the table, the variable (n) represents the number of repeating monomeric units and “CD-NP” represents a CD-NP peptide following conjugation to the water-soluble polymer. While each polymeric portion [e.g., (OCH2CH2)n or (CH2CH2O)n] presented in Table 2 terminates in a “CH3” group, other groups (e.g., H or benzyl) can be substituted therefore.
  • As will be clearly understood by one skilled in the art, for conjugates such as those set forth below resulting from reaction with a CD-NP peptide amino group, the amino group extending from the CD-NP peptide designation “˜NH-CD-NP” represents the residue of the CD-NP peptide itself in which the ˜NH— is an amino group of the CD-NP peptide. One preferred site of attachment for the polymeric reagents shown below is the N-terminus. Further, although the conjugates in Tables 2-4 herein illustrate a single water-soluble polymer covalently attached to a CD-NP peptide, it will be understood that the conjugate structures on the right are meant to also encompass conjugates having more than one of such water-soluble polymer molecules covalently attached to CD-NP peptide, e.g., 2, 3, or 4 water-soluble polymer molecules.
  • TABLE 2
    Amine-Specific Polymeric Reagents and the CD—NP Peptide Conjugates Formed Therefrom
    Figure US20110206633A1-20110825-C00020
    Figure US20110206633A1-20110825-C00021
    Figure US20110206633A1-20110825-C00022
    Figure US20110206633A1-20110825-C00023
    Figure US20110206633A1-20110825-C00024
    Figure US20110206633A1-20110825-C00025
    Figure US20110206633A1-20110825-C00026
    Figure US20110206633A1-20110825-C00027
    Figure US20110206633A1-20110825-C00028
    Figure US20110206633A1-20110825-C00029
    Figure US20110206633A1-20110825-C00030
    Figure US20110206633A1-20110825-C00031
    Figure US20110206633A1-20110825-C00032
    Figure US20110206633A1-20110825-C00033
    Figure US20110206633A1-20110825-C00034
    Figure US20110206633A1-20110825-C00035
    Figure US20110206633A1-20110825-C00036
    Figure US20110206633A1-20110825-C00037
    Figure US20110206633A1-20110825-C00038
    Figure US20110206633A1-20110825-C00039
    Figure US20110206633A1-20110825-C00040
    Figure US20110206633A1-20110825-C00041
    Figure US20110206633A1-20110825-C00042
    Figure US20110206633A1-20110825-C00043
    Figure US20110206633A1-20110825-C00044
    Figure US20110206633A1-20110825-C00045
    Figure US20110206633A1-20110825-C00046
    Figure US20110206633A1-20110825-C00047
    Figure US20110206633A1-20110825-C00048
    Figure US20110206633A1-20110825-C00049
    Figure US20110206633A1-20110825-C00050
    Figure US20110206633A1-20110825-C00051
    Figure US20110206633A1-20110825-C00052
    Figure US20110206633A1-20110825-C00053
    Figure US20110206633A1-20110825-C00054
    Figure US20110206633A1-20110825-C00055
    Figure US20110206633A1-20110825-C00056
    Figure US20110206633A1-20110825-C00057
    Figure US20110206633A1-20110825-C00058
    Figure US20110206633A1-20110825-C00059
    Figure US20110206633A1-20110825-C00060
    Figure US20110206633A1-20110825-C00061
    Figure US20110206633A1-20110825-C00062
    Figure US20110206633A1-20110825-C00063
    Figure US20110206633A1-20110825-C00064
    Figure US20110206633A1-20110825-C00065
    Figure US20110206633A1-20110825-C00066
    Figure US20110206633A1-20110825-C00067
    Figure US20110206633A1-20110825-C00068
    Figure US20110206633A1-20110825-C00069
    Figure US20110206633A1-20110825-C00070
    Figure US20110206633A1-20110825-C00071
    Figure US20110206633A1-20110825-C00072
    Figure US20110206633A1-20110825-C00073
    Figure US20110206633A1-20110825-C00074
    Figure US20110206633A1-20110825-C00075
    Figure US20110206633A1-20110825-C00076
    Figure US20110206633A1-20110825-C00077
    Figure US20110206633A1-20110825-C00078
    Figure US20110206633A1-20110825-C00079
    Figure US20110206633A1-20110825-C00080
    Figure US20110206633A1-20110825-C00081
    Figure US20110206633A1-20110825-C00082
    Figure US20110206633A1-20110825-C00083
    Figure US20110206633A1-20110825-C00084
    Figure US20110206633A1-20110825-C00085
    Figure US20110206633A1-20110825-C00086
    Figure US20110206633A1-20110825-C00087
    Figure US20110206633A1-20110825-C00088
    Figure US20110206633A1-20110825-C00089
    Figure US20110206633A1-20110825-C00090
    Figure US20110206633A1-20110825-C00091
    Figure US20110206633A1-20110825-C00092
    Figure US20110206633A1-20110825-C00093
    Figure US20110206633A1-20110825-C00094
    Figure US20110206633A1-20110825-C00095
    Figure US20110206633A1-20110825-C00096
    Figure US20110206633A1-20110825-C00097
    Figure US20110206633A1-20110825-C00098
    Figure US20110206633A1-20110825-C00099
    Figure US20110206633A1-20110825-C00100
    Figure US20110206633A1-20110825-C00101
    Figure US20110206633A1-20110825-C00102
    Figure US20110206633A1-20110825-C00103
    Figure US20110206633A1-20110825-C00104
    Figure US20110206633A1-20110825-C00105
    Figure US20110206633A1-20110825-C00106
    Figure US20110206633A1-20110825-C00107
    Figure US20110206633A1-20110825-C00108
    Figure US20110206633A1-20110825-C00109
    Figure US20110206633A1-20110825-C00110
    Figure US20110206633A1-20110825-C00111
  • Amine Conjugation and Resulting Conjugates
  • Conjugation of a polymeric reagent to an amine group of a CD-NP peptide can be accomplished by a variety of techniques. In one approach, a CD-NP peptide is conjugated to a polymeric reagent functionalized with an active ester such as a succinimidyl derivative (e.g., an N-hydroxysuccinimide ester). In this approach, the polymeric reagent bearing the reactive ester is reacted with the CD-NP peptide in aqueous media under appropriate pH conditions, e.g., from pHs ranging from about 3 to about 8, about 3 to about 7, or about 4 to about 6.5. Most polymer active esters can couple to a target peptide such as CD-NP peptide at physiological pH, e.g., at 7.0. However, less reactive derivatives may require a different pH. Typically, activated PEGs can be attached to a peptide such as CD-NP peptide at pHs from about 7.0 to about 10.0 for covalent attachment to an internal lysine. Typically, lower pHs are used, e.g., 4 to about 5.75, for preferential covalent attachment to the N-terminus. Thus, different reaction conditions (e.g., different pHs or different temperatures) can result in the attachment of a water-soluble polymer such as PEG to different locations on the CD-NP peptide (e.g., internal lysines versus the N-terminus). Coupling reactions can often be carried out at room temperature, although lower temperatures may be required for particularly labile CD-NP peptide moieties. Reaction times are typically on the order of minutes, e.g., 30 minutes, to hours, e.g., from about 1 to about 36 hours), depending upon the pH and temperature of the reaction. N-terminal PEGylation, e.g., with a PEG reagent bearing an aldehyde group, is typically conducted under mild conditions, pHs from about 5-10, for about 6 to 36 hours. Varying ratios of polymeric reagent to CD-NP peptide may be employed, e.g., from an equimolar ratio up to a 10-fold molar excess of polymer reagent. Typically, up to a 5-fold molar excess of polymer reagent will suffice.
  • In certain instances, it may be preferable to protect certain amino acids from reaction with a particular polymeric reagent if site specific or site selective covalent attachment is desired using commonly employed protection/deprotection methodologies such as those well known in the art.
  • In an alternative approach to direct coupling reactions, the PEG reagent may be incorporated at a desired position of the CD-NP peptide during peptide synthesis. In this way, site-selective introduction of one or more PEGs can be achieved. See, e.g., International Patent Publication No. WO 95/00162, which describes the site selective synthesis of conjugated peptides.
  • Exemplary conjugates that can be prepared using, for example, polymeric reagents containing a reactive ester for coupling to an amino group of CD-NP peptide, comprise the following alpha-branched structure:
  • Figure US20110206633A1-20110825-C00112
  • where POLY is a water-soluble polymer, (a) is either zero or one; X1, when present, is a spacer moiety comprised of one or more atoms; R1 is hydrogen an organic radical; and “˜NH-CD-NP” represents a residue of a CD-NP peptide, where the underlined amino group represents an amino group of the CD-NP peptide.
  • With respect to the structure corresponding to that referred to in the immediately preceding paragraph, any of the water-soluble polymers provided herein can be defined as POLY, any of the spacer moieties provided herein can be defined as X1 (when present), any of the organic radicals provided herein can be defined as R1 (in instances where R1 is not hydrogen), and any of the CD-NP peptides provided herein can be employed. In one or more embodiments corresponding to the structure referred to in the immediately preceding paragraph, POLY is a poly(ethylene glycol) such as H3CO(CH2CH2O)n—, wherein (n) is an integer having a value of from 3 to 4000, more preferably from 10 to about 1800; (a) is one; X1 is a C1-6 alkylene, such as one selected from methylene (i.e., —CH2—), ethylene (i.e., —CH2—CH2—) and propylene (i.e., —CH2—CH2—CH2—); R1 is H or lower alkyl such as methyl or ethyl; and CD-NP corresponds to any CD-NP peptide disclosed herein, including in Table 1.
  • Typical of another approach for conjugating a CD-NP peptide to a polymeric reagent is reductive amination. Typically, reductive amination is employed to conjugate a primary amine of a CD-NP peptide with a polymeric reagent functionalized with a ketone, aldehyde or a hydrated form thereof (e.g., ketone hydrate and aldehyde hydrate). In this approach, the primary amine from the CD-NP peptide (e.g., the N-terminus) reacts with the carbonyl group of the aldehyde or ketone (or the corresponding hydroxy-containing group of a hydrated aldehyde or ketone), thereby forming a Schiff base. The Schiff base, in turn, is then reductively converted to a stable conjugate through use of a reducing agent such as sodium borohydride or any other suitable reducing agent. Selective reactions (e.g., at the N-terminus) are possible, particularly with a polymer functionalized with a ketone or an alpha-methyl branched aldehyde and/or under specific reaction conditions (e.g., reduced pH).
  • Exemplary conjugates that can be prepared using, for example, polymeric reagents containing an aldehyde (or aldehyde hydrate) or ketone or (ketone hydrate) possess the following structure:
  • Figure US20110206633A1-20110825-C00113
  • where POLY is a water-soluble polymer; (d) is either zero or one; X2, when present, is a spacer moiety comprised of one or more atoms; (b) is an integer having a value of one through ten; (c) is an integer having a value of one through ten; R2, in each occurrence, is independently H or an organic radical; R3, in each occurrence, is independently H or an organic radical; and “˜NH-CD-NP” represents a residue of a CD-NP peptide, where the underlined amino group represents an amino group of the CD-NP peptide.
  • Yet another illustrative conjugate of the invention possesses the structure:
  • Figure US20110206633A1-20110825-C00114
  • where k ranges from 1 to 3, and n ranges from 10 to about 1800.
  • With respect to the structure corresponding to that referred to in immediately preceding paragraph, any of the water-soluble polymers provided herein can be defined as POLY, any of the spacer moieties provided herein can be defined as X2 (when present), any of the organic radicals provided herein can be independently defined as R2 and R3 (in instances where R2 and R3 are independently not hydrogen), and any of the CD-NP moieties provided herein can be defined as a CD-NP peptide. In one or more embodiments of the structure referred to in the immediately preceding paragraph, POLY is a poly(ethylene glycol) such as H3CO(CH2CH2O)n—, wherein (n) is an integer having a value of from 3 to 4000, more preferably from 10 to about 1800; (d) is one; X1 is amide [e.g., —C(O)NH—]; (b) is 2 through 6, such as 4; (c) is 2 through 6, such as 4; each of R2 and R3 are independently H or lower alkyl, such as methyl when lower alkyl; and CD-NP is CD-NP peptide.
  • Another example of a CD-NP peptide conjugate in accordance with the invention has the following structure:
  • Figure US20110206633A1-20110825-C00115
  • wherein each (n) is independently an integer having a value of from 3 to 4000, preferably from 10 to 1800; X2 is as previously defined; (b) is 2 through 6; (c) is 2 through 6; R2, in each occurrence, is independently H or lower alkyl; and “˜NH-CD-NP” represents a residue of a CD-NP peptide, where the underlined amino group represents an amino group of the CD-NP peptide.
  • Additional CD-NP peptide polymer conjugates resulting from reaction of a water-soluble polymer with an amino group of CD-NP peptide are provided below. The following conjugate structures are releasable. One such structure corresponds to:
  • Figure US20110206633A1-20110825-C00116
  • where mPEG is CH3O—(CH2CH2O)nCH2CH2—, n ranges from 10 to 1800, p is an integer ranging from 1 to 8, R′ is H or lower alkyl, R2 is H or lower alkyl, Ar is an aromatic hydrocarbon, such as a fused bicyclic or tricyclic aromatic hydrocarbon, X1 and X2 are each independently a spacer moiety having an atom length of from about 1 to about 18 atoms, ˜NH-CD-NP is as previously described, and k is an integer selected from 1, 2, and 3. The value of k indicates the number of water-soluble polymer molecules attached to different sites on the CD-NP peptide. In a preferred embodiment, R1 and R2 are both H. The spacer moieties, X1 and X2, preferably each contain one amide bond. In a preferred embodiment, X1 and X2 are the same. Preferred spacers, i.e., X1 and X2, include —NH—C(O)—CH2—O—, —NH—C(O)—(CH2)q—O—, —NH—C(O)—(CH2)q—C(O)—NH—, —NH—C(O)—(CH2)q—, and —C(O)—NH—, where q is selected from 2, 3, 4, and 5. Although the spacers can be in either orientation, preferably, the nitrogen is proximal to the PEG rather than to the aromatic moiety. Illustrative aromatic moieties include pentalene, indene, naphthalene, indacene, acenaphthylene, and fluorene.
  • Particularly preferred conjugates of this type are provided below.
  • Figure US20110206633A1-20110825-C00117
  • Additional CD-NP peptide conjugates resulting from covalent attachment to amino groups of CD-NP peptide that are also releasable include the following:
  • Figure US20110206633A1-20110825-C00118
  • where X is either —O— or —NH—C(O)—, Ar1 is an aromatic group, e.g., ortho, meta, or para-substituted phenyl, and k is an integer selected from 1, 2, and 3. Particular conjugates of this type include:
  • Figure US20110206633A1-20110825-C00119
  • where n ranges from about 10 to about 1800.
  • Additional releasable conjugates in accordance with the invention are prepared using water-soluble polymer reagents such as those described in U.S. Pat. No. 6,214,966. Such water-soluble polymers result in a releasable linkage following conjugation, and possess at least one releasable ester linkage close to the covalent attachment to the active agent. The polymers generally possess the following structure, PEG-W-CO2—NHS or an equivalent activated ester, where

  • W=—O2C—(CH2)b—O— b=1-5

  • —O—(CH2)bCO2—(CH2)c— b=1-5, c=2-5

  • —O—(CH2)b—CO2—(CH2)c—O— b=1-5, c=2-5
  • and NHS is N-hydroxysuccinimidyl. Upon hydrolysis, the resulting released active agent, e.g., CD-NP peptide, will possess a short tag resulting from hydrolysis of the ester functionality of the polymer reagent. Illustrative releasable conjugates of this type include: mPEG-O—(CH2)b—COOCH2C(O)—NH-CD-NP peptide, and mPEG-O—(CH2)b—COO—CH(CH3)—CH2—C(O)—NH-CD-NP peptide, where the number of water-soluble polymers attached to CD-NP peptide can be anywhere from 1 to 4, or more preferably, from 1 to 3.
  • Carboxyl Coupling and Resulting Conjugates
  • Carboxyl groups represent another functional group that can serve as a point of attachment to the CD-NP peptide. The conjugate will have the following structure:

  • CD-NP—C(O)—X—POLY
  • where CD-NP—C(O)˜ corresponds to a residue of a CD-NP peptide where the carbonyl is a carbonyl (derived from the carboxy group) of the CD-NP peptide, X is a spacer moiety, such as a heteroatom selected from O, N(H), and S, and POLY is a water-soluble polymer such as PEG, optionally terminating in an end-capping moiety.
  • The C(O)—X linkage results from the reaction between a polymeric derivative bearing a terminal functional group and a carboxyl-containing CD-NP peptide. As discussed above, the specific linkage will depend on the type of functional group utilized. If the polymer is end-functionalized or “activated” with a hydroxyl group, the resulting linkage will be a carboxylic acid ester and X will be O. If the polymer backbone is functionalized with a thiol group, the resulting linkage will be a thioester and X will be S. When certain multi-arm, branched or forked polymers are employed, the C(O)X moiety, and in particular the X moiety, may be relatively more complex and may include a longer linker structure.
  • Polymeric reagents containing a hydrazide moiety are also suitable for conjugation at a carbonyl. To the extent that the CD-NP peptide does not contain a carbonyl moiety, a carbonyl moiety can be introduced by reducing any carboxylic acid functionality (e.g., the C-terminal carboxylic acid). Specific examples of polymeric reagents comprising a hydrazide moiety, along with the corresponding conjugates, are provided in Table 3, below. In addition, any polymeric reagent comprising an activated ester (e.g., a succinimidyl group) can be converted to contain a hydrazide moiety by reacting the polymer activated ester with hydrazine (NH2—NH2) or tert-butyl carbamate [NH2NHCO2C(CH3)3]. In the table, the variable (n) represents the number of repeating monomeric units and “═C-CD-NP” represents a residue of a CD-NP peptide following conjugation to the polymeric reagent were the underlined C is part of the CD-NP peptide. Optionally, the hydrazone linkage can be reduced using a suitable reducing agent. While each polymeric portion [e.g., (OCH2CH2)n or (CH2CH2O)n] presented in Table 3 terminates in a “CH3” group, other groups (such as H and benzyl) can be substituted therefor.
  • TABLE 3
    Carboxyl-Specific Polymeric Reagents and the CD—NP Peptide Conjugates Formed Therefrom
    Polymeric Reagent Corresponding Conjugate
    Figure US20110206633A1-20110825-C00120
    Figure US20110206633A1-20110825-C00121
    Figure US20110206633A1-20110825-C00122
    Figure US20110206633A1-20110825-C00123
    Figure US20110206633A1-20110825-C00124
    Figure US20110206633A1-20110825-C00125
    Figure US20110206633A1-20110825-C00126
    Figure US20110206633A1-20110825-C00127
    Figure US20110206633A1-20110825-C00128
    Figure US20110206633A1-20110825-C00129
    Figure US20110206633A1-20110825-C00130
    Figure US20110206633A1-20110825-C00131
    Figure US20110206633A1-20110825-C00132
    Figure US20110206633A1-20110825-C00133
    Figure US20110206633A1-20110825-C00134
    Figure US20110206633A1-20110825-C00135
  • Thiol Coupling and Resulting Conjugates
  • Thiol groups contained within the CD-NP peptide can serve as effective sites of attachment for the water-soluble polymer. The thiol groups contained in cysteine residues of the CD-NP peptide can be reacted with an activated PEG that is specific for reaction with thiol groups, e.g., an N-maleimidyl polymer or other derivative, as described in, for example, U.S. Pat. No. 5,739,208, WO 01/62827, and in Table 4 below. In certain embodiments, cysteine residues may be introduced in the CD-NP peptide and may be used to attach a water-soluble polymer.
  • Specific examples of the reagents themselves, along with the corresponding conjugates, are provided in Table 4 below. In the table, the variable (n) represents the number of repeating monomeric units and “˜S-CD-NP” represents a residue of a CD-NP peptide following conjugation to the water-soluble polymer, where the S represents the residue of a CD-NP peptide thiol group. While each polymeric portion [e.g., (OCH2CH2)n or (CH2CH2O)n] presented in Table 4 terminates in a “CH3” group, other end-capping groups (such as H and benzyl) or reactive groups may be used as well.
  • TABLE 4
    Thiol-Specific Polymeric Reagents and the CD—NP peptide Conjugates Formed Therefrom
    Polymeric Reagent Corresponding Conjugate
    Figure US20110206633A1-20110825-C00136
    Figure US20110206633A1-20110825-C00137
    Figure US20110206633A1-20110825-C00138
    Figure US20110206633A1-20110825-C00139
    Figure US20110206633A1-20110825-C00140
    Figure US20110206633A1-20110825-C00141
    Figure US20110206633A1-20110825-C00142
    Figure US20110206633A1-20110825-C00143
    Figure US20110206633A1-20110825-C00144
    Figure US20110206633A1-20110825-C00145
    Figure US20110206633A1-20110825-C00146
    Figure US20110206633A1-20110825-C00147
    Figure US20110206633A1-20110825-C00148
    Figure US20110206633A1-20110825-C00149
    Figure US20110206633A1-20110825-C00150
    Figure US20110206633A1-20110825-C00151
    Figure US20110206633A1-20110825-C00152
    Figure US20110206633A1-20110825-C00153
    Figure US20110206633A1-20110825-C00154
    Figure US20110206633A1-20110825-C00155
    Figure US20110206633A1-20110825-C00156
    Figure US20110206633A1-20110825-C00157
    Figure US20110206633A1-20110825-C00158
    Figure US20110206633A1-20110825-C00159
    Figure US20110206633A1-20110825-C00160
    Figure US20110206633A1-20110825-C00161
    Figure US20110206633A1-20110825-C00162
    Figure US20110206633A1-20110825-C00163
    Figure US20110206633A1-20110825-C00164
    Figure US20110206633A1-20110825-C00165
    Figure US20110206633A1-20110825-C00166
    Figure US20110206633A1-20110825-C00167
  • With respect to conjugates formed from water-soluble polymers bearing one or more maleimide functional groups (regardless of whether the maleimide reacts with an amine or thiol group on the CD-NP peptide), the corresponding maleamic acid form(s) of the water-soluble polymer can also react with the CD-NP peptide. Under certain conditions (e.g., a pH of about 7-9 and in the presence of water), the maleimide ring will “open” to form the corresponding maleamic acid. The maleamic acid, in turn, can react with an amine or thiol group of a CD-NP peptide. Exemplary maleamic acid-based reactions are schematically shown below. POLY represents the water-soluble polymer, and ˜S-CD-NP represents a residue of a CD-NP peptide, where the S is derived from a thiol group of the CD-NP peptide.
  • Figure US20110206633A1-20110825-C00168
  • Thiol PEGylation is specific for free thiol groups on the CD-NP peptide. Typically, a polymer maleimide is conjugated to a sulfhydryl-containing CD-NP peptide at pHs ranging from about 6-9 (e.g., at 6, 6.5, 7, 7.5, 8, 8.5, or 9), more preferably at pHs from about 7-9, and even more preferably at pHs from about 7 to 8. Generally, a slight molar excess of polymer maleimide is employed, for example, a 1.5 to 15-fold molar excess, preferably a 2-fold to 10 fold molar excess. Reaction times generally range from about 15 minutes to several hours, e.g., 8 or more hours, at room temperature. For sterically hindered sulfhydryl groups, required reaction times may be significantly longer. Thiol-selective conjugation is preferably conducted at pHs around 7. Temperatures for conjugation reactions are typically, although not necessarily, in the range of from about 0° C. to about 40° C.; conjugation is often carried out at room temperature or less. Conjugation reactions are often carried out in a buffer such as a phosphate or acetate buffer or similar system.
  • With respect to reagent concentration, an excess of the polymeric reagent is typically combined with the CD-NP peptide. The conjugation reaction is allowed to proceed until substantially no further conjugation occurs, which can generally be determined by monitoring the progress of the reaction over time.
  • Progress of the reaction can be monitored by withdrawing aliquots from the reaction mixture at various time points and analyzing the reaction mixture by SDS-PAGE or MALDI-TOF mass spectrometry or any other suitable analytical method. Once a plateau is reached with respect to the amount of conjugate formed or the amount of unconjugated polymer remaining, the reaction is assumed to be complete. Typically, the conjugation reaction takes anywhere from minutes to several hours (e.g., from 5 minutes to 24 hours or more). The resulting product mixture is preferably, but not necessarily purified, to separate out excess reagents, unconjugated reactants (e.g., CD-NP peptide) undesired multi-conjugated species, and free or unreacted polymer. The resulting conjugates can then be further characterized using analytical methods such as MALDI, capillary electrophoresis, gel electrophoresis, and/or chromatography.
  • An illustrative CD-NP peptide conjugate formed by reaction with one or more CD-NP peptide thiol groups may possess the following structure:

  • POLY-X0,1-C(O)Z-Y-S-S-CD-NP
  • where POLY is a water-soluble polymer, X is an optional linker, Z is a heteroatom selected from the group consisting of O, NH, and S, and Y is selected from the group consisting of C2-10 alkyl, C2-10 substituted alkyl, aryl, and substituted aryl, and ˜S-CD-NP is a residue of a CD-NP peptide, where the S represents the residue of a CD-NP peptide thiol group. Such polymeric reagents suitable for reaction with a CD-NP peptide to result in this type of conjugate are described in U.S. Patent Application Publication No. 2005/0014903, which is incorporated herein by reference.
  • With respect to polymeric reagents suitable for reacting with a CD-NP peptide thiol group, those described here and elsewhere can be obtained from commercial sources. In addition, methods for preparing polymeric reagents are described in the literature.
  • Additional Conjugates and Features Thereof
  • As is the case for any CD-NP peptide polymer conjugate of the invention, the attachment between the CD-NP peptide and water-soluble polymer can be direct, wherein no intervening atoms are located between the CD-NP peptide and the polymer, or indirect, wherein one or more atoms are located between the CD-NP peptide and polymer. With respect to the indirect attachment, a “spacer moiety or linker” serves as a link between the CD-NP peptide and the water-soluble polymer. The one or more atoms making up the spacer moiety can include one or more of carbon atoms, nitrogen atoms, sulfur atoms, oxygen atoms, and combinations thereof. The spacer moiety can comprise an amide, secondary amine, carbamate, thioether, and/or disulfide group. Nonlimiting examples of specific spacer moieties (including “X”, X1, X2, and X3) include those selected from the group consisting of —O—, —S—, —S—S—, —C(O)—, —C(O)O—, —OC(O)—, —CH2—C(O)O—, —CH2—OC(O)—, —C(O)O—CH2—, —OC(O)—CH2—, —C(O)—NH—, —NH—C(O)—NH—, —O—C(O)—NH—, —C(S)—, —CH2—, —CH2—CH2—, —CH2—CH2—CH2—, —CH2—CH2—CH2—CH2—, —O—CH2—, —CH2—O—, —O—CH2—CH2—, —CH2—O—CH2—, —CH2—CH2—O—, —O—CH2—CH2—CH2—, —CH2—O—CH2—CH2—, —CH2—CH2—O—CH2—, —CH2—CH2—CH2—O—, —O—CH2—CH2—CH2—CH2—, —CH2—O—CH2—CH2—CH2—, —CH2—CH2—O—CH2—CH2—, —CH2—CH2—CH2—O—CH2—, —CH2—CH2—CH2—CH2—O—, —C(O)—NH—CH2—, —C(O)—NH—CH2—CH2—, —CH2—C(O)—NH—CH2—, —CH2—CH2—C(O)—NH—, —C(O)—NH—CH2—CH2—CH2—, —CH2—C(O)—NH—CH2—CH2—, —CH2—CH2—C(O)—NH—CH2—, —CH2—CH2—CH2—C(O)—NH—, —C(O)—NH—CH2—CH2—CH2—CH2—, —CH2—C(O)—NH—CH2—CH2—CH2—, —CH2—CH2—C(O)—NH—CH2—CH2—, —CH2—CH2—CH2—C(O)—NH—CH2—, —CH2—CH2—CH2—C(O)—NH—CH2—CH2—, —CH2—CH2—CH2—CH2—C(O)—NH—, —C(O)—O—CH2—, —CH2—C(O)—O—CH2—, —CH2—CH2—C(O)—O—CH2—, —C(O)—O—CH2—CH2—, —NH—C(O)—CH2—, —CH2—NH—C(O)—CH2—, —CH2—CH2—NH—C(O)—CH2—, —NH—C(O)—CH2—CH2—, —CH2—NH—C(O)—CH2—CH2—, —CH2—CH2—NH—C(O)—CH2—CH2—, —C(O)—NH—CH2—, —C(O)—NH—CH2—CH2—, —O—C(O)—NH—CH2—, —O—C(O)—NH—CH2—CH2—, —NH—CH2—, —NH—CH2—CH2—, —CH2—NH—CH2—, —CH2—CH2—NH—CH2—, —C(O)—CH2—, —C(O)—CH2—CH2—, —CH2—C(O)—CH2—, —CH2—CH2—C(O)—CH2—, —CH2—CH2—C(O)—CH2—CH2—, —CH2—CH2—C(O)—, —CH2—CH2—CH2—C(O)—NH—CH2—CH2—NH—, —CH2—CH2—CH2—C(O)—NH—CH2—CH2—NH—C(O)—, —CH2—CH2—CH2—C(O)—NH—CH2—CH2—NH—C(O)—CH2—, —CH2—CH2—CH2—C(O)—NH—CH2—CH2—NH—C(O)—CH2—CH2—, —O—C(O)—NH—[CH2]h—(OCH2CH2)j—, bivalent cycloalkyl group, —O—, —S—, an amino acid, —N(R6)—, and combinations of two or more of any of the foregoing, wherein R6 is H or an organic radical selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl and substituted aryl, (h) is zero to six, and (j) is zero to 20. Other specific spacer moieties have the following structures: —C(O)—NH—(CH2)1-6—NH—C(O)—, —NH—C(O)—NH—(CH2)1-6—NH—C(O)—, and —O—C(O)—NH—(CH2)1-6—NH—C(O)—, wherein the subscript values following each methylene indicate the number of methylenes contained in the structure, e.g., (CH2)1-6 means that the structure can contain 1, 2, 3, 4, 5 or 6 methylenes. Additionally, any of the above spacer moieties may further include an ethylene oxide oligomer chain comprising 1 to 20 ethylene oxide monomer units [i.e., —(CH2CH2O)1-20]. That is, the ethylene oxide oligomer chain can occur before or after the spacer moiety, and optionally in between any two atoms of a spacer moiety comprised of two or more atoms. Also, the oligomer chain would not be considered part of the spacer moiety if the oligomer is adjacent to a polymer segment and merely represent an extension of the polymer segment.
  • As indicated above, in some instances the water-soluble polymer-(CD-NP) conjugate will include a non-linear water-soluble polymer. Such a non-linear water-soluble polymer encompasses a branched water-soluble polymer (although other non linear water-soluble polymers are also contemplated). Thus, in one or more embodiments of the invention, the conjugate comprises a CD-NP peptide covalently attached, either directly or through a spacer moiety comprised of one or more atoms, to a branched water-soluble polymer, at in a non-limiting example, an internal or N-terminal amine. As used herein, an internal amine is an amine that is not part of the N-terminal amino acid (meaning not only the N-terminal amine, but any amine on the side chain of the N-terminal amino acid).
  • Although such conjugates include a branched water-soluble polymer attached (either directly or through a spacer moiety) to a CD-NP peptide at an internal amino acid of the CD-NP peptide, additional branched water-soluble polymers can also be attached to the same CD-NP peptide at other locations as well. Thus, for example, a conjugate including a branched water-soluble polymer attached (either directly or through a spacer moiety) to a CD-NP peptide at an internal amino acid of the CD-NP peptide, can further include an additional branched water-soluble polymer covalently attached, either directly or through a spacer moiety comprised of one or more atoms, to the N-terminal amino acid residue, such as at the N-terminal amine.
  • One preferred branched water-soluble polymer comprises the following structure:
  • Figure US20110206633A1-20110825-C00169
  • wherein each (n) is independently an integer having a value of from 3 to 4000, or more preferably, from about 10 to 1800.
  • Also forming part of the invention are multi-armed polymer conjugates comprising a polymer scaffold having 3 or more polymer arms each suitable for capable of covalent attachment of a CD-NP peptide.
  • Exemplary conjugates in accordance with this embodiment of the invention will generally comprise the following structure:
  • Figure US20110206633A1-20110825-C00170
  • wherein R is a core molecule as previously described, POLY is a water-soluble polymer, X is a cleavable, e.g., hydrolyzable linkage, and y ranges from about 3 to 15.
  • More particularly, such a conjugate may comprise the structure:
  • Figure US20110206633A1-20110825-C00171
  • where m is selected from 3, 4, 5, 6, 7, and 8.
  • In yet a related embodiment, the CD-NP peptide conjugate may correspond to the structure:
  • Figure US20110206633A1-20110825-C00172
  • where R is a core molecule as previously described, X is —NH—P-Z-C(O)P is a spacer, Z is —O—, —NH—, or —CH2—, —O-CD-NP is a hydroxyl residue of a CD-NP peptide, and y is 3 to 15. Preferably, X is a residue of an amino acid.
  • Purification
  • The CD-NP peptide polymer conjugates described herein can be purified to obtain/isolate different conjugate species. Specifically, a product mixture can be purified to obtain an average of anywhere from one, two, or three or even more PEGs per CD-NP peptide. In one embodiment of the invention, preferred CD-NP peptide conjugates are mono-conjugates. The strategy for purification of the final conjugate reaction mixture will depend upon a number of factors, including, for example, the molecular weight of the polymeric reagent employed, the CD-NP peptide, and the desired characteristics of the product—e.g., monomer, dimer, particular positional isomers, etc.
  • If desired, conjugates having different molecular weights can be isolated using gel filtration chromatography and/or ion exchange chromatography. Gel filtration chromatography may be used to fractionate different CD-NP peptide conjugates (e.g., 1-mer, 2-mer, 3-mer, and so forth, wherein “1-mer” indicates one polymer molecule per CD-NP peptide, “2-mer” indicates two polymers attached to CD-NP peptide, and so on) on the basis of their differing molecular weights (where the difference corresponds essentially to the average molecular weight of the water-soluble polymer). While this approach can be used to separate PEG and other CD-NP peptide polymer conjugates having different molecular weights, this approach is generally ineffective for separating positional isomers having different polymer attachment sites within the CD-NP peptide. For example, gel filtration chromatography can be used to separate from each other mixtures of PEG 1-mers, 2-mers, 3-mers, and so forth, although each of the recovered PEG-mer compositions may contain PEGs attached to different reactive amino groups (e.g., lysine residues) or other functional groups of the CD-NP peptide.
  • Gel filtration columns suitable for carrying out this type of separation include Superdex™ and Sephadex™ columns available from Amersham Biosciences (Piscataway, N.J.). Selection of a particular column will depend upon the desired fractionation range desired. Elution is generally carried out using a suitable buffer, such as phosphate, acetate, or the like. The collected fractions may be analyzed by a number of different methods, for example, (i) optical density (OD) at 280 nm for protein content, (ii) bovine serum albumin (BSA) protein analysis, (iii) iodine testing for PEG content (Sims et al. (1980) Anal. Biochem, 107:60-63), and (iv) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE), followed by staining with barium iodide.
  • Separation of positional isomers is typically carried out by reverse phase chromatography using a reverse phase-high performance liquid chromatography (RP-HPLC) C18 column (Amersham Biosciences or Vydac) or by ion exchange chromatography using an ion exchange column, e.g., a DEAE- or CM-Sepharose™ ion exchange column available from Amersham Biosciences. Either approach can be used to separate polymer-CD-NP peptide isomers having the same molecular weight (positional isomers).
  • The resulting purified compositions are preferably substantially free of the non-conjugated CD-NP peptide. In addition, the compositions preferably are substantially free of all other non-covalently attached water-soluble polymers.
  • Compositions Compositions of Conjugate Isomers
  • Also provided herein are compositions comprising one or more of the CD-NP peptide polymer conjugates described herein. In certain instances, the composition will comprise a plurality of CD-NP peptide polymer conjugates. For instance, such a composition may comprise a mixture of CD-NP peptide polymer conjugates having one, two, three and/or even four water-soluble polymer molecules covalently attached to sites on the CD-NP peptide. That is to say, a composition of the invention may comprise a mixture of monomer, dimer, and possibly even trimer or 4-mer. Alternatively, the composition may possess only mono-conjugates, or only di-conjugates, etc. A mono-conjugate CD-NP peptide composition will typically comprise CD-NP peptide moieties having only a single polymer covalently attached thereto, e.g., preferably releasably attached. A mono-conjugate composition may comprise only a single positional isomer, or may comprise a mixture of different positional isomers having polymer covalently attached to different sites within the CD-NP peptide.
  • In yet another embodiment, a CD-NP peptide conjugate may possess multiple CD-NP peptides covalently attached to a single multi-armed polymer having 3 or more polymer arms. Typically, the CD-NP peptide moieties are each attached at the same CD-NP peptide amino acid site, e.g., the N-terminus.
  • With respect to the conjugates in the composition, the composition will typically satisfy one or more of the following characteristics: at least about 85% of the conjugates in the composition will have from one to four polymers attached to the CD-NP peptide; at least about 85% of the conjugates in the composition will have from one to three polymers attached to the CD-NP peptide; at least about 85% of the conjugates in the composition will have from one to two polymers attached to the CD-NP peptide; or at least about 85% of the conjugates in the composition will have one polymer attached to the CD-NP peptide (e.g., be monoPEGylated); at least about 95% of the conjugates in the composition will have from one to four polymers attached to the CD-NP peptide; at least about 95% of the conjugates in the composition will have from one to three polymers attached to the CD-NP peptide; at least about 95% of the conjugates in the composition will have from one to two polymers attached to the CD-NP peptide; at least about 95% of the conjugates in the composition will have one polymers attached to the CD-NP peptide; at least about 99% of the conjugates in the composition will have from one to four polymers attached to the CD-NP peptide; at least about 99% of the conjugates in the composition will have from one to three polymers attached to the CD-NP peptide; at least about 99% of the conjugates in the composition will have from one to two polymers attached to the CD-NP peptide; and at least about 99% of the conjugates in the composition will have one polymer attached to the CD-NP peptide (e.g., be monoPEGylated).
  • In one or more embodiments, the conjugate-containing composition is free or substantially free of albumin.
  • In one or more embodiments of the invention, a pharmaceutical composition is provided comprising a conjugate comprising a CD-NP peptide covalently attached, e.g., releasably, to a water-soluble polymer, wherein the water-soluble polymer has a weight-average molecular weight of greater than about 2,000 Daltons; and a pharmaceutically acceptable excipient.
  • Control of the desired number of polymers for covalent attachment to CD-NP peptide is achieved by selecting the proper polymeric reagent, the ratio of polymeric reagent to the CD-NP peptide, temperature, pH conditions, and other aspects of the conjugation reaction. In addition, reduction or elimination of the undesired conjugates (e.g., those conjugates having four or more attached polymers) can be achieved through purification mean as previously described.
  • For example, the water-soluble polymer-(CD-NP peptide) conjugates can be purified to obtain/isolate different conjugated species. Specifically, the product mixture can be purified to obtain an average of anywhere from one, two, three, or four PEGs per CD-NP peptide, typically one, two or three PEGs per CD-NP peptide. In one or more embodiments, the product comprises one PEG per CD-NP peptide, where PEG is releasably (via hydrolysis) attached to PEG polymer, e.g., a branched or straight chain PEG polymer.
  • Pharmaceutical Compositions
  • Optionally, a CD-NP peptide conjugate composition of the invention will comprise, in addition to the CD-NP peptide conjugate, a pharmaceutically acceptable excipient. More specifically, the composition may further comprise excipients, solvents, stabilizers, membrane penetration enhancers, etc., depending upon the particular mode of administration and dosage form.
  • Pharmaceutical compositions of the invention encompass all types of formulations and in particular those that are suited for injection, e.g., powders or lyophilates that can be reconstituted as well as liquids, as well as for inhalation. Examples of suitable diluents for reconstituting solid compositions prior to injection include bacteriostatic endotoxin-free water for injection, dextrose 5% in water, phosphate-buffered saline, Ringer's solution, saline, sterile water, deionized water, and combinations thereof. With respect to liquid pharmaceutical compositions, solutions and suspensions are envisioned.
  • Exemplary pharmaceutically acceptable excipients include, without limitation, carbohydrates, inorganic salts, antimicrobial agents, antioxidants, surfactants, buffers, acids, bases, and combinations thereof.
  • Representative carbohydrates for use in the compositions of the present invention include sugars, derivatized sugars such as alditols, aldonic acids, esterified sugars, and sugar polymers. Exemplary carbohydrate excipients suitable for use in the present invention include, for example, monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like; disaccharides, such as lactose, sucrose, trehalose, cellobiose, and the like; polysaccharides, such as raffinose, melezitose, maltodextrins, dextrans, starches, and the like; and alditols, such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol), pyranosyl sorbitol, myoinositol and the like. Preferred, in particular for formulations intended for inhalation, are non-reducing sugars, sugars that can form a substantially dry amorphous or glassy phase when combined with the composition of the present invention, and sugars possessing relatively high glass transition temperatures, or Tgs (e.g., Tgs greater than 40° C., or greater than 50° C., or greater than 60° C., or greater than 70° C., or having Tgs of 80° C. and above). Such excipients may be considered glass-forming excipients.
  • Additional excipients include amino acids, peptides and particularly oligomers comprising 2-9 amino acids, or 2-5 mers, and polypeptides, all of which may be homo or hetero species.
  • Exemplary protein excipients include albumins such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, hemoglobin, and the like. The compositions may also include a buffer or a pH-adjusting agent, typically but not necessarily a salt prepared from an organic acid or base. Representative buffers include organic acid salts of citric acid, ascorbic acid, gluconic acid, carbonic acid, tartaric acid, succinic acid, acetic acid, or phthalic acid. Other suitable buffers include Tris, tromethamine hydrochloride, borate, glycerol phosphate, and phosphate. Amino acids such as glycine are also suitable.
  • The compositions of the present invention may also include one or more additional polymeric excipients/additives, e.g., polyvinylpyrrolidones, derivatized celluloses such as hydroxymethylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose, FICOLLs (a polymeric sugar), hydroxyethylstarch (HES), dextrates (e.g., cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin), polyethylene glycols, and pectin.
  • The compositions may further include flavoring agents, taste-masking agents, inorganic salts (e.g., sodium chloride), antimicrobial agents (e.g., benzalkonium chloride), sweeteners, antioxidants, antistatic agents, surfactants (e.g., polysorbates such as “TWEEN 20” and “TWEEN 80,” and pluronics such as F68 and F88, available from BASF), sorbitan esters, lipids (e.g., phospholipids such as lecithin and other phosphatidylcholines, phosphatidylethanolamines, although preferably not in liposomal form), fatty acids and fatty esters, steroids (e.g., cholesterol), and chelating agents (e.g., zinc and other such suitable cations). The use of certain di-substituted phosphatidylcholines for producing perforated microstructures (i.e., hollow, porous microspheres) may also be employed.
  • Other pharmaceutical excipients and/or additives suitable for use in the compositions according to the present invention are listed in “Remington: The Science & Practice of Pharmacy,” 21st ed., Williams & Williams, (2005), and in the “Physician's Desk Reference,” 60th ed., Medical Economics, Montvale, N.J. (2006).
  • The amount of the CD-NP peptide conjugate (i.e., the conjugate formed between the active agent and the polymeric reagent) in the composition will vary depending on a number of factors, but will optimally be a therapeutically effective amount when the composition is stored in a unit dose container (e.g., a vial). In addition, a pharmaceutical preparation, if in solution form, can be housed in a syringe. A therapeutically effective amount can be determined experimentally by repeated administration of increasing amounts of the conjugate in order to determine which amount produces a clinically desired endpoint.
  • The amount of any individual excipient in the composition will vary depending on the activity of the excipient and particular needs of the composition. Typically, the optimal amount of any individual excipient is determined through routine experimentation, i.e., by preparing compositions containing varying amounts of the excipient (ranging from low to high), examining the stability and other parameters, and then determining the range at which optimal performance is attained with no significant adverse effects.
  • Generally, however, the excipient or excipients will be present in the composition in an amount of about 1% to about 99% by weight, from about 5% to about 98% by weight, from about 15 to about 95% by weight of the excipient, or with concentrations less than 30% by weight. In general, a high concentration of the CD-NP peptide is desired in the final pharmaceutical formulation.
  • Combination of Actives
  • A composition of the invention may also comprise a mixture of water-soluble polymer-(CD-NP peptide) conjugates and unconjugated CD-NP peptide, to thereby provide a mixture of fast-acting and long-acting CD-NP peptide.
  • Additional pharmaceutical compositions in accordance with the invention include those comprising, in addition to an extended-action CD-NP peptide water-soluble polymer conjugate as described herein, a rapid acting CD-NP peptide polymer conjugate where the water-soluble polymer is releasably attached to a suitable location on the CD-NP peptide.
  • Administration
  • The CD-NP peptide conjugates of the invention can be administered by any of a number of routes including without limitation, oral, rectal, nasal, topical (including transdermal, aerosol, buccal and sublingual), vaginal, parenteral (including subcutaneous, intramuscular, intravenous and intradermal), intrathecal, and pulmonary. Preferred forms of administration include parenteral and pulmonary. Suitable formulation types for parenteral administration include ready-for-injection solutions, dry powders for combination with a solvent prior to use, suspensions ready for injection, dry insoluble compositions for combination with a vehicle prior to use, and emulsions and liquid concentrates for dilution prior to administration, among others.
  • In some embodiments of the invention, the compositions comprising the peptide-polymer conjugates may further be incorporated into a suitable delivery vehicle. Such delivery vehicles may provide controlled and/or continuous release of the conjugates and may also serve as a targeting moiety. Non-limiting examples of delivery vehicles include, adjuvants, synthetic adjuvants, microcapsules, microparticles, liposomes, and yeast cell wall particles. Yeast cells walls may be variously processed to selectively remove protein component, glucan, or mannan layers, and are referred to as whole glucan particles (WGP), yeast beta-glucan mannan particles (YGMP), yeast glucan particles (YGP), \Rhodotorula yeast cell particles (YCP). Yeast cells such as S. cerevisiae and Rhodotorula sp. are preferred; however, any yeast cell may be used. These yeast cells exhibit different properties in terms of hydrodynamic volume and also differ in the target organ where they may release their contents. The methods of manufacture and characterization of these particles are described in U.S. Pat. Nos. 5,741,495; 4,810,646; 4,992,540; 5,028,703; 5,607,677, and U.S. Patent Applications Nos. 2005/0281781, and 2008/0044438.
  • In one or more embodiments of the invention, a method is provided, the method comprising delivering a conjugate to a patient, the method comprising the step of administering to the patient a pharmaceutical composition comprising a CD-NP peptide polymer conjugate as provided herein. Administration can be effected by any of the routes herein described. The method may be used to treat a patient suffering from a condition that is responsive to treatment with CD-NP peptide by administering a therapeutically effective amount of the pharmaceutical composition.
  • As previously stated, the method of delivering a CD-NP peptide polymer conjugate as provided herein may be used to treat a patient having a condition that can be remedied or prevented by administration of CD-NP peptide.
  • Certain conjugates of the invention, e.g., releasable conjugates, include those effective to release the CD-NP peptide, e.g., by hydrolysis, over a period of several hours or even days (e.g., 2-7 days, 2-6 days, 3-6 days, 3-4 days) when evaluated in a suitable in-vivo model.
  • The actual dose of the CD-NP peptide conjugate to be administered will vary depending upon the age, weight, and general condition of the subject as well as the severity of the condition being treated, the judgment of the health care professional, and conjugate being administered. Therapeutically effective amounts are known to those skilled in the art and/or are described in the pertinent reference texts and literature. Generally, a conjugate of the invention will be delivered such that plasma levels of a CD-NP peptide are within a range of about 0.5 picomoles/liter to about 500 picomoles/liter. In certain embodiments the conjugate of the invention will be delivered such that plasma leves of a CD-NP peptide are within a range of about 1 picomoles/liter to about 400 picomoles/liter, a range of about 2.5 picomoles/liter to about 250 picomoles/liter, a range of about 5 picomoles/liter to about 200 picomoles/liter, or a range of about 10 picomoles/liter to about 100 picomoles/liter.
  • On a weight basis, a therapeutically effective dosage amount of a CD-NP peptide conjugate as described herein will range from about 0.01 mg per day to about 1000 mg per day for an adult. For example, dosages may range from about 0.1 mg per day to about 100 mg per day, or from about 1.0 mg per day to about 10 mg/day. On an activity basis, corresponding doses based on international units of activity can be calculated by one of ordinary skill in the art.
  • The unit dosage of any given conjugate (again, such as provided as part of a pharmaceutical composition) can be administered in a variety of dosing schedules depending on the judgment of the clinician, needs of the patient, and so forth. The specific dosing schedule will be known by those of ordinary skill in the art or can be determined experimentally using routine methods. Exemplary dosing schedules include, without limitation, administration five times a day, four times a day, three times a day, twice daily, once daily, three times weekly, twice weekly, once weekly, twice monthly, once monthly, and any combination thereof. Once the clinical endpoint has been achieved, dosing of the composition is halted.
  • It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, the foregoing description as well as the examples that follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.
  • All articles, books, patents and other publications referenced herein are hereby incorporated by reference in their entireties.
  • EXPERIMENTAL
  • The practice of the invention will employ, unless otherwise indicated, conventional techniques of organic synthesis and the like, which are within the skill of the art. Such techniques are fully explained in the literature. Reagents and materials are commercially available unless specifically stated to the contrary. See, for example, J. March, Advanced Organic Chemistry: Reactions Mechanisms and Structure, 4th Ed. (New York: Wiley-Interscience, 1992), supra.
  • In the following examples, efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.) but some experimental error and deviation should be accounted for. Unless indicated otherwise, temperature is in degrees C. and pressure is at or near atmospheric pressure at sea level.
  • Although other abbreviations known by one having ordinary skill in the art will be referenced, other reagents and materials will be used, and other methods known by one having ordinary skill in the art will be used, the following list and methods description is provided for the sake of convenience.
  • ABBREVIATIONS
    • mPEG-SPA mPEG-succinimidyl propionate
    • mPEG-SPC mPEG-succinimidyl phenyl carbonate
    • mPEG-SBA mPEG-succinimidyl butanoate
    • mPEG-OPSS mPEG-orthopyridyl-disulfide
    • mPEG-MAL mPEG-maleimide, CH3O—(CH2CH2O)n—CH2CH2-MAL
    • mPEG-SMB mPEG-succinimidyl α-methylbutanoate, CH3O—(CH2CH2O)n—CH2CH2—CH(CH3)—C(O)—O-succinimide
    • mPEG-ButyrALD H3O—(CH2CH2O)n—CH2CH2—O—C(O)—NH—(CH2CH2O)4—CH2CH2CH2C(O)H
    • mPEG-PIP CH3O—(CH2CH2O)n—CH2CH2—C(O)-piperidin-4-one
    • mPEG-CM CH3O—(CH2CH2O)n—CH2CH2—O—CH2—C(O)—OH)
    • anh. Anhydrous
    • CV column volume
    • Fmoc 9-fluorenylmethoxycarbonyl
    • NaCNBH3 sodium cyanoborohydride
    • HCl hydrochloric acid
    • HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
    • NMR nuclear magnetic resonance
    • DCC 1,3-dicyclohexylcarbodiimide
    • DMF dimethylformamide
    • DMSO dimethyl sulfoxide
    • DI deionized
    • MW molecular weight
    • K or kDa kilodaltons
    • SEC Size exclusion chromatography
    • HPLC high performance liquid chromatography
    • FPLC fast protein liquid chromatography
    • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
    • MALDI-TOF Matrix Assisted Laser Desorption Ionization Time-of-Flight
    • TLC Thin Layer Chromatography
    • THF Tetrahydrofuran
    Materials
  • All PEG reagents referred to in the appended examples are commercially available unless otherwise indicated.
  • mPEG Reagent Preparation
  • Typically, a water-soluble polymer reagent is used in the preparation of peptide conjugates of the invention. For purposes of the present invention, a water-soluble polymer reagent is a water-soluble polymer-containing compound having at least one functional group that can react with a functional group on a peptide (e.g., the N-terminus, the C-terminus, a functional group associated with the side chain of an amino acid located within the peptide) to create a covalent bond. Taking into account the known reactivity of the functional group(s) associated with the water-soluble polymer reagent, it is possible for one of ordinary skill in the art to determine whether a given water-soluble polymer reagent will form a covalent bond with the functional group(s) of a peptide.
  • Representative polymeric reagents and methods for conjugating such polymers to an active moiety are known in the art, and are, e.g., described in Harris, J. M. and Zalipsky, S., eds, Poly(ethylene glycol), Chemistry and Biological Applications, ACS, Washington, 1997; Veronese, F., and J. M Harris, eds., Peptide and Protein PEGylation, Advanced Drug Delivery Reviews, 54(4); 453-609 (2002); Zalipsky, S., et al., “Use of Functionalized Poly(Ethylene Glycols) for Modification of Polypeptides” in Polyethylene Glycol Chemistry: Biotechnical and Biomedical Applications, J. M. Harris, ed., Plenus Press, New York (1992); Zalipsky (1995) Advanced Drug Reviews 16:157-182, and in Roberts, et al., Adv. Drug Delivery Reviews, 54, 459-476 (2002).
  • Additional PEG reagents suitable for use in forming a conjugate of the invention, and methods of conjugation are described in Shearwater Corporation, Catalog 2001; Shearwater Polymers, Inc., Catalogs, 2000 and 1997-1998, and in Pasut. G., et al., Expert Opin. Ther. Patents (2004), 14(5). PEG reagents suitable for use in the present invention also include those available from NOF Corporation (Tokyo, Japan), as described generally on the NOF website (2006) under Products, High Purity PEGs and Activated PEGs. Products listed therein and their chemical structures are expressly incorporated herein by reference. Additional PEGs for use in forming a GLP-1 conjugate of the invention include those available from Polypure (Norway) and from QuantaBioDesign LTD (Powell, Ohio), where the contents of their online catalogs (2006) with respect to available PEG reagents are expressly incorporated herein by reference.
  • In addition, water-soluble polymer reagents useful for preparing peptide conjugates of the invention is prepared synthetically. Descriptions of the water-soluble polymer reagent synthesis can be found in, for example, U.S. Pat. Nos. 5,252,714, 5,650,234, 5,739,208, 5,932,462, 5,629,384, 5,672,662, 5,990,237, 6,448,369, 6,362,254, 6,495,659, 6,413,507, 6,376,604, 6,348,558, 6,602,498, and 7,026,440.
  • Example CD-NP1 CD-NP-mPEG Conjugates
  • a) mPEG-Nter-CD-NP via mPEG-SPC
  • CD-NP is prepared and purified according to standard automated peptide synthesis or recombinant techniques known to those skilled in the art. An illustrative polymeric reagent, mPEG-SPC reagent,
  • Figure US20110206633A1-20110825-C00173
  • is covalently attached to the N-terminus of CD-NP, to provide a Nter-conjugate form of the peptide. mPEG-SPC 20 kDa, stored at −20° C. under argon, is warmed to ambient temperature. The reaction is performed at room temperature. About 3-5-fold molar excess of mPEG-SPC 20 kDa reagent is used based upon absolute peptide content. The mPEG-SPC reagent is weighed into a glass vial containing a magnetic stirrer bar. A solution of CD-NP prepared in phosphate buffered saline, PBS, pH 7.4 is added and the mixture is stirred using a magnetic stirrer until the mPEG-SPC is fully dissolved. The stirring speed is reduced and the reaction is allowed to proceed to formation of conjugate product. The reaction is optionally quenched to terminate the reaction. The pH of the conjugate solution at the end of the reaction is measured and further acidified by addition of 0.1 M HCl, if necessary, to bring the pH of the final solution to about 5.5. The conjugate solution is then analyzed by SDS-PAGE and RP-HPLC(C18) to determine the extent of mPEG-Nter-CD-NP conjugate formation.
  • Using this same approach, other conjugates are prepared using mPEG derivatives having other weight-average molecular weights that also bear an N-hydroxysuccinimide moiety.
  • b) CD-NP-Cter-mPEG
  • An illustrative polymeric reagent, mPEG-NH2 reagent is covalently attached to the C-terminus of CD-NP, to provide a Cter-conjugate form of the peptide. For coupling to the C-terminus, a protected CD-NP (Prot-CD-NP) is prepared and purified according to standard automated peptide synthesis techniques known to those skilled in the art. mPEG-NH2 20 kDa, stored at −20° C. under argon, is warmed to ambient temperature. The reaction is performed at room temperature. About 5-fold molar excess of mPEG-NH2, PyBOP (benzotriazol-1-yloxy)tripyrrolidinonophosphonium hexafluorophosphate), and 1-hydroxybenzotriazole (HOBt) are used, based upon absolute peptide content. The mPEG-NH2, PyBOP, HOBt are weighed into a glass vial containing a magnetic stirrer bar. A solution of Prot-CD-NP is prepared in N,N-dimethylformamide is added and the mixture is stirred using a magnetic stirrer until the mPEG-NH2 is fully dissolved. The stirring speed is reduced and the reaction is allowed to proceed to formation of conjugate product. The conjugate solution is then analyzed by SDS-PAGE and RP-HPLC(C18) to determine the extent of Prot-CD-NP-dter-mPEG conjugate formation. The remaining protecting groups are removed under standard deprotection conditions to yield the CD-NP-Cter-mPEG conjugate.
  • Using this same approach, other conjugates are prepared using mPEG derivatives having other weight-average molecular weights that also bear an amino moiety.
  • c) CD-NP-Cys(S-mPEG)
  • mPEG-Maleimide is obtained having a molecular weight of 5 kDa and having the basic structure shown below:
  • Figure US20110206633A1-20110825-C00174
  • CD-NP, which has a thiol-containing cysteine residue, is dissolved in buffer. To this peptide solution is added a 3-5 fold molar excess of mPEG-MAL, 5 kDa. The mixture is stirred at room temperature under an inert atmosphere for several hours. Analysis of the reaction mixture reveals successful conjugation of this peptide.
  • Using this same approach, other conjugates are prepared using mPEG-MAL having other weight average molecular weights.
  • d) mPEG-Nter-CD-NP via mPEG-SMB
  • An mPEG-N-Hydroxysuccinimide is obtained having a molecular weight of 5 kDa and having the basic structure shown below:
  • Figure US20110206633A1-20110825-C00175
  • (mPEG-Succinimidyl α-Methylbutanoate Derivative, 5 kDa (“mPEG-SMB”))
  • mPEG-SMB, 5 kDa, stored at −20° C. under argon, is warmed to ambient temperature. A five-fold excess (relative to the amount of the peptide) of the warmed mPEG-SMB is dissolved in buffer to form a 10% reagent solution. The 10% reagent solution is quickly added to the aliquot of a stock CD-NP solution and mixed well. After the addition of the mPEG-SMB, the pH of the reaction mixture is determined and adjusted to 6.7 to 6.8 using conventional techniques. To allow for coupling of the mPEG-SMB to the peptide via an amide linkage, the reaction solution is stirred for several hours (e.g., 5 hours) at room temperature in the dark or stirred overnight at 3-8° C. in a cold room, thereby resulting in a conjugate solution. The reaction is quenched with a 20-fold molar excess (with respect to the peptide) of Tris buffer.
  • Using this same approach, other conjugates are prepared using mPEG derivatives having other weight-average molecular weights that also bear an N-hydroxysuccinimide moiety.
  • e) CD-NP-G/u(O-mPEG)
  • An illustrative polymeric reagent, mPEG-NH2 reagent is covalently attached to the Glu residue of CD-NP, to provide a Glu-conjugate form of the peptide. For coupling to the Glu residue, a protected CD-NP (Prot-CD-NP) is prepared and purified according to standard automated peptide synthesis techniques known to those skilled in the art. Deprotection of the Glu(OBz) residue (H2/Pd) yields the free-Glu carboxylate for subsequent coupling. mPEG-NH2 20 kDa, stored at −20° C. under argon, is warmed to ambient temperature. The reaction is performed at room temperature. A 5-fold molar excess of mPEG-NH2, PyBOP (benzotriazol-1-yloxy)tripyrrolidinonophosphonium hexafluorophosphate), and 1-hydroxybenzotriazole (HOBt) are used, based upon absolute peptide content. The mPEG-NH2, PyBOP, HOBt are weighed into a glass vial containing a magnetic stirrer bar. A solution of Prot-CD-NP is prepared in N,N-dimethylformamide is added and the mixture is stirred using a magnetic stirrer until the mPEG-NH2 is fully dissolved. The stirring speed is reduced and the reaction is allowed to proceed to formation of conjugate product. The conjugate solution is then analyzed by SDS-PAGE and RP-HPLC (C18) to determine the extent of Prot-CD-NP-(Glu-O-mPEG) conjugate formation. The remaining protecting groups are removed under standard deprotection conditions to yield the CD-NP-G/u(O-mPEG) conjugate.
  • Using this same approach, other conjugates are prepared using mPEG derivatives having other weight-average molecular weights that also bear an amino moiety.
  • Example BNP2
  • PEGylation of BNP-32 with mPEG2-Butyr-ALD-40K
  • Figure US20110206633A1-20110825-C00176
  • A BNP-32 stock solution of 4 mg/mL peptide content was made in 20 mM Na-citrate buffer pH 4.5 in a sterile low-endotoxin polypropylene tube. This solution could be stored aseptically for at least 1 week at 4° C. Immediately before a PEGylation reaction was performed, a 100 mg/mL stock solution of mPEG-Butyr-ALD-40K was made in the same buffer. A 50 mg/mL solution of sodium-cyanoborohydride (Na-CNHBr) reducing reagent in Milli-Q water was also made immediately before use. A typical PEGylation reaction was carried out as follows: Peptide stock solution (3 mL) was transferred to an appropriate tube containing a magnetic stir-bar and 5.208 mL of the same buffer was added. While stirring, 3.672 mL of a 100 mg/mL solution of mPEG-Butyr-ALD 40K was added dropwise within 1 minute. The reaction was allowed to stir for 15 min after which 0.12 mL of a 50 mg/mL Na-CNHBr solution was added, and the reaction mixture allowed to stir overnight (16-18 h) at room temperature. The resultant reaction mixture contained 1 mg/mL peptide, 2.0 mol equivalents of PEG (with respect to peptide) and 10 mol equivalents of NaCNBr (with respect to PEG). The reaction rate analysis is shown in FIG. BNP2.1. The reaction yields were determined by reversed phase HPLC to be 80.4% mono-PEG conjugate (N-terminus directed), 8.9% di-PEG conjugate and 10.7% non-conjugated peptide.
  • The mono-PEGylated conjugate was purified from the reaction mixture by cation exchange chromatography using a Hi Trap SP Sepharose HP media (GE Healthcare). The linear flow rate of the column was 150 cm/h and the sample loading was 2.0 mg/mL of column bed volume (CV) with a column bed height of 10 cm. The buffers used for purification were: Buffer A: 10 mM NaPO4, pH 7.0 and Buffer B: Buffer A+0.5 M NaCl.
  • The PEGylation reaction mixture was diluted with 4 volumes of buffer A and the pH adjusted to 8.0. The column was equilibrated in buffer A. The diluted reaction mixture was loaded onto the column and unbound substances washed off the column with 3 column volumes of buffer A. The conjugated peptide was eluted from the column using a linear gradient of 0-100% B over 10 CV. A typical chromatogram is shown in FIG. BNP2.2. The purity of the conjugate was 99.5% (by RP-HPLC analysis, FIG. BNP2.3) and the mass (as determined by MALDI-TOF, FIG. BNP2.4) was within the expected range. The detection wavelength for preparative and analytical chromatography was 225 nm.
  • Samples were analyzed using reversed-phase HPLC. The mobile phases were A, 0.1% TFA in water and B, 0.05% TFA in acetonitrile. An Agilent Poroshell 300-SB-C8 (P/N 660750-906) column was used with a flow of 0.5 ml/min and column temperature of 50° C. The column was equilibrated in 10% B and conjugate separation was achieved using the gradient timetable shown in Table BNP2.1 below.
  • Time (min) % B
    0 10
    2 10
    5.5 45
    10.5 65
    10.6 95
    13.6 95
    13.7 10
    Post run 5 min
  • FIG. BNP2.1. PEGylation rate of BNP-32 with mPEG2-40 kDa Butyr-ALD. The reaction yields were 80.4% mono-PEG conjugate, 8.9% di-PEG conjugate and 10.7% remaining non-PEGylated peptide after 18 h reaction time. Yields were determined by RP-HPLC.
  • FIG. BNP2.2. Typical purification profile for the 40 kDa mPEG2-Butyr-ALD mono-PEG conjugate of BNP-32. The mono-PEGylated conjugate is indicated. The di-PEG conjugate eluted during the loading step.
  • FIG. BNP2.3. HPLC analysis of the 40 kDa mPEG2-Butyr-ALD mono-PEG conjugate of BNP-32. The mono- and di-PEGylated forms of BNP-32 are indicated. The peak at 8 min retention time was instrument related and not any product of interest.
  • FIG. BNP2.4. MALDI-TOF analysis of the 40 kDa mPEG2-Butyr-ALD mono-PEG conjugate of BNP-32. The detected mass of the major peak was 45138 Da, which was within the expected range for the mono-conjugate.
  • FIG. BNP2.5. SDS-PAGE (4-12% Bis-Tris-Nu-PAGE, Invitrogen) analysis of BNP-32 and purified [mono]-[mPEG2-Butyr-ALD-40K]-[BNP-32] conjugate. Lanes 1, 2 and 3 are 0.5, 1.0 and 2.0 μg of the non-PEGylated peptide respectively. Lanes 4, 5 and 6 are 0.5, 1.0 and 2.0 μg of the purified mono-PEG-conjugate, respectively.
  • Example BNP3 Site Specific Acetylation of Brain Natriuretic Peptide (BNP-32)
  • Specific amine sites can be blocked by acetylation leaving other sites open for PEGylation. BNP-32 is composed of 32 amino acids with a single disulfide bond. The peptide contains 3 lysine residues and an N-terminus containing a free amine group. Previous PEGylation studies with BNP-32 indicate that all four amine groups are sterically accessible for reaction with PEG reagents. (Miller et al., Bioconjugate Chemistry 2006 March-April; 17(2):267-74). In the current study, the pKa difference between the N-terminal amine and the epsilon amines of the lysine residues was used to specifically acetylate the N-terminus, leaving the lysine amines available for PEGylation.
  • One milligram of BNP-32 was combined with 2 mol equivalents of acetic acid-NHS (previously dissolved in 2 mM HCl) in a total volume of 1 mL in 20 mM MES buffer at pH 6.0 and incubated at room temperature for 2 h. At this pH, one predominant acetylated product was formed based on RP-HPLC analysis. Based on accepted chemical principles known to those skilled in the art, at pH 6.0 the N-terminal amine group is more reactive than the epsilon amines and acetylation would occur predominantly at this position. Also, at lower pH, all amines are less reactive while at higher pH all amines are more reactive. The reaction above was also performed at other pH levels: At pH 4.5 (20 mM citrate buffer) there was significantly lower acetylation for all amine groups, while at pH 7.5 (20 mM HEPES buffer) and pH 9.0 (20 mM boric acid buffer), all amine groups were more reactive and significant acetylation occurred at all four sites as assed by RP-HPLC. Site specificity of the purified reaction products may also be confirmed using methods known to the art such as peptide mapping.
  • The predominant acetylated product from the reaction performed at pH 6.0 can be purified by standard chromatographic methods. The acetylated peptide can then be PEGylated using any of the reagents that are specific for amine reactive groups and standard methods known to the art, again followed by standard chromatographic methods to purify the conjugate of interest.
  • Example BNP4
  • PEGylation of BNP-32 with [mPEG-Butyr-ALD-10K]
  • Figure US20110206633A1-20110825-C00177
  • A BNP-32 stock solution of 4 mg/mL peptide content was made in 20 mM sodium-citrate buffer pH 4.5 in a sterile low-endotoxin polypropylene tube. This solution could be stored aseptically for at least 1 week at 4° C. Immediately before a PEGylation reaction was performed, a 100 mg/mL stock solution of [mPEG-Butyr-ALD-10K] was made in the same buffer used to dissolve the peptide. A 50 mg/mL solution of sodium-cyanoborohydride (Na-CNHBr) reducing reagent in Milli-Q water was also made immediately before use. A typical PEGylation reaction was carried out as follows: Peptide stock solution (3 mL, 12 mg) was transferred to an appropriate tube containing a magnetic stir-bar and 8.11 mL of 20 mM sodium-citrate buffer pH 4.5 was added. While stirring, 0.77 mL of a 100 mg/mL solution of mPEG-Butyr-ALD 10K was added drop wise within 1 minute. The reaction was allowed to stir for 15 mM after which 0.12 mL of a 50 mg/mL Na-CNHBr solution was added, and the reaction mixture allowed to stir overnight (16-18 h) at room temperature. The resultant reaction mixture contained 1 mg/mL peptide, 2.0 mol equivalents of PEG (with respect to peptide) and 10 mol equivalents of NaCNBr (with respect to PEG). The reaction yields were determined by reversed phase HPLC to be 76% mono-PEG conjugate (N-terminus directed), 10.6% di- and tri-PEG conjugate and 13.4% non-conjugated peptide. This PEG reagent forms stable bonds with amine groups.
  • The mono-PEGylated conjugate was purified from the reaction mixture by cation exchange chromatography using Hi Trap SP Sepharose HP media (GE Healthcare). The linear flow rate of the column was 150 cm/h and the sample loading was 2.0 mg/mL of column bed volume (CV) with a column bed height of 10 cm. The buffers used for purification were: Buffer A: 10 mM NaPO4, pH 7.0 and Buffer B: Buffer A+0.5 M NaCl. The PEGylation reaction mixture was diluted with 4 volumes of buffer A and the pH adjusted to 8.0 with 0.1 M sodium hydroxide. The column was equilibrated in buffer A. The diluted reaction mixture was loaded onto the column and unbound substances washed off the column with 3 column volumes of buffer A. The conjugated peptide was eluted from the column using a linear gradient of 0-100% B over 10 CV. The detection wavelength for preparative and analytical chromatography was 225 nm.
  • Fractions collected during cation exchange chromatography were analyzed using reversed-phase HPLC. The mobile phases were: A, 0.1% TFA in water and B, 0.05% TFA in acetonitrile. An Agilent Poroshell 300-SB-C8 (P/N 660750-906) column was used with a flow of 0.5 ml/min and column temperature of 50° C. The column was equilibrated in 10% B and conjugate separation was achieved using the gradient timetable shown in Table 2.1.
  • Time (min) % B
    0 10
    2 10
    5.5 45
    10.5 65
    10.6 95
    13.6 95
    13.7 10
    Post run 5 min
  • Fractions containing pure [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32] as determined by RP-HPLC were pooled and stored in aliquots at −80° C. as the purified conjugate.
  • A typical cation-exchange chromatogram is shown in FIG. BNP4.1. SDS-PAGE analysis of BNP-32 and purified [mono]-[mPEG2-Butyr-ALD-10K]-[BNP-32] conjugate is shown in FIG. BNP4.2. RP-HPLC analysis of the purified conjugate is shown in FIG. BNP4.3, and MALDI-TOF analysis of the purified conjugate is shown in FIG. BNP4.4. The purity of the mono-PEG-conjugate was 98% by SDS-PAGE analysis and 98.4% by RP-HPLC analysis with 1.6% of di-PEG-conjugate. The mass as determined by MALDI-TOF was within the expected range.
  • FIG. BNP4.1. Typical cation-exchange purification profile of [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32]. The PEGylated conjugates and the free peptide peaks are indicated.
  • FIG. BNP4.2. SDS-PAGE (4-12% Bis-Tris-Nu-PAGE, Invitrogen) analysis of BNP-32 and the purified [mono]-[mPEG2-Butyr-ALD-40K]-[BNP-32] conjugate. Lane 1: BNP-32 peptide only (1 μg); Lanes 2, 3 and 4 are 0.5, 1.0 and 2.0 mg of the purified mono-PEG-conjugate, respectively.
  • FIG. BNP4.3. RP-HPLC analysis of the purified [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32] conjugate. The peaks at 7.851 and 8.396 min contain the mono-PEG and di-PEG conjugates, respectively.
  • FIG. BNP4.4. MALDI-TOF analysis of the purified [mono]-[mPEG-Butyr-ALD-10K]-[BNP-32] conjugate. The detected mass of the major peak was 14568 Da, which was within the expected range for the mono-PEG conjugate. The peak at 7232 Da represents the doubly charged conjugate.
  • Example BNP5 PEGylation of BNP-32 with Releasable [mPEG-SBC-30K]
  • Figure US20110206633A1-20110825-C00178
  • A BNP-32 stock solution of 4 mg/mL peptide content was made in 20 mM MES buffer pH 6.0 in a sterile low-endotoxin polypropylene tube. This solution could be stored aseptically for at least 1 week at 4° C.
  • A typical PEGylation reaction was carried out as follows: [mPEG-SBC-30K] PEG reagent (1220 mg) was weighed-out in an appropriate tube and dissolved with stirring in 9 ml of the same buffer used to dissolve the peptide. After the PEG had dissolved and with stirring, 3.0 mL of the peptide solution was added. The reaction was allowed to stir for 10 min at room temperature. The resultant reaction mixture contained 1 mg/mL peptide and 8.0 mol equivalents of PEG. After the incubation period, 1/9 volume of a 1 M glycine solution (in the same buffer) was added to quench the reaction. After a further 60 min of stirring at room temperature, 1 volume of 0.2 M acetic acid was added to stabilize the conjugate and the reaction mixture was stored at −20° C. The reaction yielded >80% mono-PEG conjugate. The mPEG SBC reagent forms hydrolysable bonds with amine groups and upon hydrolysis, leaves the peptide modified (tagged).
  • The mono-PEGylated conjugate was purified from the reaction mixture by cation exchange chromatography using Hi Trap SP Sepharose HP media (GE Healthcare). The linear flow rate of the column was 150 cm/h and the sample loading was 2.0 mg/mL of column bed volume (CV) with a column bed height of 10 cm. The buffers used for purification were: Buffer A: 10 mM NaPO4, pH 7.0 and Buffer B: Buffer A+0.5 M NaCl. The PEGylation reaction mixture was diluted with 4 volumes of buffer A and the pH adjusted to 8.0 with 0.1 M sodium hydroxide. The column was equilibrated in buffer A. The diluted reaction mixture was loaded onto the column and unbound substances washed off the column with 3 column volumes of buffer A. The conjugated peptide was eluted from the column using a linear gradient of 0-100% B over 10 CV. The pooled mono-PEGylated fraction was diluted with 4 volumes of buffer A and the purification step repeated. The detection wavelength for preparative and analytical chromatography was 225 nm.
  • Fractions collected during cation exchange chromatography were analyzed using reversed-phase HPLC. The mobile phases were A, 0.1% TFA in water and B, 0.05% TFA in acetonitrile. An Agilent Zorbax 5 μm 300-SB-C18, 4.5×50 mm (P/N 860950-902) column was used with a flow of 1.0 ml/min and column temperature of 60° C. The column was equilibrated in 10% B and conjugate separation was achieved using the gradient timetable shown in Table BNP5.1 below.
  • Time (min) % B
    0 10
    2 10
    4 30
    8 34
    10.2 56
    16.2 62
    16.3 90
    17.0 90
    17.01 10
    Post run 5 min
  • Fractions containing pure [mono]-[mPEG-SBC-30K]-[BNP-32] from the repeat cation-eschange chromatography as determined by RP-HPLC were pooled and stored in aliquots at −80° C. as the purified conjugate.
  • A typical cation-exchange purification chromatogram is shown in FIG. BNP5.1. SDS-PAGE analysis of purified [mono]-[mPEG-SBC-30K]-[BNP-32] is shown in FIG. BNP5.2. RP-HPLC analysis of the purified conjugate is shown in FIG. BNP5.3, and MALDI-TOF analysis of the purified product is shown in FIG. BNP5.4. The purity of the mono-PEG-conjugate was 95.8% by RP-HPLC analysis with 4.2% di-PEG conjugate also present. The mass as determined by MALDI-TOF was within the expected range.
  • FIG. BNP5.1. Typical first cation-exchange purification profile for [mono]-[mPEG-SBC-30K]-[BNP-32]. The mono- and di-PEGylated conjugates are indicated. The free peptide eluted in two peaks. On release, this PEG reagent leaves a modified (tagged) peptide. Peak 1 and peak 2 contain modified and unmodified peptide, respectively.
  • FIG. BNP5.2. SDS-PAGE (4-12% Bis-Tris-Nu-PAGE, Invitrogen) analysis of the purified [mono]-[mPEG-SBC-30K]-[BNP-32] conjugate. Lanes 1, 2 and 3 are 0.7, 1.4 and 2.1 μg of the PEGylated peptide, respectively.
  • FIG. BNP5.3. RP-HPLC analysis of the purified [mono]-[mPEG-SBC-30K]-[BNP-32] conjugate. The peaks at 12.041 min and 12.726 retention times contain the mono-PEG and di-PEG conjugates, respectively.
  • FIG. BNP5.4. MALDI-TOF analysis of the purified [mono]-[mPEG-SBC-30K]-[BNP-32] conjugate. The detected mass of the major peak was 32580 Da, which was within the expected range for the mono-PEG-conjugate. The peak at 17444 Da represents the doubly charged conjugate.
  • Example BNP6 PEGylation of BNP-32 with [mPEG2-C2-fmoc-NHS-40K]
  • Figure US20110206633A1-20110825-C00179
  • A BNP-32 stock solution of 4 mg/mL peptide content was made in 20 mM MES buffer pH 5.8 in a sterile low-endotoxin polypropylene tube. This solution could be stored aseptically for at least 1 week at 4° C.
  • Immediately before a PEGylation reaction was performed, a 100 mg/mL stock solution of [mPEG2-C2-fmoc-NHS-40K] PEG reagent was made in the same buffer used to dissolve the peptide. A typical PEGylation reaction was carried out as follows: Peptide stock solution (6 mL, 24 mg) was transferred to an appropriate tube containing a magnetic stir-bar and 10.16 mL of 20 mM MES buffer pH 5.8 was added. While stirring, 7.84 mL of a 100 mg/mL PEG reagent solution was added. The resultant reaction mixture contained 1 mg/mL peptide and 2 mol equivalents of PEG. The reaction was allowed to stir for 90 min at room temperature after which a 1/9 volume of 0.2 M glycine solution (in 20 mM MES buffer pH 5.8) was added and the reaction mixture stirred for another 60 min to quench the reaction. These reaction conditions yielded approximately 60% mono-PEGylated peptide. This PEG reagent forms hydrolysable bonds with amine groups and upon hydrolysis, an unmodified peptide is generated. The reaction mixture was stored at 4° C.
  • The mono-PEGylated conjugate was purified from the reaction mixture by cation exchange chromatography using Hi Trap SP Sepharose HP media (GE Healthcare). The linear flow rate of the column was 150 cm/h and the sample loading was 1.0 mg/mL of column bed volume (CV) with a column bed height of 11 cm. The buffers used for purification were: Buffer A: 10 sodium-citrate, pH 4.0 and Buffer B: Buffer A+0.8 M NaCl. The PEGylation reaction mixture was diluted with 4 volumes of buffer A. The column was equilibrated in buffer A. The diluted reaction mixture was loaded onto the column and unbound substances washed off the column with 3 column volumes of buffer A. The conjugated peptides were eluted from the column using the following elution steps: (a) linear gradient of 0-4% B over 1 CV followed by a hold at 4% B for 4 CV; (b) linear gradient of 4-50% B over 5 CV followed by a hold at 50% B for 1 CV; (c) step gradient to 80% B followed by a hold at 80% B for 2 CV. The pooled mono-PEGylated fraction was diluted with 4 volumes of buffer A and the purification step repeated. The detection wavelength for preparative and analytical chromatography was 225 nm.
  • Fractions collected during cation exchange chromatography were analyzed using reversed-phase HPLC. The mobile phases were A, 0.1% TFA in water and B, 0.05% TFA in acetonitrile. An Agilent Zorbax XDB-C8, 5 μm, 4.5×150 min (P/N 993967-906) column was used with a flow of 0.5 ml/min and column temperature of 60° C. The column was equilibrated in 10% B and conjugate separation was achieved using the gradient timetable shown in Table BNP6.1 below.
  • Time (min) % B
    0 10
    4 10
    9 35
    10.5 50
    23 75
    24 95
    25 95
    25.2 10
    Post run 6 min
  • Fractions containing pure [mono]-[mPEG2-C2-fmoc-NHS-40K]-[BNP-32] from the repeat cation-exchange chromatography as determined by RP-HPLC were pooled and stored in aliquots at −80° C. as the purified conjugate.
  • A typical first cation-exchange purification chromatogram is shown in FIG. BNP6.1. SDS-PAGE analysis of purified [mono]-[mPEG2-C2-fmoc-NHS-40K]-[BNP-32] is shown in FIG. BNP6.2. RP-HPLC analysis of the purified conjugate is shown in FIG. BNP6.3, and MALDI-TOF analysis of the purified conjugate is shown in FIG. BNP6.4. The purity of the mono-PEG-conjugate was 100% by RP-HPLC analysis and >95% (by SDS-PAGE). The mass as determined by MALDI-TOF was within the expected range.
  • FIG. BNP6.1. Typical first cation-exchange purification profile of [mPEG2-C2-finoc-NHS-40K]. The mono-, di- and non-PEGylated (free peptide) elution peaks are indicated.
  • FIG. BNP6.2. SDS-PAGE (4-12% Bis-Tris-Nu-PAGE, Invitrogen) analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate. Lanes 1 and 2 are 1.0 and 2.0 μg of the PEGylated peptide, respectively. Low levels of hi-PEGylated forms are also visible.
  • FIG. BNP6.3. RP-HPLC analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate. FIG. BNP6.4. MALDI-TOF analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate.
  • FIG. BNP6.4. MALDI-TOF analysis of the purified [mPEG2-C2-fmoc-NHS-40K]-[BNP-32] conjugate. The detected mass of the major peak was 44725 Da, which was within the expected range for the mono-PEG-conjugate.
  • Example BNP7
  • Pharmacokinetic Studies
  • Thirty one (31) adult male Sprague-Dawley rats with indwelling jugular vein and carotid artery catheters (JVC/CAC) (Charles River Labs, Hollister, Calif.) were utilized for this study. The weight range of the animals was 315-358 grams. All animals were food fasted overnight. Prior to dosing, the rats were weighed, the tails and cage cards were labeled for identification and the doses were calculated. Anesthesia was induced and maintained with 3.0-5.0% isoflurane. The JVC and CAC were externalized and flushed with HEP/saline (10 IU/mL HEP/mL saline). The predose sample was collected from the JVC and the catheters were plugged, and labeled to identify the jugular vein and carotid artery. When all of the animals had recovered from anesthesia and the predose samples were processed, the animals were dosed, intravenously (IV) via the JVC using a 1 mL syringe containing the appropriate test article and the dead volume of the catheter was flushed with 0.9% saline to ensure the animals received the correct dose.
  • Following a single IV dose, blood samples were collected from groups 1A, 2A, 3A and 4A, at 0 (pre-dose collected as described above), 0.03, 0.33, 2.0, 6.0, 12.0 and 72.0 hours and from Groups 1B, 2B, 3B and 4B at 0 (pre-dose collected as described above), 0.17, 1.0, 4.0, 8.0, 24.0 and 48.0 hours via the carotid artery catheter and processed as stated in the protocol. Following the last collection point, the animals were euthanized.
  • Pharmacokinetic Analyses: Noncompartmental PK data analysis and report preparation was completed by Research Biology at Nektar Therapeutics (India) Pvt. Ltd. Hyderabad, A. P., India. Individual plasma concentration data are listed and summarized in Appendix A1.1-1.3. PK analysis was performed using WinNonlin (Version 5.2, Mountain View, Calif.-94014). Concentrations in plasma that were below LLOQ were replaced with zeros prior to generating Tables and PK analysis. In the event that more than half (>50%) of the data points were below zero, mean concentration will not be shown in the figures or used in PK parameters estimation. The following PK parameters were estimated using plasma concentration-time profile of each animal:
  • C0 Extrapolated concentration to time “zero”
    Cmax Maximum (peak) concentration
    AUCall Area under the concentration-time from zero to time of last concentration value
    T1/2(Z) Terminal elimination half-life
    AUCinf Area under the concentration-time from zero to time infinity
    Tmax Time to reach maximum or peak concentration following administration
    CL Total body clearance
    Vz Volume of distribution based on terminal phase
    Vss Volume of distribution at steady state
    MRTlast Mean residence time to last observable concentration
  • Releasable-PEG:
  • FIG. BNP7.1 shows the mean plasma concentration-time profiles of for C2-FMOC-PEG2-40K-BNP, its corresponding metabolite (free PEG) and released BNP. No measurable plasma concentrations observed after BNP administration and hence the data is not shown in FIG. BNP7.1. At first time point collection which was at 0.03 hr, concentration was <20 ng/mL in all the animals.
  • Table BNP7.1 summarizes the PK parameters of BNP following equivalent protein mass of 0.459 mg/kg administered intravenously into rats via C2-FMOC-PEG2-40K-BNP or BNP.
  • TABLE 1
    Comparative PK Parameters of BNP Released from C2-FMOC-PEG2-
    40K-BNP in BNP Given as Non-Conjugated Native Protein
    Cmax AUCINF Tmax MRTlast
    Test Article (ng/mL) (hr) (ng · hr/mL) (hr) (hr)
    BNP 0.00 NC NC NC NC
    C2-FMOC-PEG2- 55.4 1.25 162 0.33 1.84
    40K-BNP
    NC—Cannot be calculated.
  • FIG. BNP7.2 shows the non-released PEG-BNP levels after the administration of the two non-releasable PEG constructs (ButyrALD-40K-BNP, ButyrALD-10K-BNP). Table BNP7.2 summarizes the PK parameters of following equivalent protein mass of 0.459 mg/kg administered intravenously into rats.
  • TABLE BNP7.2
    Comparative PK Parameters of Test Articles (Non-Releasable-PEG
    Conjugates) versus Native BNP Following Equivalent Protein Mass
    Intravenous Administration to Sprague Dawley rats (Mean ± SD)
    Cmax AUCINF MRTlast CL Vss
    Test Compound (ng/mL) (hr) (ng · hr/mL) (hr) (mL/hr/kg) (mL/kg)
    BNP 0.00 NC NC NC NC NC
    ButyrALD-40K- 1410 26.1 41300 24.0 11.1 631
    BNP
    ButyrALD-10K- 355 0.272 96.6 0.368 4750 2270
    BNP
    NC—Cannot be calculated, there were no measurable plasma concentrations.
  • BNP concentrations were <LLOQ (LLOQ: 20 ng/mL) and therefore, no PK Parameters were reported.
  • BNP released from C2-FMOC-PEG2-40K-BNP reached peak concentrations of 55.4 ng/mL at 0.3 h and stayed above 20 ng/mL for 8 hr following C2-FMOC-PEG2-40K-BNP dosing. Half-life value for released BNP is 1.25 h following C2-FMOC-PEG2-40K-BNP IV bolus administration. Peak concentrations of 1300 ng/mL, a half-life of 15.0 hr and with plasma C2-FMOC-PEG2-40K-BNP concentrations remained above 100 ng/mL up to 24 h supported the prolonged release of BNP in plasma. The observed release of BNP from releasable-PEG C2-FMOC-PEG2-40K-BNP is consistent with the appearance of free PEG-metabolite (PEG-fulvene) which was also released from the conjugate. Binding to cell surface clearance receptors with internalization and degradation, proteolytic cleavage and renal filtration are the possible route of elimination for releasable C2-FMOC-PEG2-40K-BNP.
  • For the non-releasable PEG-constructs, ButyrALD-40K-BNP was observed to have longer half-life, lower clearance and higher exposure than ButyrALD-10K-BNP, probably due to increased PEG-length of the conjugate. No BNP was measurable in plasma following parent BNP administration.
  • Due to staggered sample collection, two very distinct concentration-time profiles were observed for two subgroups received ButyrALD-40K-BNP treatment. Therefore, the PK parameters estimated from the pooled data from the two subgroups to be interpreted with caution. ButyrALD-40K-BNP showed higher peak plasma concentration, approximately higher exposure and longer half-life than ButyrALD-10K-BNP when compared using pooled data.

Claims (26)

  1. 1. A conjugate comprising a residue of a CD-NP moiety covalently attached, either directly or through a spacer moiety of one or more atoms, to a water-soluble, non-peptidic polymer.
  2. 2. A conjugate of claim 1, wherein the polymer is a linear polymer.
  3. 3. A conjugate of claim 1, wherein the polymer is a branched polymer.
  4. 4. The conjugate of claim 1, wherein the CD-NP moiety is recombinantly prepared.
  5. 5. The conjugate of claim 1, wherein the CD-NP moiety is prepared by chemical synthesis.
  6. 6. The conjugate of claim 1, wherein the polymer is selected from the group consisting of poly(alkylene oxide), poly(vinyl pyrrolidone), poly(vinyl alcohol), polyoxazoline, and poly(acryloylmorpholine).
  7. 7. The conjugate of claim 6, wherein the polymer is a poly(alkylene oxide).
  8. 8. The conjugate of claim 7, wherein the poly(alkylene oxide) is a poly(ethylene glycol).
  9. 9. The conjugate of claim 8, wherein the poly(ethylene glycol) is terminally capped with an end-capping moiety selected from the group consisting of hydroxy, alkoxy, substituted alkoxy, alkenoxy, substituted alkenoxy, alkynoxy, substituted alkynoxy, aryloxy and substituted aryloxy.
  10. 10. The conjugate of claim 8, wherein the poly(ethylene glycol) has a weight-average molecular weight in a range of from about 500 Daltons to about 100,000 Daltons.
  11. 11. The conjugate of claim 10, wherein the poly(ethylene glycol) has a weight-average molecular weight in a range of from about 2000 Daltons to about 50,000 Daltons.
  12. 12. The conjugate of claim 11, wherein the poly(ethylene glycol) has a weight-average molecular weight in a range of from about 5000 Daltons to about 40,000 Daltons.
  13. 13. The conjugate of claim 1, wherein the water-soluble, non-peptidic polymer is conjugated at an amino-terminal amino acid of the CD-NP moiety.
  14. 14. The conjugate of claim 1, wherein the water-soluble, non-peptidic polymer is conjugated at a carboxy-terminal amino acid of the CD-NP moiety.
  15. 15. The conjugate of claim 1, wherein the water-soluble, non-peptidic polymer is conjugated at an internal cysteine amino acid of the CD-NP moiety.
  16. 16. The conjugate of claim 1, wherein the water-soluble, non-peptidic polymer is conjugated at an epsilon amino group of an internal lysine amino acid of the CD-NP moiety.
  17. 17.-19. (canceled)
  18. 20. The conjugate of claim 1, wherein the CD-NP residue is covalently attached through a spacer moiety of one or more atoms.
  19. 21. The conjugate of claim 20, wherein the spacer moiety includes an amine linkage.
  20. 22. The conjugate of claim 20, wherein the spacer moiety includes an amide linkage.
  21. 23. The conjugate of claim 20, wherein the spacer moiety includes a disulfide linkage.
  22. 24. The compound of claim 1, wherein the CD-NP residue is covalently attached via a stable linkage.
  23. 25. The compound of claim 1, wherein the CD-NP residue is covalently attached via a releasable linkage.
  24. 26. A pharmaceutical composition comprising a conjugate of claim 1 and a pharmaceutically acceptable excipient.
  25. 27. A method for making a conjugate of claim 1 comprising contacting, under conjugation conditions, a CD-NP moiety with a polymeric reagent bearing a functional group.
  26. 28. A method of treatment comprising administering a compound of claim 1 to a subject in need thereof.
US13119219 2008-09-19 2009-09-17 Polymer conjugates of cd-np peptides Abandoned US20110206633A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US19253308 true 2008-09-19 2008-09-19
US13119219 US20110206633A1 (en) 2008-09-19 2009-09-17 Polymer conjugates of cd-np peptides
PCT/US2009/005206 WO2010033217A1 (en) 2008-09-19 2009-09-17 Polymer conjugates of cd-np peptides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13119219 US20110206633A1 (en) 2008-09-19 2009-09-17 Polymer conjugates of cd-np peptides

Publications (1)

Publication Number Publication Date
US20110206633A1 true true US20110206633A1 (en) 2011-08-25

Family

ID=41278344

Family Applications (2)

Application Number Title Priority Date Filing Date
US13119219 Abandoned US20110206633A1 (en) 2008-09-19 2009-09-17 Polymer conjugates of cd-np peptides
US13119215 Active US8449872B2 (en) 2008-09-19 2009-09-17 Polymer conjugates of nesiritide peptides

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13119215 Active US8449872B2 (en) 2008-09-19 2009-09-17 Polymer conjugates of nesiritide peptides

Country Status (3)

Country Link
US (2) US20110206633A1 (en)
EP (2) EP2334335A1 (en)
WO (2) WO2010033217A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9616107B2 (en) 2011-02-25 2017-04-11 Capricor Therapeutics, Inc. Therapy for kidney disease and/or heart failure
US9623085B2 (en) 2011-09-02 2017-04-18 Capricor Therapeutics, Inc. Chimeric natriuretic peptide compositions and methods of preparation
US9682153B2 (en) 2008-09-19 2017-06-20 Nektar Therapeutics Polymer conjugates of therapeutic peptides

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170105550A (en) * 2015-01-09 2017-09-19 아센디스 파마 그로우쓰 디스오더스 에이/에스 Cnp prodrug
WO2017118698A1 (en) * 2016-01-08 2017-07-13 Ascendis Pharma Growth Disorders A/S Cnp prodrugs with carrier attachment at the ring moiety
CA3007987A1 (en) * 2016-01-08 2017-07-13 Ascendis Pharma Growth Disorders A/S Controlled-release cnp agonists with low npr-c binding
CA3008017A1 (en) * 2016-01-08 2017-07-13 Ascendis Pharma Growth Disorders A/S Controlled-release cnp agonists with reduced side-effects
WO2017118693A1 (en) * 2016-01-08 2017-07-13 Ascendis Pharma Growth Disorders A/S Cnp prodrugs with large carrier moieties
CA3007982A1 (en) * 2016-01-08 2017-07-13 Ascendis Pharma Growth Disorders A/S Controlled-release cnp agonists with low initial npr-b activity

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554101A (en) * 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
US4810646A (en) * 1984-11-28 1989-03-07 Massachusetts Institute Of Technology Glucan compositions and process for preparation thereof
US4868122A (en) * 1987-03-05 1989-09-19 Vogelbusch Gesellschaft M.B.H. Arrangement for growing permanent forms of microorganisms
US4992540A (en) * 1984-11-28 1991-02-12 Massachusetts Institute Of Technology Glucan composition and process for preparation thereof
US5028703A (en) * 1988-03-11 1991-07-02 Massachusetts Institute Of Technology Glucan composition and process for preparation thereof
US5049656A (en) * 1988-12-21 1991-09-17 Board Of Regents Of The University Of Nebraska Sequential peptide and oligonucleotide syntheses using immunoaffinity techniques
US5252714A (en) * 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US5256549A (en) * 1986-03-28 1993-10-26 Chiron Corporation Purification of synthetic oligomers
US5440013A (en) * 1991-02-07 1995-08-08 The Board Of Trustees Of The University Of Illinois Conformationally restricted mimetics of beta turns and beta bulges and peptides containing the same
US5446128A (en) * 1993-06-18 1995-08-29 The Board Of Trustees Of The University Of Illinois Alpha-helix mimetics and methods relating thereto
US5475085A (en) * 1991-02-07 1995-12-12 Molecumetics, Ltd. Conformationally restricted mimetics of beta turns and beta bulges and peptides containing the same
US5521184A (en) * 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
US5607677A (en) * 1989-06-15 1997-03-04 Alpha-Beta Technology, Inc. Glucan drug delivery system and adjuvant
US5612460A (en) * 1989-04-19 1997-03-18 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5629384A (en) * 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5650234A (en) * 1994-09-09 1997-07-22 Surface Engineering Technologies, Division Of Innerdyne, Inc. Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces
WO2001044284A2 (en) * 1999-12-17 2001-06-21 Mayo Foundation For Medical Education And Research Chimeric natriuretic peptides
WO2005116655A2 (en) * 2004-05-26 2005-12-08 Nobex Corporation Natriuretic compounds, conjugates, and uses thereof
US20060293499A1 (en) * 2005-06-16 2006-12-28 Bentley Michael D Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates
WO2009015011A1 (en) * 2007-07-20 2009-01-29 Mayo Foundation For Medical Education And Research Natriuretic polypeptides

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69026306D1 (en) 1989-05-27 1996-05-09 Sumitomo Pharma A process for the production of polyethylene glycol derivatives and modified proteins.
US5880131A (en) 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
US5840900A (en) 1993-10-20 1998-11-24 Enzon, Inc. High molecular weight polymer-based prodrugs
US5470949A (en) 1992-12-15 1995-11-28 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method for making amino acid glycosides and glycopeptides
WO1995000162A1 (en) 1993-06-21 1995-01-05 Enzon, Inc. Site specific synthesis of conjugated peptides
US5446090A (en) 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5929237A (en) 1995-10-27 1999-07-27 Molecumetics Ltd. Reverse-turn mimetics and methods relating thereto
US5840833A (en) 1995-10-27 1998-11-24 Molecumetics, Ltd Alpha-helix mimetics and methods relating thereto
US6214966B1 (en) 1996-09-26 2001-04-10 Shearwater Corporation Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution
US5990237A (en) 1997-05-21 1999-11-23 Shearwater Polymers, Inc. Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines
US6448369B1 (en) 1997-11-06 2002-09-10 Shearwater Corporation Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation
JP4078032B2 (en) 1998-03-12 2008-04-23 ネクター セラピューティックス エイエル,コーポレイション Poly with proximal reactive groups (ethylene glycol) derivative
US6376470B1 (en) 1999-09-23 2002-04-23 Enzon, Inc. Polymer conjugates of ara-C and ara-C derivatives
US6348558B1 (en) 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
DK1259563T4 (en) 1999-12-22 2016-11-21 Nektar Therapeutics A process for preparing 1-benzotriazolylcarbonate esters of water-soluble polymers
EP1259562B1 (en) 1999-12-22 2006-02-15 Nektar Therapeutics Al, Corporation Sterically hindered derivatives of water soluble polymers
US6413507B1 (en) 1999-12-23 2002-07-02 Shearwater Corporation Hydrolytically degradable carbamate derivatives of poly (ethylene glycol)
US6602498B2 (en) 2000-02-22 2003-08-05 Shearwater Corporation N-maleimidyl polymer derivatives
US6858580B2 (en) 2001-06-04 2005-02-22 Nobex Corporation Mixtures of drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
KR100948532B1 (en) 2001-11-07 2010-03-23 넥타르 테라퓨틱스 Branched polymers and their conjugates
CN100558398C (en) 2002-11-26 2009-11-11 拜奥康有限公司 Modified naturetic compounds, conjugates, and uses thereof
KR101207247B1 (en) 2003-01-06 2012-12-03 넥타르 테라퓨틱스 Thiol-selective water-soluble polymer derivatives
DK1620118T3 (en) 2003-04-08 2014-09-29 Yeda Res & Dev Reversible pegylated drugs
WO2005000360A3 (en) 2003-05-23 2005-07-28 Nektar Therapeutics Al Corp Peg derivatives having an amidocarbonate linkage
US20050074425A1 (en) 2003-07-02 2005-04-07 Polycord, Inc. Method for delivering polymerized therapeutic agent compositions and compositions thereof
US7635675B2 (en) 2003-08-13 2009-12-22 Biocon Limited Micro-particle fatty acid salt solid dosage formulations for therapeutic agents
ES2454666T3 (en) 2003-11-13 2014-04-11 Hanmi Science Co., Ltd. Fc fragment of IgG drug for a vehicle and method for preparation thereof
US8076288B2 (en) 2004-02-11 2011-12-13 Amylin Pharmaceuticals, Inc. Hybrid polypeptides having glucose lowering activity
JP2007530697A (en) 2004-03-29 2007-11-01 ジ・アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・ザ・ユニバーシティー・オブ・アリゾナ Amphiphilic glycopeptides
US7740861B2 (en) 2004-06-16 2010-06-22 University Of Massachusetts Drug delivery product and methods
DK2626368T3 (en) 2004-07-19 2017-02-27 Biocon Ltd Insulin-oligomer conjugates, formulations and uses thereof
US20080207505A1 (en) * 2005-01-12 2008-08-28 James Kenneth D Bna Conjugates and Methods of Use
US8273339B2 (en) 2005-04-12 2012-09-25 Nektar Therapeutics Polymer-based compositions and conjugates of antimicrobial agents
ES2657628T3 (en) 2006-02-28 2018-03-06 Kodiak Sciences Inc. Polymer conjugates containing acriloiloxietilfosforilcolina and their preparation
WO2007109564A3 (en) 2006-03-17 2007-12-13 Univ Massachusetts Yeast cell particles as oral delivery vehicles for antigens
GB0622818D0 (en) 2006-11-15 2006-12-27 Jagotec Ag Improvements in or relating to organic compounds
CN101820920B (en) 2007-10-09 2014-08-06 宝力泰锐克斯有限公司 Novel conjugated proteins and peptides
EP2341942A1 (en) 2008-09-19 2011-07-13 Nektar Therapeutics Polymer conjugates of therapeutic peptides

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554101A (en) * 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
US4810646A (en) * 1984-11-28 1989-03-07 Massachusetts Institute Of Technology Glucan compositions and process for preparation thereof
US4992540A (en) * 1984-11-28 1991-02-12 Massachusetts Institute Of Technology Glucan composition and process for preparation thereof
US5256549A (en) * 1986-03-28 1993-10-26 Chiron Corporation Purification of synthetic oligomers
US4868122A (en) * 1987-03-05 1989-09-19 Vogelbusch Gesellschaft M.B.H. Arrangement for growing permanent forms of microorganisms
US5028703A (en) * 1988-03-11 1991-07-02 Massachusetts Institute Of Technology Glucan composition and process for preparation thereof
US5049656A (en) * 1988-12-21 1991-09-17 Board Of Regents Of The University Of Nebraska Sequential peptide and oligonucleotide syntheses using immunoaffinity techniques
US5221736A (en) * 1988-12-21 1993-06-22 Bionebraska, Inc. Sequential peptide and oligonucleotide syntheses using immunoaffinity techniques
US5612460A (en) * 1989-04-19 1997-03-18 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5607677A (en) * 1989-06-15 1997-03-04 Alpha-Beta Technology, Inc. Glucan drug delivery system and adjuvant
US5252714A (en) * 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US5670155A (en) * 1991-02-07 1997-09-23 Molecumetics, Ltd. Confomationally restricted mimetics of beta turns and beta bulges and peptides containing the same
US5440013A (en) * 1991-02-07 1995-08-08 The Board Of Trustees Of The University Of Illinois Conformationally restricted mimetics of beta turns and beta bulges and peptides containing the same
US5618914A (en) * 1991-02-07 1997-04-08 Molecumetics, Ltd. Conformationally restricted mimetics of beta turns and beta bulges and peptides containing the same
US5475085A (en) * 1991-02-07 1995-12-12 Molecumetics, Ltd. Conformationally restricted mimetics of beta turns and beta bulges and peptides containing the same
US5521184A (en) * 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
US5446128A (en) * 1993-06-18 1995-08-29 The Board Of Trustees Of The University Of Illinois Alpha-helix mimetics and methods relating thereto
US5629384A (en) * 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5650234A (en) * 1994-09-09 1997-07-22 Surface Engineering Technologies, Division Of Innerdyne, Inc. Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces
WO2001044284A2 (en) * 1999-12-17 2001-06-21 Mayo Foundation For Medical Education And Research Chimeric natriuretic peptides
WO2005116655A2 (en) * 2004-05-26 2005-12-08 Nobex Corporation Natriuretic compounds, conjugates, and uses thereof
US20060293499A1 (en) * 2005-06-16 2006-12-28 Bentley Michael D Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates
WO2009015011A1 (en) * 2007-07-20 2009-01-29 Mayo Foundation For Medical Education And Research Natriuretic polypeptides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682153B2 (en) 2008-09-19 2017-06-20 Nektar Therapeutics Polymer conjugates of therapeutic peptides
US9616107B2 (en) 2011-02-25 2017-04-11 Capricor Therapeutics, Inc. Therapy for kidney disease and/or heart failure
US9623085B2 (en) 2011-09-02 2017-04-18 Capricor Therapeutics, Inc. Chimeric natriuretic peptide compositions and methods of preparation

Also Published As

Publication number Publication date Type
WO2010033216A1 (en) 2010-03-25 application
EP2334334A1 (en) 2011-06-22 application
EP2334335A1 (en) 2011-06-22 application
WO2010033217A1 (en) 2010-03-25 application
US8449872B2 (en) 2013-05-28 grant
US20110165111A1 (en) 2011-07-07 application

Similar Documents

Publication Publication Date Title
US5438040A (en) Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US6872700B1 (en) Methods for glucagon suppression
US20050107297A1 (en) Novel poly(ethylene glycol) modified compounds and uses thereof
US20070244301A1 (en) Pegylated factor VIII
US6703381B1 (en) Methods for delivery therapeutic compounds across the blood-brain barrier
US20080234193A1 (en) Von Willebrand factor-and factor VIII-polymer conjugates having a releasable linkage
US20050226843A1 (en) Polymer-based compositions and conjuates of HIV entry inhibitors
US20060069029A1 (en) Exendin analog formulations
US20090076237A1 (en) Factor VIII Polymer Conjugates
US20030171285A1 (en) Chemically-modified human growth hormone conjugates
US20040203081A1 (en) Natriuretic compounds, conjugates, and uses thereof
US20040235734A1 (en) Polymer-factor VIII moiety conjugates
US20140141483A1 (en) Polymer factor ix moiety conjugates
US20040127417A1 (en) N-terminally monopegylated human growth hormone conjugates and process for their preparation
WO2003044056A2 (en) Chemically-modified human growth hormone conjugates
WO2006076471A2 (en) Bnp conjugates and methods of use
WO2008025528A1 (en) Method for the production of conjugates of insulin-like growth factor-i and poly(ethylene glycol)
US6869932B2 (en) Site-specific preparation of polyethlene glycol-GRF conjugates
US20130059360A1 (en) Polymer-based compositions and conjugates of antimicrobial agents
WO1994026778A1 (en) Conjugation-stabilized polypeptide compositions
US20100009904A1 (en) Modified Exedins and Uses Thereof
WO2004085471A2 (en) Glp-2 derivatives
US7683030B2 (en) Methods of treating diabetes with albumin-conjugated exendin peptides
WO2007048026A2 (en) Cgrp peptide antagonists and conjugates
US8293869B2 (en) Polymer conjugates of GLP-1

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEKTAR THERAPEUTICS, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSSARD, MARY J.;REEL/FRAME:023461/0819

Effective date: 20091022

AS Assignment

Owner name: NEKTAR THERAPEUTICS, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSSARD, MARY J.;REEL/FRAME:026879/0989

Effective date: 20110824

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATE

Free format text: GRANT OF SECURITY INTEREST;ASSIGNOR:NEKTAR THERAPEUTICS;REEL/FRAME:028571/0141

Effective date: 20120711

AS Assignment

Owner name: NEKTAR THERAPEUTICS, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL 28571, FRAME 0141;ASSIGNOR:WELLS FARGO BANK, NATIONALASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:036866/0700

Effective date: 20151005