US20110148044A1 - High expansion metallic seal - Google Patents

High expansion metallic seal Download PDF

Info

Publication number
US20110148044A1
US20110148044A1 US12/646,440 US64644009A US2011148044A1 US 20110148044 A1 US20110148044 A1 US 20110148044A1 US 64644009 A US64644009 A US 64644009A US 2011148044 A1 US2011148044 A1 US 2011148044A1
Authority
US
United States
Prior art keywords
seal
pips
downhole
filler
pip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/646,440
Inventor
Sean L. Gaudette
Clint E. Mickey
Michael J. Loughlin
Larry J. Urban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US12/646,440 priority Critical patent/US20110148044A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICKEY, CLINT E., GAUDETTE, SEAN L., LOUGHLIN, MICHAEL J., URBAN, LARRY J.
Priority to PCT/US2010/062005 priority patent/WO2011079265A2/en
Publication of US20110148044A1 publication Critical patent/US20110148044A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole

Definitions

  • seals In the downhole drilling and completion arts, sealing of various things such as an annulus between a mandrel or basepipe and a casing, for example is a common requirement. Many different types of seals have been developed and have used many different types of material and/or combinations of material. More recently, high expansion metal seals have become of interest to the industry yet while they suffer little from the deleterious effects of the downhole environment and relatively easily resist mechanical insults such as pressure inversions, extrusion, and the ravages of time, they present greater difficulty with regard to establishing a competent seal to begin with. Various means have been used to assist in the creating of the seal each having effective success to some degree.
  • a downhole seal including a seal body; a prominent pip extending from the seal body; and one or more reduced prominence pips adjacent the prominent pip.
  • FIG. 1 is a schematic cross sectional representation of a prior art seal in a run in position
  • FIG. 2 is a schematic cross sectional representation of the same seal shown in FIG. 1 but in a set position;
  • FIG. 3 is a schematic cross sectional representation of a seal configuration as disclosed herein in a run in position
  • FIG. 4 is a schematic cross sectional representation of the same seal shown in FIG. 3 but in a set position;
  • FIG. 5 is a schematic cross sectional representation of another seal configuration as disclosed herein in a run in position
  • FIG. 6 is a schematic cross sectional representation of the same seal shown in FIG. 5 but in a set position;
  • FIG. 7 is a schematic cross sectional representation of another seal configuration as disclosed herein in a run in position
  • FIG. 8 is a schematic cross sectional representation of the same seal shown in FIG. 7 but in a set position;
  • FIG. 9 is a schematic cross sectional representation of another seal configuration as disclosed herein in a run in position
  • FIG. 10 is a schematic cross sectional representation of the same seal shown in FIG. 9 but in a set position;
  • FIG. 11 is a schematic cross sectional representation of the seal configuration shown in FIG. 3 with an optional sleeve, as disclosed herein in a run in position;
  • FIG. 12 is a schematic cross sectional representation of the same seal shown in FIG. 11 but in a set position.
  • FIGS. 13-20 are schematic cross sectional representations of alternate elastomer configurations for the seal embodiments of FIGS. 3-12 .
  • a prior art seal 10 includes pips 12 and 14 .
  • the pips together define parallel facing surfaces 16 and 18 .
  • the pips 12 and 14 are moved to a position illustrated in FIG. 2 , with the surfaces 16 and 18 moving to a splayed open position as shown. In the prior art this was considered a positive occurrence and hence is the state of the art.
  • a seal body 110 comprises a relatively rigid material such as a metal material.
  • the material is a steel alloy such as stainless steel or inconel.
  • the seal body 110 includes a set of depending pips 112 and 114 that extend radially relative to an axis of the seal body 110 and in one embodiment, as illustrated, extend radially outwardly.
  • the pips 112 and 114 each define nonparallel facing surfaces 116 and 118 , respectively. These surfaces are oriented to generally oppose each other but they are not parallel to each other in the run in condition.
  • the surfaces grow closer to one another as distance from the seal body 110 increases.
  • the surfaces 116 to 118 form an acute angle with respect to a centerline 119 of the seal body as displayed in the Figures. Pips having angled surfaces, as illustrated, more reliably achieve metal-to-metal contact with a casing inside surface (casing ID) 120 . Further the angled surfaces 116 and 118 help to minimize a radial extrusion gap between the pip 112 or 114 contact surface 122 or 124 , respectively, and casing ID 120 than does the prior art seal shown in FIGS. 1 and 2 .
  • the acute angle of the pips also helps to self-energize the seal, in an embodiment where soft material filler 130 is included, with the application of differential pressure.
  • the acute angle of the pips allows for a larger cross sectional area between the two pips for a given dimension between distal ends 121 and 123 of the pips, which will provide larger volume of soft material than the geometry of the prior art such as illustrated in FIG. 1 .
  • the performance increase is due to the pips 112 and 114 having higher contact pressure against a casing ID 120 or to the pips 112 and 114 attaining a final set position in closer proximity to the casing.
  • the orientation of the pips 112 and 114 creates an acute angle between surface 116 and 120 when measuring the angle toward the left side of the drawing and an acute angle between surface 118 and 120 when measuring the angle toward the right side of the drawing.
  • FIGS. 5 and 6 the configuration of FIGS. 3 and 4 is repeated except for the addition of an additional pip 126 .
  • the additional pip 126 is configured to contact the casing 120 as shown in FIG. 6 .
  • the advantages to adding a center pip is that it offers the potential of a third metal-to-metal contact point or reduced extrusion gap and it controls the set volume of soft material 130 , which prevents excessive squeeze.
  • the configuration of FIGS. 5 and 6 are repeated except the pips 128 and 131 have a reduced diameter (reduced prominence) that is less than the diameter of the center pip 126 (prominent pip).
  • the advantage to reducing the diameter of the outer pips 128 and 131 is that metal-to-metal contact between the center pip 126 and the casing ID 120 is even more reliably achieved.
  • the pips 128 and 131 still provide for soft material filler anchoring to help prevent washing away of the soft material.
  • the shorter pips encourage the soft material to flow between the pips and the casing ID 120 . This helps with sealing small irregularities in the surface 120 .
  • the angled inner surfaces of the pips of the foregoing embodiments may be used but are permissive rather than required.
  • the pips need not have the angled surfaces 116 and 118 as in the foregoing embodiments but could be configured with surfaced 16 and 18 as in the prior art.
  • FIGS. 9 and 10 the configuration of FIGS. 3 and 4 is repeated except a span surface 134 between pips 112 and 114 is not perpendicular to the centerline 119 of the seal but rather has a concave shape with respect to the centerline of the seal as illustrated.
  • the concavity of span surface 134 alters the set volume of the seal 110 and allows for greater selection in soft material volume.
  • the volume of the area defined by the pips, surface 134 and casing surface 120 will change during setting of the seal 110 and therefore consideration of the amount of soft material is important to ensure that it does not prevent metal to metal contact of the seal with the casing 120 , something that can occur as a result of excessive squeezing of the soft material.
  • an additional optional sleeve 136 is contemplated.
  • FIGS. 11 and 12 an illustration of a seal configuration like that of FIGS. 3 and 4 is used to illustrate the sleeve 136 .
  • the illustration is certainly by way of illustration rather than limitation since the sleeve may be used on any of the embodiments disclosed herein or others.
  • the sleeve 136 comprises non-metallic material although metallic material having appropriate structural characteristics could be substituted. Structural characteristics that are desired include toughness to resist borehole impacts during running and softness to promote sealing at pip contact surfaces 122 and 124 .
  • the sealing function of the sleeve 136 occurs similarly to that of the soft material 130 in that it flows into small irregularities at casing surface 120 but is located at the pips as opposed to between the pips.
  • each of the embodiments disclosed may be used with or without a soft material 130 .
  • Each of the foregoing seal configurations used alone will create a reliable seal.
  • These configurations when endowed with a softer material 130 (see FIGS. 13-20 ) than the material from which the seal itself is constructed, that softer material being positioned between pip 112 and pip 114 or 128 and 130 exhibit different sealing properties that may be helpful in tubular structures having a pitted surface, for example.
  • Softer materials contemplated include but are not limited to nonmetallic materials such as polytetrafluoroethylene, rubber, plastic, and soft metallic materials such as lead, gold, silver, etc. Each of these materials tends to flow relatively easily under stress.
  • the configurations of the pips as described above enhance the utility and reliability of these softer materials by helping to keep them contained between the pips rather than to allow the material to flow to a position where it is between the pips and the casing 120 , where it can have a detrimental affect on sealing.
  • the embodiments are self explanatory, each of which being configured to provide for good sealing characteristics while exhibiting an unstressed shape that allows space into which the stressed material 120 may flow to avoid flow of that material between the pips 112 and 114 and the casing 120 . It is to be appreciated that in some illustrated embodiments the material is a single piece of material ( FIGS.
  • FIGS. 13 , 17 , 18 and 19 While in other embodiments the material 130 is configured as more than one piece of material ( FIGS. 14 , 15 , 16 , and 20 ). It is further to be appreciated that in FIG. 20 , O-rings are illustrated having different cross sectional diameters. O-rings with the same cross sectional diameters can also be used as well as different numbers of O-rings. All of the configurations shown FIGS. 13-20 may have soft material that is molded into a separate ring and placed onto the seal body or molded and bonded directly onto the seal body.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Gasket Seals (AREA)

Abstract

A downhole seal includes a seal body; a prominent pip having extending from the seal body; and one or more reduced prominence pips adjacent the prominent pip.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application contains subject matter related to the subject matter of co-pending application, which is assigned to the same assignee as this application, Baker Hughes Incorporated of Houston, Tex. and is being filed on Dec. 23, 2009. The below application is hereby incorporated by reference in its entirety:
  • U.S. Patent Application Attorney Docket No. TTI4-48541-US-01 (BA000387US), entitled HIGH EXPANSION METALLIC SEAL.
  • BACKGROUND
  • In the downhole drilling and completion arts, sealing of various things such as an annulus between a mandrel or basepipe and a casing, for example is a common requirement. Many different types of seals have been developed and have used many different types of material and/or combinations of material. More recently, high expansion metal seals have become of interest to the industry yet while they suffer little from the deleterious effects of the downhole environment and relatively easily resist mechanical insults such as pressure inversions, extrusion, and the ravages of time, they present greater difficulty with regard to establishing a competent seal to begin with. Various means have been used to assist in the creating of the seal each having effective success to some degree.
  • None of the known solutions has proven a panacea in all situations and consequently, the art still seeks alternative solutions and well receives those proposed.
  • SUMMARY
  • A downhole seal including a seal body; a prominent pip extending from the seal body; and one or more reduced prominence pips adjacent the prominent pip.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawings wherein like elements are numbered alike in the several Figures:
  • FIG. 1 is a schematic cross sectional representation of a prior art seal in a run in position;
  • FIG. 2 is a schematic cross sectional representation of the same seal shown in FIG. 1 but in a set position;
  • FIG. 3 is a schematic cross sectional representation of a seal configuration as disclosed herein in a run in position;
  • FIG. 4 is a schematic cross sectional representation of the same seal shown in FIG. 3 but in a set position;
  • FIG. 5 is a schematic cross sectional representation of another seal configuration as disclosed herein in a run in position;
  • FIG. 6 is a schematic cross sectional representation of the same seal shown in FIG. 5 but in a set position;
  • FIG. 7 is a schematic cross sectional representation of another seal configuration as disclosed herein in a run in position;
  • FIG. 8 is a schematic cross sectional representation of the same seal shown in FIG. 7 but in a set position;
  • FIG. 9 is a schematic cross sectional representation of another seal configuration as disclosed herein in a run in position;
  • FIG. 10 is a schematic cross sectional representation of the same seal shown in FIG. 9 but in a set position;
  • FIG. 11 is a schematic cross sectional representation of the seal configuration shown in FIG. 3 with an optional sleeve, as disclosed herein in a run in position;
  • FIG. 12 is a schematic cross sectional representation of the same seal shown in FIG. 11 but in a set position; and
  • FIGS. 13-20 are schematic cross sectional representations of alternate elastomer configurations for the seal embodiments of FIGS. 3-12.
  • DETAILED DESCRIPTION
  • In order to enhance understanding of the invention disclosed herein initial reference will be made to the prior art, represented in FIGS. 1 and 2. A prior art seal 10 includes pips 12 and 14. The pips together define parallel facing surfaces 16 and 18. Once the seal 10 is set, the pips 12 and 14 are moved to a position illustrated in FIG. 2, with the surfaces 16 and 18 moving to a splayed open position as shown. In the prior art this was considered a positive occurrence and hence is the state of the art.
  • Referring now to FIGS. 3 and 4, a first embodiment of the seal concept disclosed herein is illustrated. A seal body 110 comprises a relatively rigid material such as a metal material. In one embodiment the material is a steel alloy such as stainless steel or inconel. The seal body 110 includes a set of depending pips 112 and 114 that extend radially relative to an axis of the seal body 110 and in one embodiment, as illustrated, extend radially outwardly. Significantly, the pips 112 and 114 each define nonparallel facing surfaces 116 and 118, respectively. These surfaces are oriented to generally oppose each other but they are not parallel to each other in the run in condition. Moreover, as can be appreciated from the Figures, the surfaces grow closer to one another as distance from the seal body 110 increases. The surfaces 116 to 118 form an acute angle with respect to a centerline 119 of the seal body as displayed in the Figures. Pips having angled surfaces, as illustrated, more reliably achieve metal-to-metal contact with a casing inside surface (casing ID) 120. Further the angled surfaces 116 and 118 help to minimize a radial extrusion gap between the pip 112 or 114 contact surface 122 or 124, respectively, and casing ID 120 than does the prior art seal shown in FIGS. 1 and 2. The acute angle of the pips also helps to self-energize the seal, in an embodiment where soft material filler 130 is included, with the application of differential pressure. The acute angle of the pips allows for a larger cross sectional area between the two pips for a given dimension between distal ends 121 and 123 of the pips, which will provide larger volume of soft material than the geometry of the prior art such as illustrated in FIG. 1. The performance increase is due to the pips 112 and 114 having higher contact pressure against a casing ID 120 or to the pips 112 and 114 attaining a final set position in closer proximity to the casing. As can be appreciated in FIG. 4, the orientation of the pips 112 and 114 creates an acute angle between surface 116 and 120 when measuring the angle toward the left side of the drawing and an acute angle between surface 118 and 120 when measuring the angle toward the right side of the drawing.
  • In another embodiment, referring to FIGS. 5 and 6, the configuration of FIGS. 3 and 4 is repeated except for the addition of an additional pip 126. The additional pip 126 is configured to contact the casing 120 as shown in FIG. 6. The advantages to adding a center pip is that it offers the potential of a third metal-to-metal contact point or reduced extrusion gap and it controls the set volume of soft material 130, which prevents excessive squeeze.
  • In another embodiment, referring to FIGS. 7 and 8, the configuration of FIGS. 5 and 6 are repeated except the pips 128 and 131 have a reduced diameter (reduced prominence) that is less than the diameter of the center pip 126 (prominent pip). The advantage to reducing the diameter of the outer pips 128 and 131 is that metal-to-metal contact between the center pip 126 and the casing ID 120 is even more reliably achieved. The pips 128 and 131 still provide for soft material filler anchoring to help prevent washing away of the soft material. In this embodiment however, the shorter pips encourage the soft material to flow between the pips and the casing ID 120. This helps with sealing small irregularities in the surface 120. Further, it is to be appreciated that in this embodiment the angled inner surfaces of the pips of the foregoing embodiments may be used but are permissive rather than required. Stated alternatively, in embodiments with reduced prominence pips, the pips need not have the angled surfaces 116 and 118 as in the foregoing embodiments but could be configured with surfaced 16 and 18 as in the prior art.
  • In another embodiment, referring to FIGS. 9 and 10, the configuration of FIGS. 3 and 4 is repeated except a span surface 134 between pips 112 and 114 is not perpendicular to the centerline 119 of the seal but rather has a concave shape with respect to the centerline of the seal as illustrated. The concavity of span surface 134 alters the set volume of the seal 110 and allows for greater selection in soft material volume. It is to be understood however, that the volume of the area defined by the pips, surface 134 and casing surface 120 will change during setting of the seal 110 and therefore consideration of the amount of soft material is important to ensure that it does not prevent metal to metal contact of the seal with the casing 120, something that can occur as a result of excessive squeezing of the soft material.
  • In all embodiments FIGS. 3-10, an additional optional sleeve 136 is contemplated. Referring to FIGS. 11 and 12, an illustration of a seal configuration like that of FIGS. 3 and 4 is used to illustrate the sleeve 136. The illustration is certainly by way of illustration rather than limitation since the sleeve may be used on any of the embodiments disclosed herein or others. In one embodiment the sleeve 136 comprises non-metallic material although metallic material having appropriate structural characteristics could be substituted. Structural characteristics that are desired include toughness to resist borehole impacts during running and softness to promote sealing at pip contact surfaces 122 and 124. The sealing function of the sleeve 136 occurs similarly to that of the soft material 130 in that it flows into small irregularities at casing surface 120 but is located at the pips as opposed to between the pips.
  • As has been alluded to hereinabove, each of the embodiments disclosed may be used with or without a soft material 130. Each of the foregoing seal configurations used alone will create a reliable seal. These configurations when endowed with a softer material 130 (see FIGS. 13-20) than the material from which the seal itself is constructed, that softer material being positioned between pip 112 and pip 114 or 128 and 130 exhibit different sealing properties that may be helpful in tubular structures having a pitted surface, for example. Softer materials contemplated include but are not limited to nonmetallic materials such as polytetrafluoroethylene, rubber, plastic, and soft metallic materials such as lead, gold, silver, etc. Each of these materials tends to flow relatively easily under stress. They are therefore helpful in ensuring sealing in smaller discontinuities of the sealing surface. The configurations of the pips as described above enhance the utility and reliability of these softer materials by helping to keep them contained between the pips rather than to allow the material to flow to a position where it is between the pips and the casing 120, where it can have a detrimental affect on sealing. Reference is made to a number of embodiments of soft material 130. The embodiments are self explanatory, each of which being configured to provide for good sealing characteristics while exhibiting an unstressed shape that allows space into which the stressed material 120 may flow to avoid flow of that material between the pips 112 and 114 and the casing 120. It is to be appreciated that in some illustrated embodiments the material is a single piece of material (FIGS. 13, 17, 18 and 19) while in other embodiments the material 130 is configured as more than one piece of material (FIGS. 14, 15, 16, and 20). It is further to be appreciated that in FIG. 20, O-rings are illustrated having different cross sectional diameters. O-rings with the same cross sectional diameters can also be used as well as different numbers of O-rings. All of the configurations shown FIGS. 13-20 may have soft material that is molded into a separate ring and placed onto the seal body or molded and bonded directly onto the seal body.
  • While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.

Claims (15)

1. A downhole seal comprising:
a seal body;
a prominent pip extending from the seal body; and
one or more reduced prominence pips adjacent the prominent pip.
2. A downhole seal as claimed in claim 1 wherein the one or more reduced prominence pips include an angled surface facing the prominent pip.
3. A downhole seal as claimed in claim 1 wherein the seal body includes two reduced prominence pips that define a distance between them that diminishes with increasing distance from the seal body.
4. A downhole seal as claimed in claim 1 wherein the seal body includes a concave span surface.
5. A downhole seal as claimed in claim 1 wherein the downhole seal further includes a sleeve disposed around the seal body.
6. A downhole seal as claimed in claim 5 wherein the sleeve comprises a material having toughness for durability.
7. A downhole seal as claimed in claim 5 wherein the sleeve comprises a material having softness for flowability.
8. A downhole seal as claimed in claim 1 wherein the seal body includes a soft material filler disposed about the prominent pip.
9. A downhole seal as claimed in claim 8 wherein the filler is disposed between two reduced prominence pips.
10. A downhole seal as claimed in claim 8 wherein the filler is a single piece of filler.
11. A downhole seal as claimed in claim 10 wherein the single piece of filler is bonded directly to the seal body.
12. A downhole seal as claimed in claim 8 wherein the filler is multipiece.
13. A downhole seal as claimed in claim 12 wherein the multipiece filler is bonded directly to the seal body.
14. A downhole seal as claimed in claim 8 wherein the filler is trapped between the one or more reduced prominence pips and a tubular against which the seal is sealed when in use.
15. A downhole seal as claimed in claim 8 wherein the filler is anchored in place by the one or more reduced prominence pips.
US12/646,440 2009-12-23 2009-12-23 High expansion metallic seal Abandoned US20110148044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/646,440 US20110148044A1 (en) 2009-12-23 2009-12-23 High expansion metallic seal
PCT/US2010/062005 WO2011079265A2 (en) 2009-12-23 2010-12-23 High expansion metallic seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/646,440 US20110148044A1 (en) 2009-12-23 2009-12-23 High expansion metallic seal

Publications (1)

Publication Number Publication Date
US20110148044A1 true US20110148044A1 (en) 2011-06-23

Family

ID=44149963

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/646,440 Abandoned US20110148044A1 (en) 2009-12-23 2009-12-23 High expansion metallic seal

Country Status (2)

Country Link
US (1) US20110148044A1 (en)
WO (1) WO2011079265A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705615B2 (en) * 2001-10-31 2004-03-16 Dril-Quip, Inc. Sealing system and method
US20070029080A1 (en) * 2000-07-07 2007-02-08 Moyes Peter B Deformable member
US20070267824A1 (en) * 2006-05-19 2007-11-22 Baugh John L Seal and slip assembly for expandable downhole tools
US7363975B2 (en) * 2000-07-07 2008-04-29 Baker Hughes Incorporated Push/pull belleville stack for use with zertech MTM seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029080A1 (en) * 2000-07-07 2007-02-08 Moyes Peter B Deformable member
US7363975B2 (en) * 2000-07-07 2008-04-29 Baker Hughes Incorporated Push/pull belleville stack for use with zertech MTM seal
US6705615B2 (en) * 2001-10-31 2004-03-16 Dril-Quip, Inc. Sealing system and method
US20070267824A1 (en) * 2006-05-19 2007-11-22 Baugh John L Seal and slip assembly for expandable downhole tools

Also Published As

Publication number Publication date
WO2011079265A2 (en) 2011-06-30
WO2011079265A3 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US7963321B2 (en) Swellable downhole packer
CA2708715C (en) Sealing apparatus having ring member and back-up layer
CN102575508B (en) Ring blocking device
US9376882B2 (en) Self-energizing annular seal
US20080061510A1 (en) Forming a metal-to-metal seal in a well
US20100072711A1 (en) Expandable metal-to-metal seal
JP2008530470A (en) Pipe threaded fittings with seals
BRPI1001364A2 (en) expandable appliance upgrades
BRPI0707924A2 (en) gas-tight tubular fitting
FR2935455A1 (en) EXTENSIBLE SEAL TRIM CONSTRUCTION
BRPI0416408B1 (en) REALIZATION BY PLASTIC EXPANSION OF TUBULAR SEAL WITH OVERLAYING (S) AND INITIAL (IS)
US12196055B2 (en) Downhole expandable metal tubular
US9322240B2 (en) Inflatable packer with a reinforced sealing cover
BR112013031067B1 (en) support device to prevent extrusion
CN107743539A (en) Underground inflatable metal tube structure
US20180172160A1 (en) Pressure activated anti-extrusion ring for annular seal, seal configuration, and method
US9140095B2 (en) Packer cup for sealing in multiple wellbore sizes eccentrically
US20110148043A1 (en) High expansion metallic seal
US10077621B2 (en) Diverter flow line insert packer seal
US20110148044A1 (en) High expansion metallic seal
US20030209862A1 (en) Metal end cap seal with annular protrusions
US4081185A (en) Oil well swab cup
BR122020007412B1 (en) METHOD FOR COMPLETING A WELL, AND, WELL HOLE PIPING CONNECTION
US9234403B2 (en) Downhole assembly
US11761287B2 (en) Dual hardness sealing elements for blowout preventer

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAUDETTE, SEAN L.;MICKEY, CLINT E.;LOUGHLIN, MICHAEL J.;AND OTHERS;SIGNING DATES FROM 20100105 TO 20100107;REEL/FRAME:023999/0925

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION