US20110199940A1 - Method and device for establishing route - Google Patents

Method and device for establishing route Download PDF

Info

Publication number
US20110199940A1
US20110199940A1 US13/096,439 US201113096439A US2011199940A1 US 20110199940 A1 US20110199940 A1 US 20110199940A1 US 201113096439 A US201113096439 A US 201113096439A US 2011199940 A1 US2011199940 A1 US 2011199940A1
Authority
US
United States
Prior art keywords
node
level
group
node group
hss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/096,439
Inventor
Guangyu Shi
Hao Gong
Jian Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to US13/096,439 priority Critical patent/US20110199940A1/en
Publication of US20110199940A1 publication Critical patent/US20110199940A1/en
Priority to US13/252,824 priority patent/US8370465B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1044Group management mechanisms 
    • H04L67/1046Joining mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1061Peer-to-peer [P2P] networks using node-based peer discovery mechanisms
    • H04L67/1065Discovery involving distributed pre-established resource-based relationships among peers, e.g. based on distributed hash tables [DHT] 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1074Peer-to-peer [P2P] networks for supporting data block transmission mechanisms
    • H04L67/1076Resource dissemination mechanisms or network resource keeping policies for optimal resource availability in the overlay network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/457Network directories; Name-to-address mapping containing identifiers of data entities on a computer, e.g. file names
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4588Network directories; Name-to-address mapping containing mobile subscriber information, e.g. home subscriber server [HSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The embodiment of the present invention provides a method for establishing a route, which includes searching a target node by a node from a first level node group according to first level route information, returning to query a result or data saved by the target node if the target node is found, otherwise executing the following step; searching a target node by the node from a higher level node group according to higher level route information, returning to query a result or the data saved by the target node if the target node is found, otherwise repeating the step. Through the hierarchical communication system, most of the flows of daily service operations in the communication network are limited within a small region, thereby preventing from excessively occupying the band width of a backbone network being originally not wide enough.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 12/365,564, filed on Feb. 4, 2009, which claims priority to Chinese Patent Application No. 200810065363.8 filed on Feb. 5, 2008. The aforementioned patent applications are hereby incorporated by reference in their entireties.
  • FIELD OF TECHNOLOGY
  • The present invention relates to an electronic communication technical field, and more particularly, to a method and device for establishing a route.
  • BACKGROUND
  • Being different from a conventional client/server mode, there is not a central server node in a peer-to-peer (P2P) network. Each node may be used as the server to provide services for other nodes, and may also enjoy the services provided by other node serving as the server. Therefore, in the P2P network, all nodes are equal in position, and each node is referred to as a peer.
  • The P2P network is a self-organized configuration network system. In the network, the behaviors of joining the network or exiting the network performed by each Peer are random. Similarly, in the network, for the communication between each two Peers, after a relevant Key is found according to logical distributed hash table (DHT), a lower layer physical link is randomly selected to perform the route connecting communication. In this manner, when the number of the Peers or the communication amount in the network gradually increases, the flow in the whole network is unorganized and out of order, and a great amount of data interaction is performed through a whole network search or operation. Finally, a backbone network with an insufficient bandwidth source and an inter-domain link are seriously consumed, thereby generating congestion.
  • SUMMARY
  • The embodiment of the present invention provides a method and device for establishing a route, a method and device for constructing a node Id, and communication network, so as to alleviate the congestion of the backbone network.
  • The embodiment of the present invention provides a method for constructing a node Id, which includes the following steps.
  • Geographical position information of the node is acquired.
  • A hash space of the node Id is determined by adopting a strip division method according to the geographical position information of the node.
  • One hash value is randomly selected from the hash space, and the node Id is constructed by combining the hash value with other attribute information of the node.
  • The present invention further provides a device for constructing a node Id, which includes an acquiring unit, a determining unit, and a constructing unit.
  • The acquiring unit is adapted to acquire geographical position information of a node.
  • The determining unit is adapted to determine a hash space of the node Id by adopting a strip division method according to the geographical position information of the node.
  • The constructing unit is adapted to randomly select one hash value from the hash space, and construct the node Id by combining the hash value with other attribute information of the node.
  • The present invention further provides a communication network, which includes a first level node group and a second level node group. The first level node group includes a first node and a second node, and the second level node group includes a third node. The first node and the second node are the nodes with an Id of the same first geographical position information, and the third node includes an Id of second geographical position information. A regional scope displayed by the second geographical position information is larger than a regional scope displayed by the first geographical position information. The nodes in the first level node group and the nodes in the second level node group respectively maintain route information of each node group. The first node includes the route information of the first level node group and the second level node group, and the second node includes the route information of the first level node group and the second level node group.
  • The present invention further provides a communication network, which includes a first level node group and a second level node group. The first level node group includes a first node and a second node, and the second level node group includes a third node. The nodes in the first level node group and the nodes in the second level node group respectively maintain route information of each node group. A regional scope covered by the second level node group is larger than a regional scope covered by the first level node group. The second level node group includes the first level node group, the first node includes the route information of the first level node group and the second level node group, and the second node includes the route information of the first level node group and the second level node group.
  • The present invention further provides a communication network, which includes a first level node group and a second level node group. The first level node group includes a first node and a second node, and the second level node group includes a third node. The nodes in the first level node group and the nodes in the second level node group respectively maintain route information of each node group. The first node includes the route information of the first level node group and the second level node group, and the second node includes the route information of the first level node group and second level node group.
  • The present invention further provides a communication network, which includes a first level home subscriber server (HSS) node group and a second level HSS node group. The first level HSS node group includes a first HSS node and a second HSS node, and the second level HSS node group includes a third HSS node. The HSS nodes in the first level HSS node group and the HSS nodes in the second level HSS node group respectively maintain route information of each node group. The first HSS node includes the route information of the first level HSS node group and the second level HSS node group, and the second HSS node includes the route information of the first level HSS node group and the second level HSS node group.
  • The present invention further provides a communication network, which includes a first level HSS node group and a second level HSS node group. The first level HSS node group includes a first HSS node and a second HSS node, and the second level HSS node group includes a third HSS node. The HSS nodes in the first level HSS node group and the HSS nodes in the second level HSS node group respectively maintain route information of each node group. A regional scope covered by the second level HSS node group is larger than a regional scope covered by the first level HSS node group. The second level HSS node group includes the first level HSS node group, the first HSS node includes the route information of the first level HSS node group and the second level HSS node group, and the second HSS node includes the route information of the first level HSS node group and the second level HSS node group.
  • The present invention further provides a communication network, which includes a first level HSS node group and a second level HSS node group. The first level HSS node group includes a first HSS node and a second HSS node, and the second level HSS node group includes a third HSS node. The first HSS node and the second HSS node are the nodes with Id of the same first geographical position information, and the third HSS node includes an Id of second geographical position information. A regional scope displayed by the second geographical position information is larger than a regional scope displayed by the first geographical position information. The HSS nodes in the first level HSS node group and the HSS nodes in the second level HSS node group respectively maintain route information of each node group. The first HSS node includes the route information of the first level HSS node group and the second level HSS node group, and the second HSS node includes the route information of the first level HSS node group and the second level HSS node group.
  • The present invention further provides a method for establishing a route, which includes the following steps.
  • A node searches for a target node from a first level node group according to first level route information. If the target node is found, the node returns a search result or data saved by the target node. If the target node is not found, the following step is executed.
  • The node searches for a target node from a higher level node group according to higher level route information. If the target node is found, the node returns a search result or data saved by the target node. If the target node is not found, this step is repeated.
  • The present invention further provides a method for constructing a hierarchical DHT network, which includes the following steps.
  • A node builds up a hierarchical DHT network based on a geographical position relation according to an Id of the node, and forms and maintains DHT route information of each layer.
  • All nodes in the network register and join a highest level whole scale DHT network, and forms and maintains highest level whole DHT network route information.
  • The present invention further provides a communication apparatus, which includes a device for establishing a route, in which the device for establishing the route includes a receiving unit, a route searching unit, and a transmitting unit.
  • The receiving unit is adapted to receive target node information required to be searched for.
  • The route searching unit is adapted to search for route information of a target node in a sequence from lower level route information to higher level route information according to the target node information, until the route information of the target node is found.
  • The transmitting unit is adapted to transmit information to the target node according to the found route information of the target node.
  • The present invention further provides a communication network system, which includes at least one node, in which the node includes a receiving unit, a route searching unit, and a transmitting unit.
  • The receiving unit is adapted to receive target node information required to be searched for.
  • The route searching unit is adapted to search for route information of a target node in a sequence from lower level route information to higher level route information according to the target node information, until the route information of the target node is found.
  • The transmitting unit is adapted to transmit information to the target node according to the found route information of the target node.
  • Through the hierarchical communication system, most of the flows of daily service operations in the communication network are limited within a small region, thereby preventing from excessive occupation of the bandwidth of a backbone network which is originally not wide enough.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic flow chart of a method for constructing a node Id according to an embodiment of the present invention;
  • FIG. 2 is a schematic view of region information divided by strips according to the embodiment of the present invention;
  • FIG. 3 is a schematic view of a device for constructing a node Id according to the embodiment of the present invention;
  • FIG. 4 is a schematic flow chart of a method for constructing a two-layer DHT network according to the embodiment of the present invention;
  • FIG. 5 is a schematic view of the two-layer DHT network according to the embodiment of the present invention;
  • FIG. 6 is a schematic flow chart of a method for establishing a route according to the embodiment of the present invention; and
  • FIG. 7 is a schematic view of a device for establishing a route according to the embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In the following, a detailed description of the technical solution of the present invention is given with the accompanying drawings.
  • Referring to FIG. 1, the embodiment of the present invention provides a method for constructing a node Id, which includes the following steps.
  • Step 101: Geographical position information of a node is acquired.
  • When joining a network, the node usually discloses its geographical position information, and the geographical position information of the node may be acquired by a collecting manner, or may be acquired by an actively acquiring manner.
  • Step 102: A hash space of the node Id is determined by adopting a strip division method according to the geographical position information of the node.
  • Step 103: One hash value is randomly selected from the hash space, and the node Id (for example, the Node Id) is constructed by combining the hash value with other attribute information of the node.
  • The hash value serves as a part of the node Id (for example, a prefix, a suffix or a certain key field).
  • The geographical position information is geographical region information, such as, Shenzhen city, Guangzhou city, Guangdong province of China, and so on.
  • Referring to FIG. 2, in Steps 102 and 103, particularly, a strip division method may be adopted for selecting the Id. Each region is respectively an article collection of one filling manner in the figure, the whole hash space may be divided into N strips, and each strip is divided into z articles, where z is the number of the regions. The node Peer of each region randomly selects one hash value from the articles of the region thereof as the prefix or suffix or certain key field of its own Id, and construct the node Id by combining the hash value with other attribute information of the node.
  • The other attribute information of the node may be a name of the node, an attribute of node IP, a latitude of the node or a longitude of the node.
  • The other attribute of the node may also be a combination of two of the name of the node, the attribute of the node IP, the latitude of the node and the longitude of the node.
  • The other attribute of the node may also be a combination of three of the name of the node, the attribute of the node IP, the latitude of the node and the longitude of the node.
  • It may be known from the above-mentioned that a node Id assignment mechanism, with which the hash space is averagely divided according to the geographical region position, is well achieved through the method, and the nodes in a large region are approximately averagely distributed into each article by the strips, and the larger the region is, the more scattered the distribution is.
  • For example, in an Id setting rule, Shenzhen city belongs to the region B, so that when one node located in Shenzhen city joins the network, the node randomly selects one strip from the hash space, then finds a hash value scope article belonging to the region B from the strip, randomly selects one hash value from the hash scope as the prefix (or suffix or certain key field) of the Id, and constructs the node Id by combining the hash value with other attribute information of the node.
  • It may be known that the detailed geographical position of the node may be deduced with the certain key field in one node Id and the strip division rule through such one strip division mechanism for selecting the Id so as to obtain subscriber position information from the node Id.
  • In the embodiment of the present invention, the process of constructing its own Id of the node may be finished by the node own, or may be uniformly finished by a central server, and then the node requests distribution of the central server.
  • The embodiment of the present invention further provides a device for constructing the node Id. Based on the realization of the above method, the device may realize the above-mentioned method for constructing the node Id. The device may be disposed on the node, and may also be disposed on the server or other telecommunication devices.
  • Referring to FIG. 3, a device for constructing the node Id, which is realized based on the above method, includes an acquiring unit, a determining unit and a constructing unit.
  • The acquiring unit is adapted to acquire geographical position information of the node.
  • The determining unit is adapted to determine a hash space of the node Id by adopting a strip division method according to the geographical position information of the node.
  • The constructing unit is adapted to randomly select one hash value from the hash space, and construct the node Id by combining the hash value with other attribute information of the node.
  • The embodiment of the present invention further provides a communication network, which is realized based on the above method, and includes a first level node group and a second level node group, in which the first level node group includes a first node and a second node, and the second level node group includes a third node.
  • The first node and the second node are the nodes with the Id of the same first geographical position information, which may be the prefix, the suffix or certain key field.
  • The third node includes an Id of second geographical position information, and a regional scope displayed by the second geographical position information is larger than a regional scope displayed by the first geographical position information.
  • The nodes in the first level node group and the nodes in the second level node group respectively maintain route information of each node group.
  • The first node and the second node include the route information of the first level node group and the second level node group.
  • The embodiment of the present invention further provides a communication network, which is realized based on the above method, and includes a first level node group and a second level node group. The first level node group includes a first node and a second node, and the second level node group includes a third node.
  • The nodes in the first level node group and the nodes in the second level node group respectively maintain route information of each node group. A regional scope covered by the second level node group is larger than a regional scope covered by the first level node group. The second level node group includes the first level node group, and the first node and the second node include the route information of the first level node group and the second level node group.
  • The embodiment of the present invention further provides a communication network, which is realized based on the above method, and includes a first level node group and a second level node group. The first level node group includes a first node and a second node, and the second level node group includes a third node. The nodes in the first level node group and the nodes in the second level node group respectively maintain route information of each node group, and the first node and the second node include the route information of the first level node group and the second level node group.
  • The embodiment of the present invention further provides a communication network, which is realized based on the above method, and includes a first level HSS node group and a second level HSS node group. The first level HSS node group includes a first HSS node and a second HSS node, and the second level HSS node group includes a third HSS node. The HSS nodes in the first level HSS node group and the HSS nodes in the second level HSS node group respectively maintain route information of each node group. The first HSS node and the second HSS node include the route information of the first level HSS node group and the second level HSS node group.
  • The embodiment of the present invention further provides a communication network, which is realized based on the above method, and includes a first level HSS node group and a second level HSS node group. The first level HSS node group includes a first HSS node and a second HSS node, and the second level HSS node group includes a third HSS node. The HSS nodes in the first level HSS node group and the HSS nodeS in the second level HSS node group respectively maintain route information of each node group. A regional scope covered by the second level HSS node group is larger than a regional scope covered by the first level HSS node group. The second level HSS node group includes the first level HSS node group, and the first HSS node and the second HSS node include the route information of the first level HSS node group and the second level HSS node group.
  • The embodiment of the present invention further provides a communication network, which is realized based on the above method, and includes a first level HSS node group and a second level HSS node group. The first level HSS node group includes a first HSS node and a second HSS node, and the second level HSS node group includes a third HSS node. The first HSS node and the second HSS node are the nodes with an Id of the same first geographical position information, and the third HSS node includes an Id of second geographical position information. A regional scope displayed by the second geographical position information is larger than a regional scope displayed by the first geographical position information. The HSS nodes in the first level HSS node group and the HSS nodes in the second level HSS node group respectively maintain route information of each node group. The first HSS node and the second HSS node include the route information of the first level HSS node group and the second level HSS node group.
  • The embodiment of the present invention further provides a method for establishing a route, which may be finished by the node and includes the following steps.
  • Step 201: A node searches for a target node from a first level node group according to first level route information, and returns a search result or data saved by the target node if the target node is found. Step 202 is executed if the target node is not found.
  • Step 202: The node searches for the target node from a higher level node group according to higher level route information, and returns a search result or data saved by the target node if the target node is found. Step 202 is repeated if the target node is not found.
  • For example, in the telecommunication system, the first level node group forms the node Id with the geographical regional scope identity according to the geographical position information of the subscriber, for example, in a home subscriber server (HSS) of an mobile IP multimedia subsystem (IMS), the hash value of the domain name in an instant messaging private user identity (IMPI) is served as the key of the HSS node Id. Then, the node Ids are collected together so as to form the hierarchical HSS node group network, for example, a city level HSS network or a province level HSS network. Each joined node maintains the routing table information of the each layer network joined.
  • The second level node group registers all the subscribers in the whole network and makes the subscribers join the higher level node group network, for example, a country level HSS network. Each node maintains a whole network highest level routing table information, that is, the first level routing table information also includes the second level route information.
  • In the telecommunication network, most data access modes have a localization feature, for example, in a traffic model, a proportion of local calling is higher than a proportion of toll and roaming calling. By adopting the embodiment of the present invention, the local calling may be finished in Step 201, only the related data operations of the toll and roaming calling are executed in Step 202. In Step 201, only the local network resource is used, and in Step 202, the resource of the toll backbone network connected to the local network is used. Therefore, in the embodiment of the present invention, under this situation, the resource consumption of the backbone network is saved as compared with a common DHT.
  • The node may be the Peer node, and the node group may be the DHT network. According to the particular network programming and the geographical position information, the node group may also be divided into three, four or more layers.
  • The flowing embodiment takes two-layer for example. Referring to FIG. 4, the method for constructing a two-layer DHT network of the embodiment of the present invention includes the following step.
  • Step 301: A node builds up the hierarchical DHT network based on a geographical position relation according to an Id of the node, forms and maintains each layer of DHT route information (may be the routing table).
  • According to a geographical information prefix (or the suffix or certain key field) of the node Id, the nodes with the same geographical key field are registered and collected together so as to finally form the hierarchical DHT network based on the geographical position relation, and each node respectively maintains the node routing table information of each layer of the DHT network.
  • The Peer nodes of each layer of the DHT network are the nodes with the Id having the same geographic scope, for example, the nodes in the Shenzhen level DHT network have the Id including the key filed of Shenzhen. In the embodiment of the present invention, the scale of the each layer of the DHT network may be different, and the particular scale may be set according to the network programming demand. For example, according to the city level scale, the Peer nodes belonging to the same city are collected together to one layer of the DHT network, for example, the nodes with the Id having the key field of Shenzhen are collected together so as to form one layer of the DHT network of the Shenzhen region, and the nodes in the layer of the DHT network maintain one DHT routing table of the layer of the network node. According to the province level scale, the Peer nodes of the same province are collected to one layer of the DHT network, for example, the nodes with the Id having the key field of Guangdong are collected together, so as to form one layer of the DHT network of the Guangdong region, and a corresponding province level DHT routing table is constructed.
  • Referring to FIG. 5, the nodes in each region A, B, C and D form DHT region rings, i.e. one layer of the DHT network, according to the geographical information prefix (may also be the suffix or certain key field) in its own Id.
  • Similarly, the multi-layer DHT network is constructed based on the geographical position relation according to the geographical position information of the node. For example, a site level DHT network is formed first according to a site/rack relation, then a city level scale DHT network is formed according to a city level relation, and finally a province level scale DHT network is formed on the city level DHT network according to a province level relation. The more layers of the DHT network are divided, the better the balancing and localizing effect of the network flow is. However, the more layers may also result in more routing table information required to be maintained by each Peer node, and thus more cost is required. The particular number of the layers of the DHT may be determined according to the system flow project demand and the cost loading index.
  • Referring to FIG. 4, the method for constructing the two-layer DHT network of the embodiment of the present invention further includes the following step.
  • Step 302: All the nodes in the network are registered and joined a highest level whole DHT network, forms and maintains the highest level whole DHT network route information such as the routing table.
  • The highest level DHT network, i.e., the whole DHT network, makes the Peer nodes register the whole scope and join the higher level DHT network, so that the whole network node route may be realized.
  • Referring to FIG. 6, the embodiment of the present invention further provides a method for establishing the route, which includes the following steps.
  • Step 201: A node (for example, the Peer node) searches for a target node from a first level node group according to first level route information, and returns a search result or data saved by the target node if the target node is found, and Step 202 is executed if the target node is not found.
  • Step 202: The node searches for the target node from a higher level node group according to higher level route information, and returns a search result or the data saved by the target node if the target node is found, and Step 202 is repeated if the target node is not found.
  • Each Peer node maintains N level route information, in which N is a particular number of the node groups (for example, the constructed DHT network). The N level route information (for example, the routing table) includes the route information of the N node groups which the node belongs to. When executing a daily service operation, firstly the node searches for the target node from the route information of its own level; when the information of the target node is not in the route information of its own level, the node searches for the target node from the higher level route information, until finally finds the target node from the highest whole network route information.
  • In Steps 201 and 202, by grouping the nodes, the hierarchical DHT network is formed, and a hierarchical index route searching mechanism is realized. For example, referring to FIG. 1, when a certain node S in a region DHT A requires to search for a certain node D in the network, firstly, the node S searches for the node in the routing table of the region DHT A; if the target node is in the region, the node S quickly finds the target node. If the node S finds that the node is not in the routing table of the region, the node S immediately forwards the searching request command to a big ring whole DHT network. At this time, on receiving the searching request, a node D in a region DHT B responds to the request information, and finally finishes the searching operation.
  • Through such one hierarchical DHT system, the number of the Peers in the P2P network is quite large. When an interaction among the Peers is quite violent, most flows of the daily service operations in the P2P network is limited within the local DHT, thereby preventing from excessive occupation of the bandwidth of the backbone network which is originally not wide enough. In addition, in the system of the embodiment of the present invention, each DHT Peer has multi-roles, and it is determined whether to search in the whole level DHT network or in each region level DHT network during the first query, thereby achieving the purpose of searching for only once for the target node.
  • Corresponding to the method for establishing the route of the embodiment of the present invention, the embodiment of the present invention further provides a communication apparatus, which includes a device for establishing the route and is realized based on the above method. Referring to FIG. 7, it is a schematic structural view of the device. The device may be disposed on the node (for example, the Peer node), the server, or other communication apparatus. The device includes a receiving unit, a route searching unit and a transmitting unit. The receiving unit is adapted to receive target node information required to be searched, for example, an index value.
  • The route searching unit is adapted to search for route information of a target node in a sequence from lower level route information to higher level route information according to the target node information until the route information of the target node is found.
  • The transmitting unit is adapted to transmit information to the target node according to the found route information of the target node.
  • The lower level route information is the routing table information maintained by the nodes in the first level node group in the hierarchical network.
  • The higher level route information is the routing table information maintained by the nodes in the second level node group or the node group above the second level node group in the hierarchical network.
  • When executing the service operation, the node searches for a target index from the lower level routing table. When the index data is not in its own lower level DHT, the node searches for the target index in the higher level routing table until searching in the highest level DHT routing table.
  • The embodiment of the present invention provides a communication network system, which is realized based on the above method, and includes at least one node, in which the node includes a receiving unit, a route searching unit and a transmitting unit.
  • The receiving unit is adapted to receive target node information required to be searched.
  • The route searching unit is adapted to search for route information of a target node in a sequence from lower level route information to higher level route information according to the target node information, until route information of the target node is found.
  • The transmitting unit is adapted to transmit the information to the target node according to the found route information of the target node.
  • Finally, it should be understood that the above embodiments are only used to explain, but not to limit the technical solution of the present invention. In despite of the detailed description of the present invention with referring to above preferred embodiments, it should be understood that various modifications, changes or equivalent replacements can be made by those skilled in the art without departing from the spirit and scope of the present invention and covered in the claims of the present invention.

Claims (9)

1. A communication network, comprising:
a first level node group and a second level node group, wherein
the first level node group comprises a first node and a second node, the second level node group comprises a third node, each node in the first level node group and the second level node group respectively maintains route information of each node group, the first node comprises the route information of the first level node group and the second level node group, and the second node comprises the route information of the first level node group and second level node group;
wherein the first node and the second node comprise IDs of first geographical position information, the third node comprises an ID of second geographical position information, a regional scope displayed by the second geographical position information is larger than a regional scope displayed by the first geographical position information.
2. The network according to claim 1, wherein:
the first level node group is a home subscriber server (HSS) node group, and the second level node group is an HSS node group; and
the first node, the second node and the third node are HSS nodes.
3. The network according to claim 1, wherein:
a regional scope covered by the second level node group is larger than a regional scope covered by the first level node group.
4. The network according to claim 3, wherein:
the first level node group is a home subscriber server (HSS) node group, and the second level node group is an HSS node group; and
the first node, the second node and the third node are HSS nodes.
5. A method for establishing a route, comprising:
searching for, by a node, a target node in a first level node group according to first level route information;
if the target node is found, returning a search result or data saved by the target node; and
if the target node is not found, searching for, by the node, the target node in a higher level node group according to higher level route information, and if the target node is still not found, searching for, by the node, the target node in another higher level node group according to other higher level route information.
6. A method for constructing a hierarchical distributed hash table (DHT) network, comprising:
building, by a node, a hierarchical DHT network based on a geographical position relation according to an ID of the node, forming and maintaining DHT route information of each layer; and
registering and joining, by all nodes in the network, a highest level whole DHT network, forming and maintaining route information of the highest level whole DHT network.
7. The method according to claim 6, wherein the hierarchical DHT network is a two-layer DHT network.
8. A communication network system, comprising at least one node, wherein the node comprises:
a receiving unit configured to receive target node information required to be searched for;
a route searching unit configured to search for route information of a target node in a sequence from lower level route information to higher level route information according to the target node information until the route information of the target node is found; and
a transmitting unit configured to transmit information to the target node according to the found route information of the target node.
9. The system according to claim 8, wherein the node is a home subscriber server (HSS) node.
US13/096,439 2008-02-05 2011-04-28 Method and device for establishing route Abandoned US20110199940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/096,439 US20110199940A1 (en) 2008-02-05 2011-04-28 Method and device for establishing route
US13/252,824 US8370465B2 (en) 2008-02-05 2011-10-04 Method and device for establishing route

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810065363.8 2008-02-05
CN2008100653638A CN101505262B (en) 2008-02-05 2008-02-05 Method and apparatus for establishing node Id
US12/365,564 US7991858B2 (en) 2008-02-05 2009-02-04 Method and device for establishing a route
US13/096,439 US20110199940A1 (en) 2008-02-05 2011-04-28 Method and device for establishing route

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/365,564 Division US7991858B2 (en) 2008-02-05 2009-02-04 Method and device for establishing a route

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/252,824 Continuation US8370465B2 (en) 2008-02-05 2011-10-04 Method and device for establishing route

Publications (1)

Publication Number Publication Date
US20110199940A1 true US20110199940A1 (en) 2011-08-18

Family

ID=40810649

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/365,564 Active 2029-07-24 US7991858B2 (en) 2008-02-05 2009-02-04 Method and device for establishing a route
US13/096,439 Abandoned US20110199940A1 (en) 2008-02-05 2011-04-28 Method and device for establishing route
US13/252,824 Active US8370465B2 (en) 2008-02-05 2011-10-04 Method and device for establishing route

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/365,564 Active 2029-07-24 US7991858B2 (en) 2008-02-05 2009-02-04 Method and device for establishing a route

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/252,824 Active US8370465B2 (en) 2008-02-05 2011-10-04 Method and device for establishing route

Country Status (4)

Country Link
US (3) US7991858B2 (en)
EP (2) EP2091272B1 (en)
CN (2) CN101505262B (en)
WO (1) WO2009100637A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013103012A1 (en) * 2012-01-06 2015-05-11 富士通株式会社 Information processing apparatus, data management method, and program
CN108153883A (en) * 2017-12-26 2018-06-12 北京百度网讯科技有限公司 Searching method and device, computer equipment, program product and storage medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998629B (en) 2009-08-28 2014-05-21 国际商业机器公司 Method, device and system for searching for virtual resources
EP2484093A1 (en) * 2009-10-01 2012-08-08 Telefonaktiebolaget LM Ericsson (publ) Location aware mass information distribution system and method
CN102611718B (en) * 2011-01-20 2017-12-26 中兴通讯股份有限公司 One nodes domains supports the resource lookup method and system of multiple resource domains
US9069761B2 (en) * 2012-05-25 2015-06-30 Cisco Technology, Inc. Service-aware distributed hash table routing
CN103841027B (en) * 2012-11-26 2018-08-14 中兴通讯股份有限公司 The map information of Hash mapping plane is registered and lookup method, equipment and system
EP3031258A1 (en) 2013-08-09 2016-06-15 Telefonaktiebolaget LM Ericsson (publ) Communication network node
CN103678572B (en) * 2013-12-09 2017-03-22 中国科学院计算机网络信息中心 Method and system for searching for Internet of Things information based on two layers of DHTs
CN105072159B (en) * 2015-07-17 2018-09-18 杭州施强教育科技有限公司 A kind of node administration list structure in P2P networkings and its management method
CN109639582A (en) * 2018-12-07 2019-04-16 大科数据(深圳)有限公司 A kind of network node treatment method and device based on distributed hashtable
CN109741367A (en) * 2018-12-21 2019-05-10 北京智行者科技有限公司 The target trajectory recognition methods that vehicle follows
EP4088194A4 (en) * 2020-01-06 2023-04-19 Essence Security International Ltd. Hierarchical resource constrained network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116526A1 (en) * 1999-12-10 2002-08-22 Mosaid Technologies, Inc. Method and apparatus for longest match address lookup
US20030182421A1 (en) * 2002-03-22 2003-09-25 Yaroslav Faybishenko Distributed identities
US20040249970A1 (en) * 2003-06-06 2004-12-09 Microsoft Corporation Organizational locality in prefix-based structured peer-to-peer overlays
US20050198286A1 (en) * 2004-01-30 2005-09-08 Zhichen Xu Selecting nodes close to another node in a network using location information for the nodes
US7103040B2 (en) * 2001-11-19 2006-09-05 Telefonaktieboaget Lm Ericsson (Publ) Method and apparatus for identifying a node for data communications using its geographical location
US7299227B2 (en) * 2003-09-09 2007-11-20 Stmicroelectronics, Inc. Method and system for providing cascaded trie-based network packet search engines
US20080162410A1 (en) * 2006-12-27 2008-07-03 Motorola, Inc. Method and apparatus for augmenting the dynamic hash table with home subscriber server functionality for peer-to-peer communications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065587B2 (en) 2001-04-02 2006-06-20 Microsoft Corporation Peer-to-peer name resolution protocol (PNRP) and multilevel cache for use therewith
US6774842B2 (en) * 2002-12-03 2004-08-10 Nokia Corporation Generating entries for a database supporting a positioning of a mobile terminal
US7433316B2 (en) * 2003-02-20 2008-10-07 Hewlett-Packard Development Company, L.P. Summarizing nodes in route propagation in auxiliary network for P2P overlay networks
US7558875B2 (en) * 2003-09-15 2009-07-07 Microsoft Corporation Measurement-based construction of locality-aware overlay networks
US7698456B2 (en) * 2003-09-29 2010-04-13 Cisco Technology, Inc. Methods and apparatus to support routing of information
CN100365997C (en) * 2005-08-26 2008-01-30 南京邮电大学 Distributed hash table in opposite account
US7684352B2 (en) * 2006-11-02 2010-03-23 Nortel Networks Ltd Distributed storage of routing information in a link state protocol controlled network
JP5016063B2 (en) * 2007-02-22 2012-09-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Consistent fault-tolerant distributed hash table (DHT) overlay network
US20080225780A1 (en) * 2007-03-13 2008-09-18 Nortel Networks Limited Use of distributed hashtables for wireless access mobility management
CN101051972A (en) * 2007-05-24 2007-10-10 武汉理工大学 Network resource route selecting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116526A1 (en) * 1999-12-10 2002-08-22 Mosaid Technologies, Inc. Method and apparatus for longest match address lookup
US7103040B2 (en) * 2001-11-19 2006-09-05 Telefonaktieboaget Lm Ericsson (Publ) Method and apparatus for identifying a node for data communications using its geographical location
US20030182421A1 (en) * 2002-03-22 2003-09-25 Yaroslav Faybishenko Distributed identities
US20040249970A1 (en) * 2003-06-06 2004-12-09 Microsoft Corporation Organizational locality in prefix-based structured peer-to-peer overlays
US7299227B2 (en) * 2003-09-09 2007-11-20 Stmicroelectronics, Inc. Method and system for providing cascaded trie-based network packet search engines
US20050198286A1 (en) * 2004-01-30 2005-09-08 Zhichen Xu Selecting nodes close to another node in a network using location information for the nodes
US20080162410A1 (en) * 2006-12-27 2008-07-03 Motorola, Inc. Method and apparatus for augmenting the dynamic hash table with home subscriber server functionality for peer-to-peer communications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013103012A1 (en) * 2012-01-06 2015-05-11 富士通株式会社 Information processing apparatus, data management method, and program
CN108153883A (en) * 2017-12-26 2018-06-12 北京百度网讯科技有限公司 Searching method and device, computer equipment, program product and storage medium

Also Published As

Publication number Publication date
EP2091272A3 (en) 2011-09-07
CN102780624A (en) 2012-11-14
CN101505262A (en) 2009-08-12
WO2009100637A1 (en) 2009-08-20
US20090198799A1 (en) 2009-08-06
CN101505262B (en) 2011-07-20
EP2091272A2 (en) 2009-08-19
EP2667573A1 (en) 2013-11-27
US20120036232A1 (en) 2012-02-09
US8370465B2 (en) 2013-02-05
EP2667573B1 (en) 2017-09-20
EP2091272B1 (en) 2015-10-28
US7991858B2 (en) 2011-08-02
CN102780624B (en) 2016-02-03

Similar Documents

Publication Publication Date Title
US8370465B2 (en) Method and device for establishing route
CN101505472B (en) User data server system and apparatus
KR100953594B1 (en) Method and apparatus for providing social networking service base on peer-to-peer network
CN101860474B (en) Peer-to-peer network and resource information processing method based on same
CN106375987A (en) Method and system for selecting network slice
EP4104392A1 (en) Routing communication in telecommunications network having multiple service communication proxies
JP5324266B2 (en) Method for managing a request to obtain a peer identifier to access content stored in P2P mode, management device and network device related thereto
Zulhasnine et al. Towards an effective integration of cellular users to the structured peer-to-peer network
CN101414975A (en) Method and apparatus for service node selection based on peer-to-peer network, index entity
Picone et al. Proactive neighbor localization based on distributed geographic table
CN101185312B (en) Device in an IP multimedia subsystem (IMS)
Le-Dang et al. Location-aware chord-based overlay for wireless mesh networks
CN102088418B (en) Method and device for establishing route
Galluccio et al. Georoy: A location-aware enhancement to Viceroy peer-to-peer algorithm
Pu et al. sNDN: a social-aware named data framework for cooperative content retrieval via D2D communications
CN110087218B (en) Node balance clustering method for wireless D2D network content sharing system
CN103118113A (en) Peer-to-peer network and network resource location method thereof
Winter et al. Dynamo: A topology-aware p2p overlay network for dynamic, mobile ad-hoc environments
Tuli Integrated Caching and Routing Strategy for Information-Centric Networks
Zulhasnine et al. Topology-aware integration of cellular users into the P2P system
CN102970756B (en) S-CSCF (Serving-Call Session Control Function) allocation method based on service capability P2P (Peer-to-Peer) distribution
Doumiati et al. D2D Network-Assisted Discovery through Keyword Matching for Offering Cloud Services
Dow et al. An efficient mobile grid scheme for service tracking in VANETs
Le-Dang et al. User location-aware video delivery over wireless mesh networks
CN116916414A (en) Network access method, device, computer equipment and storage medium

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION