US20110139816A1 - Dosing system with controlled product release in the inclined position - Google Patents

Dosing system with controlled product release in the inclined position Download PDF

Info

Publication number
US20110139816A1
US20110139816A1 US12/987,236 US98723611A US2011139816A1 US 20110139816 A1 US20110139816 A1 US 20110139816A1 US 98723611 A US98723611 A US 98723611A US 2011139816 A1 US2011139816 A1 US 2011139816A1
Authority
US
United States
Prior art keywords
dispensing
cartridge
chamber
dispenser
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/987,236
Other languages
English (en)
Inventor
Arnd Kessler
Salvatore Fileccia
Hans-Georg Mühlhausen
Gerold Jans
Roland Schmalz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Assigned to HENKEL AG & CO. KGAA reassignment HENKEL AG & CO. KGAA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FILECCIA, SALVATORE, MUHLHAUSEN, HANS-GEORG, KESSLER, ARND, JANS, GEROLD, SCHMALZ, ROLAND
Publication of US20110139816A1 publication Critical patent/US20110139816A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • A47L15/4463Multi-dose dispensing arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • A47L15/4445Detachable devices
    • A47L15/4454Detachable devices with automatic identification means, e.g. barcodes, RFID tags or magnetic strips
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • D06F39/024Devices for adding soap or other washing agents mounted on the agitator or the rotating drum; Free body dispensers

Definitions

  • the present invention relates to a dispensing system for the release of a plurality of compositions for use in water-conveying equipment and in particular in water-conveying household appliances such as dishwashing machines, washing machines, washer/dryers, and automatic surface cleaning systems.
  • Automatic dishwashing agents are available to consumers in numerous forms. In addition to traditional liquid hand dishwashing agents, automatic dishwashing agents have become increasingly significant as domestic dishwashing machines have become more commonplace. These automatic dishwashing agents are not only offered for sale to the consumer in solid form, such as powders or tablets, but also in liquid form. For a considerable time, attention has focused on convenient dispensing of washing and cleaning agents and on simplifying the operations required to carry out a washing or cleaning method.
  • one of the main objectives of manufacturers of automatic cleaning agents is to improve the cleaning performance of these agents, with increasing attention recently directed to improving cleaning performance in low temperature cleaning cycles or in cleaning cycles with reduced water consumption.
  • new ingredients for example more highly active surfactants, polymers, enzymes or bleaching agents, have been added to the cleaning agents.
  • the selection of new ingredients is limited, and the quantity of these ingredients used per cleaning cycle cannot be increased at will for environmental and economic reasons, there are natural limits to the formulation approach to increasing cleaning performance.
  • devices for repeated dispensing of washing and cleaning agents have recently come to the attention of product developers.
  • a distinction may be drawn between dispensing chambers integrated into the dishwashing machine or washing machine on the one hand, and separate devices independent of the dishwashing machine or washing machine on the other hand.
  • These devices which contain multiple doses of cleaning agent required to carry out a single cleaning method, automatically or semi-automatically dispense washing or cleaning agent doses into the interior of the cleaning machine over the course of a plurality of successive cleaning processes. For the consumer utilizing such devices, manual dispensing for each cleaning or washing cycle is no longer necessary. Examples of such devices are described in European patent application EP 1 759 624 A2 (Reckitt Benckiser) and in German patent application DE 53 5005 062 479 A1 (BSH Bosch and Siemens Hausmaschine GmbH).
  • a dispensing system for a dishwashing machine must ensure dispensing, i.e. properly functioning release and dispensing of preparations, not only in a vertical position but also at an angle deviating by up to 20° from vertical, such as may be the case when the dispensing system is arranged in the dishwasher rack in a slot/receptacle designed for plates/dishes.
  • a dispensing system comprises a plate-like design that occupies little space in the dishwasher because it may be positioned in a plate rack of a dishwasher. Users may intuitively position the dispenser inside the dishwasher by virtue of the plate-like design.
  • a dispensing system comprising a plate-like design is configured to operate and fully empty while placed in the oblique/inclined position in a dishwasher rack.
  • a dispensing system comprises the basic components of (1) a cartridge comprising at least one dimensionally stable chamber with at least one composition therein; and, (2) a dispenser couplable with the cartridge and configured to release at least one composition, and wherein the dispenser comprises assemblies such as a component carrier, actuator, closing element, sensor, energy source and/or control unit.
  • a dispensing system is configured to be mobile and not permanently connected to a water-conveying device, such as a dishwashing machine, washing machine, washer/dryer, or the like, and instead may be removed from the water-conveying device by the user, and/or handled separately and positioned in a dishwashing machine.
  • a water-conveying device such as a dishwashing machine, washing machine, washer/dryer, or the like
  • a dispensing system comprises: (1) a dispenser permanently connected to a water-conveying device such as a dishwasher, washing machine, washer/dryer, or the like; and, (2) a cartridge configured to be detachable and mobile.
  • a dispensing system may be formed from materials which are dimensionally stable up to a temperature of 120° C. to ensure continual operation at the elevated temperatures that may occur in certain washing cycles of a dishwashing machine.
  • a dispensing system comprises components that are chemically inert, e.g. acid, alkali, nonionic surfactant, enzyme, and/or fragrance resistant, in order to protect the dispensing system against the effects of the compositions that may be dispensed from the dispensing system.
  • chemically inert e.g. acid, alkali, nonionic surfactant, enzyme, and/or fragrance resistant
  • FIG. 1 illustrates an embodiment of an autonomous dispenser of the present invention comprising a two-chamber cartridge in both a separated and an assembled configuration.
  • FIG. 2 illustrates another embodiment of an autonomous dispenser of the present invention comprising a two-chamber cartridge, with the dispenser arranged in the rack of a dishwashing machine.
  • FIG. 3 depicts a front plan view of an embodiment of a cartridge comprising three chambers.
  • FIG. 4 depicts a side view of an embodiment of a cartridge comprising three chambers.
  • FIG. 5 depicts an exploded view of an embodiment of a two-part cartridge comprising a trough-shaped and a plate-like cartridge element in exploded view.
  • FIG. 6 depicts an exploded view of another embodiment of a two-part cartridge comprising a cellular container and a cartridge bottom.
  • FIG. 7 depicts an exploded view of another embodiment of a dispenser and cartridge of the present invention.
  • FIG. 8 depicts a front view of an embodiment of a component carrier of the present invention.
  • FIG. 9 depicts an exploded view of another embodiment of a component carrier of the present invention.
  • FIG. 10 depicts an exploded view of another embodiment of a component carrier of the present invention.
  • FIG. 11 depicts a plan view of another embodiment of a component carrier of the present invention.
  • FIG. 12 depicts a perspective view of another embodiment of a component carrier of the present invention showing the outlet orifices.
  • FIG. 13 depicts a front view of another embodiment of a component carrier of the present invention.
  • FIG. 14 depicts a bottom view of another embodiment of a component carrier of the present invention.
  • FIG. 15 depicts a perspective view of an exemplary embodiment of the dispenser of the present invention comprising a cartridge.
  • FIG. 16 depicts an embodiment of a bracket with hinge in accordance with the present invention.
  • FIG. 17 depicts an embodiment of an actuator comprising a bistable solenoid in accordance with the present invention.
  • FIG. 18 depicts an embodiment of the dispensing device of the present invention placed in a plate slot of a dish rack.
  • FIG. 19 depicts another embodiment of the dispensing device of the present invention comprising a fixing means on the bottom of the dispenser.
  • FIG. 20 depicts another embodiment of the dispensing device of the present invention comprising a fixing means in the outer circumferential surface of the dispenser.
  • FIG. 21 depicts another embodiment of the dispensing device of the present invention comprising plates projecting from the bottom of the dispenser.
  • FIG. 22 depicts another embodiment of the dispensing device of the present invention comprising release orifices projecting from the bottom of the dispenser.
  • FIG. 23 depicts another embodiment of the dispensing device of the present invention comprising a V-shaped bottom contour.
  • FIG. 24 depicts another embodiment of the dispensing device of the present invention comprising sawtooth-like fixing means.
  • FIG. 25 depicts another embodiment of the dispensing device of the present invention comprising waxy fixing means.
  • the present invention is a dispensing system that minimally comprises: (1) a cartridge comprising at least one dimensionally stable chamber with at least one composition therein; and, (2) a dispenser couplable with the cartridge and configured to release at least one composition.
  • a cartridge is understood to be a packaging means that is suitable for enclosing or holding together at least one flowable, pourable or sprinklable preparation, and which is couplable to a dispenser for the release of at least one composition.
  • the cartridge comprises a single, preferably dimensionally stable, chamber for storing a composition.
  • a cartridge herein may also comprise a plurality of chambers which may be filled with different compositions.
  • the cartridge preferably comprises at least one outlet orifice that is arranged such that gravity-actuated release of a composition from the cartridge may be brought about in the service position of the dispenser.
  • no further conveying means are required for release of composition from the cartridge and the structure of the dispenser may be kept simple to reduce manufacturing costs.
  • At least one additional chamber is provided for accommodating at least one second flowable or sprinklable composition, wherein the second chamber may comprise at least one outlet orifice arranged such that a gravity-actuated product release from the second chamber may be brought about in the service position of the dispenser.
  • the arrangement of a second chamber is particularly advantageous when compositions that cannot be stored as a single composition are stored in the mutually separate chambers of the cartridge, such as bleaching agents and enzymes. It is also conceivable that more than two and even three to four chambers may be provided in or on a cartridge. In particular, one of the chambers may be designed to release volatile preparations such as a scent into the surrounding environment.
  • the cartridge is comprised of a single-part construction.
  • the cartridges may be produced inexpensively in a single production step, such as by suitable blow molding methods.
  • the chambers of a cartridge may be separated from one another for example by webs or material bridges, which are formed during or after blow molding.
  • the cartridge may comprise a multi-part construction, being made of components which are produced by injection molding and then assembled.
  • the cartridge may be of multi-part construction such that at least one chamber, and preferably all the chambers, may be individually removed from, or inserted into, the dispenser. This makes it possible to replace an already empty chamber from which a composition was heavily used, while the other chambers that may still be full of composition can remain in the dispenser. In this way, the individual chambers or compositions may be replenished in a targeted manner appropriate to the circumstances. It is additionally conceivable to construct the individual chambers in such a way that the chambers may only be coupled with the dispenser in a specific position, thus preventing a user from connecting a chamber to the dispenser in a position not intended for that particular chamber. To this end, the chamber walls may in be formed in such a way that they interlock. It is particularly advantageous in the case of a cartridge comprising at least three chambers to form the cartridges such that the chambers may only be connected together interlockingly in a given defined position relative to one another.
  • the chambers of a cartridge may be fixed to one another by suitable connection methods such that a container unit is produced.
  • the chambers may be detachably or permanently fixed to one another by a suitable interlocking, frictional, or bonded connection.
  • fixing may be effected by one or more of the connection types including, but not limited to snap-in connections, hook-and-loop connections, press connections, melt connections, adhesive connections, welded connections, brazed connections, screw connections, keyed connections, clamped connections, or rebound connections.
  • fixing may also be provided by a heat-shrinkable sleeve designed to encase all or certain parts of the cartridge and firmly envelop the chambers or the cartridge.
  • the bottom of the chambers may be tapered internally in the shape of a funnel narrowing toward the release orifice in order to provide complete emptying.
  • the internal wall of a chamber may be constructed by suitable material selection and/or surface finish such that the composition adheres only slightly to the internal chamber wall.
  • the no-residue/complete emptying characteristics of a chamber may also be further optimized by this measure.
  • the cartridge may be asymmetrical. It is particularly preferred to design asymmetry in the cartridge such that the cartridge may only be coupled with the dispenser in a predefined position, thus preventing the possibility for incorrect operation by the user.
  • a dispensing chamber may be constructed in or on a chamber upstream of a chamber's outlet orifice in the gravity-actuated direction of flow of the composition.
  • the dispensing chamber determines the quantity of composition that is to be released into the surrounding environment upon release from the chamber. This is particularly advantageous if the closing element of the dispenser, an element designed to release preparation from a chamber into the surrounding environment, may only be placed in a release or closed state without the quantity of composition released being measured or monitored.
  • the dispensing chamber then ensures that a predefined quantity of preparation is released without the need for direct feedback of the outflowing quantity of preparation actually released.
  • the dispensing chambers may comprise single-part or multi-part construction. It is possible to make the dispensing chambers firmly connected to or detachable from the cartridge. In the case of a dispensing chamber detachably connected to the cartridge, it is straightforwardly possible to connect dispensing chambers having different dispensing volumes with a cartridge or to interchange the latter, whereby it is straightforwardly possible to adapt the dispensing volumes to the particular preparation stored in a chamber and it is thus straightforwardly possible to make up the cartridge for different preparations and for dispensing them.
  • the one or more chambers may comprise, in addition to an outlet orifice preferably located at the bottom, a second chamber orifice that is closable in a liquid-tight manner, preferably located at the top.
  • This second chamber orifice makes it possible, for example, to replenish the preparation stored in the chamber.
  • the cartridge chambers may be vented, in particular in the top portion, to ensure pressure equalization between the interior of the cartridge chambers and the surrounding environment as the fill level declines over use.
  • the ventilation means may, for example, comprise a valve, e.g. a silicone valve, micro-orifices in the wall of a chamber or cartridge, or the like.
  • the cartridge chambers need not be directly vented, for example when using flexible containers such as pouches.
  • the use of flexible pouches has the advantage that at elevated temperatures pressure develops within the pouch during the heated washing cycle of a dishwasher, and that pressure acts to squeeze the compositions to be dispensed out in the direction of the outlet orifices such that complete emptying of the cartridge may still be achieved even without vented pressure equalization.
  • there is no risk of that ingredients in the compositions will be oxidized, making pouch packaging or a bag-in-bottle configuration particularly convenient for oxidation-sensitive compositions.
  • the volume ratio of the structural volume of the dispenser and the capacity of the cartridge is preferably ⁇ 1, more preferably ⁇ 0.1, and most preferably ⁇ 0.05. In this way, it is ensured that a majority of the overall structural volume of the dispensing system is occupied by the cartridge and the preparation(s) contained therein.
  • the cartridge may comprise any desired three-dimensional shape. It may for example be cubic, spherical, or substantially flat and plate-like in form.
  • the cartridge and the dispenser may be constructed with regard to their three-dimensional shape such that together they bring about the smallest loss of usable volume within a dishwashing machine when placed therein.
  • the device For use in a dishwashing machine, it is important to design the shape of the device on the basis of the dishes to be cleaned in the dishwasher.
  • the device may be plate-shaped, approximating the dimensions of a plate.
  • the dispenser may be positioned in a space-saving manner in the lower rack of the dishwasher.
  • the correct positioning of the dispensing unit is immediately obvious to the user due to the plate-like shape.
  • the dispenser and cartridge preferably have a ratio of height:width:depth of between 5:5:1 and 50:50:1, and most preferably about 10:10:1. Due to the preferred “slender” construction of the dispenser and the cartridge, it is possible to position the device in the lower rack of a dishwashing machine in any of the positions provided for plates. Positioning the device in the lowest rack has the added advantage that the preparations released from the dispenser pass directly into the washing liquor without adhering to other items being washed in the dishwasher.
  • the dispensing system may be from about 150 mm to about 300 mm, and most preferably between 175 mm and 250 mm.
  • the dispensing unit in a cup or pot shape with a substantially circular or square base area.
  • outlet orifices of a cartridge within the scope of the invention are preferably arranged in a line in order to make the slender, plate-shaped design of the dispenser possible.
  • the cartridge is cup or pot shaped, it may be preferable to arrange the release orifices of the cartridge in an arc shape.
  • the cartridge comprise a transparent portion.
  • the cartridge is preferably constructed to accommodate flowable preparation comprising washing or cleaning agents.
  • Such a cartridge may comprise a plurality of chambers for spatially separating and accommodating different preparation. Possible, non-limiting combinations for filling the chambers with different preparations are listed below in TABLE 1.
  • compositions such as the examples delineated in TABLE 1, be flowable to ensure rapid dissolution in the washing liquor and immediate cleaning or rinsing action.
  • the cartridge should comprise a total capacity of ⁇ 5000 ml. It is preferred that the total capacity be ⁇ 1000 ml, more preferably ⁇ 500 ml, and most preferably ⁇ 250 ml. The most useful volume for the cartridge is preferably ⁇ 50 ml.
  • the chambers of a cartridge may comprise identical or different capacities.
  • the ratio of the chamber volumes is preferably 5:1.
  • the ratio of the chamber volumes is preferably 4:1:1. These preferred ratios are particularly suitable for use in dishwashing machines.
  • the cartridge preferably comprises three chambers.
  • one chamber to contain an alkaline cleaning preparation, another chamber an enzymatic preparation, and a third chamber a rinse aid, wherein the volume ratio of the three chambers is approximately 4:1:1.
  • the chamber containing the alkaline cleaning preparation preferably has the greatest capacity of the chambers present.
  • the chambers containing an enzymatic preparation or a rinse aid preferably have approximately identical capacities.
  • a scent, disinfectant, and/or pretreatment preparation in another chamber arranged detachably on the cartridge or on the dispenser.
  • the cartridge comprises a cartridge bottom, which in the service position is directed downwards in the direction of gravity, and in which and preferably for each chamber, there is provided at least one outlet orifice arranged at the bottom in the direction of gravity.
  • the outlet orifices arranged at the bottom are preferably constructed such that at least one, and preferably all of the outlet orifices, may be connected in communication with the inlet orifices of the dispenser such that preparation can flow out of the cartridge via the outlet orifices into the dispenser, preferably under the action of gravity.
  • one or more chambers may comprise an outlet orifice that is not configured at the bottom in the direction of gravity. This particular embodiment is advantageous when a scent is to be released into the surrounding environment of the cartridge.
  • the cartridge is preferably formed of at least two elements which are bonded together, wherein the connecting edge of the elements at the cartridge bottom preferably extend away from the outlet orifices such that the connecting edge does not intersect with the outlet orifices.
  • the bonded connection may be produced, for example, by adhesive bonding, welding, brazing, pressing, or vulcanization.
  • the outlet orifices of the cartridge are closed by a closing means, at least when the cartridge is in the filled and unopened state.
  • the closing means may be constructed such that they permit one-off opening of the outlet orifice by destruction of the closing means.
  • closing means include for example sealing films/foils, or closing caps.
  • the outlet orifices are each provided with a closure that when coupled with a dispenser, the outflow of preparation is permitted from the respective chambers, but when in the uncoupled state, outflow of preparation is substantially prevented.
  • a closure may in particular take the form of a silicone slit valve.
  • any venting orifices of the cartridge be closed with a closing element before the cartridge is first coupled with the dispenser.
  • a closing element may comprise a stopper or cap that is opened, such as by piercing, by the coupling process when the cartridge is first coupled with the dispenser.
  • all outlet orifices of the cartridge be closed with a silicone slit valve, and that all venting orifices by closed with a cap.
  • the cartridge elements forming the cartridge are preferably formed of a plastic material and may be shaped in a common injection molding process. It is advantageous to form a connecting web that acts as a hinge between the two elements, such that after the molding process, the two elements can be folded on top of one another and bonded along the connecting edge.
  • an energy source such as a battery or storage battery, is arranged on or in the cartridge, preferably on or in the bottom of the cartridge.
  • Means for coupling the energy source electrically with the dispenser may furthermore be provided on the cartridge.
  • the cartridge for coupling with a dispenser that is positionable in the interior of a domestic appliance for releasing at least one washing and/or cleaning agent preparation, comprises at least one chamber for storing at least one flowable or pourable washing and/or cleaning agent preparation, wherein when coupled with the dispenser, the cartridge is protected from ingress of washing liquor into the chamber(s), and the cartridge comprises at least one release orifice at the bottom in the direction of gravity for the preferred gravity-actuated release of preparation from at least one chamber, and at least one venting orifice at the bottom in the direction of gravity for the venting of at least one chamber, wherein the ventilation orifice is separate from the release orifice and the ventilation orifice is connected in communication with at least one cartridge chamber.
  • the cartridge comprise at least two chambers, and most preferably at least three chambers. It is also advantageous that each chamber comprise both a ventilation orifice and a release orifice.
  • the ventilation orifice present at the bottom is in communication with a ventilation channel, the end of which is positioned remote from the venting orifice, and that opens, in the release position of the cartridge coupled with the dispenser, above the maximum fill level of the cartridge. It is advantageous for the ventilation channel to be formed entirely or partly in or on the walls and/or the webs of the cartridge. In particular, the ventilation channel may be integrally formed in or on the walls and/or webs of the cartridge.
  • the ventilation channel may be shaped by bonding together at least two elements which form the cartridge.
  • a ventilation channel may be formed by joining a separating web of the cartridge formed in the shell-shaped element with two webs bordering the separating web and arranged on the cartridge element, such as by welding.
  • the ventilation channel may comprise a dip tube.
  • the cartridge fill level (F) in the unopened filled cartridge not to reach the ventilation channel mouth ( 83 ) in an inclined position of up to 45°.
  • the viscosity of a flowable preparation be adjusted, and the ventilation channel configured, such that the composition is not drawn into the ventilation channel by capillary forces when the composition reaches the ventilation channel mouth.
  • the coupling process between the cartridge and the dispenser preferably involves a pin arranged on the dispenser in communication with the inlet orifice of the dispenser that can interact with the couplable cartridge or cartridge chamber, such that upon coupling of the ventilation orifice of cartridge or cartridge chamber with the dispenser, the pin displaces a volume (defined as ⁇ v) in the ventilation channel producing a pressure (defined as ⁇ p) within the ventilation channel that is suitable for conveying the any flowable preparation present in the ventilation channel into the chamber connected to the ventilation channel.
  • venting orifice of a chamber be connected in a communicating manner with the pin on the dispenser before the closed outlet orifice of the corresponding chamber is opened, by for example a communicating connection with the inlet orifice of the dispenser.
  • a ventilation chamber is arranged between the ventilation orifice and the ventilation channel.
  • the cartridge may be configured such that it may be arranged detachably or fixedly in or on the dispenser and/or a dishwashing or washing machine and/or washer/dryer.
  • the dispenser for releasing at least one flowable washing and/or cleaning agent preparation into the interior of a domestic appliance comprises a cartridge couplable with the dispenser, wherein the cartridge stores at least one flowable washing and/or cleaning agent preparation and the cartridge comprises at least one outlet orifice at the bottom in the direction of gravity.
  • Such an outlet orifice when coupled with the dispenser, is placed in communication with an inlet orifice of the dispenser, wherein the dispenser and the cartridge comprise means which interact in such a manner that detachable latching may be established between the dispenser and cartridge, wherein, in the latched state, the dispenser and the cartridge may be swiveled relative to one another about a swivel point (SP), and wherein the outlet orifice of the cartridge and the inlet orifice of the dispensing bracket are configured such that they are connected and in communication once latching has been established between the cartridge and dispenser by swiveling the cartridge into the coupled state between the dispensing bracket and cartridge.
  • SP swivel point
  • outlet orifices of the chambers and the inlet orifices of the dispenser are arranged and configured in such a manner that they are connected to one another sequentially by swiveling the dispenser and cartridge in the latched state into the coupled state.
  • means may be provided on the dispenser and/or the cartridge that bring about detachable fixing of the cartridge to the dispenser when the dispenser and cartridge are coupled.
  • outlet orifices of the chambers are arranged one behind the other in the swiveling direction. It is most preferred for the outlet orifices of the chambers to be arranged in a line (L) in the swiveling direction. It is also advantageous for the outlet orifices of the chambers to be approximately evenly spaced apart.
  • the maximum distance of a chamber outlet orifice from the swivel point (SP) of the cartridge be approximately 0.5 times the cartridge width (B).
  • At least two of the cartridge chambers may have different volumes.
  • the cartridge chamber with the greatest volume be furthest from the swivel point (SP) of the cartridge.
  • the ventilation orifice of a chamber is preferably located upstream of a chamber outlet orifice in the swiveling direction during coupling of the cartridge with the dispenser.
  • the ratio of cartridge depth (T) to cartridge width (B) is preferably about 1:20.
  • the ratio of cartridge height (H) to cartridge width (B) is preferably about 1:1.
  • the ventilation orifice of a chamber in each case to be located upstream of a chamber outlet orifice in the swiveling direction during coupling of the cartridge with the dispenser. In this way it is ensured that the ventilation orifice of the cartridge is opened first before the opening of the outlet orifice of the cartridge when the cartridge is coupled with the dispenser.
  • the control unit necessary for operation, and at least one actuator, are integrated into the dispenser.
  • a sensor unit and/or an energy source is/are preferably arranged on or in the dispenser.
  • the dispenser preferably comprises a housing to prevent penetration of water into the interior of the dispenser where at least the control unit, sensor unit, and/or actuator may be arranged. Water splashing is expected during the operation of dishwashing machine.
  • the dispenser is substantially watertight, i.e. the dispenser remains functional even when completely immersed in liquid.
  • materials that may be used to encapsulate include multi-component epoxide and acrylate encapsulation compounds such as methacrylate esters, urethane methacrylate and cyanoacrylates, or two-component materials comprising polyurethanes, silicones, and epoxy resins.
  • the components may be enclosed/encased in an appropriately designed, moisture-tight housing. Such a development is further explained in greater detail below.
  • the dispenser comprise at least one first interface that interacts with a corresponding interface provided in or on a domestic appliance, (e.g. a water-conveying domestic appliance like a dishwashing or washing machine), such that electrical energy and/or signals is/are transmitted from the domestic appliance to the dispenser and/or from the dispenser to the domestic appliance.
  • a domestic appliance e.g. a water-conveying domestic appliance like a dishwashing or washing machine
  • the interfaces may take the form of plug-in connectors.
  • the interfaces may be constructed such that electrical energy and/or electrical and/or optical signals are transmitted wirelessly.
  • the interface be configured for emitting and/or receiving optical signals. It is preferred that the interface be configured to emit or receive light in the visible range. Since a conventional dishwashing machine is dark inside the wash compartment during normal operation, signals in the form of signal pulses or photoflashes in the visible optical range may be emitted and/or detected by the dispenser. It has proved particularly advantageous to use wavelengths between about 600-800 nm in the visible spectrum.
  • the interface is advantageous for the interface to be configured to emit and/or receive infrared signals. It is particularly advantageous for the interface to be configured to emit or receive infrared signals in the near infrared range (about 780 nm-3000 nm).
  • the interface may comprise at least one LED.
  • the interface comprises at least two LEDs. It is also possible in accordance with another preferred embodiment of the invention to provide at least two LEDs that emit light at different wavelengths. This makes it possible, for example, to define different signal bands on which information may respectively be transmitted or received.
  • the interface of the dispenser may be configured in such a way that the LED is provided both for emitting signals inside the dishwasher, in particular when the dishwashing machine door is closed, and for optical display of an operating state, in particular when the dishwashing machine door is open.
  • the signal emitted and/or received by the interface preferably bears information, most preferably a control signal or a signal that represents an operating state of the dispenser and/or of the dishwasher.
  • the dispenser configured to release at least one flowable washing and/or cleaning agent preparation into the interior of a domestic appliance, may comprise a dispensing chamber. Such a chamber may be placed in fluidic communication with a dispensing chamber inlet when the cartridge is coupled with the dispenser.
  • the dispensing chamber inlet may be strategically located in the dispenser such that washing/cleaning composition flows by gravity from the cartridge into the dispensing chamber when the dispenser is in operation.
  • a dispensing chamber outlet may be arranged downstream in the direction of gravity from the dispensing chamber inlet, and the dispensing chamber outlet may be closable by a valve.
  • Such a closable outlet may comprise a float arranged in the dispensing chamber, wherein composition may flow around and/or through the float, and wherein the float and the dispensing chamber inlet are configured such that the dispensing chamber inlet is closable by the float.
  • the float may close the dispensing chamber inlet in a sealing or non-sealing manner. In the case of a non-sealing closure, the float may not actually seal the dispensing chamber inlet although it may physically rest against the inlet. When configured to not seal the dispensing chamber inlet with regard to inflow of preparation from the cartridge, an exchange of preparation between the cartridge and the dispensing chamber remains possible.
  • the float acts as a deliberate throttle which, on opening of the valve, minimizes slippage between the dispensing chamber inlet and the dispensing chamber outlet, contributing to dispensing accuracy.
  • the float and the dispensing chamber may be constructed as a self-closing valve, not only to ensure the lowest possible energy consumption in a dispenser but also to ensure that a defined quantity of preparation approximately corresponding to the capacity of the dispensing chamber is released.
  • the density of the washing and/or cleaning agent preparation and the density of the float such that the float exhibits a rate of ascent in the washing and/or cleaning agent preparation of 1.5 mm/sec to 25 mm/sec, more preferably of 2 mm/sec to 20 mm/sec, and most preferably of 2.5 mm/sec to 17.5 mm/sec. This ensures sufficiently rapid closure of the dispensing chamber inlet by the ascending float and thus a sufficiently short interval between two instances of washing/cleaning composition dispensation.
  • the rate of ascent of the float may also be controlled within the valve-actuating control unit of the dispenser. In this way, it is also possible to control the valve in such a manner that a volume of preparation released is greater than the volume of the dispensing chamber. In this case, the valve is then reopened before the float reaches its upper closure position against the dispensing chamber inlet to close the dispensing chamber inlet.
  • the float and the dispensing chamber are configured such that the rate of ascent of the float in the washing and/or cleaning agent preparation is lower than the rate of flow of the preparation surrounding the float out of the dispensing chamber, when the valve assigned to the dispensing chamber outlet is in the release position.
  • the float is preferred to shape substantially spherical.
  • the float may also be substantially cylindrical.
  • the dispensing chamber prefferably be substantially cylindrical. It is furthermore advantageous for the diameter of the dispensing chamber to be slightly larger than the diameter of the cylindrical or spherical float, such that slippage with regard to the preparation arises between the dispensing chamber and the float.
  • the float is formed from a foamed, polymeric material, and most preferred from foamed PP.
  • a diaphragm may be arranged in the dispensing chamber between the dispensing chamber inlet and dispensing chamber outlet, where the diaphragm orifice is constructed such that it may be closed by the float in a sealing or a non-sealing manner, with the float preferably arranged between the diaphragm and the dispensing chamber inlet.
  • the dispenser preferably comprises a component carrier on which are arranged at least the actuator, the closing element, the energy source, the control unit, the sensor unit, and/or the dispensing chamber.
  • the component carrier comprises receptacles for these stated components, and/or the components are shaped in a single part with the component carrier.
  • the receptacles for the components in the component carrier may be provided for a frictional, interlocking, and/or bonded connection between a corresponding component and the corresponding receptacle.
  • the dispensing chamber, the actuator, the closing element, the energy source, the control unit, and/or the sensor unit in each case is preferable for the dispensing chamber, the actuator, the closing element, the energy source, the control unit, and/or the sensor unit in each case to be detachably arranged on the component carrier.
  • the energy source, the control unit, and the sensor unit are arranged as a combined assembly on or in the component carrier.
  • the energy source, the control unit, and the sensor unit are combined as an assembly.
  • this configuration may be achieved by arranging the energy source, the control unit, and the sensor unit on a single electronic printed circuit board.
  • the component carrier comprises a trough-like design and is manufactured by injection molding. It is most preferable for the dispensing chamber to comprise single-part construction with the component carrier.
  • the component carrier ensures maximally straightforward automatic population of the dispenser with the necessary components.
  • the component carrier may preferably be preassembled automatically in its entirety and assembled to form a dispenser.
  • the trough-like component carrier once populated, may be closed in liquid-tight manner with a lid-like closing element.
  • the closing element may comprise a film/foil which is bonded in a liquid-tight manner with the component carrier and, together with the trough-like component carrier, forms one or more liquid-tight chambers.
  • the closing element may also be a bracket, into which the component carrier may be introduced, wherein the bracket and the component carrier form the dispenser when in the assembled state.
  • the component carrier and the bracket interact such that a liquid-tight connection is formed between the component carrier and the bracket preventing washing water from entry to the interior of the dispenser or the component carrier.
  • the receptacle for the actuator on the component carrier be arranged above the dispensing chamber in the direction of gravity, thus facilitating a compact structure for the dispenser.
  • the compact design may be further optimized by arranging the dispensing chamber inlet on the component carrier above the receptacle of the actuator in the service position of the dispenser. It is also to be preferred for the components on the component carrier to be arranged substantially in a row relative to one another, in particular along the longitudinal axis of the component carrier.
  • the receptacle for the actuator may comprise an orifice that is in line with the dispensing chamber outlet such that a closing element may be moved to and fro by the actuator through the orifice and the dispensing chamber outlet.
  • the component carrier prefferably be formed of a transparent material.
  • an actuator is a device that converts an input variable into an output variable of a different kind and with which an object is moved or movement thereof is brought about, the actuator being coupled with at least one closing element such that release of preparation from at least one cartridge chamber may indirectly or directly be effected.
  • the actuator may be driven by means of drives selected from the group of gravity drives, ion drives, electric drives, motor drives, hydraulic drives, pneumatic drives, gear drives, worm gear drives, ball-screw drives, linear drives, roller-screw drives, toothed worm drives, piezoelectric drives, chain drives, and/or reaction drives.
  • drives selected from the group of gravity drives, ion drives, electric drives, motor drives, hydraulic drives, pneumatic drives, gear drives, worm gear drives, ball-screw drives, linear drives, roller-screw drives, toothed worm drives, piezoelectric drives, chain drives, and/or reaction drives.
  • the actuator may be constructed from an electric motor that is coupled with a gear train that converts the rotational motion of the motor into a linear motion of a carriage coupled to the gear train.
  • the dispensing unit is comprises a slender, plate-shaped configuration.
  • At least one magnet element may be arranged on the actuator together with a magnet element of identical polarity on a dispenser in order to affect product release from the container as soon as the two magnetic elements are positioned relative to one another. Positioning the two magnets of identical polarity relative to one another creates magnetic repulsion and a contactless release mechanism.
  • the actuator is a bistable solenoid which, together with a closing element taking the form of a plunger core engaging in the bistable solenoid, forms a pulse-controlled bistable valve.
  • Bistable solenoids are electromechanical magnets with a linear direction of motion, the plunger core coming to an unenergized rest in each end position.
  • Bistable solenoids or valves are known from the prior art.
  • a bistable valve In order to change between valve positions (open/closed), a bistable valve requires a pulse and then remains in this position until a counter-pulse is transmitted to the valve.
  • Such a valve is also known as a pulse-controlled valve.
  • pulse-controlled valves One substantial advantage of such pulse-controlled valves is that they do not consume any energy in order to remain at the valve end positions, (i.e. the closure position and release position), but instead merely require an energy pulse to change valve position and the valve end positions should thus be considered stable.
  • a bistable valve remains in whatever switching position for which it most recently received a control signal.
  • the closing element (plunger core) is driven to one end position for each pulse of electricity. If the power is switched off, the closing element retains its position.
  • the closing element (plunger core) is driven to the other end position for each pulse of electricity. If the power is switched off, the closing element retains its position.
  • Bistable characteristics of solenoids may be achieved in various ways.
  • the plunger core itself has material removed from it by lathe from both front and rear such that, in each end position, it has a planar face relative to the magnet frame. The magnetic field of the permanent magnet flows through this face.
  • the plunger core sticks here.
  • the closing element is coupled with the actuator in such a manner that the closing element may be displaced by the actuator into a closure position and into a passage position (release position), the closing element being configured as an open-close valve element.
  • the actuator is configured such that, driven by a suitable pulse, it adopts one of two end positions as desired without further drive, and stably maintains the end position it has reached. This combination thus forms a pulse-controlled, bistable open-close valve.
  • the actuator may be constructed as a bistable solenoid with a space accommodating an armature and an outer accommodation space surrounding the first space.
  • the armature of the bistable solenoid may be configured such that it forms or is coupled with the closing element.
  • the actuator space accommodating the armature may be separated from the outer accommodation space of the actuator in a liquid-tight, and preferably also in a gas-tight, manner.
  • At least the outer surface of the armature to consist of a material not susceptible to attack by the washing or cleaning agent to be dispensed, such as a plastic material.
  • the armature preferably comprises a core of a magnetizable, in particular a ferromagnetic material, and a permanent magnet positioned in the outer accommodation space, a coil being arranged at each of the two axial ends of said permanent magnet.
  • the permanent magnets at the axial ends of the armature prefferably be arranged with opposing polarities in the axial direction and for yoke rings of a ferromagnetic material, in particular iron, to be arranged in the outer accommodation space at both axial ends, with a coil winding arranged between said yoke rings.
  • the axial distance between the yoke rings is advantageous for the axial distance between the yoke rings to be greater than the axial distance between the permanent magnets.
  • yoke rings may be arranged at the axial ends of the armature, wherein in the outer accommodation space permanent magnets are arranged with opposing polarities in the axial direction and between said permanent magnets a coil winding is arranged.
  • the axial distance between the permanent magnets is preferably greater than the axial distance between the yoke rings.
  • an actuator/closing element combination is provided in a dispenser of a dispensing system with a cartridge for flowable washing or cleaning agents with a plurality of chambers for spatially separate accommodation of in each case different preparations of a washing or cleaning agent and with a dispenser couplable with the cartridge
  • the dispenser comprises: an energy source, a control unit, a sensor unit, an actuator which is connected with the energy source and the control unit in such a manner that a control signal from the control unit brings about actuation of the actuator, a closing element which is coupled with the actuator such that it is displaceable by the actuator into a closure position and into a passage position (release position), at least one dispensing chamber which, in the case of a dispenser assembled with a cartridge, is connected in communicating manner with at least one of the cartridge chambers of the cartridge, wherein the dispensing chamber comprises an inlet for inflow of washing or cleaning agent from a cartridge chamber and a outlet for outflow of washing or cleaning agent from the dispensing chamber into the surrounding environment and wherein at
  • the actuator is arranged in a component carrier such that, in the service position of the dispenser, a receptacle for the actuator is arranged on the component carrier above the dispensing chamber in the direction of gravity.
  • a receptacle for the actuator is arranged on the component carrier above the dispensing chamber in the direction of gravity.
  • the inlet of the dispensing chamber on the component carrier it is here very particularly advantageous for the inlet of the dispensing chamber on the component carrier to be arranged above the receptacle of the actuator.
  • the dispenser comprises a component carrier where, in the service position of the dispenser, a receptacle for the actuator is arranged on the component carrier laterally beside the dispensing chamber.
  • the receptacle for the actuator preferably comprises an orifice which is in line with the outlet of the dispensing chamber, wherein the closing element may be moved by the actuator to and fro through the outlet orifice.
  • a closing element for the purposes of the present invention is a component on which the actuator acts and that, as a consequence of such action, brings about opening or closing of an outlet orifice.
  • the closing element may, for example, comprise valves which may be adjusted by the actuator into a product release position or a closure position.
  • the closing element and the actuator comprise a solenoid valve wherein the dispenser is embodied by the valve and the actuator embodied by the electromagnetic or piezoelectric drive of the solenoid valve.
  • the use of solenoid valves permits very precise control of the quantity and timing of dispensing.
  • a sensor refers herein to a measured variable pickup or detecting element, which may qualitatively or quantitatively detect specific physical or chemical properties and/or the material nature of its surrounding environment as a measured variable.
  • the dispensing unit preferably comprises at least one sensor that is suitable for detecting a temperature.
  • the temperature sensor is designed in particular to detect a water temperature.
  • the dispensing unit comprise a sensor for detecting conductivity, whereby the presence of water or the spraying of water, such as in a dishwashing machine, may be detected.
  • the dispensing unit comprises a sensor that may be configured to determine physical, chemical, and/or mechanical parameters from the environment surrounding the dispensing unit.
  • the sensor unit may comprise one or more active and/or passive sensors for the qualitative and/or quantitative detection of mechanical, electrical, physical, and/or chemical variables that are forwarded to the control unit as control signals.
  • the sensors of the sensor unit may be selected from the group consisting of timers, temperature sensors, infrared sensors, brightness sensors, temperature sensors, motion sensors, strain sensors, rotational speed sensors, proximity sensors, flow sensors, color sensors, gas sensors, vibration sensors, pressure sensors, conductivity sensors, turbidity sensors, instantaneous acoustic pressure sensors, “lab-on-a-chip” sensors, force sensors, acceleration sensors, inclination sensors, pH sensors, moisture sensors, magnetic field sensors, RFID sensors, magnetic field sensors, Hall sensors, biochips, odor sensors, hydrogen sulfide sensors, and/or MEMS sensors.
  • Suitable flow sensors may be selected from the group of diaphragm flow sensors, magnetic-inductive flow meters, mass flow metering using the Coriolis method, eddy flow metering, ultrasound flow metering, rotameter metering, annular piston flow metering, thermal mass flow metering, or differential pressure flow metering.
  • At least two sensor units are provided for measuring different parameters, one sensor unit most preferably comprising a conductivity sensor, and a further sensor unit most preferably comprising a temperature sensor. It is additionally preferable for at least one sensor unit to comprise a brightness sensor.
  • the sensors may be adjusted for detecting the start, the progress, and the end of a washing program.
  • the sensor combinations listed in TABLE 2 may be used for this purpose:
  • the conductivity sensor it is possible to detect whether the conductivity sensor has been wetted with water as a way to establish whether there is water in the dishwashing machine.
  • Washing programs generally exhibit a characteristic temperature profile determined inter alia by the heating of the washing water and the drying of the items being washed, all of which may be detected using a temperature sensor.
  • a brightness sensor may be used, for example, to detect the incidence of light into the interior of a dishwasher when the dishwashing machine door is opened, from which it may be concluded that the washing program has ended.
  • a turbidity sensor may also be provided to determine the degree of soiling of the items to be washed in the dishwasher. For example, this also allows selection of a dispenser dispensing program appropriate for the identified soil conditions.
  • a control unit herein refers to a device suitable for influencing the transport of material, energy, and/or information. To this end, the control unit acts on actuators with the assistance of information, in particular sensor unit measurement signals, which it processes for the purposes of control.
  • the control unit may in comprise a programmable microprocessor.
  • a plurality of dispensing programs are stored in the microprocessor, which in a particularly preferred configuration may be selected and executed depending on the container coupled to the dispenser.
  • control unit is not connected to any controller that may be present in the domestic appliance. Accordingly, no information, in particular electrical, optical or electromagnetic signals, is exchanged directly between the control unit and the controller of the domestic appliance.
  • control unit may be coupled to the existing controller of the domestic appliance.
  • This coupling is preferably a cable-less connection. It is possible, for example, to position a transmitter on or in a dishwashing machine, preferably on or at the dispensing chamber set into the door of the dishwashing machine, to transmit a signal wirelessly to the dispensing unit if the controller of the domestic appliance triggers dispensing of detergent or rinse aid from the dispensing chamber of the dishwasher.
  • a plurality of programs for the release of different preparations or for the release of products in different instances of use may be stored in the control unit.
  • Release of preparations from the dispenser may proceed in sequence or simultaneously.
  • an energy source refers herein to a component of the dispensing device capable of providing energy suitable for operation of the dispensing system or of the dispenser.
  • the energy source is preferably configured such that the dispensing system is autonomous.
  • the energy source preferably provides electrical energy.
  • the energy source may for example comprise a battery, a storage battery, a mains energy supply, solar cells, or the like.
  • a battery may for example be selected from the group of alkali-manganese batteries, zinc-carbon batteries, nickel-oxyhydroxide batteries, lithium batteries, lithium-iron sulfide batteries, zinc-air batteries, zinc chloride batteries, mercury oxide-zinc batteries, and/or silver oxide-zinc batteries.
  • suitable storage batteries include lead storage batteries (lead dioxide/lead), nickel-cadmium storage batteries, nickel-metal hydride storage batteries, lithium-ion storage batteries, lithium-polymer storage batteries, alkali-manganese storage batteries, silver-zinc storage batteries, nickel-hydrogen storage batteries, zinc-bromine storage batteries, sodium-nickel chloride storage batteries, and/or nickel-iron storage batteries.
  • the storage battery may be designed in such a way that it is rechargeable by induction.
  • mechanical energy sources consisting of one or more helical springs, torsion springs or torsion bars, bending springs, air/gas springs, and/or elastomer springs.
  • the energy source is preferably configured such that the dispenser may run through approximately 300 dispensing cycles before the energy source is exhausted. It is more preferable for the energy source to run through between 1 and 300 dispensing cycles, and most preferably between 10 and 300. Ideally, the energy source should provide between about 100 and 300 dispensing cycles before the energy source is exhausted.
  • means may be provided on the dispensing unit for energy conversion that generates a voltage to charge the storage battery.
  • These means may for example take the form of a dynamo that is driven by the water currents during a washing cycle in a dishwashing machine and that directs the generated voltage to the storage battery.
  • the dispenser 2 comprises two dispensing chamber inlets 21 a , 21 b for repeatedly detachable accommodation of the corresponding outlet orifices 5 a , 5 b of the chambers 3 a and 3 b of cartridge 1 .
  • Indicator and/or operating elements 37 which may indicate the operating state of the dispenser 2 , or that have an effect thereon, are located on the front of the dispenser 2 .
  • the dispensing chamber inlets 21 a , 21 b may additionally comprise means which, when the cartridge 1 is placed on the dispenser 2 , bring about opening of the outlet orifices 5 a and 5 b of the corresponding chambers 3 a and 3 b , such that the interior of the chambers 3 a , 3 b may connect in fluid communication to the dispensing chamber inlets 21 a and 21 b.
  • the cartridge 1 may comprise one or more chambers 3 a and 3 b as shown in the embodiment of FIG. 1 .
  • the cartridge 1 may be comprised of single-part construction further comprising a plurality of chambers such as 3 a and 3 b , or comprise a multi-part construction, wherein the individual chambers 3 a , 3 b are later assembled to form a cartridge 1 , such as through bonded, interlocking, or frictional connection methods.
  • fixing may be achieved by one or more of the connection types selected from the group consisting of snap-in connections, press connections, melt connections, adhesive connections, welded connections, brazed connections, screw connections, keyed connections, clamped connections, and/or rebound connections.
  • fixing may also be provided by a heat-shrinkable sleeve, drawn in the heated state over at least portions of the cartridge to firmly envelope the cartridge when cooled.
  • the bottom of cartridge 1 may include a lower tapered design, funneling toward the release orifice 5 a , 5 b , in order to provide the cartridge 1 with the ability to empty completely without residual product remaining therein.
  • the internal wall of the cartridge 1 may be constructed by suitable material selection and/or surface finish such that the product therein only adheres slightly to the internal wall of the cartridge, thus further optimizing the residual emptying characteristics of the cartridge 1 .
  • the chambers 3 a and 3 b of cartridge 1 may comprise identical or different capacities. In a configuration having only two chambers, such as 3 a and 3 b in FIG. 1 , the ratio of the chamber volumes is preferably 5:1. In a configuration having three chambers (as discussed below), the ratio of the chamber volumes is preferably 4:1:1. These configurations are particular suitable for use in dishwashing machines.
  • One possible connection method may also consist in plugging the chambers 3 a and 3 b into one of the corresponding dispensing chamber inlets 21 a , 21 b of the dispenser 2 , thereby fixing them relative to one another.
  • connection between the chambers 3 a and 3 b may be detachable, so as to allow separate replacement of each chamber independently.
  • the chambers 3 a and 3 b may each contain a preparation 40 a and 40 b , respectively.
  • the preparations 40 a and 40 b may comprise identical or entirely different compositions.
  • the chambers 3 a and 3 b are made from a transparent material such that the fill levels of the preparations 40 a and 40 b are visible to a user looking only at the outside of the chambers.
  • the outlet orifices 5 a , 5 b are designed such that they form an interlocking and/or frictional connection with the corresponding dispensing chamber inlets 21 a , 21 b .
  • Such a connection is most preferably liquid-tight.
  • each of the outlet orifices 5 a , 5 b is particularly advantageous for each of the outlet orifices 5 a , 5 b to be configured such that it fits onto only one of the dispensing chamber inlets 21 a , 21 b , thus preventing a chamber from being inadvertently plugged into the wrong dispensing chamber inlet.
  • the cartridge should have a capacity of ⁇ 5000 ml, and in particular ⁇ 1000 ml.
  • the capacity is preferably ⁇ 500 ml, more preferably ⁇ 250 ml, and most preferably ⁇ 50 ml.
  • the cartridge 1 In order to protect heat-sensitive components of a preparation present in a cartridge from exposure to heat, it is advantageous to produce the cartridge 1 from a material having low thermal conductivity.
  • the outlet orifices 5 a and 5 b of the two-chamber cartridge 1 are preferably arranged in a straight line/row, thus facilitating a slender, plate-shaped design for the cartridge and the dispensing unit.
  • the dispensing unit 2 and the cartridge 1 together in their assembled state may be adapted to the geometries of the devices on or in which they are used, so as to ensure the smallest possible loss in useful volume of the device.
  • the dispensing unit 2 and the cartridge 1 may, for example, be plate-shaped, approximately assuming the dimensions of a plate. In this way, the dispensing unit/cartridge assembly may be positioned in space-saving manner in the lower rack 11 of the dishwasher 38 , as shown in FIG. 2 .
  • cartridge 1 comprises three chambers 3 a , 3 b , and 3 c .
  • the first chamber 3 a and the second chamber 3 b have approximately the same capacity.
  • the third chamber 3 c has a capacity that is about 5 times that of either chamber 3 a or 3 b .
  • the cartridge bottom 4 comprises a ramp-shaped step in the region of the third chamber 3 c .
  • FIG. 4 illustrates a plan view of an embodiment of a cartridge within the scope of the present invention.
  • the cartridge comprises separating webs 9 a and 9 b that separate the chambers of the cartridge 1 from one another.
  • the cartridge embodiments depicted in FIGS. 3 and 4 may be formed in various ways.
  • the cartridge 1 may formed of a first trough-like cartridge element 7 and a second lid- or plate-like cartridge element 6 .
  • the separating webs 9 a and 9 b are provided in the trough-like cartridge element 7 and form the three chambers of the cartridge 1 .
  • the outlet orifices 5 a , 5 b , and 5 c may be arranged under each of the chambers of the cartridge 1 .
  • the bottom 4 of the cartridge in the region of the third chamber 3 c comprises a ramp-like step, which forms a slope on the chamber bottom in the direction of the third outlet orifice 5 c .
  • preparation located in chamber 3 c is always conveyed in the direction of the outlet orifice 5 c , ensuring good residual emptying characteristics of the chamber 3 c.
  • the trough-shaped cartridge element 7 and the lid-like cartridge element 6 are bonded together along the common connecting edge 8 . This may be achieved for example by welding or adhesive bonding. It is evident that when the cartridge 1 is assembled, the webs 9 a and 9 b are also bonded to the cartridge element 6 .
  • the connecting edge 8 does not run through the outlet orifices 5 a - c , thus avoiding any leakage problems in the region of the orifices 5 a - c , such as when coupled to the dispenser.
  • FIG. 6 A further embodiment of the cartridge is shown in FIG. 6 .
  • the first cartridge element 6 is comprises of cellular construction with an open bottom.
  • the separately formed bottom 4 may be inserted as a second cartridge element 7 into the orifice at the bottom of the cellular cartridge element 6 and bonded thereto along the common connecting edge 8 .
  • An advantage to this variation is that the cellular element 6 may be produced inexpensively by plastic blow molding.
  • FIG. 7 is an exploded representation of the essential components of the dispensing system comprising cartridge 1 and dispenser 2 .
  • the cartridge 1 is comprised of two cartridge elements 6 and 7 , similar in configuration to the embodiment of FIG. 5 .
  • the dispenser 2 consists substantially of a component carrier 23 and a bracket 54 , in which the component carrier 23 may be inserted.
  • bracket 54 may comprise an asymmetric shape that is complementary to the shape of the bottom 4 of the cartridge 1 .
  • FIG. 8 shows a side view of an embodiment of the component carrier 23 of the dispenser 2 .
  • the dispensing chambers 20 a - 20 c , the actuators 18 a - 18 c and the closing elements 19 a - 19 c are arranged on the component carrier 23 , together with the energy source 15 , the control unit 16 and the sensor unit 17 . Also shown in FIG. 8 , the energy source 15 , the control unit 16 and the sensor unit 17 are combined in an assembly by arranging them on a corresponding board.
  • the dispensing chambers 20 , the pre-dispensing chamber 26 , the dispensing chamber inlet 21 , and the receptacle 29 may be formed as a single part integral with the component carrier 23 .
  • a pre-dispensing chamber 26 and the actuator 18 may be arranged substantially next to one another on the component carrier 23 .
  • the pre-dispensing chamber 26 is preferably L-shaped with a shoulder included in the lower region into which is set the receptacle 29 for the actuator 18 .
  • the outlet chamber 27 is arranged beneath the pre-dispensing chamber 26 and the actuator 18 .
  • the pre-dispensing chamber 26 and the outlet chamber 27 together form the dispensing chamber 20 .
  • the pre-dispensing chamber 26 and the outlet chamber 27 are connected together by the orifice 34 .
  • the receptacle 29 , the orifice 34 and the dispensing chamber outlet 22 preferably lie in a row perpendicular to the longitudinal axis of the component carrier 23 , such that the rod-shaped closing element 19 may be guided through the orifices 22 , 29 , and 34 .
  • FIGS. 9 and 10 show the rear walls of the pre-dispensing chamber 26 and the outlet chamber 27 integrally with the component carrier 23 .
  • the front wall may for example be bonded to the dispensing chamber 20 by a covering element or a film/foil (not shown).
  • the magnified portion of FIG. 9 shows the outlet chamber 27 having a bottom 62 .
  • the bottom 62 is preferably funnel-shaped, constricting in size toward the dispensing chamber outlet 22 arranged centrally in the outlet chamber 27 .
  • the dispensing chamber outlet 22 is located in a channel 63 , which extends at right angles to the longitudinal axis of the component carrier 23 in the outlet chamber 27 .
  • the funnel-shaped bottom 62 and the channel 63 and the outlet orifice 22 arranged therein ensure dispensing and virtually complete residual emptying of preparation out of the dispensing chamber 20 if the dispenser is in a position other than horizontal. Furthermore, as a result of the correspondingly funnel-shaped bottom, the preparation flows more quickly out of the dispensing chamber even in the case of relatively high viscosity preparations. In this manner, the dispensing period in which preparation is released can be kept relatively short. It should be noted that not all of the dispensing chambers need to have a funnel shape. Any one or all of the dispensing chambers may be so shaped. This also applies to the pre-dispensing chambers 26 and outlet chambers 27 , if these are provided.
  • FIG. 10 shows a component carrier 23 with three dispensing chambers 20 arranged next to one another.
  • the actuator 18 c , the closing element 19 c and the seal 36 c are shown in the assembled state on the component carrier 23 .
  • the seal 36 b and the closing element 19 b are shown in the assembled state in the dispensing chamber, while the actuator 18 b has been detached from the closing element 19 b .
  • the seal 36 a , the closing element 19 a and also the actuator 18 a are shown in an exploded representation.
  • the dispensing chamber 20 , the pre-dispensing chamber 26 , the dispensing chamber inlet 21 and the receptacle 29 for the actuator 18 are integrally constructed with the component carrier 23 .
  • the pre-dispensing chamber 26 comprises an L-shape above the dispensing chamber 20 , wherein the receptacle for the actuator 18 is arranged on the leg of the pre-dispensing chamber extending parallel to the bottom of the component carrier 23 .
  • the dispensing chamber 20 and the pre-dispensing chamber 26 are connected together by the orifice 34 .
  • the receptacle 29 , the orifice 34 and the dispensing chamber outlet 22 lie on an axis that extends perpendicularly to the longitudinal axis of the component carrier 23 .
  • Seal 36 preferably has a substantially hollow-cylindrical configuration, with a top closed by a plate-like end piece.
  • the resilient seal 36 may be arranged in the dispensing chamber 20 in such a way that the plate-like end piece presses on the inside against the dispensing chamber outlet 22 and with the side of the seal 36 remote from the plate-like end piece against the orifice 34 .
  • the first end of the cylindrical closing element 19 is constructed in such a way that it engages in the hollow-cylindrical seal 36 and may be fixed there by interlocking, friction, and/or bonding.
  • the closing element 19 is dimensioned to pass through the orifice 34 and the orifice of the receptacle 29 , yet abut against the dispensing chamber outlet 22 such that the closing element 19 cannot slip downwards out of the component carrier 23 .
  • the closing element 19 preferably projects with one end out of the receptacle 29 . This end is inserted into the actuator 18 constructed as a bistable electromagnet and functions as an armature.
  • FIG. 11 shows the component carrier 23 , previously known from FIG. 10 , in plan view. It is evident that the dispensing chamber inlets 21 a - c and the receptacles 29 a - c for the actuators 18 a - c are arranged in a line that corresponds to the longitudinal axis of the component carrier 23 .
  • FIG. 12 shows a perspective view of the bottom side of the component carrier 23 . It is apparent that the dispensing chamber outlets 22 a - c and the receptacle 28 for the sensor unit are hollowed cylinders, with the result that the actual outlet orifice, and the seal 36 a - c that closes off the dispensing chamber outlets 22 a - c , are protected from mechanical damage.
  • Dispensing chamber inlet 21 is arranged on a fitting 30 that is in communication with the pre-dispensing chamber 26 . It is evident that the chamber wall 31 also extends into the fitting 30 , dividing it into two separate channels.
  • FIG. 14 shows the bottom side of the component carrier 23 in a plan view. Both the dispensing chamber outlets 22 a - c and the receptacle 28 for the sensor unit 17 are arranged in a line that corresponds substantially to the longitudinal axis of the component carrier 23 .
  • FIG. 15 shows the dispenser 2 assembled with cartridge 1 , in perspective view.
  • the dispensing system has a height h, a width b, and a depth t.
  • the width b and height h should not exceed 210 mm.
  • the depth t should be less than 20 mm.
  • the ratio of width:height:depth should be equal to approximately 10:10:1.
  • the height h and width b correspond to the proportions of a medium-sized dinner plate.
  • the dispensing system can thus be positioned, in a manner that is obvious and easy for the user, in the corresponding plate receptacles of a rack in a dishwashing machine.
  • FIG. 16 shows a perspective plan view of the bracket 54 . It is evident that a hook 56 is shaped in each case on the inner side of the hinge 55 , and engages into a corresponding receptacle of the cartridge 1 and thus fixes the cartridge with respect to the dispenser 2 .
  • the hooks are located substantially opposite one another. It is also conceivable for a total of only one hook 56 to be arranged on an inner side of the bracket 54 .
  • FIG. 17 shows, in a schematic representation, a cross-sectional view through an actuator that is embodied as a bistable solenoid.
  • a first coil 58 and a second coil 59 along with a permanent magnet 57 arranged between the coils 58 and 59 , are visible in the illustration.
  • the closing element 19 configured as a plunger core, is received in the annular coils 58 , 59 and in the annular permanent magnet 57 .
  • a magnetic circuit between the magnet field of the permanent magnet 57 and the magnetizable closing element generates a holding force by which the closing element 19 can be fixed in a position that is defined in each case by the holding points 60 and 61 .
  • Closing element 19 can be moved to the holding points 60 and 61 by a pulse-like energizing of the coils 58 and 59 , by the fact that an electrically generated magnetic field of one of the coils 58 , 59 in each case, with a corresponding polarization, is overlaid on the magnetic field of the permanent magnet 57 .
  • a pulse-like energizing of the coil 59 is brought about, the closure element 19 then moves from the holding point 61 back into the starting position at holding point 60 .
  • the dispensing system of the kind described above is suitable in principle for use in, or in conjunction with, water-conveying devices of any kind.
  • the dispensing system according to the invention is suitable in particular for use in water-conveying domestic appliances such as dishwashing or washing machines, but is not limited to such use.
  • dispensing system of the present invention wherever dispensing of at least one preparation, and preferably a plurality of preparations, into a liquid medium in response to external physical or chemical parameters that initiate and/or control a dispensing program, is required.
  • FIGS. 18 through 25 depict exemplary possibilities for fixing or securing the dispensing system in a dish rack 41 of a dishwasher 38 in accordance with the present invention.
  • FIG. 18 shows the dispenser 2 coupled with a cartridge 1 between the plate prongs 110 of a dish rack 41 .
  • the rack 41 may comprise a grid-like construction with struts 109 onto which the fixing means 108 of the dispenser 2 engage. This mode of securing the dispensing system to the dish rack prevents lateral slippage of the dispenser when the rack 41 is pulled out of or pushed into the dishwasher 38 .
  • FIG. 19 shows a possible embodiment of the dispenser 2 in which the fixing means 108 comprises arched recesses within the base of the dispenser 2 . It is also conceivable for the fixing means 108 to engage in the struts of the plate receptacle 110 or at least partially enclosing them, to prevent lateral slippage. This configuration is shown in FIG. 20 , wherein the fixing means 108 comprises channel-like recesses positioned in the front and/or rear wall of the dispenser 2 .
  • the fixing means 108 may comprise webs projecting out of the bottom plane of the dispenser 2 , as shown in FIG. 21 . It is also conceivable for the dispensing chamber outlets 22 of the dispenser to project beyond the bottom plane of the dispenser 2 to faun the fixing means 108 , as illustrated in FIG. 22 .
  • the bottom contour of the dispenser 2 may be V-shaped such that the tip of the V-shaped dispenser 2 engages between two adjoining dish rack struts 109 , thus forming an alternative fixing means 108 that mitigates lateral slippage.
  • FIG. 24 A further embodiment of a fixing means is shown in FIG. 24 .
  • the bottom contour of the dispenser 2 may comprise sawtooth-like recesses into which the struts 109 of a dish rack 41 may engage, to form an alternative fixing means 108 against lateral slippage of the dispenser 2 in the dish rack 41 .
  • FIG. 25 A further embodiment of a fixing means is illustrated in FIG. 25 , wherein the bottom contour of the dispenser 2 is wavy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Washing And Drying Of Tableware (AREA)
US12/987,236 2008-07-15 2011-01-10 Dosing system with controlled product release in the inclined position Abandoned US20110139816A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008033107.4 2008-07-15
DE102008033107A DE102008033107A1 (de) 2008-07-15 2008-07-15 Dosiersystem mit kontrollierter Produktfreisetzung in Schrägstellung
PCT/EP2009/058964 WO2010007050A1 (de) 2008-07-15 2009-07-14 Dosiersystem mit kontrollierter produktfreisetzung in schrägstellung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/058964 Continuation WO2010007050A1 (de) 2008-07-15 2009-07-14 Dosiersystem mit kontrollierter produktfreisetzung in schrägstellung

Publications (1)

Publication Number Publication Date
US20110139816A1 true US20110139816A1 (en) 2011-06-16

Family

ID=41328725

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/987,236 Abandoned US20110139816A1 (en) 2008-07-15 2011-01-10 Dosing system with controlled product release in the inclined position

Country Status (4)

Country Link
US (1) US20110139816A1 (de)
EP (1) EP2296521A1 (de)
DE (1) DE102008033107A1 (de)
WO (1) WO2010007050A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788703B2 (en) 2013-03-08 2017-10-17 Whirlpool Corporation Dishwasher with rechargeable components
CN107713952A (zh) * 2016-08-10 2018-02-23 比特龙有限公司 投配装置
US20190177901A1 (en) * 2017-12-08 2019-06-13 Whirlpool Corporation Household appliance with a bulk dispenser

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734591B2 (en) 2010-12-03 2014-05-27 Whirlpool Corporation Dishwasher with auxiliary, tough soil chemistry dispensing system
US8925561B2 (en) 2011-10-11 2015-01-06 Whirlpool Corporation Dishwasher dispensing system with timed delay
US8721804B2 (en) 2011-10-24 2014-05-13 Whirlpool Corporation Dishwasher with auxiliary washing agent dispensing system
DE102013002522A1 (de) * 2013-02-13 2014-08-14 Reimund Pichler Kartuschen-Dosiersystem für ein wasserführendes Spülgerät des gewerblichen Bereichs im speziellen für Medizinprodukte-Geräte wie Endoskopreinigungsgeräte bzw. Endoskopspül- und Desinfektionsgeräte mit einem Prozesschemiedosiersystem.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176297A (en) * 1990-06-14 1993-01-05 Diversey Corporation Dishwasher detergent dispenser
US5261432A (en) * 1990-10-03 1993-11-16 Ro-Sa Micromeccanica S.N.C. Dishwashing machine with multidose dispenser of powder detergent
US20020088502A1 (en) * 2000-10-04 2002-07-11 Van Rompuy Tanya Cecile Corneel Smart dosing device
US6434977B1 (en) * 2000-10-06 2002-08-20 Ark-Les Corporation Automatic laundry aid dispenser for washing machine
US6923101B2 (en) * 2002-05-10 2005-08-02 Mid-South Engineering Co., Inc Continuous log bucking saw system and method
US7322216B2 (en) * 2002-03-19 2008-01-29 Electrolux Home Products Corporation N.V. Washing aid dispenser and washing machine comprising said dispenser
DE102006043974A1 (de) * 2006-09-19 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Wasserführendes Haushaltsgerät mit einem Reinigungsmitteldosiersystem
DE102007014425A1 (de) * 2007-03-22 2008-09-25 Henkel Ag & Co. Kgaa Bewegliches Dosiersystem zur Abgabe von fließ- oder streufähigen Zubereitungen
US8381744B2 (en) * 2006-09-19 2013-02-26 Bsh Bosch Und Siemens Hausgeraete Gmbh Water-conducting domestic appliance comprising a detergent dosing system and cartridge therefor
US8382913B2 (en) * 2006-09-19 2013-02-26 Bsh Bosch Und Siemens Hausgeraete Gmbh Cartridge for a water-conducting domestic appliance comprising a detergent dosing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386129B (en) 2002-03-06 2004-12-01 Reckitt Benckiser Nv Detergent dosing device
GB2417492A (en) * 2004-08-23 2006-03-01 Reckitt Benckiser Nv Detergent dispensing device for an automatic washing machine
DE102005061801A1 (de) * 2005-12-23 2007-06-28 BSH Bosch und Siemens Hausgeräte GmbH Einschubdosiersystem für Haushaltsgeräte
DE102005062479A1 (de) 2005-12-27 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Dosiervorrichtung für die Zugabe eines Zuschlagmittels in einen Behandlungsraum und Geschirrspülmaschine mit einer Dosiervorrichtung
ES2640721T3 (es) * 2006-01-21 2017-11-06 Reckitt Benckiser Finish B.V. Artículo para su uso en una máquina de lavado de objetos

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176297A (en) * 1990-06-14 1993-01-05 Diversey Corporation Dishwasher detergent dispenser
US5261432A (en) * 1990-10-03 1993-11-16 Ro-Sa Micromeccanica S.N.C. Dishwashing machine with multidose dispenser of powder detergent
US20020088502A1 (en) * 2000-10-04 2002-07-11 Van Rompuy Tanya Cecile Corneel Smart dosing device
US6434977B1 (en) * 2000-10-06 2002-08-20 Ark-Les Corporation Automatic laundry aid dispenser for washing machine
US7322216B2 (en) * 2002-03-19 2008-01-29 Electrolux Home Products Corporation N.V. Washing aid dispenser and washing machine comprising said dispenser
US6923101B2 (en) * 2002-05-10 2005-08-02 Mid-South Engineering Co., Inc Continuous log bucking saw system and method
DE102006043974A1 (de) * 2006-09-19 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Wasserführendes Haushaltsgerät mit einem Reinigungsmitteldosiersystem
US8381744B2 (en) * 2006-09-19 2013-02-26 Bsh Bosch Und Siemens Hausgeraete Gmbh Water-conducting domestic appliance comprising a detergent dosing system and cartridge therefor
US8382913B2 (en) * 2006-09-19 2013-02-26 Bsh Bosch Und Siemens Hausgeraete Gmbh Cartridge for a water-conducting domestic appliance comprising a detergent dosing system
DE102007014425A1 (de) * 2007-03-22 2008-09-25 Henkel Ag & Co. Kgaa Bewegliches Dosiersystem zur Abgabe von fließ- oder streufähigen Zubereitungen
US20100132748A1 (en) * 2007-03-22 2010-06-03 Arnd Kessler Mobile dosing system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788703B2 (en) 2013-03-08 2017-10-17 Whirlpool Corporation Dishwasher with rechargeable components
US10485396B2 (en) 2013-03-08 2019-11-26 Whirlpool Corporation Dishwasher with rechargeable components
CN107713952A (zh) * 2016-08-10 2018-02-23 比特龙有限公司 投配装置
US10362925B2 (en) * 2016-08-10 2019-07-30 Bitron S.P.A. Dosing device for dispensing a washing agent in a washing machine, in particular a dish washing machine
US20190177901A1 (en) * 2017-12-08 2019-06-13 Whirlpool Corporation Household appliance with a bulk dispenser
US10760199B2 (en) * 2017-12-08 2020-09-01 Whirlpool Corporation Household appliance with a bulk dispenser

Also Published As

Publication number Publication date
DE102008033107A1 (de) 2010-01-21
WO2010007050A1 (de) 2010-01-21
EP2296521A1 (de) 2011-03-23

Similar Documents

Publication Publication Date Title
US8631972B2 (en) Metering system with component support
US20110204096A1 (en) Actuator for a dosing system
US20110139816A1 (en) Dosing system with controlled product release in the inclined position
US20120031930A1 (en) Cartridge
KR101660547B1 (ko) 가전 제품
US20110174341A1 (en) Connectable dosing device
ES2752023T3 (es) Disposición para acoplar un sistema dosificador con una tubería de alimentación de agua de una máquina lavavajillas
US20110174346A1 (en) Dosing system for a dishwasher
US20120247158A1 (en) Door for the fluid-tight closure of a laundry loading or removal opening of a laundry treatment appliance, in particular of a washing machine and/or clothes dryer
US20110315709A1 (en) Method for operating a metering device arranged in a domestic appliance metering device and corresponding domestic appliance
US20110139818A1 (en) Cartridge for a dosing system
US20100132748A1 (en) Mobile dosing system
US20130036775A1 (en) Metering system for releasing at least three different preparations during a washing programme of a washing machine
ES2792187T3 (es) Cartucho con conductor de luz
US20130036772A1 (en) Metering system for releasing at least three different preparations during a washing programme of a washing machine
US9282876B2 (en) Dosing system for a dishwasher machine
US20120017953A1 (en) Dispenser having a transmitter and/or receiver unit for the wireless transmission of signals
ES2768023T3 (es) Aparato de dosificación con cámara de dosificación
ES2793698T3 (es) Sistema dosificador con cartucho

Legal Events

Date Code Title Description
AS Assignment

Owner name: HENKEL AG & CO. KGAA, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KESSLER, ARND;FILECCIA, SALVATORE;MUHLHAUSEN, HANS-GEORG;AND OTHERS;SIGNING DATES FROM 20110111 TO 20110204;REEL/FRAME:025887/0389

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION