US20110195212A1 - Flame Retardant Polycarbonate Compositions - Google Patents
Flame Retardant Polycarbonate Compositions Download PDFInfo
- Publication number
- US20110195212A1 US20110195212A1 US13/082,792 US201113082792A US2011195212A1 US 20110195212 A1 US20110195212 A1 US 20110195212A1 US 201113082792 A US201113082792 A US 201113082792A US 2011195212 A1 US2011195212 A1 US 2011195212A1
- Authority
- US
- United States
- Prior art keywords
- group
- chain
- straight
- branched
- tetrafluoroethanesulfonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 59
- 239000003063 flame retardant Substances 0.000 title claims abstract description 30
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229920000515 polycarbonate Polymers 0.000 title claims description 48
- 239000004417 polycarbonate Substances 0.000 title claims description 48
- 239000004431 polycarbonate resin Substances 0.000 claims abstract description 46
- 229920005668 polycarbonate resin Polymers 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 30
- 125000003118 aryl group Chemical group 0.000 claims abstract description 25
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 23
- 150000003839 salts Chemical class 0.000 claims abstract description 23
- 239000000460 chlorine Substances 0.000 claims description 29
- 229910052801 chlorine Inorganic materials 0.000 claims description 29
- 229910052794 bromium Inorganic materials 0.000 claims description 28
- 229910052740 iodine Inorganic materials 0.000 claims description 28
- -1 polyethylene Polymers 0.000 claims description 19
- 239000000945 filler Substances 0.000 claims description 18
- 150000001336 alkenes Chemical class 0.000 claims description 17
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 14
- 229940058401 polytetrafluoroethylene Drugs 0.000 claims description 14
- 150000001924 cycloalkanes Chemical class 0.000 claims description 13
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- 125000001072 heteroaryl group Chemical group 0.000 claims description 12
- 125000005842 heteroatom Chemical group 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 10
- 150000003949 imides Chemical class 0.000 claims description 9
- KZWJWYFPLXRYIL-UHFFFAOYSA-M 1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F KZWJWYFPLXRYIL-UHFFFAOYSA-M 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- DMOBTBZPQXBGRE-UHFFFAOYSA-N 1,1,2,3,3,3-hexafluoropropane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)C(F)(F)F DMOBTBZPQXBGRE-UHFFFAOYSA-N 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 7
- 150000001768 cations Chemical class 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- WJTASHROPQRUQG-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)OC(F)(F)C(F)(F)F WJTASHROPQRUQG-UHFFFAOYSA-N 0.000 claims description 4
- RPMRMGYXLGRRCC-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)OC(F)(F)F RPMRMGYXLGRRCC-UHFFFAOYSA-N 0.000 claims description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 4
- 229920001774 Perfluoroether Polymers 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 4
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 125000004428 fluoroalkoxy group Chemical group 0.000 claims description 4
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 4
- 229910052618 mica group Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 125000003107 substituted aryl group Chemical group 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- RJGUAQKOHAABLK-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)F RJGUAQKOHAABLK-UHFFFAOYSA-N 0.000 claims description 3
- NSKMCKIZBAXFKE-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)I NSKMCKIZBAXFKE-UHFFFAOYSA-N 0.000 claims description 3
- FBHVKOTUBJVWJB-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)OC(F)(F)C(F)F FBHVKOTUBJVWJB-UHFFFAOYSA-N 0.000 claims description 3
- JOYBOBIZKIJEDU-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-2-(1,2,2,2-tetrafluoroethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)OC(F)C(F)(F)F JOYBOBIZKIJEDU-UHFFFAOYSA-N 0.000 claims description 3
- WSGMNLHBXJEIAE-UHFFFAOYSA-N 2-chloro-1,1,2-trifluoroethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)Cl WSGMNLHBXJEIAE-UHFFFAOYSA-N 0.000 claims description 3
- 239000004610 Internal Lubricant Substances 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 3
- 239000004611 light stabiliser Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 239000006082 mold release agent Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- BJQWBACJIAKDTJ-UHFFFAOYSA-N tetrabutylphosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCC BJQWBACJIAKDTJ-UHFFFAOYSA-N 0.000 claims description 3
- ZMYHPASCGOPYHS-UHFFFAOYSA-M 1,1,2,2-tetrafluoroethanesulfonate;trioctyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)phosphanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCCCCCC[P+](CCCCCCCC)(CCCCCCCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZMYHPASCGOPYHS-UHFFFAOYSA-M 0.000 claims description 2
- BGGUZIZLOYTWFU-UHFFFAOYSA-M 1,1,2,3,3,3-hexafluoropropane-1-sulfonate;tributyl(tetradecyl)phosphanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)C(F)(F)F.CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC BGGUZIZLOYTWFU-UHFFFAOYSA-M 0.000 claims description 2
- YSVWBTSHQPOIJE-UHFFFAOYSA-M 1,1,2-trifluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethanesulfonate;trihexyl(tetradecyl)phosphanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)OC(F)(F)C(F)(F)F.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC YSVWBTSHQPOIJE-UHFFFAOYSA-M 0.000 claims description 2
- MLDUNXBSSZEACC-UHFFFAOYSA-M 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate;trihexyl(tetradecyl)phosphanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)OC(F)(F)F.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC MLDUNXBSSZEACC-UHFFFAOYSA-M 0.000 claims description 2
- VFKJFIDWVGPBDV-UHFFFAOYSA-M 1-butyl-2,3-dimethylimidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCC[N+]=1C=CN(C)C=1C VFKJFIDWVGPBDV-UHFFFAOYSA-M 0.000 claims description 2
- MXDXOYOYMBHGQD-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;1,1,2,3,3,3-hexafluoropropane-1-sulfonate Chemical compound CCCC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)C(F)(F)F MXDXOYOYMBHGQD-UHFFFAOYSA-M 0.000 claims description 2
- ZIPFNZZMKGEBFU-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;1,1,2-trifluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethanesulfonate Chemical compound CCCC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)OC(F)(F)C(F)(F)F ZIPFNZZMKGEBFU-UHFFFAOYSA-M 0.000 claims description 2
- MIQNTLMZSDFZQY-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate Chemical compound CCCC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)OC(F)(F)F MIQNTLMZSDFZQY-UHFFFAOYSA-M 0.000 claims description 2
- BGHQBDVUMIWVAR-UHFFFAOYSA-M 1-dodecyl-3-methylimidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCCCCCCCCCC[N+]=1C=CN(C)C=1 BGHQBDVUMIWVAR-UHFFFAOYSA-M 0.000 claims description 2
- CTEAXVWYCINNCA-UHFFFAOYSA-M 1-ethyl-3-methylimidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound CC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)F CTEAXVWYCINNCA-UHFFFAOYSA-M 0.000 claims description 2
- SEGKWNUGNNFXPC-UHFFFAOYSA-M 1-ethyl-3-methylimidazol-3-ium;1,1,2,3,3,3-hexafluoropropane-1-sulfonate Chemical compound CC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)C(F)(F)F SEGKWNUGNNFXPC-UHFFFAOYSA-M 0.000 claims description 2
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 claims description 2
- GINHDBWRHLCMKK-UHFFFAOYSA-M 1-hexadecyl-3-methylimidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCCCCCCCCCCCCCC[N+]=1C=CN(C)C=1 GINHDBWRHLCMKK-UHFFFAOYSA-M 0.000 claims description 2
- MCZWGKAIQPGCBP-UHFFFAOYSA-M 1-hexyl-3-methylimidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCCCC[N+]=1C=CN(C)C=1 MCZWGKAIQPGCBP-UHFFFAOYSA-M 0.000 claims description 2
- LNYHEOJOEGJEAM-UHFFFAOYSA-M 1-methyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)imidazol-1-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.C[N+]=1C=CN(CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C=1 LNYHEOJOEGJEAM-UHFFFAOYSA-M 0.000 claims description 2
- FONRKAHEKCCJDV-UHFFFAOYSA-M 1-methyl-3-octadecylimidazol-1-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCCCCCCCCCCCCCCCC[N+]=1C=CN(C)C=1 FONRKAHEKCCJDV-UHFFFAOYSA-M 0.000 claims description 2
- NVBZQXCHNDSQIF-UHFFFAOYSA-N 2-propyl-1-(1,1,2,2-tetrafluoroethyl)imidazole;1,1,2,2-tetrafluoroethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)F.CCCC1=NC=CN1C(F)(F)C(F)F NVBZQXCHNDSQIF-UHFFFAOYSA-N 0.000 claims description 2
- NXEVRPVZRBQJKJ-UHFFFAOYSA-N 3-butyl-2-methyl-1h-imidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound CCCC[N+]=1C=CNC=1C.[O-]S(=O)(=O)C(F)(F)C(F)F NXEVRPVZRBQJKJ-UHFFFAOYSA-N 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 229920000914 Metallic fiber Polymers 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 239000005083 Zinc sulfide Substances 0.000 claims description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 claims description 2
- 239000002216 antistatic agent Substances 0.000 claims description 2
- 239000010425 asbestos Substances 0.000 claims description 2
- 239000011324 bead Substances 0.000 claims description 2
- 239000012965 benzophenone Substances 0.000 claims description 2
- 125000002619 bicyclic group Chemical group 0.000 claims description 2
- 238000000071 blow moulding Methods 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- 239000000378 calcium silicate Substances 0.000 claims description 2
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- 229910052570 clay Inorganic materials 0.000 claims description 2
- 239000003086 colorant Substances 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical group [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 235000013336 milk Nutrition 0.000 claims description 2
- 239000008267 milk Substances 0.000 claims description 2
- 210000004080 milk Anatomy 0.000 claims description 2
- 239000002557 mineral fiber Substances 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- 239000011049 pearl Substances 0.000 claims description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 230000000979 retarding effect Effects 0.000 claims description 2
- 229910052895 riebeckite Inorganic materials 0.000 claims description 2
- 239000005336 safety glass Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229920002545 silicone oil Polymers 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 239000000454 talc Substances 0.000 claims description 2
- 229910052623 talc Inorganic materials 0.000 claims description 2
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 239000001993 wax Substances 0.000 claims description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims 1
- 230000003078 antioxidant effect Effects 0.000 claims 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims 1
- 239000012964 benzotriazole Substances 0.000 claims 1
- 239000000047 product Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- KUWPEQAOGNPMOP-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound CCCC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)F KUWPEQAOGNPMOP-UHFFFAOYSA-M 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 0 [1*]c1c([2*])c([3*])n([4*])c([5*])c1[6*].[1*]c1nc([5*])c([4*])n([3*])c1[2*].[1*]c1nc([5*])n([4*])c([3*])c1[2*].[1*]n1c([2*])oc([3*])c1[4*].[1*]n1c([2*])sc([3*])c1[4*].[1*]n1c([5*])c([4*])c([3*])n1[2*].[1*]n1c([5*])c([4*])n([3*])c1[2*].[1*]n1nc([4*])n([3*])c1[2*].[1*]n1nc([5*])c([4*])c([3*])c1[2*].[7*][N+]([8*])([9*])[10*].[7*][P+]([8*])([9*])[10*] Chemical compound [1*]c1c([2*])c([3*])n([4*])c([5*])c1[6*].[1*]c1nc([5*])c([4*])n([3*])c1[2*].[1*]c1nc([5*])n([4*])c([3*])c1[2*].[1*]n1c([2*])oc([3*])c1[4*].[1*]n1c([2*])sc([3*])c1[4*].[1*]n1c([5*])c([4*])c([3*])n1[2*].[1*]n1c([5*])c([4*])n([3*])c1[2*].[1*]n1nc([4*])n([3*])c1[2*].[1*]n1nc([5*])c([4*])c([3*])c1[2*].[7*][N+]([8*])([9*])[10*].[7*][P+]([8*])([9*])[10*] 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- KZWJWYFPLXRYIL-UHFFFAOYSA-N 1,1,2,2-tetrafluoroethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)F KZWJWYFPLXRYIL-UHFFFAOYSA-N 0.000 description 5
- FFJGDPFNHAWQRD-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound CCCC[N+]=1C=CN(C)C=1.[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F FFJGDPFNHAWQRD-UHFFFAOYSA-M 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- OKFMRBZZUDSEFE-UHFFFAOYSA-M potassium;1,1,2,3,3,3-hexafluoropropane-1-sulfonate Chemical compound [K+].[O-]S(=O)(=O)C(F)(F)C(F)C(F)(F)F OKFMRBZZUDSEFE-UHFFFAOYSA-M 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000004293 19F NMR spectroscopy Methods 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 150000002989 phenols Chemical group 0.000 description 4
- BVZFTIYNEUGOHK-UHFFFAOYSA-M potassium;1,1,2,2-tetrafluoroethanesulfonate Chemical compound [K+].[O-]S(=O)(=O)C(F)(F)C(F)F BVZFTIYNEUGOHK-UHFFFAOYSA-M 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000000967 suction filtration Methods 0.000 description 4
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical class [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 229910052792 caesium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- VNRSMDFCJQLUIR-UHFFFAOYSA-M potassium;1,1,2-trifluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethanesulfonate Chemical compound [K+].[O-]S(=O)(=O)C(F)(F)C(F)OC(F)(F)C(F)(F)F VNRSMDFCJQLUIR-UHFFFAOYSA-M 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- WJTASHROPQRUQG-UHFFFAOYSA-M 1,1,2-trifluoro-2-(1,1,2,2,2-pentafluoroethoxy)ethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)OC(F)(F)C(F)(F)F WJTASHROPQRUQG-UHFFFAOYSA-M 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N Bisphenol F Natural products C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 241001541138 Cypho Species 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 229920004142 LEXAN™ Polymers 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 2
- 150000008052 alkyl sulfonates Chemical class 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003791 organic solvent mixture Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000005501 phase interface Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229940086542 triethylamine Drugs 0.000 description 2
- GPFJHNSSBHPYJK-UHFFFAOYSA-N (3-methylphenyl) hydrogen carbonate Chemical compound CC1=CC=CC(OC(O)=O)=C1 GPFJHNSSBHPYJK-UHFFFAOYSA-N 0.000 description 1
- GWTYBAOENKSFAY-UHFFFAOYSA-N 1,1,1,2,2-pentafluoro-2-(1,2,2-trifluoroethenoxy)ethane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)F GWTYBAOENKSFAY-UHFFFAOYSA-N 0.000 description 1
- BCAMEJSXAFAOHI-UHFFFAOYSA-M 1,1,2,2-tetrafluoroethanesulfonate;tributyl(tetradecyl)phosphanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)F.CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC BCAMEJSXAFAOHI-UHFFFAOYSA-M 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- YKPAABNCNAGAAJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)propane Chemical compound C=1C=C(O)C=CC=1C(CC)C1=CC=C(O)C=C1 YKPAABNCNAGAAJ-UHFFFAOYSA-N 0.000 description 1
- FHDQNOXQSTVAIC-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;chloride Chemical compound [Cl-].CCCCN1C=C[N+](C)=C1 FHDQNOXQSTVAIC-UHFFFAOYSA-M 0.000 description 1
- CKNCVRMXCLUOJI-UHFFFAOYSA-N 3,3'-dibromobisphenol A Chemical compound C=1C=C(O)C(Br)=CC=1C(C)(C)C1=CC=C(O)C(Br)=C1 CKNCVRMXCLUOJI-UHFFFAOYSA-N 0.000 description 1
- YNNMNWHCQGBNFH-UHFFFAOYSA-N 3-tert-butyl-4-[1-(2-tert-butyl-4-hydroxyphenyl)propyl]phenol Chemical compound C=1C=C(O)C=C(C(C)(C)C)C=1C(CC)C1=CC=C(O)C=C1C(C)(C)C YNNMNWHCQGBNFH-UHFFFAOYSA-N 0.000 description 1
- GXDIDDARPBFKNG-UHFFFAOYSA-N 4,4'-(Butane-1,1-diyl)diphenol Chemical compound C=1C=C(O)C=CC=1C(CCC)C1=CC=C(O)C=C1 GXDIDDARPBFKNG-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- RSSGMIIGVQRGDS-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)-phenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)C1=CC=CC=C1 RSSGMIIGVQRGDS-UHFFFAOYSA-N 0.000 description 1
- OVVCSFQRAXVPGT-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)cyclopentyl]phenol Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCC1 OVVCSFQRAXVPGT-UHFFFAOYSA-N 0.000 description 1
- YTRKBSVUOQIJOR-UHFFFAOYSA-N 4-[2-(4-hydroxy-1-methylcyclohexa-2,4-dien-1-yl)propan-2-yl]-4-methylcyclohexa-1,5-dien-1-ol Chemical compound C1C=C(O)C=CC1(C)C(C)(C)C1(C)CC=C(O)C=C1 YTRKBSVUOQIJOR-UHFFFAOYSA-N 0.000 description 1
- QHJPJZROUNGTRJ-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)octan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCCCCC)C1=CC=C(O)C=C1 QHJPJZROUNGTRJ-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- HTVITOHKHWFJKO-UHFFFAOYSA-N Bisphenol B Chemical compound C=1C=C(O)C=CC=1C(C)(CC)C1=CC=C(O)C=C1 HTVITOHKHWFJKO-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- HQKRQGFKYWYQDU-UHFFFAOYSA-N C.C.C[O]C(=O)O[Ar]C Chemical compound C.C.C[O]C(=O)O[Ar]C HQKRQGFKYWYQDU-UHFFFAOYSA-N 0.000 description 1
- NXLBTKDETGJSJM-UHFFFAOYSA-M CC#N.F[K].[H]C(F)(F)C(F)(F)S(=O)(=O)Cl.[H]C(F)(F)C(F)(F)S(=O)(=O)F.[H]C(F)(F)C(F)(F)S(=O)(=O)O Chemical compound CC#N.F[K].[H]C(F)(F)C(F)(F)S(=O)(=O)Cl.[H]C(F)(F)C(F)(F)S(=O)(=O)F.[H]C(F)(F)C(F)(F)S(=O)(=O)O NXLBTKDETGJSJM-UHFFFAOYSA-M 0.000 description 1
- QYIVKQAMQYJWGK-UHFFFAOYSA-M CC#N.O[K].[H]C(F)(F)C(F)(F)S(=O)(=O)F.[H]C(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C([H])(F)F.[H]C(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C([H])(F)F.[K+] Chemical compound CC#N.O[K].[H]C(F)(F)C(F)(F)S(=O)(=O)F.[H]C(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C([H])(F)F.[H]C(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C([H])(F)F.[K+] QYIVKQAMQYJWGK-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-O Pyrazolium Chemical compound C1=CN[NH+]=C1 WTKZEGDFNFYCGP-UHFFFAOYSA-O 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical class C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- MUCRFDZUHPMASM-UHFFFAOYSA-N bis(2-chlorophenyl) carbonate Chemical compound ClC1=CC=CC=C1OC(=O)OC1=CC=CC=C1Cl MUCRFDZUHPMASM-UHFFFAOYSA-N 0.000 description 1
- IEANAOBDIJIFQY-UHFFFAOYSA-N butylphosphanium;1,1,2,3,3,3-hexafluoropropane-1-sulfonate Chemical compound CCCC[PH3+].[O-]S(=O)(=O)C(F)(F)C(F)C(F)(F)F IEANAOBDIJIFQY-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 159000000006 cesium salts Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- FYIBPWZEZWVDQB-UHFFFAOYSA-N dicyclohexyl carbonate Chemical compound C1CCCCC1OC(=O)OC1CCCCC1 FYIBPWZEZWVDQB-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- IUIPTNGBJURBMZ-UHFFFAOYSA-L dipotassium;sulfite;hydrate Chemical compound O.[K+].[K+].[O-]S([O-])=O IUIPTNGBJURBMZ-UHFFFAOYSA-L 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000000806 fluorine-19 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-O hydron;1,3-oxazole Chemical compound C1=COC=[NH+]1 ZCQWOFVYLHDMMC-UHFFFAOYSA-O 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-O hydron;pyrimidine Chemical compound C1=CN=C[NH+]=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-O 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 235000010259 potassium hydrogen sulphite Nutrition 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical class C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- AKUNSPZHHSNFFX-UHFFFAOYSA-M tributyl(tetradecyl)phosphanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC AKUNSPZHHSNFFX-UHFFFAOYSA-M 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/50—Phosphorus bound to carbon only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
- C08K5/42—Sulfonic acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
Definitions
- the present invention relates to novel flame retardant polycarbonate resin compositions.
- Polycarbonate resin possesses excellent mechanical strength, particularly impact strength, electrical properties and optical clarity, and is widely utilized in a variety of fields of office automation machinery, electric and electronic machinery, automobiles, and architecture, among others. Polymers used in fields such as office automation machinery and electric and electronic machinery are required to have high flame retardancy. Typically, polycarbonate resins are made flame retardant through incorporation of both a flame retardant and an anti-drip agent to prevent the dripping of molten resin from a burning polycarbonate resin.
- U.S. Pat. No. 3,775,367 discloses flame retardant polycarbonate compositions comprising alkali or tetraalkylammonium salts of perfluoroalkyl sulfonic acids.
- U.S. Pat. No. 5,449,710 discloses flame retardant polycarbonate compositions comprising alkali or alkaline-earth metal salts of perfluoroalkanesulfonic acids.
- the present invention provides non-perfluorinated, sulfonated salts that impart flame retardancy to polycarbonate resins.
- the flame retardant polycarbonate composition comprises about 100 parts of component (A), about 0.01 to about 5.0 parts of component (B), and about 0.001 to about 2.0 parts of component (C).
- the flame retardant polycarbonate composition may optionally also comprise one or more additives, fillers, or combinations thereof.
- an anti-drip agent may be poly-tetrafluoroethylene.
- an anti-drip agent is supplied as a mixture or kit comprising component (C).
- Yet another embodiment of this invention provides a method for preparing a flame retardant polycarbonate article and articles made therefrom.
- the method comprises:
- step (c) melt forming the particles of step (b) into a flame retardant polycarbonate article.
- the present invention relates to flame retardant polycarbonate resin compositions.
- the present invention relates to a flame retardant polycarbonate resin composition
- a flame retardant polycarbonate resin composition comprising the following components:
- R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently selected from the group consisting of:
- R 11 is selected from the group consisting of:
- C 1 to C 15 preferably C 1 to C 6 , straight-chain or branched fluoroalkyl, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH 2 and SH;
- C 1 to C 15 preferably C 1 to C 6 , straight-chain or branched fluoroalkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH 2 and SH;
- R 12 is selected from the group consisting of:
- C 1 to C 15 preferably C 1 to C 6 , straight-chain or branched fluoroalkyl, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH 2 and SH;
- C 1 to C 15 preferably C 1 to C 6 , straight-chain or branched fluoroalkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH 2 and SH;
- a flame retardant polycarbonate resin composition is a polycarbonate resin composition that meets flame retardancy requirements after compounding of the composition.
- flame retardancy of the compounded composition may be determined using test specimens prepared from the compounded composition as described in test method UL-94 of Underwriter's Laboratories, Inc. (Northbrook, Ill.). It is preferred that the compounded composition have a V-0 classification according to UL-94.
- the proportion by weight of components (A), (B), and (C) in the polycarbonate resin composition is about 100 parts of component (A), about 0.01 to about 5.0 parts of component (B), and about 0.001 to about 2.0 parts of component (C).
- component (B) is added at about 0.1 to about 3.0 parts, and in an even more specific embodiment, component (B) is added at about 0.25 to about 1.0 parts.
- component (C) is added at about 0.01 to about 1.0 parts, and in an even more specific embodiment, component (C) is added at about 0.1 to about 0.5 parts.
- the values for proportion by weight represent the combined weight of the individual aromatic polycarbonate resins, salts, or anti-drip agents. Additional components, such as fillers or pigments as described below, may be added to the resin composition.
- the amount of anti-drip agent, salt, or other optionally added component, added to component (A) will depend on a number of factors, such as the cost of the added components, flame retardancy of products produced from the polycarbonate resin composition, and mechanical and physical properties of products produced from the polycarbonate resin composition, such as impact strength.
- Aromatic polycarbonate resins useful for the present invention comprise the divalent residue of dihydric phenols bonded through a carbonate linkage and are represented by the formula:
- Ar is a divalent aromatic group.
- Ar is preferably a divalent aromatic group represented by the formula: —Ar 1 —Y—Ar 2 — wherein each of Ar 1 and Ar 2 independently represents a divalent carbocyclic or heterocyclic aromatic group having from 5 to 30 carbon atoms, and Y represents a divalent alkane group having from 1 to 30 carbon atoms.
- the term “carbocyclic” means having or relating to or characterized by a ring composed of carbon atoms.
- the term “heterocyclic” means having or relating to or characterized by a ring of atoms of more than one kind; especially a ring of carbon atoms containing at least one atom that is not carbon.
- “Heterocyclic aromatic groups” are aromatic groups having one or more ring nitrogen atoms, oxygen atoms or sulfur atoms.
- Each of divalent aromatic groups Ar 1 and Ar 2 is either unsubstituted or substituted with at least one substituent which does not affect the polymerization reaction.
- suitable substituents include a halogen atom, an alkyl group having from 1 to 10 carbon atoms, an alkoxy group having from 1 to 10 carbon atoms, a phenyl group, a phenoxy group, a vinyl group, a cyano group, an ester group, an amide group and a nitro group.
- Aromatic polycarbonate resins suitable for this invention are commercially available from suppliers such as General Electric (Waterford, Mass.), or can be synthesized by any method known to those skilled in the art.
- a general description of polycarbonate preparation, processing and properties can be found in Brunelle, D. J., “Polycarbonates” in Kirk-Othmer Encyclopedia of Chemical Technology, (Fifth Edition (2006), John Wiley & Sons, Inc., Hoboken, N.J., Volume 19, pages 797-828).
- Two methods for preparing aromatic polycarbonate resins are described herein; these methods are meant to be illustrative of the process for preparing aromatic polycarbonate resins, and not inclusive of all variations or modifications.
- aromatic polycarbonate resin can be prepared by a melt condensation reaction, as described, for example, in U.S. Pat. No. 5,717,057, column 1, line 4 through column 45, line 10, U.S. Pat. No. 5,606,007, column 2, line 63 through column 25, line 23, and U.S. Pat. No. 5,319,066, column 2, line 5 through column 7, line 22.
- a suitable polycarbonate useful for the present invention can be produced by the base-catalyzed reaction of a diaryl carbonate and a dihydric phenol. A variety of diaryl carbonates and dihydric phenols are used to create polycarbonates of varying properties.
- Non-limiting examples of diaryl carbonates are diphenylcarbonate (DPC), ditolyl carbonate, bis(chlorophenyl)carbonate, m-cresyl carbonate, dinapthyl carbonate, bis(diphenyl)carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate and dicyclohexyl carbonate, bis(metriylsalicyl) carbonate.
- DPC diphenylcarbonate
- ditolyl carbonate bis(chlorophenyl)carbonate
- m-cresyl carbonate dinapthyl carbonate
- bis(diphenyl)carbonate bis(diphenyl)carbonate
- diethyl carbonate dimethyl carbonate
- dibutyl carbonate and dicyclohexyl carbonate bis(metriylsalicyl) carbonate.
- Non-limiting examples of dihydric phenols are 1,1-bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 2,2-bis(4-hydroxyphenyl) propane (hereinafter “bisphenol A” or “BPA”); 2,2-bis(4-hydroxyphenyl) butane; 2,2-bis(4-hydroxyphenyl)octane; 1,1-bis(4-hydroxyphenyl) propane; 1,1-bis(4-hydroxyphenyl)n-butane; bis(4-hydroxyphenyl)phenylmethane; 2,2-bis(4-hydroxy-1-methylphenyl)propane; 1,1-bis(4-hydroxy-t-butylphenyl)propane; bis(hydroxyaryl)alkanes such as 2,2-bis(4-hydroxy-3-bromophenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclopentane; 4,4′-biphenol; and bis(hydroxyary
- Aromatic polycarbonate resins suitable for the present invention may also be prepared by a phase interface process.
- the phase interface process for polycarbonate synthesis is well known, and is described, for example, in H. Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, vol. 9, Interscience Publishers, New York 1964 p. 33 et seq.; Polymer Reviews, vol. 10, “Condensation Polymers by Interfacial and Solution Methods”, Paul W. Morgan, Interscience Publishers, New York 1965, chap. VIII, p. 325; Dres. U, Grigo, K. Kircher and P. R. Müller “Polycarbonate” in Becker/Braun, Kunststoff-Handbuch, vol. 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag Kunststoff, Vienna 1992, p. 118-145; and U.S. Pat. No. 5,235,026, column 2, line 65 through column 8, line 8.
- the phosgenation of a disodium salt of a bisphenol (or of a mixture of various bisphenols) which has been initially introduced into an aqueous-alkaline solution (or suspension) is carried out in the presence of an inert organic solvent or solvent mixture which forms a second phase.
- the oligocarbonates formed, which are chiefly present in the organic phase are subjected to further condensation with the aid of suitable catalysts such as but not limited to tertiary and quaternary amines such as triethyl amine and tetramethylammonium chloride to give high molecular weight polycarbonates dissolved in the organic phase.
- suitable catalysts such as but not limited to tertiary and quaternary amines such as triethyl amine and tetramethylammonium chloride to give high molecular weight polycarbonates dissolved in the organic phase.
- the organic phase is separated off and the polycarbonate is isolated therefrom by methods as described in Morgan (supra).
- Polycarbonates suitable for the present invention also include polydimethylsiloxane-co-BPA polycarbonates.
- the synthesis of these polycarbonates is described in U.S. Pat. No. 3,189,662, column 1, line 9 through column 6, line 7, and U.S. Pat. No. 3,419,634, column 1, line 24 through column 15, line 22.
- the polydimethylsiloxane is present in the polydimethylsiloxane-co-BPA polycarbonate at about at least 1.0 weight percent based on the combined weight of the dimethylsiloxane plus the BPA.
- These polymers differ from those described above in that they have very low glass transition temperatures, yet retain excellent thermal stability and have good weathering properties. Additional methods of preparation are described in Brunelle, D. J. (supra).
- Polycarbonates suitable for the present invention also include blends of polycarbonates with one or more polyimides, polyetherimides, polyamides, polyketones, polyesters, polyphenyl ethers, polystyrenes, acrylonitrile styrenes, acrylonitrile butadiene styrenes, polyethylenes, polypropylenes, and poly(methyl methacrylate).
- any suitable anti-drip agent component (B) can be used in the polycarbonate resin composition of the invention.
- the anti-drip agents can be supplied, for example, as finely ground powders.
- a typical anti-drip agent is micropowder poly-tetrafluoroethylene (p-TFE) (commercially available from E.I. du Pont de Nemours and Company, Wilmington Del.).
- p-TFE micropowder poly-tetrafluoroethylene
- the at least one anti-drip agent can be supplied as part of a mixture or kit comprising the at least one anti-drip agent with the at least one salt (component (C)).
- the anti-drip agent can be supplied in the mixture or kit as a powder or dispersion.
- p-TFE can be supplied in a mixture or kit as a micropowder or dispersion with component (C), wherein component C is a lithium, sodium, potassium or cesium salt of 1,1,2,2-tetrafluoroethanesulfonate or 1,1,2,3,3,3-hexafluoropropanesulfonate. More specifically, component C can be potassium 1,1,2,2-tetrafluoroethanesulfonate or potassium 1,1,2,3,3,3-hexafluoropropanesulfonate.
- component (C) comprises an anion (Q ⁇ ) selected from the group consisting of 1,1,2,2-tetrafluoroethanesulfonate; 2-chloro-1,1,2-trifluoroethanesulfonate; 1,1,2,3,3,3-hexafluoropropanesulfonate; 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate; 1,1,2-trifluoro-2-(pentafluoroethoxy)ethanesulfonate; 2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetra
- the at least one salt useful as component (C) comprises a cation selected from the group consisting of lithium, sodium, potassium, cesium, pyridinium, pyridazinium, pyrimidinium, pyrazinium, imidazolium, pyrazolium, thiazolium, oxazolium, triazolium, phosphonium, and ammonium as defined in all of the embodiments above; and an anion selected from the group consisting of 1,1,2,2-tetrafluoroethanesulfonate; 2-chloro-1,1,2-trifluoroethanesulfonate; 1,1,2,3,3,3-hexafluoropropanesulfonate; 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate; 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate; 2-(1,2,2,2-tetrafluoroethoxy)
- the at least one salt useful as component (C) is selected from the group consisting of 1-butyl-2,3-dimethylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-butyl-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,3,3,3-hexafluoropropanesulfonate, 1-hexyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-dodecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-hexadecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-hex
- Sources of cations (M + ) useful for component (C) are available commercially, or may be synthesized by methods known to those skilled in the art.
- the fluoroalkyl sulfonate anions of Formula I may be synthesized from perfluorinated terminal olefins or perfluorinated vinyl ethers generally according to the methods described in U.S. Patent Application No. 2006/0276670, paragraph 14 through paragraph 65 and U.S. Patent Application No. 2006/0276671, paragraph 12 through paragraph 88; in one embodiment, potassium sulfite and bisulfite are used as the buffer, and in another embodiment, the reaction is carried in the absence of a radical initiator.
- Preferred isolation methods include freeze drying or spray drying to isolate the crude 1,1,2,2-tetrafluoroethanesulfonate and 1,1,2,3,3,3-hexafluoropropanesulfonate products from the aqueous reaction mixture, using acetone to extract the crude 1,1,2,2-tetrafluoroethanesulfonate and 1,1,2,3,3,3-hexafluoropropanesulfonate salts, and crystallizing 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate and 1,1,2-trifluoro-2-(pentafluoroethoxy)ethanesulfonate from the reaction mixture by cooling.
- the bis(fluoroalkylsulfonyl)imides of Formula II can be synthesized as described for the synthesis of bis(perfluoroalkylsulfonyl)imide salt compounds such as (R f SO 2 ) 2 N( ⁇ )M(+) (see U.S. Pat. No. 5,847,616; DesMarteau, D. and Hu, L. Q. (Inorg. Chem. (1993), 32, 5007-5010); U.S. Pat. No. 6,252,111; Caporiccio, G. et al. (J. Fluor. Chem. (2004), 125, 243-252); and U.S. Pat. No. 6,399,821).
- 1,1,2,2-tetrafluoroethanesulfonic acid is first converted to the corresponding sulfonyl chloride by reaction with a suitable chlorinating reagent such as PCl 5 or catechol-PCl 3 as described in U.S. Pat. No. 2,403,207 and European Patent Application EP47946.
- a suitable chlorinating reagent such as PCl 5 or catechol-PCl 3 as described in U.S. Pat. No. 2,403,207 and European Patent Application EP47946.
- the chlorine can be replaced by fluorine using potassium fluoride in an organic solvent such as acetonitrile to produce the sulfonyl fluoride.
- the sulfonyl fluoride is recovered, and two molecules of the sulfonyl fluoride can be coupled as described in Lyapkalo, I. M. (Tetrahedron (2006) 62, 3137-3145) to make the bis(fluoroalkylsulfonyl)imide.
- Ammonium chloride and triethylamine (Et 3 N) are used in an organic solvent such as acetonitrile to convert the sulfonyl fluoride to the triethylammonium (NHEt 3 ) salt of the bis(fluoroalkylsulfonyl)imide.
- the potassium salt is then obtained by further treatment with potassium hydroxide in aqueous methanol.
- the polycarbonate resin composition of the present invention may optionally also comprise one or more additives, fillers, or combinations thereof, as long as these additional components do not decrease the thermal stability or photochemical stability to a level that is undesirable, or decrease the flame retardancy of the polycarbonate to a level that is undesirable or that no longer meets flame retardancy requirements.
- additives include, but are not limited to, antioxidants such as hindered phenols, esters of phosphorous acid, esters of phosphoric acid and amines; ultraviolet absorbents such as benzotriazoles and benzophenones; light stabilizers such as hindered amines; internal lubricants such as aliphatic carboxylic acid esters, paraffin, silicone oil and polyethylene wax; and flame retardants or flame retarding aids; mold release agents such as pentaerythritol or glycerol; antistatic agents; coloring agents; and combinations thereof.
- antioxidants such as hindered phenols, esters of phosphorous acid, esters of phosphoric acid and amines
- ultraviolet absorbents such as benzotriazoles and benzophenones
- light stabilizers such as hindered amines
- internal lubricants such as aliphatic carboxylic acid esters, paraffin, silicone oil and polyethylene wax
- flame retardants or flame retarding aids such as pentaery
- Aromatic polycarbonate resins can be compounded with at least one filler as is known in the art.
- fillers include potassium titanate whisker, mineral fiber such as rock wool, glass fiber, carbon fiber, metallic fiber such as stainless steel fiber, aluminum borate whisker, silicon nitride whisker, boron fiber, zinc oxide whisker of tetrapod-shap, talc, clay, mica, pearl mica, aluminum foil, alumina, glass flake, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, calcium silicate, titanium dioxide, zinc sulfide, zinc oxide, silica, asbestos, quartz powder, and combinations thereof.
- Fillers may be surface treated by physical or chemical methods in order to improve interfacial bonding and enhance mechanical properties.
- Interfacial bonding refers to bonding in which the surfaces of two bodies in contact with one another are held together by intermolecular forces.
- Fillers can be treated, for example, with silane-based coupling agents, higher fatty acids, metallic salts of fatty acids, unsaturated organic acids, organic titanates, resin acids, polyethylene glycols, or polymethylhydrogensiloxane fluids of the type, Me 3 Si—O—[SiOMe 2 ] m —[SiOMeH] n —SiMe 3 wherein Me is methyl, m can range from 0-100 and n can range from 1-50. Most preferably m is 0 and n is approximately 50.
- the at least one filler is generally used at about 1 part to about 70 parts by weight (relative to 100 parts of the at least one aromatic polycarbonate resin). When more than one filler is used, the value for proportion by weight represents the combined weight of the individual fillers. In a more specific embodiment, the at least one filler is used at about 2 parts to about 40 parts by weight (relative to 100 parts of the at least one aromatic polycarbonate resin).
- the present invention also relates to a method for preparing flame retardant polycarbonate articles.
- the flame retardant polycarbonate articles can be prepared by a process comprising:
- step (c) melt forming the particles of step (b) into a flame retardant polycarbonate article.
- the components of the polycarbonate resin composition can be mixed by compounding or kneading the components of the composition using any processing operation known to those skilled in the art. See, for example, Brunelle, D. J., “Polycarbonates” in Kirk-Othmer Encyclopedia of Chemical Technology, (Fifth Edition (2006), John Wiley & Sons, Inc., Hoboken, N.J., Volume 19, pages 797-828) for a description of processing of polycarbonates.
- Compounding or kneading can be carried out, for example, using a Banbury mixer, a single-screw extruder, a twin-screw extruder, a multi-screw extruder or the like.
- Compounding is typically carried out at a temperature of about 240 degrees Centigrade to about 300 degrees Centigrade.
- Components (B), (C), and optional additives or fillers can be added together with the at least one aromatic polycarbonate resin.
- these components can be added at one or more downstream points in an extruder, for example.
- the addition of components downstream can decrease attrition of solids such as fillers, and/or improve dispersion, and/or decrease the thermal history of relatively thermally unstable components, and/or decrease losses by evaporation of volatile components.
- articles formed comprising the polycarbonate resin compositions of the present invention would find utility in many applications where polycarbonate is currently used.
- Examples include, but are not limited to, glazing and sheet; automotive components; appliances, such as houseware items and power tools; packaging, such as refillable water bottles and refillable milk bottles; electrical, electronic, and technical components; medical and health-care related articles; and leisure and safety articles.
- glazing and sheet applications include, but are not limited to, windows for airplanes, trains, and schools; and high speed aircraft canopies.
- Such products may be laminated, for example, with a soft inner layer.
- automotive components include, but are not limited to, headlamp assemblies, interior instrument panels, bumpers, and automotive window glazing.
- Examples of electrical, electronic, and technical components include, but are not limited to, electrical connectors, telephone network devices, outlet boxes, computer and business machine housings, instrument panels, membrane switches and insulators.
- Examples of leisure and safety articles include, but are not limited to, protective headgear (e.g., sports helmets, motorcycle helmets, and safety helmets for firefighters and constructions workers) and protective eyewear (e.g., for goggles, safety glasses, safety sideshields, eyeglasses, and masks).
- the resin compositions are particularly useful for those applications requiring flame retardant materials, such as office automation machinery, and electric and electronic machinery.
- Flammability of the polycarbonate resin composition can be determined using appropriate methods. For example, methods may be used that are appropriate for the country in which the polycarbonate will be used. In the United States, flame retardant polycarbonates of the invention may be required to meet Underwriter's Laboratory standards, particularly UL-94 (Underwriters Laboratories, Inc., Northbrook, Ill.). UL-94 tests materials based on their ability to resist combustion on repeated application of a flame, as well as the resistance of materials to dripping with subsequent ignition of a combustible source (cotton) from the resulting drips. Test specimens are mounted in a chamber and ignited for 10 seconds. If the specimen extinguishes, the afterflame time is recorded and the specimen is reignited for 10 seconds.
- Underwriter's Laboratory standards particularly UL-94 (Underwriters Laboratories, Inc., Northbrook, Ill.).
- UL-94 tests materials based on their ability to resist combustion on repeated application of a flame, as well as the resistance of materials to
- HFPS-K potassium 1,1,2,3,3,3-hexafluoropropanesulfonate
- TFES-K potassium 1,1,2,2-tetrafluoroethanesulfonate
- Deionized water (2800 mL) and potassium 1,1,2,3,3,3-hexafluoropropanesulfonate (HFPS-K, 551.2 g) were added to a 4 L erlenmeyer flask. The contents of the flask were stirred magnetically at room temperature until the HFPS-K dissolved to produce a clear colorless solution. To this solution was added a 75 wt. % aqueous solution of tetra-n-butylphosphonium bromide (Cyphos® 443W, Cytec Canada Inc., 923.0 g). A large amount of flaky white precipitate was formed, and this mixture was allowed to stir for 8 h at room temperature.
- the white precipitated product was isolated by suction filtration.
- the crude product was then stirred magnetically with 1000 mL of saturated sodium carbonate for 30 min. to remove any acidic impurities.
- the product was again isolated by suction filtration.
- the product was further washed with 3 ⁇ 1000 mL portions of deionized water to remove any residual carbonate.
- This material was isolated by suction filtration and then dried in vacuo (70 C, 100 Torr, 18 h) above its melting point to remove water.
- the product was allowed to cool and solidify in the oven under a purge of nitrogen gas.
- the solid product cake was removed from the oven and passed through a #14 mesh (1.4 mm) screen to give a free-flowing solid (893 g, 89% yield).
- TFES-K The synthesis of TFES-K has been described in U.S. Patent Application No. 2006/0276671.
- a 1-gallon Hastelloy® C276 reaction vessel was charged with a solution of potassium sulfite hydrate (88 g, 0.56 mol), potassium metabisulfite (340 g, 1.53 mol) and deionized water (2000 ml).
- the vessel was cooled to 7 degrees C., evacuated to 0.05 MPa, and purged with nitrogen. The evacuate/purge cycle was repeated two more times.
- PEVE perfluoro(ethylvinyl ether)
- PEVE perfluoro(ethylvinyl ether)
- the reaction temperature was maintained at 125 degrees C. for 10 hr.
- the pressure dropped to 0.26 MPa at which point the vessel was vented and cooled to 25 degrees C.
- the 19 F NMR spectrum of the white solid showed pure desired product, while the spectrum of the aqueous layer showed a small but detectable amount of a fluorinated impurity.
- the desired isomer is less soluble in water so it precipitated in isomerically pure form.
- the product slurry was suction filtered through a fritted glass funnel, and the wet cake was dried in a vacuum oven (60 degrees C., 0.01 MPa) for 48 hr.
- the product was obtained as off-white crystals (904 g, 97% yield).
- TGA (N 2 ): 10% wt. loss @ 362 degrees C., 50% wt. loss @ 374 degrees C.
- the acetone was removed in vacuo to give a yellow oil.
- the oil was further purified by diluting with high purity acetone (100 ml) and stirring with decolorizing carbon (5 g). The mixture was again suction filtered and the acetone removed in vacuo to give a colorless oil. This was further dried at 4 Pa and 25 degrees C. for 6 hr to provide 83.6 g of product.
- TGA (N 2 ): 10% wt. loss @ 375 degrees C., 50% wt. loss @ 422 degrees C.
- Potassium and sodium salts of fluorinated alkylsulfonates can be converted into their anhydrous acids as taught in U.S. patent application 2006/0276671. These acids can then be allowed to react with lithium or cesium carbonate in an organic solvent such as methanol to give in high yield the corresponding lithium or cesium fluorinated alkylsulfonate salt.
- the lithium or cesium salt product can be isolated by first removing any excess insoluble carbonate salt by filtration and then removing the organic solvent by vacuum distillation. Caution should be taken with the lithium salt to keep the system anhydrous since lithium salts are typically extremely hygroscopic.
- 1,1,2,2-tetrafluoroethanesulfonic acid (10.05 g, 0.055 mol) and dry methanol (10 mL; EMD Chemicals Inc., Gibbstown, N.J.) were added to a 20 mL vial. The solution was cooled to 0 C with magnetic stirring in an ice bath under an atmosphere of nitrogen. In a separate flask, lithium carbonate (0.95 g, 0.026 mol; Aldrich, St. Louis, Mo.) was mixed with dry methanol (10 mL) and stirred magnetically in an ice bath under an atmosphere of nitrogen until it too was at 0 C. The TFESA solution was then added slowly to the carbonate mixture generating a large amount of gaseous CO 2 .
- BMIM-NONA can be synthesized as described in S. K. Quek, et al. (Tetrahedron (2006) 62:3137-3145.
- TFESK potassium 1,1,2,2-tetrafluoroethanesulfonate
- deionized water 150 mL
- tetradecyl(tri-n-butyl)phosphonium chloride 168 g, 0.39 mol Cyphos® IL 167; Cytec (West Paterson, N.J.)
- Chloroform 500 mL; Alrich
- the chloroform layer which contained the product, was separated and set aside.
- the aqueous layer was extracted with chloroform (5 ⁇ 20 mL washes) and these aliquots were combined with the original chloroform layer.
- Polycarbonate resin (1484.5 g; sold under the trade name Lexan®HF-1110 (General Electric Co., Pittsfield, Mass.)) was placed into a V-Cone blender fitted with intensifier bar (Patterson Kelly, East Stroudsburg, Pa.). The resin was coated with 4 g of poly dimethyl siloxane DC-200-60M (Dow Corning, Midland, Mich.). After allowing the coating to adhere to the resin for 5 minutes, the coated polycarbonate pellets were fed into a 30 mm twin screw extruder (Werner-Pfleiderer, Coperion, Ramsey, N.J.) at 275 C.
- Lexan®HF-1110 General Electric Co., Pittsfield, Mass.
- the compounded polycarbonate was injection molded on a 1.5 ounce Arburg injection molding machine (Newington, Conn.) fitted with a 1/16 inch (approximately 1.59 mm) ASTM (ASTM International, West Conshohocken, Pa.) single gated flex bar mold.
- the samples were stored in a room at 22 C and 50% relative humidity for a minimum of 1 day prior to being tested for flame retardancy.
- Example 2 The procedure of Example 1 was repeated, however poly-tetrafluoroethylene (p-TFE) antidrip agent (7 g; MP1400, E.I. DuPont, Wilmington Del.) was added. The results are shown in Table 2.
- p-TFE poly-tetrafluoroethylene
- Example 2 The procedure of Example 2 was repeated except that, in addition to the p-TFE, 4.5 g of a salt were added as indicated. The results are shown in Table 2.
- TBP-HFPS n-butyl phosphonium 1,1,2,3,3,3-hexafluoropropanesulfonate
- HFPS-K potassium 1,1,2,3,3,3-hexafluorpropanesulfonate
- TPES-K potassium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate
- BMIM-TFES 1-butyl-3-methylimidazolium 1,1,2,2 tetrafluoroethane sulfonate.
- Polycarbonate samples were compounded as described in Example 1 using 3000 ppm salt as indicated in Table 3 below and 5000 ppm p-TFE micropowder. The compounded polycarbonate was further molded into bars as described in Example 1. The test samples were tested according to UL-94 as described previously. The results are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to novel flame retardant polycarbonate resin compositions comprising at least one aromatic polycarbonate resin, at least one anti-drip agent, and at least one salt as defined herein. The present invention also provides methods for preparing articles comprising said flame retardant composition, and articles made therefrom.
Description
- The present invention relates to novel flame retardant polycarbonate resin compositions.
- Polycarbonate resin possesses excellent mechanical strength, particularly impact strength, electrical properties and optical clarity, and is widely utilized in a variety of fields of office automation machinery, electric and electronic machinery, automobiles, and architecture, among others. Polymers used in fields such as office automation machinery and electric and electronic machinery are required to have high flame retardancy. Typically, polycarbonate resins are made flame retardant through incorporation of both a flame retardant and an anti-drip agent to prevent the dripping of molten resin from a burning polycarbonate resin.
- U.S. Pat. No. 3,775,367 discloses flame retardant polycarbonate compositions comprising alkali or tetraalkylammonium salts of perfluoroalkyl sulfonic acids. U.S. Pat. No. 5,449,710 discloses flame retardant polycarbonate compositions comprising alkali or alkaline-earth metal salts of perfluoroalkanesulfonic acids.
- A need nevertheless remains for compounds that can be added at low levels to polycarbonate resins in order to make them flame retardant. The present invention provides non-perfluorinated, sulfonated salts that impart flame retardancy to polycarbonate resins.
- One embodiment of this invention relates to a flame retardant polycarbonate composition comprising:
- (A) at least one aromatic polycarbonate resin;
- (B) at least one anti-drip agent; and
- (C) at least one salt having the Formula M+Q−, wherein M+ and Q− are as defined hereinbelow. In one particular embodiment, the flame retardant polycarbonate composition comprises about 100 parts of component (A), about 0.01 to about 5.0 parts of component (B), and about 0.001 to about 2.0 parts of component (C). In addition, the flame retardant polycarbonate composition may optionally also comprise one or more additives, fillers, or combinations thereof.
- In another embodiment of this invention, an anti-drip agent may be poly-tetrafluoroethylene. In a further embodiment, an anti-drip agent is supplied as a mixture or kit comprising component (C).
- Yet another embodiment of this invention provides a method for preparing a flame retardant polycarbonate article and articles made therefrom. The method comprises:
- (a) mixing components (A), (B) and (C) and optional additives, fillers, and combinations thereof of the polycarbonate resin composition to form a mixed composition;
- (b) forming the mixed composition into particles;
- (c) melt forming the particles of step (b) into a flame retardant polycarbonate article.
- The present invention relates to flame retardant polycarbonate resin compositions.
- In one embodiment, the present invention relates to a flame retardant polycarbonate resin composition comprising the following components:
- (A) at least one aromatic polycarbonate resin;
- (B) at least one anti-drip agent; and
- (C) at least one salt having the Formula M+Q− wherein M+ is (1) a cation selected from the group consisting of lithium, sodium, potassium and cesium or (2) a cation selected from the group consisting of the following eleven cations:
- wherein R1, R2, R3, R4, R5 and R6 are independently selected from the group consisting of:
- (a) H
- (b) halogen
- (c) —CH3, —C2H5, or C3 to C25, preferably C3 to C20, straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
- (d) —CH3, —C2H5, or C3 to C25, preferably C3 to C20, straight-chain, branched or cyclic alkane or alkene comprising one to three heteroatoms selected from the group consisting of O, N, Si, and S, and optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
- (e) C6 to C25 unsubstituted aryl or C6 to C25 unsubstituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and
- (f) C6 to C25 substituted aryl or C6 to C25 substituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and wherein said substituted aryl or substituted heteroaryl has one to three substituents independently selected from the group consisting of:
-
- (1) —CH3, —C2H5, or C3 to C25, preferably C3 to C20, straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH,
- (2) OH,
- (3) NH2, and
- (4) SH;
R7, R8, R9, and R10 are independently selected from the group consisting of:
- (g) —CH3, —C2H5, or C3 to C25, preferably C3 to C20, straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
- (h) —CH3, —C2H5, or C3 to C25, preferably C3 to C20, straight-chain, branched or cyclic alkane or alkene comprising one to three heteroatoms selected from the group consisting of O, N, Si, and S, and optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
- (i) C6 to C25 unsubstituted aryl or C6 to C25 unsubstituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and
- (j) C6 to C25 substituted aryl or C6 to C25 substituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and wherein said substituted aryl or substituted heteroaryl has one to three substituents independently selected from the group consisting of
-
- (1) —CH3, —C2H5, or C3 to C25, preferably C3 to C20, straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH,
- (2) OH,
- (3) NH2, and
- (4) SH; and wherein
optionally at least two of R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 can together form a cyclic or bicyclic alkanyl or alkenyl group;
- and wherein Q− is an anion selected from the group consisting of Formula I and Formula II:
- wherein:
R11 is selected from the group consisting of: - (1) halogen;
- (2) —CH3, —C2H5 or C3 to C15, preferably C3 to C6, straight-chain or branched alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (3) —OCH3, —OC2H5 or C3 to C15, preferably C3 to C6, straight-chain or branched alkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (4) C1 to C15, preferably C1 to C6, straight-chain or branched fluoroalkyl, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (5) C1 to C15, preferably C1 to C6, straight-chain or branched fluoroalkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (6) C1 to C15, preferably C1 to C6, straight-chain or branched perfluoroalkyl; and
- (7) C1 to C15, preferably C1 to C6, straight-chain or branched perfluoroalkoxy;
- and
- wherein:
R12 is selected from the group consisting of: - (1) halogen;
- (2) —CH3, —C2H5 or C3 to C16, preferably C3 to C6, straight-chain or branched alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (3) —OCH3, —OC2H5 or C3 to C15, preferably C3 to C6, straight-chain or branched alkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (4) C1 to C15, preferably C1 to C6, straight-chain or branched fluoroalkyl, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (5) C1 to C15, preferably C1 to C6, straight-chain or branched fluoroalkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
- (6) C1 to C15, preferably C1 to C6, straight-chain or branched perfluoroalkyl; and
- (7) C1 to C15, preferably C1 to C6, straight-chain or branched perfluoroalkoxy.
- According to the present invention, a flame retardant polycarbonate resin composition is a polycarbonate resin composition that meets flame retardancy requirements after compounding of the composition. In the United States, flame retardancy of the compounded composition may be determined using test specimens prepared from the compounded composition as described in test method UL-94 of Underwriter's Laboratories, Inc. (Northbrook, Ill.). It is preferred that the compounded composition have a V-0 classification according to UL-94.
- The proportion by weight of components (A), (B), and (C) in the polycarbonate resin composition is about 100 parts of component (A), about 0.01 to about 5.0 parts of component (B), and about 0.001 to about 2.0 parts of component (C). In a more specific embodiment, component (B) is added at about 0.1 to about 3.0 parts, and in an even more specific embodiment, component (B) is added at about 0.25 to about 1.0 parts. In another embodiment, component (C) is added at about 0.01 to about 1.0 parts, and in an even more specific embodiment, component (C) is added at about 0.1 to about 0.5 parts. Where more than one aromatic polycarbonate resin, anti-drip agent or salt is used, the values for proportion by weight represent the combined weight of the individual aromatic polycarbonate resins, salts, or anti-drip agents. Additional components, such as fillers or pigments as described below, may be added to the resin composition. The amount of anti-drip agent, salt, or other optionally added component, added to component (A) will depend on a number of factors, such as the cost of the added components, flame retardancy of products produced from the polycarbonate resin composition, and mechanical and physical properties of products produced from the polycarbonate resin composition, such as impact strength.
- Aromatic polycarbonate resins useful for the present invention comprise the divalent residue of dihydric phenols bonded through a carbonate linkage and are represented by the formula:
- wherein Ar is a divalent aromatic group. Ar is preferably a divalent aromatic group represented by the formula: —Ar1—Y—Ar2— wherein each of Ar1 and Ar2 independently represents a divalent carbocyclic or heterocyclic aromatic group having from 5 to 30 carbon atoms, and Y represents a divalent alkane group having from 1 to 30 carbon atoms.
- As used herein, the term “carbocyclic” means having or relating to or characterized by a ring composed of carbon atoms. As used herein, the term “heterocyclic” means having or relating to or characterized by a ring of atoms of more than one kind; especially a ring of carbon atoms containing at least one atom that is not carbon. “Heterocyclic aromatic groups” are aromatic groups having one or more ring nitrogen atoms, oxygen atoms or sulfur atoms.
- Each of divalent aromatic groups Ar1 and Ar2 is either unsubstituted or substituted with at least one substituent which does not affect the polymerization reaction. Examples of suitable substituents include a halogen atom, an alkyl group having from 1 to 10 carbon atoms, an alkoxy group having from 1 to 10 carbon atoms, a phenyl group, a phenoxy group, a vinyl group, a cyano group, an ester group, an amide group and a nitro group.
- Aromatic polycarbonate resins suitable for this invention, such as Lexan® HF1110, are commercially available from suppliers such as General Electric (Waterford, Mass.), or can be synthesized by any method known to those skilled in the art. A general description of polycarbonate preparation, processing and properties can be found in Brunelle, D. J., “Polycarbonates” in Kirk-Othmer Encyclopedia of Chemical Technology, (Fifth Edition (2006), John Wiley & Sons, Inc., Hoboken, N.J., Volume 19, pages 797-828). Two methods for preparing aromatic polycarbonate resins are described herein; these methods are meant to be illustrative of the process for preparing aromatic polycarbonate resins, and not inclusive of all variations or modifications.
- According to one method, aromatic polycarbonate resin can be prepared by a melt condensation reaction, as described, for example, in U.S. Pat. No. 5,717,057, column 1, line 4 through column 45, line 10, U.S. Pat. No. 5,606,007, column 2, line 63 through column 25, line 23, and U.S. Pat. No. 5,319,066, column 2, line 5 through column 7, line 22. A suitable polycarbonate useful for the present invention can be produced by the base-catalyzed reaction of a diaryl carbonate and a dihydric phenol. A variety of diaryl carbonates and dihydric phenols are used to create polycarbonates of varying properties. Non-limiting examples of diaryl carbonates are diphenylcarbonate (DPC), ditolyl carbonate, bis(chlorophenyl)carbonate, m-cresyl carbonate, dinapthyl carbonate, bis(diphenyl)carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate and dicyclohexyl carbonate, bis(metriylsalicyl) carbonate. Non-limiting examples of dihydric phenols are 1,1-bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 2,2-bis(4-hydroxyphenyl) propane (hereinafter “bisphenol A” or “BPA”); 2,2-bis(4-hydroxyphenyl) butane; 2,2-bis(4-hydroxyphenyl)octane; 1,1-bis(4-hydroxyphenyl) propane; 1,1-bis(4-hydroxyphenyl)n-butane; bis(4-hydroxyphenyl)phenylmethane; 2,2-bis(4-hydroxy-1-methylphenyl)propane; 1,1-bis(4-hydroxy-t-butylphenyl)propane; bis(hydroxyaryl)alkanes such as 2,2-bis(4-hydroxy-3-bromophenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclopentane; 4,4′-biphenol; and bis(hydroxyaryl)cycloalkanes such as 1,1-bis(4-hydroxyphenyl)cyclohexane. A common combination used in industrial polycarbonate production is DPC and BPA.
- Aromatic polycarbonate resins suitable for the present invention may also be prepared by a phase interface process. The phase interface process for polycarbonate synthesis is well known, and is described, for example, in H. Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, vol. 9, Interscience Publishers, New York 1964 p. 33 et seq.; Polymer Reviews, vol. 10, “Condensation Polymers by Interfacial and Solution Methods”, Paul W. Morgan, Interscience Publishers, New York 1965, chap. VIII, p. 325; Dres. U, Grigo, K. Kircher and P. R. Müller “Polycarbonate” in Becker/Braun, Kunststoff-Handbuch, vol. 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag Munich, Vienna 1992, p. 118-145; and U.S. Pat. No. 5,235,026, column 2, line 65 through column 8, line 8.
- According to this process, the phosgenation of a disodium salt of a bisphenol (or of a mixture of various bisphenols) which has been initially introduced into an aqueous-alkaline solution (or suspension) is carried out in the presence of an inert organic solvent or solvent mixture which forms a second phase. The oligocarbonates formed, which are chiefly present in the organic phase, are subjected to further condensation with the aid of suitable catalysts such as but not limited to tertiary and quaternary amines such as triethyl amine and tetramethylammonium chloride to give high molecular weight polycarbonates dissolved in the organic phase. Finally, the organic phase is separated off and the polycarbonate is isolated therefrom by methods as described in Morgan (supra).
- Polycarbonates suitable for the present invention also include polydimethylsiloxane-co-BPA polycarbonates. The synthesis of these polycarbonates is described in U.S. Pat. No. 3,189,662, column 1, line 9 through column 6, line 7, and U.S. Pat. No. 3,419,634, column 1, line 24 through column 15, line 22. The polydimethylsiloxane is present in the polydimethylsiloxane-co-BPA polycarbonate at about at least 1.0 weight percent based on the combined weight of the dimethylsiloxane plus the BPA. These polymers differ from those described above in that they have very low glass transition temperatures, yet retain excellent thermal stability and have good weathering properties. Additional methods of preparation are described in Brunelle, D. J. (supra).
- Polycarbonates suitable for the present invention also include blends of polycarbonates with one or more polyimides, polyetherimides, polyamides, polyketones, polyesters, polyphenyl ethers, polystyrenes, acrylonitrile styrenes, acrylonitrile butadiene styrenes, polyethylenes, polypropylenes, and poly(methyl methacrylate).
- Any suitable anti-drip agent component (B) can be used in the polycarbonate resin composition of the invention. The anti-drip agents can be supplied, for example, as finely ground powders. A typical anti-drip agent is micropowder poly-tetrafluoroethylene (p-TFE) (commercially available from E.I. du Pont de Nemours and Company, Wilmington Del.). In one embodiment, the at least one anti-drip agent can be supplied as part of a mixture or kit comprising the at least one anti-drip agent with the at least one salt (component (C)). The anti-drip agent can be supplied in the mixture or kit as a powder or dispersion. For example, p-TFE can be supplied in a mixture or kit as a micropowder or dispersion with component (C), wherein component C is a lithium, sodium, potassium or cesium salt of 1,1,2,2-tetrafluoroethanesulfonate or 1,1,2,3,3,3-hexafluoropropanesulfonate. More specifically, component C can be potassium 1,1,2,2-tetrafluoroethanesulfonate or potassium 1,1,2,3,3,3-hexafluoropropanesulfonate.
- In preferred embodiments of the invention, component (C) comprises an anion (Q−) selected from the group consisting of 1,1,2,2-tetrafluoroethanesulfonate; 2-chloro-1,1,2-trifluoroethanesulfonate; 1,1,2,3,3,3-hexafluoropropanesulfonate; 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate; 1,1,2-trifluoro-2-(pentafluoroethoxy)ethanesulfonate; 2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoro-2-iodoethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 1,1,2,2-tetrafluoro-2-(pentafluoroethoxy)ethanesulfonate; N,N-bis(1,1,2,2-tetrafluoroethanesulfonyl)imide; and N,N-bis(1,1,2,3,3,3-hexafluoropropanesulfonyl)imide.
- Thus, in one embodiment, the at least one salt useful as component (C) comprises a cation selected from the group consisting of lithium, sodium, potassium, cesium, pyridinium, pyridazinium, pyrimidinium, pyrazinium, imidazolium, pyrazolium, thiazolium, oxazolium, triazolium, phosphonium, and ammonium as defined in all of the embodiments above; and an anion selected from the group consisting of 1,1,2,2-tetrafluoroethanesulfonate; 2-chloro-1,1,2-trifluoroethanesulfonate; 1,1,2,3,3,3-hexafluoropropanesulfonate; 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate; 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate; 2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoro-2-iodoethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 1,1,2,2-tetrafluoro-2-(pentafluoroethoxy)ethanesulfonate; N,N-bis(1,1,2,2-tetrafluoroethanesulfonyl)imide; and N,N-bis(1,1,2,3,3,3-hexafluoropropanesulfonyl)imide.
- In another embodiment, the at least one salt useful as component (C) is selected from the group consisting of 1-butyl-2,3-dimethylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-butyl-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,3,3,3-hexafluoropropanesulfonate, 1-hexyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-dodecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-hexadecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-octadecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, N-(1,1,2,2-tetrafluoroethyl)propylimidazole 1,1,2,2-tetrafluoroethanesulfonate, N-(1,1,2,2-tetrafluoroethyl)ethylperfluorohexylimidazole 1,1,2,2-tetrafluoroethanesulfonate, 1-butyl-3-methylimidazolium 1,1,2,3,3,3-hexafluoropropanesulfonate, 1-butyl-3-methylimidazolium 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate, 1-butyl-3-methylimidazolium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate, tetradecyl(tri-n-hexyl)phosphonium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate, tetradecyl(tri-n-butyl)phosphonium 1,1,2,3,3,3-hexafluoropropanesulfonate, tetradecyl(tri-n-hexyl)phosphonium 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoro-2-(pentafluoroethoxy)sulfonate, (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-trioctylphosphonium 1,1,2,2-tetrafluoroethanesulfonate, 1-methyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)imidazolium 1,1,2,2-tetrafluoroethanesulfonate, tetra-n-butylphosphonium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate, potassium 1,1,2,2-tetrafluoroethanesulfonate, potassium 1,1,2,3,3,3-hexafluoropropanesulfonate, and potassium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate.
- Sources of cations (M+) useful for component (C) are available commercially, or may be synthesized by methods known to those skilled in the art. The fluoroalkyl sulfonate anions of Formula I may be synthesized from perfluorinated terminal olefins or perfluorinated vinyl ethers generally according to the methods described in U.S. Patent Application No. 2006/0276670, paragraph 14 through paragraph 65 and U.S. Patent Application No. 2006/0276671, paragraph 12 through paragraph 88; in one embodiment, potassium sulfite and bisulfite are used as the buffer, and in another embodiment, the reaction is carried in the absence of a radical initiator. Preferred isolation methods include freeze drying or spray drying to isolate the crude 1,1,2,2-tetrafluoroethanesulfonate and 1,1,2,3,3,3-hexafluoropropanesulfonate products from the aqueous reaction mixture, using acetone to extract the crude 1,1,2,2-tetrafluoroethanesulfonate and 1,1,2,3,3,3-hexafluoropropanesulfonate salts, and crystallizing 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate and 1,1,2-trifluoro-2-(pentafluoroethoxy)ethanesulfonate from the reaction mixture by cooling. The bis(fluoroalkylsulfonyl)imides of Formula II can be synthesized as described for the synthesis of bis(perfluoroalkylsulfonyl)imide salt compounds such as (RfSO2)2N(−)M(+) (see U.S. Pat. No. 5,847,616; DesMarteau, D. and Hu, L. Q. (Inorg. Chem. (1993), 32, 5007-5010); U.S. Pat. No. 6,252,111; Caporiccio, G. et al. (J. Fluor. Chem. (2004), 125, 243-252); and U.S. Pat. No. 6,399,821). For example, 1,1,2,2-tetrafluoroethanesulfonic acid is first converted to the corresponding sulfonyl chloride by reaction with a suitable chlorinating reagent such as PCl5 or catechol-PCl3 as described in U.S. Pat. No. 2,403,207 and European Patent Application EP47946. The chlorine can be replaced by fluorine using potassium fluoride in an organic solvent such as acetonitrile to produce the sulfonyl fluoride.
- The sulfonyl fluoride is recovered, and two molecules of the sulfonyl fluoride can be coupled as described in Lyapkalo, I. M. (Tetrahedron (2006) 62, 3137-3145) to make the bis(fluoroalkylsulfonyl)imide. According to this procedure, ammonium chloride and triethylamine (Et3N) are used in an organic solvent such as acetonitrile to convert the sulfonyl fluoride to the triethylammonium (NHEt3) salt of the bis(fluoroalkylsulfonyl)imide. The potassium salt is then obtained by further treatment with potassium hydroxide in aqueous methanol.
- In addition to components (A), (B) and (C), the polycarbonate resin composition of the present invention may optionally also comprise one or more additives, fillers, or combinations thereof, as long as these additional components do not decrease the thermal stability or photochemical stability to a level that is undesirable, or decrease the flame retardancy of the polycarbonate to a level that is undesirable or that no longer meets flame retardancy requirements. Examples of additives include, but are not limited to, antioxidants such as hindered phenols, esters of phosphorous acid, esters of phosphoric acid and amines; ultraviolet absorbents such as benzotriazoles and benzophenones; light stabilizers such as hindered amines; internal lubricants such as aliphatic carboxylic acid esters, paraffin, silicone oil and polyethylene wax; and flame retardants or flame retarding aids; mold release agents such as pentaerythritol or glycerol; antistatic agents; coloring agents; and combinations thereof.
- Aromatic polycarbonate resins can be compounded with at least one filler as is known in the art. Examples of fillers include potassium titanate whisker, mineral fiber such as rock wool, glass fiber, carbon fiber, metallic fiber such as stainless steel fiber, aluminum borate whisker, silicon nitride whisker, boron fiber, zinc oxide whisker of tetrapod-shap, talc, clay, mica, pearl mica, aluminum foil, alumina, glass flake, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, calcium silicate, titanium dioxide, zinc sulfide, zinc oxide, silica, asbestos, quartz powder, and combinations thereof. Fillers may be surface treated by physical or chemical methods in order to improve interfacial bonding and enhance mechanical properties. Interfacial bonding refers to bonding in which the surfaces of two bodies in contact with one another are held together by intermolecular forces. Fillers can be treated, for example, with silane-based coupling agents, higher fatty acids, metallic salts of fatty acids, unsaturated organic acids, organic titanates, resin acids, polyethylene glycols, or polymethylhydrogensiloxane fluids of the type, Me3Si—O—[SiOMe2]m—[SiOMeH]n—SiMe3 wherein Me is methyl, m can range from 0-100 and n can range from 1-50. Most preferably m is 0 and n is approximately 50.
- The at least one filler is generally used at about 1 part to about 70 parts by weight (relative to 100 parts of the at least one aromatic polycarbonate resin). When more than one filler is used, the value for proportion by weight represents the combined weight of the individual fillers. In a more specific embodiment, the at least one filler is used at about 2 parts to about 40 parts by weight (relative to 100 parts of the at least one aromatic polycarbonate resin).
- The present invention also relates to a method for preparing flame retardant polycarbonate articles. According to the method, the flame retardant polycarbonate articles can be prepared by a process comprising:
- (a) mixing components (A), (B) and (C), and optional additives, fillers and combinations thereof, of the polycarbonate resin composition as defined above;
- (b) forming the mixed composition into particles;
- (c) melt forming the particles of step (b) into a flame retardant polycarbonate article.
- More specifically, the components of the polycarbonate resin composition can be mixed by compounding or kneading the components of the composition using any processing operation known to those skilled in the art. See, for example, Brunelle, D. J., “Polycarbonates” in Kirk-Othmer Encyclopedia of Chemical Technology, (Fifth Edition (2006), John Wiley & Sons, Inc., Hoboken, N.J., Volume 19, pages 797-828) for a description of processing of polycarbonates. Compounding or kneading can be carried out, for example, using a Banbury mixer, a single-screw extruder, a twin-screw extruder, a multi-screw extruder or the like. Compounding is typically carried out at a temperature of about 240 degrees Centigrade to about 300 degrees Centigrade. Components (B), (C), and optional additives or fillers can be added together with the at least one aromatic polycarbonate resin. Alternatively, these components can be added at one or more downstream points in an extruder, for example. The addition of components downstream can decrease attrition of solids such as fillers, and/or improve dispersion, and/or decrease the thermal history of relatively thermally unstable components, and/or decrease losses by evaporation of volatile components. After the components are mixed, they may be formed or cut into pellets or other particles suitable for feeding to a melt forming machine. Melt forming can be carried out by the usual methods for thermoplastics, such as injection molding, blow molding, extrusion molding, compression molding, calendar molding, rotation molding and the like to form desired articles.
- It is expected that articles formed comprising the polycarbonate resin compositions of the present invention would find utility in many applications where polycarbonate is currently used. Examples include, but are not limited to, glazing and sheet; automotive components; appliances, such as houseware items and power tools; packaging, such as refillable water bottles and refillable milk bottles; electrical, electronic, and technical components; medical and health-care related articles; and leisure and safety articles. Examples of glazing and sheet applications include, but are not limited to, windows for airplanes, trains, and schools; and high speed aircraft canopies. Such products may be laminated, for example, with a soft inner layer. Examples of automotive components include, but are not limited to, headlamp assemblies, interior instrument panels, bumpers, and automotive window glazing. Examples of electrical, electronic, and technical components include, but are not limited to, electrical connectors, telephone network devices, outlet boxes, computer and business machine housings, instrument panels, membrane switches and insulators. Examples of leisure and safety articles include, but are not limited to, protective headgear (e.g., sports helmets, motorcycle helmets, and safety helmets for firefighters and constructions workers) and protective eyewear (e.g., for goggles, safety glasses, safety sideshields, eyeglasses, and masks). The resin compositions are particularly useful for those applications requiring flame retardant materials, such as office automation machinery, and electric and electronic machinery.
- Flammability of the polycarbonate resin composition can be determined using appropriate methods. For example, methods may be used that are appropriate for the country in which the polycarbonate will be used. In the United States, flame retardant polycarbonates of the invention may be required to meet Underwriter's Laboratory standards, particularly UL-94 (Underwriters Laboratories, Inc., Northbrook, Ill.). UL-94 tests materials based on their ability to resist combustion on repeated application of a flame, as well as the resistance of materials to dripping with subsequent ignition of a combustible source (cotton) from the resulting drips. Test specimens are mounted in a chamber and ignited for 10 seconds. If the specimen extinguishes, the afterflame time is recorded and the specimen is reignited for 10 seconds. Materials are then classified on the basis of the afterflame time and ignition of the cotton caused by flaming drips. The most widely accepted classes are V-0, V-1 and V-2. Class V-1 allows for a longer afterflame time than V-0, whereas V-2 has the same afterflame time as V-1, but allows for cotton ignition. For the present invention an afterflame time of <10 seconds was used for V-0 and <30 seconds was used for V-1 and V-2.
- In the following examples, the present invention will be described in more detail with reference to comparative examples and examples, which however shall not be construed to limit the invention thereto.
- The following abbreviations were used:
- Degrees Centigrade is “C” or “degrees C”; gram(s) is “g”; “h” is hour”; relative humidity is “RH”; millimeter is “mm”; nuclear magnetic resonance is “NMR”; and differential scanning calorimetry is “DSC”.
- The syntheses of potassium 1,1,2,3,3,3-hexafluoropropanesulfonate (HFPS-K) and potassium 1,1,2,2-tetrafluoroethanesulfonate (TFES-K) are described in U.S. Patent Application No. 2006/027661, Examples 2, 4 and 5.
- Deionized water (2800 mL) and potassium 1,1,2,3,3,3-hexafluoropropanesulfonate (HFPS-K, 551.2 g) were added to a 4 L erlenmeyer flask. The contents of the flask were stirred magnetically at room temperature until the HFPS-K dissolved to produce a clear colorless solution. To this solution was added a 75 wt. % aqueous solution of tetra-n-butylphosphonium bromide (Cyphos® 443W, Cytec Canada Inc., 923.0 g). A large amount of flaky white precipitate was formed, and this mixture was allowed to stir for 8 h at room temperature. The white precipitated product was isolated by suction filtration. The crude product was then stirred magnetically with 1000 mL of saturated sodium carbonate for 30 min. to remove any acidic impurities. The product was again isolated by suction filtration. The product was further washed with 3×1000 mL portions of deionized water to remove any residual carbonate. This material was isolated by suction filtration and then dried in vacuo (70 C, 100 Torr, 18 h) above its melting point to remove water. The product was allowed to cool and solidify in the oven under a purge of nitrogen gas. The solid product cake was removed from the oven and passed through a #14 mesh (1.4 mm) screen to give a free-flowing solid (893 g, 89% yield).
- 19F NMR (CD2Cl2) δ −74.9 (m, 3F); −115.3, −122.8 (ABq, J=264 Hz, 2F); −210.1 (dm, 1F). 1H NMR (CD2Cl2) δ 1.0 (t, J=7.3 Hz, 12H); 1.5 (m, 16H); 2.2 (m, 8H); 5.4 (dm, JFH=54 Hz, 1H).
- % Water by Karl-Fisher titration: 671 ppm.
- Melting point (DSC): 74° C.
- Elemental analysis for C19H37F6O3PS: Calculated: % C, 46.5; H, 7.6; N, 0.0.
- Experimental results: % C, 46.9: H, 8.0: N, <0.1.
- The synthesis of TFES-K has been described in U.S. Patent Application No. 2006/0276671. A 1-gallon Hastelloy® C276 reaction vessel was charged with a solution of potassium sulfite hydrate (88 g, 0.56 mol), potassium metabisulfite (340 g, 1.53 mol) and deionized water (2000 ml). The vessel was cooled to 7 degrees C., evacuated to 0.05 MPa, and purged with nitrogen. The evacuate/purge cycle was repeated two more times. To the vessel was then added perfluoro(ethylvinyl ether) (PEVE, 600 g, 2.78 mol), and it was heated to 125 degrees C. at which time the inside pressure was 2.31 MPa. The reaction temperature was maintained at 125 degrees C. for 10 hr. The pressure dropped to 0.26 MPa at which point the vessel was vented and cooled to 25 degrees C. The crude reaction product was a white crystalline precipitate with a colorless aqueous layer (pH=7) above it.
- The 19F NMR spectrum of the white solid showed pure desired product, while the spectrum of the aqueous layer showed a small but detectable amount of a fluorinated impurity. The desired isomer is less soluble in water so it precipitated in isomerically pure form.
- The product slurry was suction filtered through a fritted glass funnel, and the wet cake was dried in a vacuum oven (60 degrees C., 0.01 MPa) for 48 hr. The product was obtained as off-white crystals (904 g, 97% yield).
- 19F NMR (D2O) δ −86.5 (s, 3F); −89.2, −91.3 (subsplit ABq, JFF=147 Hz, 2F);
- −119.3, −121.2 (subsplit ABq, JFF=258 Hz, 2F); −144.3 (dm, JFH=53 Hz, 1 F).
- 1H NMR (D2O) δ 6.7 (dm, JFH=53 Hz, 1H).
- Mp (DSC) 263 degrees C.
- Analytical calculation for C4HO4F8SK: C, 14.3: H, 0.3 Experimental results: C, 14.1; H, 0.3.
- TGA (air): 10% wt. loss @ 359 degrees C., 50% wt. loss @ 367 degrees C.
- TGA (N2): 10% wt. loss @ 362 degrees C., 50% wt. loss @ 374 degrees C.
- A similar process can be used for the synthesis of TFES-Na, using molar amounts equivalent to that described above for potassium.
- 1-Butyl-3-methylimidazolium chloride (60.0 g) and high purity dry acetone (>99.5%, 300 ml) were combined in a 1 liter flask and warmed to reflux with magnetic stirring until the solid completely dissolved. At room temperature in a separate 1 liter flask, potassium-1,1,2,2-tetrafluoroethanesulfonte (TFES-K, 75.6 g) was dissolved in high purity dry acetone (500 ml). These two solutions were combined at room temperature and allowed to stir magnetically for 2 hr under positive nitrogen pressure. The stirring was stopped and the KCl precipitate was allowed to settle, then removed by suction filtration through a fritted glass funnel with a celite pad. The acetone was removed in vacuo to give a yellow oil. The oil was further purified by diluting with high purity acetone (100 ml) and stirring with decolorizing carbon (5 g). The mixture was again suction filtered and the acetone removed in vacuo to give a colorless oil. This was further dried at 4 Pa and 25 degrees C. for 6 hr to provide 83.6 g of product.
- 19F NMR (DMSO-d6) δ −124.7 (dt, J=6 Hz, J=8 Hz, 2F); −136.8 (dt, J=53 Hz, 2F).
- 1H NMR (DMSO-d6) δ 0.9 (t, J=7.4 Hz, 3H); 1.3 (m, 2H); 1.8 (m, 2H); 3.9 (s, 3H); 4.2 (t, J=7 Hz, 2H); 6.3 (dt, J=53 Hz, J=6 Hz, 1H); 7.4 (s, 1H); 7.5 (s, 1H); 8.7 (s, 1H).
- % Water by Karl-Fisher titration: 0.14%.
- Analytical calculation for C9H12F6N2O3S: C, 37.6; H, 4.7; N, 8.8.
- Experimental Results: C, 37.6: H, 4.6: N, 8.7.
- TGA (air): 10% wt. loss @ 380 degrees C., 50% wt. loss @ 420 degrees C.
- TGA (N2): 10% wt. loss @ 375 degrees C., 50% wt. loss @ 422 degrees C.
- Potassium and sodium salts of fluorinated alkylsulfonates, either purified or as crude dried reaction mixtures, can be converted into their anhydrous acids as taught in U.S. patent application 2006/0276671. These acids can then be allowed to react with lithium or cesium carbonate in an organic solvent such as methanol to give in high yield the corresponding lithium or cesium fluorinated alkylsulfonate salt. The lithium or cesium salt product can be isolated by first removing any excess insoluble carbonate salt by filtration and then removing the organic solvent by vacuum distillation. Caution should be taken with the lithium salt to keep the system anhydrous since lithium salts are typically extremely hygroscopic.
- 1,1,2,2-tetrafluoroethanesulfonic acid (10.05 g, 0.055 mol) and dry methanol (10 mL; EMD Chemicals Inc., Gibbstown, N.J.) were added to a 20 mL vial. The solution was cooled to 0 C with magnetic stirring in an ice bath under an atmosphere of nitrogen. In a separate flask, lithium carbonate (0.95 g, 0.026 mol; Aldrich, St. Louis, Mo.) was mixed with dry methanol (10 mL) and stirred magnetically in an ice bath under an atmosphere of nitrogen until it too was at 0 C. The TFESA solution was then added slowly to the carbonate mixture generating a large amount of gaseous CO2. Once addition was complete and the evolution of gas stopped, the methanol was removed in vacuo on a rotary evaporator. The flask was then heated in vacuo to 80 C for 3 hours to drive off the water which was formed during the reaction. A white powdery product (TFES-Li, 8.7 g, 84% yield) was isolated and characterized.
- % water by Karl-Fisher titration: 0.27 wt.
- Elemental analysis for C2H1F4LiO3S: Calculated: % C, 12.78; H, 0.54.
- Experimental results: % C, 12.53: H, 0.74.
- BMIM-NONA can be synthesized as described in S. K. Quek, et al. (Tetrahedron (2006) 62:3137-3145.
- In a 1000 mL flask, potassium 1,1,2,2-tetrafluoroethanesulfonate (TFESK, 85.2 g, 0.39 mol) and deionized water (150 mL) were stirred magnetically at 25 C until the solid dissolved. In a separate 500 mL flask, tetradecyl(tri-n-butyl)phosphonium chloride (168 g, 0.39 mol Cyphos® IL 167; Cytec (West Paterson, N.J.)) was first melted by heating to 50 C, and then added to the TFESK solution to produce an oily precipitate. The flask was stirred at 25 C for another 19 h to allow complete precipitation of the product.
- Chloroform (500 mL; Alrich) was added to the mixture which was stirred for another 30 min. The chloroform layer, which contained the product, was separated and set aside. The aqueous layer was extracted with chloroform (5×20 mL washes) and these aliquots were combined with the original chloroform layer. The combined chloroform solution was washed with a saturated aqueous sodium carbonate solution (5×20 mL washes; Aldrich), followed by washes with deionized water (5×20 mL) until the final wash water had pH=8.
- The solution was dried over anhydrous magnesium sulfate (Aldrich), at which point 10 g of decolorizing carbon was added to remove colored impurities. This solution was stirred for another 30 minutes before being filtered through a 6-inch column packed celite/basic alumina column to remove the carbon. The solution was again dried over anhydrous magnesium sulfate (Aldrich) and concentrated on a rotovap and then further dried (60 milliTorr, 25 C, 8 h.) to give the [4.4.4.14]P-TFES product as a clear light yellow oil (173 g, 77% yield).
- 19F NMR (CDCl3) δ −124.3 (dt, 3JFH=6 Hz, 3JFF=8 Hz, 2F); −136.0 (dt, 2JFH=53 Hz, 2F).
- 1H NMR (CDCl3) δ 0.8 (t, J=7.0 Hz, 3H); 1.0 (t, J=7.0 Hz, 9H); 1.3 (br s, 20H); 1.5 (m, 16H); 2.2 (m, 8H); 6.2 (tt, 2JFH=53 Hz, 3JFH=6 Hz, 1H).
- % Water by Karl-Fisher titration: 594 ppm.
- Polycarbonate resin (1484.5 g; sold under the trade name Lexan®HF-1110 (General Electric Co., Pittsfield, Mass.)) was placed into a V-Cone blender fitted with intensifier bar (Patterson Kelly, East Stroudsburg, Pa.). The resin was coated with 4 g of poly dimethyl siloxane DC-200-60M (Dow Corning, Midland, Mich.). After allowing the coating to adhere to the resin for 5 minutes, the coated polycarbonate pellets were fed into a 30 mm twin screw extruder (Werner-Pfleiderer, Coperion, Ramsey, N.J.) at 275 C. The compounded polycarbonate was injection molded on a 1.5 ounce Arburg injection molding machine (Newington, Conn.) fitted with a 1/16 inch (approximately 1.59 mm) ASTM (ASTM International, West Conshohocken, Pa.) single gated flex bar mold. The samples were stored in a room at 22 C and 50% relative humidity for a minimum of 1 day prior to being tested for flame retardancy.
- All samples were tested according to standard flame retardancy test procedure UL-94 (Underwriters Laboratories, Inc., Northbrook, Ill.). Test specimens were tested in the vertical position. The regulated flame was placed onto a test specimen for 10 seconds and the time measured until the flame self extinguished was recorded as t1. The flame was put onto the bar again test specimens for 10 seconds and removed, and the second burn time was recorded as t2. The presence of burning drips was also noted. No afterflame was noted on any test sample when the flame was removed. The criteria used for classifying the samples as V-0, V-1 or V-2 are shown in Table 1, wherein t1 and t2 are reported in seconds. The results are shown in Table 2.
-
TABLE 1 Criteria used for classifying samples as V-0, V-1 or V-2. Times for V-0, V-1 and V-2 are in seconds. Criterion V-0 V-1 V-2 Afterflame time for each <10 <30 <30 individual specimen t1 or t2 Total afterflame time for any <50 <250 <250 condition set (t1 plus t2 for 5 specimens) Cotton indicator ignited by No No Yes flaming particles or drops - The procedure of Example 1 was repeated, however poly-tetrafluoroethylene (p-TFE) antidrip agent (7 g; MP1400, E.I. DuPont, Wilmington Del.) was added. The results are shown in Table 2.
- The procedure of Example 2 was repeated except that, in addition to the p-TFE, 4.5 g of a salt were added as indicated. The results are shown in Table 2.
-
TABLE TWO Flame retardancy testing of polycarbonate with or without anti-drip agent and/or salt. Example Flaming Number Sample t1 t2 Drip Classification 1 Resin 9.5 3.2 Yes V-2 2 p-TFE 7.5 2.4 Yes V-2 3 TBP-HFPS 1.0 2.4 No V-0 4 HFPS-K 2.4 9.0 No V-0 5 TPES-K 4.3 2.4 No V-0 6 BMIM-TFES 0.9 0.8 No V-0 All values in Table 2 are the average of 5 measurements. Abbreviations: TBP-HFPS, n-butyl phosphonium 1,1,2,3,3,3-hexafluoropropanesulfonate; HFPS-K, potassium 1,1,2,3,3,3-hexafluorpropanesulfonate; TPES-K, potassium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate; BMIM-TFES, 1-butyl-3-methylimidazolium 1,1,2,2 tetrafluoroethane sulfonate. - Polycarbonate samples (specimens) were compounded as described in Example 1 using 3000 ppm salt as indicated in Table 3 below and 5000 ppm p-TFE micropowder. The compounded polycarbonate was further molded into bars as described in Example 1. The test samples were tested according to UL-94 as described previously. The results are shown in Table 3.
-
TABLE THREE Flame retardancy testing of polycarbonate. Example Number Sample t1 t2 7 Resin + p-TFE only 13.5 23.0 8 TFES-K 1.1 2.0 9 BMIM-TFES 1.5 1.5 10 BMIM-NONA 1.0 1.0 11 TBP-TFES 4.3 1.0 12 BMIM-TFES 4.0 1.5 13 [4.4.4.14]P-TFES 3.0 1.0 14 BMIM-NONA 2.0 1.0 - The effect of salt concentration on flame retardancy was determined. Polycarbonate samples (specimens) were compounded with 5000 ppm p-TFE micropowder as described in Examples 7-14 using BMIM-TFES or TFES-K as the salt at concentrations indicated in Table 4 below. The compounded polycarbonate was further molded into bars as described in Example 1. The test samples were tested according to UL-94 as described previously. The results are shown in Table 4.
-
TABLE FOUR Flame retardancy testing of polycarbonate. Salt Example Conc. Number Sample (ppm) t1 t2 15 BMIM-TFES 3000 1.0 0.6 16 BMIM-TFES 1500 0.8 0.0 17 BMIM-TFES 750 0.4 0.2 18 TFES-K 3000 0.8 2.4 19 TFES-K 1500 1.0 3.0 20 TFES-K 750 1.0 1.3
Claims (19)
1. A flame retardant polycarbonate resin composition comprising:
(A) at least one aromatic polycarbonate resin;
(B) at least one anti-drip agent; and
(C) at least one salt having the Formula M+Q- wherein M+ is a cation selected from the group consisting of the following eleven cations:
wherein R1, R2, R3, R4, R5 and R6 are independently selected from the group consisting of:
(a) H;
(b) halogen;
(c) —CH3, —C2H5, or C3 to C25 straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
(d) —CH3, —C2H5, or C3 to C25 straight-chain, branched or cyclic alkane or alkene comprising one to three heteroatoms selected from the group consisting of O, N, Si, and S, and optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
(e) C6 to C25 unsubstituted aryl or C6 to C25 unsubstituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and
(f) C6 to C25 substituted aryl or C6 to C25 substituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and wherein said substituted aryl or substituted heteroaryl has one to three substituents independently selected from the group consisting of:
(1) —CH3, —C2H5, or C3 to C25 straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH,
(2) OH,
(3) NH2, and
(4) SH;
R7, R8, R9, and R10 are independently selected from the group consisting of:
(g) —CH3, —C2H5, or C3 to C25 preferably straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
(h) —CH3, —C2H5, or C3 to C25 straight-chain, branched or cyclic alkane or alkene comprising one to three heteroatoms selected from the group consisting of O, N, Si, and S, and optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH;
(i) C6 to C25 unsubstituted aryl or C6 to C25 unsubstituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and
(j) C6 to C25 substituted aryl or C6 to C25 substituted heteroaryl having one to three heteroatoms independently selected from the group consisting of O, N, Si, and S; and wherein said substituted aryl or substituted heteroaryl has one to three substituents independently selected from the group consisting of
(1) —CH3, —C2H5, or C3 to C25 straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, F, I, OH, NH2 and SH,
(2) OH,
(3) NH2, and
(4) SH; and wherein
optionally at least two of R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 can together form a cyclic or bicyclic alkanyl or alkenyl group;
and wherein Q− is an anion selected from the group consisting of Formula I and Formula II:
wherein:
R11 is selected from the group consisting of:
(1) halogen;
(2) —CH3, —C2H5 or C3 to C15 straight-chain or branched alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(3) —OCH3, —OC2H5 or C3 to C15 straight-chain or branched alkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(4) C1 to C15 straight-chain or branched fluoroalkyl, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(5) C1 to C15 straight-chain or branched fluoroalkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(6) C1 to C15 preferably straight-chain or branched perfluoroalkyl; and
(7) C1 to C15 straight-chain or branched perfluoroalkoxy; and
wherein:
R12 is selected from the group consisting of:
(1) halogen;
(2) —CH3, —C2H5 or C3 to C15 straight-chain or branched alkane or alkene, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(3) —OCH3, —OC2H5 or C3 to C15 straight-chain or branched alkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(4) C1 to C15 straight-chain or branched fluoroalkyl, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(5) C1 to C15 straight-chain or branched fluoroalkoxy, optionally substituted with at least one member selected from the group consisting of Cl, Br, I, OH, NH2 and SH;
(6) C1 to C15 straight-chain or branched perfluoroalkyl; and
(7) C1 to C15 straight-chain or branched perfluoroalkoxy.
2. The composition of claim 1 having about 100 parts of component (A), about 0.01 to about 5.0 parts of component (B), and about 0.001 to about 2.0 parts of component (C).
3. The composition of claim 2 having about 100 parts of component (A), and about 0.1 to about 3.0 parts of component (B).
4. The composition of claim 2 having about 100 parts of component (A), and about 0.01 to about 1.0 parts of component (C).
5. The composition of claim 1 , wherein the at least one aromatic polycarbonate resin is prepared from the reaction of diphenylcarbonate and 2,2-bis(4-hydroxyphenyl)propane.
6. The composition of claim 1 , wherein an anti-drip agent is poly-tetrafluoroethylene.
7. The composition of claim 1 , wherein Q− is selected from the group consisting of 1,1,2,2-tetrafluoroethanesulfonate; 2-chloro-1,1,2-trifluoroethanesulfonate; 1,1,2,3,3,3-hexafluoropropanesulfonate; 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate; 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate; 2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 2-(1,1,2,2-tetrafluoro-2-iodoethoxy)-1,1,2,2-tetrafluoroethanesulfonate; 1,1,2,2-tetrafluoro-2-(pentafluoroethoxy)ethanesulfonate; N,N-bis(1,1,2,2-tetrafluoroethanesulfonyl)imide; and N,N-bis(1,1,2,3,3,3-hexafluoropropanesulfonyl)imide.
8. The composition of claim 1 , wherein component (C) is selected from the group consisting of 1-butyl-2,3-dimethylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-butyl-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,3,3,3-hexafluoropropanesulfonate, 1-hexyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-dodecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-hexadecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, 1-octadecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate, N-(1,1,2,2-tetrafluoroethyl)propylimidazole 1,1,2,2-tetrafluoroethanesulfonate, N-(1,1,2,2-tetrafluoroethyl)ethylperfluorohexylimidazole 1,1,2,2-tetrafluoroethanesulfonate, 1-butyl-3-methylimidazolium 1,1,2,3,3,3-hexafluoropropanesulfonate, 1-butyl-3-methylimidazolium 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate, 1-butyl-3-methylimidazolium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate, tetradecyl(tri-n-hexyl)phosphonium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate, tetradecyl(tri-n-butyl)phosphonium 1,1,2,3,3,3-hexafluoropropanesulfonate, tetradecyl(tri-n-hexyl)phosphonium 1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate, 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoro-2-(pentafluoroethoxy)sulfonate, (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-trioctylphosphonium 1,1,2,2-tetrafluoroethanesulfonate, 1-methyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)imidazolium 1,1,2,2-tetrafluoroethanesulfonate, and tetra-n-butylphosphonium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate.
9. A composition comprising at least one anti-drip agent and at least one salt according to claim 1 .
10. The composition of claim 1 or claim 9 comprising poly-tetrafluoroethylene micropowder as said at least one anti-drip agent.
11. The composition of claim 1 or claim 9 comprising poly-tetrafluoroethylene dispersion as said at least one anti-drip agent.
12. The composition of claim 1 , further comprising at least one component selected from the group consisting of (1) at least one additive selected from the group consisting of antioxidants, ultraviolet absorbents, light stabilizers, internal lubricants, and flame retardants or flame retarding aids, mold release agents, antistatic agents, coloring agents, and combinations thereof; (2) at least one filler; and (3) combinations thereof.
13. The composition of claim 12 , wherein an antioxidant comprises a hindered phenol, ester of phosphorous acid, ester of phosphoric acid or amine; an ultraviolet absorbent comprises a benzotriazole or benzophenone; a light stabilizer comprises a hindered amine; an internal lubricant comprises an aliphatic carboxylic acid ester, paraffin, silicone oil or polyethylene wax; a mold release agent comprises pentaerythritol or glycerol; and a filler is selected from the group consisting of potassium titanate whisker, mineral fiber, glass fiber, carbon fiber, metallic fiber, aluminum borate whisker, silicon nitride whisker, boron fiber, zinc oxide whisker of tetrapod-shap, talc, clay, mica, pearl mica, aluminum foil, alumina, glass flake, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, calcium silicate, titanium dioxide, zinc sulfide, zinc oxide, silica, asbestos, and quartz powder.
14. The composition of claim 12 , wherein a filler is present at about 1 part to about 70 parts by weight.
15. A method for preparing a flame retardant polycarbonate article comprising:
(a) mixing the components of the polycarbonate resin composition as defined in claim 1 to form a mixed composition;
(b) forming the mixed composition into particles;
(c) melt forming the particles of step (b) into a flame retardant polycarbonate article.
16. The method of claim 15 , wherein the mixing is carried out using a Banbury mixer, a single-screw extruder, a twin-screw extruder, or a multi-screw extruder.
17. The method of claim 15 , wherein the melt forming is carried out using injection molding, blow molding, extrusion molding, compression molding, calender molding, or rotation molding.
18. A flame retardant polycarbonate article comprising a flame retardant polycarbonate resin composition according to claim 1 , selected from the group consisting of glazing or sheet; an automotive component; a home appliance; packaging; an electrical, electronic, or technical component; a medical or health care related article; and a leisure or safety article.
19. A flame retardant polycarbonate article according to claim 18 selected from the group consisting of a component of a window for an airplane, a train, a school, a high speed aircraft canopy, automotive headlamp assembly, automotive interior instrument panel, automotive bumper, automotive window glazing, a houseware item, a houseware power tool, a refillable water bottle, a refillable milk bottle, an electrical connector, telephone network device, outlet box, computer housing, business machine housing, instrument panel, membrane switch, insulator, protective goggles, safety glasses, safety sideshields, eyeglasses, mask, sports helmet, motorcycle helmet, and a safety helmet for firefighters or construction workers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/082,792 US20110195212A1 (en) | 2007-03-07 | 2011-04-08 | Flame Retardant Polycarbonate Compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90555507P | 2007-03-07 | 2007-03-07 | |
US95819407P | 2007-07-03 | 2007-07-03 | |
US12/038,870 US7947770B2 (en) | 2007-03-07 | 2008-02-28 | Flame retardant polycarbonate compositions |
US13/082,792 US20110195212A1 (en) | 2007-03-07 | 2011-04-08 | Flame Retardant Polycarbonate Compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/038,870 Division US7947770B2 (en) | 2007-03-07 | 2008-02-28 | Flame retardant polycarbonate compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110195212A1 true US20110195212A1 (en) | 2011-08-11 |
Family
ID=39420658
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/038,870 Expired - Fee Related US7947770B2 (en) | 2007-03-07 | 2008-02-28 | Flame retardant polycarbonate compositions |
US13/082,792 Abandoned US20110195212A1 (en) | 2007-03-07 | 2011-04-08 | Flame Retardant Polycarbonate Compositions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/038,870 Expired - Fee Related US7947770B2 (en) | 2007-03-07 | 2008-02-28 | Flame retardant polycarbonate compositions |
Country Status (7)
Country | Link |
---|---|
US (2) | US7947770B2 (en) |
EP (1) | EP2118194B1 (en) |
JP (1) | JP5226706B2 (en) |
KR (2) | KR20090118064A (en) |
ES (1) | ES2529695T3 (en) |
TW (1) | TW200842166A (en) |
WO (1) | WO2008108983A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012101669A1 (en) * | 2012-02-29 | 2013-08-29 | Westfälische Wilhelms-Universität Münster | Conducting salt for lithium-based energy storage |
CN106976198A (en) * | 2017-03-30 | 2017-07-25 | 广东长盈精密技术有限公司 | Composite article of glass and plastics and preparation method thereof |
WO2021031271A1 (en) * | 2019-08-19 | 2021-02-25 | 南京天诗新材料科技有限公司 | Modified ptfe anti-dripping agent and preparation method therefor |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2009130873A1 (en) * | 2008-04-21 | 2011-08-11 | 日本カーリット株式会社 | Hydroalkanesulfonates and their uses |
JPWO2009130872A1 (en) * | 2008-04-21 | 2011-08-11 | 日本カーリット株式会社 | Conductivity imparting agent, and composition and molded body containing the same |
JP5286110B2 (en) * | 2009-03-09 | 2013-09-11 | 三菱エンジニアリングプラスチックス株式会社 | Aromatic polycarbonate resin composition and molded article thereof |
JP5275890B2 (en) * | 2009-04-28 | 2013-08-28 | 三菱エンジニアリングプラスチックス株式会社 | Aromatic polycarbonate resin composition and molded article thereof |
CN102321357A (en) * | 2011-07-25 | 2012-01-18 | 琨诘电子(昆山)有限公司 | Environment-friendly heat-resistant antistatic insulating material |
ITMI20121283A1 (en) | 2012-07-24 | 2014-01-25 | Miteni Spa | PROCEDURE FOR THE PREPARATION OF PHOSPHONE SULPHONATES |
EP3157987B1 (en) * | 2014-06-20 | 2018-05-16 | Rhodia Operations | Polyamide molding compositions, molded parts obtained therefrom, and use thereof |
US9895592B2 (en) * | 2014-09-16 | 2018-02-20 | Richard Allen Emard | Face shield for reducing facial injuries |
CN106635064A (en) * | 2016-12-06 | 2017-05-10 | 佛山市高明区生产力促进中心 | Novel flame retardant |
JP6766709B2 (en) * | 2017-03-15 | 2020-10-14 | 三菱エンジニアリングプラスチックス株式会社 | Polycarbonate resin composition and its molded product |
EP3685645A4 (en) | 2017-09-22 | 2021-08-25 | 3M Innovative Properties Company | Composite article |
EP3886854A4 (en) | 2018-11-30 | 2022-07-06 | Nuvation Bio Inc. | Pyrrole and pyrazole compounds and methods of use thereof |
JP7440306B2 (en) * | 2020-03-10 | 2024-02-28 | 帝人株式会社 | Polycarbonate resin composition and molded product thereof |
CN113969060B (en) * | 2021-09-24 | 2023-03-14 | 国网江西省电力有限公司电力科学研究院 | High-thermal-conductivity flame-retardant liquid silicone rubber for insulating material, preparation method and application |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2403207A (en) * | 1943-03-08 | 1946-07-02 | Du Pont | Chemical process and products |
US3189662A (en) * | 1961-01-23 | 1965-06-15 | Gen Electric | Organopolysiloxane-polycarbonate block copolymers |
US3419634A (en) * | 1966-01-03 | 1968-12-31 | Gen Electric | Organopolysiloxane polycarbonate block copolymers |
US3775367A (en) * | 1969-06-13 | 1973-11-27 | Bayer Ag | Flame resistant polycarbonates |
US5235026A (en) * | 1991-06-04 | 1993-08-10 | Bayer Aktiengesellschaft | Continuous production of polycarbonates |
US5319066A (en) * | 1993-05-27 | 1994-06-07 | General Electric Company | Method for making polycarbonates |
US5449710A (en) * | 1993-05-18 | 1995-09-12 | Idemitsu Petrochemical Co., Ltd. | Flame retardative polycarbonate resin composition |
US5606007A (en) * | 1989-12-28 | 1997-02-25 | General Electric Company | Processes for preparing aromatic polycarbonates |
US5717057A (en) * | 1994-12-28 | 1998-02-10 | General Electric Company | Method of manufacturing polycarbonate |
US5847616A (en) * | 1996-12-12 | 1998-12-08 | Tritech Microelectronics International, Ltd. | Embedded voltage controlled oscillator with minimum sensitivity to process and supply |
US6252111B1 (en) * | 1999-02-16 | 2001-06-26 | Central Glass Company, Limited | Method for producing sulfonimide or its salt |
US6339821B1 (en) * | 1998-10-06 | 2002-01-15 | Mitsubishi Denki Kabushiki Kaisha | Data processor capable of handling an increased number of operation codes |
WO2005044906A1 (en) * | 2003-11-07 | 2005-05-19 | Italmatch Chemicals S.P.A. | Halogen-free flame retardant polycarbonate compositions |
US20060276670A1 (en) * | 2005-06-07 | 2006-12-07 | Junk Christopher P | Hydrofluoroalkanesulfonic acids from fluorovinyl ethers |
US20060276671A1 (en) * | 2005-06-07 | 2006-12-07 | Harmer Mark A | Manufacture of hydrofluoroalkanesulfonic acids |
US7238772B2 (en) * | 2005-09-22 | 2007-07-03 | E. I. Du Pont De Nemours And Company | Preparation of polytrimethylene ether glycol and copolymers thereof |
US7491758B2 (en) * | 2004-06-01 | 2009-02-17 | Nitto Denko Corporation | Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet and surface protecting film |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3034537A1 (en) | 1980-09-12 | 1982-05-06 | Hoechst Ag, 6000 Frankfurt | METHOD FOR THE PRODUCTION OF MONOHYDROPERFLUORALKANESULPHONIC ACID HALOGENIDES AND SOME SPECIAL REPRESENTATIVES OF THIS CLASS |
US6613824B2 (en) | 2001-11-12 | 2003-09-02 | General Electric Company | Flame retardant resinous compositions and method |
AU2002357505A1 (en) * | 2002-03-18 | 2003-09-29 | Asahi Kasei Chemicals Corporation | Flame-retardant aromatic polycarbonate resin composition |
JP2003335868A (en) * | 2002-05-20 | 2003-11-28 | Asahi Kasei Corp | Method of manufacturing flame-retardant resin composition |
JP2004352807A (en) * | 2003-05-28 | 2004-12-16 | Teijin Chem Ltd | Flame-retardant polycarbonate resin composition |
JP4721662B2 (en) * | 2004-06-22 | 2011-07-13 | 旭化成イーマテリアルズ株式会社 | Method for producing molded article of aromatic polycarbonate resin composition and molded article |
JP4784164B2 (en) * | 2005-06-15 | 2011-10-05 | 三菱エンジニアリングプラスチックス株式会社 | Flame retardant polycarbonate resin composition and molded body using the same |
-
2008
- 2008-02-28 US US12/038,870 patent/US7947770B2/en not_active Expired - Fee Related
- 2008-02-29 KR KR1020097019223A patent/KR20090118064A/en active IP Right Grant
- 2008-02-29 KR KR1020157012702A patent/KR20150063579A/en not_active Application Discontinuation
- 2008-02-29 JP JP2009552700A patent/JP5226706B2/en not_active Expired - Fee Related
- 2008-02-29 ES ES08726275.4T patent/ES2529695T3/en active Active
- 2008-02-29 WO PCT/US2008/002704 patent/WO2008108983A1/en active Application Filing
- 2008-02-29 EP EP08726275.4A patent/EP2118194B1/en not_active Not-in-force
- 2008-03-06 TW TW097107934A patent/TW200842166A/en unknown
-
2011
- 2011-04-08 US US13/082,792 patent/US20110195212A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2403207A (en) * | 1943-03-08 | 1946-07-02 | Du Pont | Chemical process and products |
US3189662A (en) * | 1961-01-23 | 1965-06-15 | Gen Electric | Organopolysiloxane-polycarbonate block copolymers |
US3419634A (en) * | 1966-01-03 | 1968-12-31 | Gen Electric | Organopolysiloxane polycarbonate block copolymers |
US3775367A (en) * | 1969-06-13 | 1973-11-27 | Bayer Ag | Flame resistant polycarbonates |
US5606007A (en) * | 1989-12-28 | 1997-02-25 | General Electric Company | Processes for preparing aromatic polycarbonates |
US5235026A (en) * | 1991-06-04 | 1993-08-10 | Bayer Aktiengesellschaft | Continuous production of polycarbonates |
US5449710A (en) * | 1993-05-18 | 1995-09-12 | Idemitsu Petrochemical Co., Ltd. | Flame retardative polycarbonate resin composition |
US5319066A (en) * | 1993-05-27 | 1994-06-07 | General Electric Company | Method for making polycarbonates |
US5717057A (en) * | 1994-12-28 | 1998-02-10 | General Electric Company | Method of manufacturing polycarbonate |
US5847616A (en) * | 1996-12-12 | 1998-12-08 | Tritech Microelectronics International, Ltd. | Embedded voltage controlled oscillator with minimum sensitivity to process and supply |
US6339821B1 (en) * | 1998-10-06 | 2002-01-15 | Mitsubishi Denki Kabushiki Kaisha | Data processor capable of handling an increased number of operation codes |
US6252111B1 (en) * | 1999-02-16 | 2001-06-26 | Central Glass Company, Limited | Method for producing sulfonimide or its salt |
WO2005044906A1 (en) * | 2003-11-07 | 2005-05-19 | Italmatch Chemicals S.P.A. | Halogen-free flame retardant polycarbonate compositions |
US20070082995A1 (en) * | 2003-11-07 | 2007-04-12 | Italmatch Chemicals S.P.A. | Halogen-free flame retardant polycarbonate compositions |
US7491758B2 (en) * | 2004-06-01 | 2009-02-17 | Nitto Denko Corporation | Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet and surface protecting film |
US20060276670A1 (en) * | 2005-06-07 | 2006-12-07 | Junk Christopher P | Hydrofluoroalkanesulfonic acids from fluorovinyl ethers |
US20060276671A1 (en) * | 2005-06-07 | 2006-12-07 | Harmer Mark A | Manufacture of hydrofluoroalkanesulfonic acids |
US7238772B2 (en) * | 2005-09-22 | 2007-07-03 | E. I. Du Pont De Nemours And Company | Preparation of polytrimethylene ether glycol and copolymers thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012101669A1 (en) * | 2012-02-29 | 2013-08-29 | Westfälische Wilhelms-Universität Münster | Conducting salt for lithium-based energy storage |
US9633797B2 (en) | 2012-02-29 | 2017-04-25 | Westfälische Wilhelms-Universität Münster | Conductive salt for lithium-based energy stores |
CN106976198A (en) * | 2017-03-30 | 2017-07-25 | 广东长盈精密技术有限公司 | Composite article of glass and plastics and preparation method thereof |
WO2021031271A1 (en) * | 2019-08-19 | 2021-02-25 | 南京天诗新材料科技有限公司 | Modified ptfe anti-dripping agent and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20150063579A (en) | 2015-06-09 |
KR20090118064A (en) | 2009-11-17 |
ES2529695T3 (en) | 2015-02-24 |
WO2008108983A1 (en) | 2008-09-12 |
JP2010520361A (en) | 2010-06-10 |
US7947770B2 (en) | 2011-05-24 |
EP2118194B1 (en) | 2014-12-03 |
JP5226706B2 (en) | 2013-07-03 |
EP2118194A1 (en) | 2009-11-18 |
US20080221241A1 (en) | 2008-09-11 |
TW200842166A (en) | 2008-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7947770B2 (en) | Flame retardant polycarbonate compositions | |
US9527984B2 (en) | Polyphosphonate and copolyphosphonate additive mixtures | |
KR100455050B1 (en) | Cross-linked Phenoxyphosphazene Compound, Process for Producing the Same, Flame Retardant, Flame-Retardant Resin Composition, and Molded Flame-Retardant Resin | |
JP2010520361A5 (en) | ||
CA2231571C (en) | Carbonate polymer resins containing low volatility aromatic phosphate ester compounds | |
EP1348005B1 (en) | Flame retardant carbonate polymers and use thereof | |
US7317046B2 (en) | Cyclic phosphazenes, process for preparing them, flame retardant containing them as active ingredient, and resin composition containing them and molded article therefrom | |
US20110112226A1 (en) | Products with improved flame resistance | |
US20180305499A1 (en) | Polysiloxane-polycarbonate copolymer with improved transparency and flame retardancy and method for producing same | |
CN101627079A (en) | Flame retardant polycarbonate compositions | |
ES2659007T3 (en) | Flame retardant polycarbonate compositions | |
KR100596941B1 (en) | Polycarbonate Resin Composition Having Good Flame Retardancy | |
US10934489B2 (en) | Flame-retarded transparent polycarbonate compositions | |
JPS63238055A (en) | Fluorinated alkylamidosulfonates, synthesis thereof, use as flame retardant and polycarbonate forming composition | |
JPS6024137B2 (en) | polycarbonate composition | |
JPH09310013A (en) | Flame-retardant polycarbonate resin composition | |
KR19980079379A (en) | Flame retardant polymer resin composition with improved thermal deformation temperature and mechanical properties | |
JP2004018475A (en) | Cyclic phosphazene compound or phosphazene composition, method for producing the same, flame retardant containing the same as active ingredient and molded article containing the same | |
JP2002322478A (en) | Flame retardant and flame-retardant resin composition and molding containing the same | |
KR100520456B1 (en) | Flame Retardant Thermoplastic Resin Composition | |
KR20130142575A (en) | Polycarbonate resin composition with high transparency and flame retardancy and product by using the same | |
TW201500427A (en) | Flame-retardant agent composition and flame-retardant resin composition containing same, and molded article | |
JPH1046017A (en) | Polycarbonate resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |