US20110138461A1 - Execution environment file inventory - Google Patents

Execution environment file inventory Download PDF

Info

Publication number
US20110138461A1
US20110138461A1 US13/022,148 US201113022148A US2011138461A1 US 20110138461 A1 US20110138461 A1 US 20110138461A1 US 201113022148 A US201113022148 A US 201113022148A US 2011138461 A1 US2011138461 A1 US 2011138461A1
Authority
US
United States
Prior art keywords
inventory
file
files
request
updater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/022,148
Inventor
Rishi Bhargava
E. John Sebes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McAfee LLC
Original Assignee
McAfee LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McAfee LLC filed Critical McAfee LLC
Priority to US13/022,148 priority Critical patent/US20110138461A1/en
Publication of US20110138461A1 publication Critical patent/US20110138461A1/en
Priority to US14/045,208 priority patent/US9576142B2/en
Priority to US15/417,334 priority patent/US10360382B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/566Dynamic detection, i.e. detection performed at run-time, e.g. emulation, suspicious activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/44Program or device authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • G06F21/53Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2149Restricted operating environment

Definitions

  • IT Information Technology
  • a method is described to maintain (including to generate) an inventory of a system of a plurality of containers accessible by a computer system. At least one container is considered to determine whether the container is executable in at least one of a plurality of execution environments characterizing the computer system. Each execution environment is in the group comprising a native binary execution environment configured to execute native machine language instructions and a non-native execution environment configured to execute at least one program to process non-native machine language instructions to yield native machine language instructions.
  • the inventory is maintained based on a result of the considering step. The inventory may be used to exercise control over what executables are allowed to execute on the computer system.
  • FIG. 1 is a block diagram illustrating a computer characterized by a set of execution environments.
  • FIG. 2 is a flowchart illustrating an example method to initially generate an inventory of files that are accessible by a computer and that can be processed by or according to the execution environments characterizing the computer.
  • FIG. 2-1 is a flowchart illustrating a method to use an inventory for execution control.
  • FIG. 3 is a flowchart illustrating a method operating in conjunction with “normal” operation of a computer, to observe the operation of the computer and to maintain the inventory based on the observed operation.
  • FIG. 4 broadly illustrates an example of how “updaters” interact to determine that a change is authorized.
  • a preliminary step may include generating an inventory of the computer's installed software set. Once the inventory is generated, the inventory may evolve as the code configuration of the computer evolves. As configuration control is exercised, the inventory may be employed to make decisions and take resultant actions, and the inventory may be maintained in synchronization with such decisions and actions.
  • IT information technology
  • the computer system 101 includes an execution unit 102 which has accessible to it a storage system 103 of files, typically including a file system to manage the files of the storage 103 .
  • the computer system 101 is characterized by a set of execution environments 104 , to execute various types of programs by the execution unit 102 . Execution environments are discussed in more detail below.
  • the concept of files with respect to the inventorying methodology described herein may be generalized to containers that are “persistent host objects,” such as is described in co-pending U.S. patent application Ser. No.
  • the persistent host objects may include, for example, files, registry entries, DBMS objects or packaged code such as served by an SOA (service oriented architecture).
  • SOA service oriented architecture
  • a native “binary execution environment” is a mechanism by which execution of native binary code, comprising instructions in the native machine language of the computer system 101 , is accomplished by the execution unit 102 .
  • the computer system 101 generally is characterized by a set of other (non-native) execution environments as well.
  • Such a non-native execution environment is a mechanism by which a program, written in a programming language (such as, but not limited to, Java, Perl, Lisp, Visual Basic, Microsoft Word/Excel Macros, etc.) is “run,” eventually resulting in the execution of some native binary code, by the execution unit 102 , that corresponds to actions indicated by the program.
  • a programming language such as, but not limited to, Java, Perl, Lisp, Visual Basic, Microsoft Word/Excel Macros, etc.
  • the set of execution environments present on a computer can generally be extended or reduced, by installing or uninstalling corresponding pieces of software.
  • One example execution environment is the native binary execution environment provided by an operating system executing on the computer system.
  • an environment to run executable files (such as those typically designated by a file extension of “.exe”) on a MicrosoftTM Windows-based computer system with an IntelTM Pentium-based processor architecture, wherein the executable files comprise native instructions for the IntelTM Pentium processor, is an example of a native binary execution environment.
  • Other execution environments, of the non-native type include interpreters for processing shell scripts, Perl scripts, Java source code or byte code, and Lisp source code programs and resulting in execution of native binary code that corresponds to actions indicated by the source code programs.
  • execution environments of the non-native type include execution environments that exist within applications. These execution environments operate to extend the functionality of the applications within which they exist. Examples of such execution environments include a Java Virtual Machine (or a front end to an external Java Virtual Machine) that operates to extend the functionality of a web browser, for example, by processing Java programs (source code or byte code). Another example includes functionality to process Structured Query Language (SQL) code, MicrosoftTM Excel macros, and Database Management System (DBMS) macros.
  • SQL Structured Query Language
  • DBMS Database Management System
  • a computer system may be characterized by various execution environments. As a result, there are various “types” of files that can be processed by or according to the execution environments. At a particular point in time, the set of execution environments characterizing a particular computer is determinate. As discussed below, a complete (with respect to existing execution environments) inventory of all the files that can be processed by or according to the execution environments characterizing the computer may be maintained as the configuration of the computer evolves over time, including initially generating the inventory, e.g., based on an initial static configuration.
  • FIG. 2 is a flowchart illustrating an example method to initially generate an inventory of files accessible by a computer and that can be processed by or according to the execution environments characterizing the computer. Basically, each file is considered relative to execution environments characterizing the computer and, based on the consideration, a characterization of the'file is cataloged.
  • Step 202 the file system “scan” is begun. Steps 204 , 206 , 208 and 210 are executed for each file accessible by the computer (or, perhaps, for some other ascertainable set of files).
  • a file is considered.
  • the identifier of the file may include, for example, a name and/or unique path associated with the file.
  • the identifier includes data that is useable to verify the integrity of the file contents, such as a hash, checksum or message digest of the file.
  • a file is executable (step 206 of FIG. 2 ).
  • the contents of the file are examined, such as a file header.
  • a PE portable executable
  • COFF common object file format
  • This file content examination may include, for example, parsing and/or pattern-matching against all or portions of the file body. This may be useful, for example, to determine that an Excel data file has macros embedded therein.
  • metadata or other attributes maintained by the operating system is considered, such as the name and extension associated with the file and/or a file type.
  • still other information about the file is considered, such as on what machine or repository the file resides, or which gateway or portal provides access to the file (such as in an SOA, as described below).
  • a name or other external reference to the file is considered, wherein the name or reference is maintained by an information repository or directory and may follow a naming convention or hierarchical referencing which can be used to infer information about the file (as in an SOA).
  • scanning a computer's file system is just one technique for identifying and locating files (which files can then be processed according to step 206 ), and there are a number of alternative techniques.
  • the computer's operating system maintains a full or partial record of the installed software (such as the records maintained by a MicrosoftTM Windows OS and available via the “Add or Remove Programs” option in the “Control Panel”)
  • this record can be queried or otherwise examined for files.
  • the operating system maintains a full or partial record of available services, the record can be queried or otherwise examined to reveal one or more files involved in providing the services.
  • the record can be queried (for example by using the “netstat” command on a MicrosoftTM Windows or Linux-flavored operating system) or otherwise examined to reveal the files involved in listening to the ports, creating connections and/or other processing of the communications on the ports.
  • this record can be queried or otherwise examined to reveal files involved in implementing the drivers.
  • the driver files can optionally be examined to determine whether or not they are signed by their respective vendors.
  • files are prevented from being added to the inventory (or otherwise from being designated as “authorized to execute” on the computer, as described below) if they are not properly signed.
  • an exhaustive scanning of the file system can be replaced with a combination of one or more of the alternative file locating techniques described in the previous paragraph to yield a complete and accurate inventory of the system, provided that an additional “dependency analysis” step is performed on the files that are placed into the inventory. That is, for a given file under consideration, the dependency analysis comprises examining the file and identifying other files or components referenced or otherwise used by the file, such as libraries and other executables. These identified objects can then be processed according to step 206 and added to the inventory if appropriate, as well as recursively analyzed for their own dependencies.
  • This methodical hybrid technique can save valuable time and processing resources by eliminating the exhaustive scanning of the file system without sacrificing the completeness or accuracy of the inventory.
  • DBMS database management system
  • sprocs stored-procedures
  • JAR Java ARchive
  • JAR Java ARchive
  • FIG. 2-1 attempts to run an executable file are detected, and authorization to run the executable file is based on the inventory.
  • an attempt to run an executable file is detected.
  • an alert and/or log may be generated at step 360 .
  • the FIG. 2-1 method is run in what may be termed as “tracking mode.” That is, rather than block an executable file from being run, the executable file is allowed to be run (i.e., step 358 is omitted), and the attempt to run the non-inventoried executable file is merely logged. In this way, the effect of execution blocking on a host can be observed without actually substantively changing the operation of the host with respect to running executable files.
  • the log can be studied, if desired, with an eye towards determining whether the inventory includes all of the executable files desired to be in the inventory.
  • the '741 application describes methodology to intercept/detect attempts to change objects, as well as describing methodology to block the intercepted/detected change attempts. Similar methodology may be employed with regard to intercepting/detecting attempts to execute objects, as well as to block the intercepted/detected execution attempts.
  • FIG. 3 is a flowchart illustrating a method operating in conjunction with “normal” operation of a computer, to observe the operation of the computer and to maintain the inventory based on the observed operation. More particularly, when it is determined that the operation of the computer is such to attempt a change that may result in the inventory no longer being up to date, then processing is carried out to react to the change.
  • an attempted change is detected to the files (or containers, generally) accessible to the computer.
  • step 322 it is determined whether the change is authorized (the determination of what changes are authorized is described below). If a result of step 322 is negative, then processing continues at step 324 where no action results. Alternatively, if a result of step 322 is affirmative, then processing continues at step 312 , where the new executable file is indicated in the inventory as being executable. If it is determined at step 304 that a detected attempted change does affect an inventoried file, then it is determined at step 314 if the detected attempted change is authorized.
  • Examples of detecting change attempts to a host object are described, for example, in the '741 application.
  • the '741 application also discusses what may be meant by what “affects” an inventoried file. This may mean, for example, changing the object (e.g., a “write,” “rename,” “move,” or “delete” operation), as well as a change in one or more attributes of the file.
  • “affects” may also include “read,” “view” or “access” operations, such as in a scenario where some files indicated in the inventory are designated as requiring authorization for such operations. This will in effect allow control over what files (generally containers) can be read, viewed or accessed.
  • examples of determining what changes are authorized are also described in the '741 application.
  • the inventory is updated if required based on the change allowed at step 318 .
  • the inventory may include an identifier useable to verify the integrity of the file contents, and the identifier may need to be updated when the file contents, file attributes and/or any associated information in the inventory are changed.
  • signed updates and “signed updaters” are employed, using public/private key pairs, digital signatures or other methods for the digital authentication of updates and/or updaters.
  • digital authentication may be processed to indicate that an update to a host is authorized. That is, the digital authentication is another way to indicate what changes are authorized.
  • step 304 is omitted (as are steps 306 , 308 , 310 and 312 ).
  • step 314 determining whether a change is authorized is independent of whether the file that is attempted to be changed is in an inventory. The change is either blocked (step 316 ) or allowed (step 318 ), and the inventory is updated as appropriate.
  • FIG. 4 broadly illustrates an example of how the “updaters” interact to determine that a change is authorized.
  • processing begins at step 402 where an entity is attempting to make a change to an inventoried file.
  • step 408 if the system is in update mode.
  • the system is considered to be in update mode if the change authorization policy that is in effect indicates that updates (changes to the system) are allowed by one or more sometime updaters. If it is determined at step 408 that the system is in update mode, then it is determined at step 412 if the entity attempting to make the change is a sometime updater. If it is determined at step 412 that the entity attempting to make the change is a sometime updater, then the change is authorized at step 406 . Note that the determination may depend on a number of conditions (as described in the '741 patent), for example on the date and time, the particular updater, the particular nature of the change, the particular attributes of the object to be changed, etc.
  • step 408 If it is determined at step 408 that the system is not in update mode, or if it determined at step 412 that the entity attempting to make the change is not a sometime updater, then the change is not authorized at step 410 .
  • an authorization may be configured such that processes executing under a particular group ID are anytime updaters.
  • an authorization may be configured such that a change action by a particular user (e.g., a process executing under a particular user ID) is permitted when the computer is in “update” mode.
  • Another point of flexibility in configuring authorizations includes defining the conditions, other than defining the particular user, under which a sometime updater is authorized to make changes affecting inventoried files.
  • timing there is some leeway and/or ambiguity regarding the timing with which a file should be indicated in the inventory as executable and, in some circumstances, a file that is executable should nevertheless not be so indicated in the inventory at all.
  • a user may cause a “setup.exe” file to run, the result of which includes attempting to add a set of new executable files to the file system.
  • the files may be added to the inventory one by one, at each attempt to add an executable file to the disk. Another option includes adding all of the executables to the inventory in a batch.
  • setup.exe file itself, which is run only to install a program (including, perhaps, adding a set of new executable files to the file system, as discussed above) and will not need to remain executable beyond the update window should be indicated in the inventory.
  • the setup.exe may only function to download another executable file, which is an installer, where it is the execution of the installer that causes the program to be “installed.”
  • an update window may be opened before the installer is downloaded. After the installer is downloaded, the installer is executed, and the installer is erased while the update window is still open.
  • the installation process may be such that the operator may have to do some manual cleanup. For example, if the installation includes a “reboot,” then this may comprise keeping the update window open across the reboot and closing the update window after the post-reboot installation activities are completed.
  • semantics of the inventory may be reduced to the point where, for example, having an entry in the inventory simply means “this container is an executable on this host,” without indicating anything about whether the executable is actually authorized to execute on the host.
  • execution authorization can be relegated to a data structure or mechanism separate from the inventory.
  • the data structure may simply be represented by additional metadata in the inventory indicating “this executable file is (or is not) actually authorized to execute on this host.”
  • files and what files are “accessible” to be executed in an execution environment, need not be limited to the traditional notion of files (e.g., an “ordinary” file, existing within the directory structure of an operating system, and that contains either text, data or program).
  • file system need not be limited to existing on a storage device directly associated with a computer (e.g., residing in a housing that also houses a CPU).
  • the inventory concept may be generalized as follows:
  • an executable file may contain ordinary code.
  • “containers” are more general, and may include files or other “objects” that have code within them but where the files or objects themselves are not typically executed. Examples include Java code containers (such as .jar containers) and stored-procedure containers (i.e., containers of “sprocs”) which reside within databases and are managed by database management systems.
  • code containers may be made available through distributed computing services, such as distributed services that use SOAP (Simple Object Access Protocol) as a common language for requests and responses, etc. In fact, the containers need not be files at all.
  • the containers may include objects in databases, packaged code served by SOAs, etc. While much of the description herein uses files as an example, the described methodology is generally applicable to containers that may be processed by execution environments.
  • a code container is accessible but resides on a remote file system, such as a networked file system or a network share.
  • a remote file system such as a networked file system or a network share.
  • the remote file system is scanned, and the containers are processed in a manner similar to that discussed above (e.g., with reference to the FIG. 2 flowchart).
  • it is ascertained that the contents of the remote file system are reachable to be examined This may be accomplished, for example, by mounting the remote file system on the host where the processing described with reference to the FIG. 2 flowchart are actually carried out.
  • code containers are available for access from various repositories via an SOA or similar methodology.
  • the relevant set of files/containers to consider in creating and/or maintaining an inventory includes files/containers available from the repositories.
  • the specification of the files/containers to consider includes a specification of the distributed services deemed to be relevant to the host for which the inventory is being generated and/or managed.
  • the scanning employs the mechanism provided by the SOA to poll what types of “code containers” are available. Some of these code containers are files, while others can be “stubs” that describe or indicate a particular service that is provided remotely (e.g. remote procedure calls). In any event, the inventory is generated and/or maintained to hold an identification for each code container, similar to manner in which the identification of executable files directly stored on a locally-accessible file storage are held.
  • non-executable containers may be indicated in the inventory as a way to write-protect or even read-protect the data in the non-executable containers.
  • meta-data stored in a container such as a file
  • the container is not designated as an executable, but as a write-protected container. Enforcing read-protection can be done in a similar fashion.
  • read-protection and access-protection can be used to control data exfiltration.
  • the methodology described herein is carried out by a computing system under programmed control. In other examples, the methodology described herein is carried out by a person, or in some combination of both.
  • enterprise computing asset management is carried out using a centralized aggregate inventory. For example, many enterprises have more (or fewer) licenses than required for particular applications. By comparing an easily generated inventory with the licenses, the licensing can be more closely matched to the actual usage.
  • a “gold image” inventory is generated and maintained, representing a baseline inventory for deployment onto one or more hosts.
  • their own individual inventories and/or their inventory “deltas” are maintained on the individual hosts.
  • a certain amount of delta from the gold image inventory may be considered allowable, but additional updates may be blocked if the update would cause the delta to exceed a threshold.
  • the delta may be quantified in any number of ways, for instance as an absolute number of inventory items, as a ratio of the size of the individual inventory to the size of the gold image inventory, as a ratio of the size of the intersection of the individual and gold image inventories to the size of the gold image inventory, or as any other metric that is meaningful to the business.
  • efficiency is increased by creating an inventory of a remote repository (e.g., a mountable drive), and then making the ready-made inventory available to individual agents on the individual hosts that have access to the remote repository, either directly or via a central system controller.
  • a remote repository e.g., a mountable drive
  • the ready-made inventory can be used on individual hosts in order to exercise execution control over the items residing on the remote repository.
  • a host may not have sufficient authority over maintaining the inventory of the remote repository in response to changes to the remote repository, or over blocking changes to items as described above. Therefore, it may be useful for the host to check for staleness of inventory items.
  • the host may examine not only that the file has an associated entry in the ready-made inventory, but also that a time stamp of the entry is at least as recent as the creation time stamp of the file.
  • a time stamp of the entry is at least as recent as the creation time stamp of the file.
  • An alternative to using time stamps is using checksums for ensuring that the inventory entries pertain to the exact same file at hand.
  • a centrally-maintained inventory of a plurality of hosts is used to make decisions involving knowledge of the set of executable files (or other types of files) on the plurality of hosts.
  • the analysis results can then be used to make decisions or perform actions related to one or more of the plurality of hosts.
  • Actions can be initiated locally on a host or remotely in a way that affects the host. Actions can also be performed in a way that does not directly affect the host, but instead affects a related resource, such as an information repository or a network node, as illustrated with examples below.
  • a central inventory may be maintained which indicates a union of the executables on the plurality of hosts together with which files reside on which hosts, and this inventory is scanned by anti-virus or other anti-malware code (as opposed to doing anti-virus code-scans separately on each host).
  • the information provided by such a central scan can then form a basis for making decisions pertaining to, or for performing actions on, one or more of the plurality of hosts, just as if the information had been gathered locally on the individual hosts. For example, if a central scan reveals the presence of a virus on a particular host, an action to remove the virus can be caused to be performed on the host.
  • a central scan reveals that a particular networked host is infected with a worm
  • one or more elements of a network infrastructure such as switches, routers, or firewalls can be instructed to isolate, or otherwise monitor or respond to, the infected host, and further action can be performed on the infected host in order to disable the worm.
  • license management Another example of using a central inventory is license management.
  • the central inventory is checked against a record of purchased licenses to perform an analysis indicating which hosts are using which licenses.
  • Follow up steps may include purchasing additional licenses as needed, non-renewal of existing licenses if the analysis indicates unused purchased licenses, removal of software that the analysis indicates is not supposed to be residing on a host, and so on.
  • a central inventory can be used to indicate software resident on the plurality of hosts, and analysis may include identifying software which, while resident on one or more hosts, lacks a trail indicating its deployment onto the hosts through the authorized channels.
  • follow up actions may include updating records to more accurately indicate the presence of software on hosts, removal of software that is not supposed to be resident on a host, and so on.
  • the designated entity may maintain a central inventory of one or more containers resident on the plurality of hosts or computing elements, and use the sent results from several hosts in combination with the visibility provided by the central inventory in order to reach conclusions regarding trends in the state of the plurality of hosts and cause actions or further analyses to be performed on one or more of the plurality of hosts. For example, if a host identifies a piece of software resident on the host as malware and shares that information with the designated entity, the entity may refer to the central inventory to determine which other hosts may be harboring that piece of software, alert those hosts, and cause a removal or quarantine of the identified malware.
  • central inventories For the above examples using central inventories, note that the union of the inventories of the plurality of hosts (or any other construct of the individual inventories) need not be exact, since even approximate aggregates can save valuable resources as the number of hosts grows.
  • This application of a central inventory can be generalized to any processing that is based on a scan or examination of a plurality of hosts, and the code that scans the centrally-maintained inventory may be, for example, any code for which the inventory provides useful information from which a decision for changing and/or execution may be made. This may include, for example, scanning for adware or spyware, and scanning for copyrighted/licensed material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Bioethics (AREA)
  • Databases & Information Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A method is described to maintain (including generate) an inventory of a system of a plurality of containers accessible by a computer system. At least one container is considered to determine whether the container is executable in at least one of a plurality of execution environments characterizing the computer system. Each execution environment is in the group comprising a native binary execution environment configured to execute native machine language instructions and a non-native execution environment configured to execute at least one program to process non-native machine language instructions to yield native machine language instructions. The inventory is maintained based on a result of the considering step. The inventory may be used to exercise control over what executables are allowed to execute on the computer system.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is related to the following, all of which are incorporated herein by reference in their entirety:
  • co-pending U.S. patent application Ser. No. 10/651,591, entitled “Method And System For Containment of Networked Application Client Software By Explicit Human Input” and filed on Aug. 29, 2003;
  • co-pending U.S. patent application Ser. No. 10/651,588, entitled “Damage Containment By Translation” and filed on Aug. 29, 2003;
  • co-pending U.S. patent application Ser. No. 10/806,578, entitled “Containment Of Network Communication” and filed on Mar. 22, 2003;
  • co-pending U.S. patent application Ser. No. 10/739,230, entitled “Method And System For Containment Of Usage Of Language Interfaces” and filed on Dec. 17, 2003;
  • co-pending U.S. patent application Ser. No. 10/935,772, entitled “Solidifying the Executable Software Set of a Computer” and filed on Sep. 7, 2004;
  • co-pending U.S. patent application Ser. No. 11/060,683, entitled “Distribution and Installation of Solidified Software on a Computer” and filed on Feb. 16, 2005;
  • co-pending U.S. patent application Ser. No. 11/122,872, entitled “Piracy Prevention Using Unique Module Translation” and filed on May 4, 2005;
  • co-pending U.S. patent application Ser. No. 11/182,320, entitled “Classification of Software on Networked Systems” and filed on Jul. 14, 2005; and
  • co-pending U.S. patent application Ser. No. 11/346,741, entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle” by Rahul Roy-Chowdhury, E. John Sebes and Jay Vaishnav, filed on Feb. 2, 2006.
  • BACKGROUND OF THE INVENTION
  • Control of a company's Information Technology (IT) enterprise configuration is valuable not only for logistical reasons, but also for regulatory reasons, including in the areas of enterprise security, regulatory compliance, and change management. A significant aspect of such configuration control may include, for example, controlling what code can run, controlling what parts of the software set are allowed to change under what circumstances, and observing and logging what modifications are made to the code of one or more systems in the enterprise.
  • SUMMARY OF THE INVENTION
  • A method is described to maintain (including to generate) an inventory of a system of a plurality of containers accessible by a computer system. At least one container is considered to determine whether the container is executable in at least one of a plurality of execution environments characterizing the computer system. Each execution environment is in the group comprising a native binary execution environment configured to execute native machine language instructions and a non-native execution environment configured to execute at least one program to process non-native machine language instructions to yield native machine language instructions. The inventory is maintained based on a result of the considering step. The inventory may be used to exercise control over what executables are allowed to execute on the computer system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating a computer characterized by a set of execution environments.
  • FIG. 2 is a flowchart illustrating an example method to initially generate an inventory of files that are accessible by a computer and that can be processed by or according to the execution environments characterizing the computer.
  • FIG. 2-1 is a flowchart illustrating a method to use an inventory for execution control.
  • FIG. 3 is a flowchart illustrating a method operating in conjunction with “normal” operation of a computer, to observe the operation of the computer and to maintain the inventory based on the observed operation.
  • FIG. 4 broadly illustrates an example of how “updaters” interact to determine that a change is authorized.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In order to exercise configuration control, a preliminary step may include generating an inventory of the computer's installed software set. Once the inventory is generated, the inventory may evolve as the code configuration of the computer evolves. As configuration control is exercised, the inventory may be employed to make decisions and take resultant actions, and the inventory may be maintained in synchronization with such decisions and actions.
  • In this detailed description, we discuss aspects of an execution environment inventorying methodology. Before discussing the execution environment inventorying methodology in detail, it is useful to generally discuss some terminology related to an information technology (IT) enterprise environment, including related to a particular computing device and/or system in such an IT enterprise environment.
  • Referring to FIG. 1, a computer system 101 is schematically illustrated. The computer system 101 includes an execution unit 102 which has accessible to it a storage system 103 of files, typically including a file system to manage the files of the storage 103. The computer system 101 is characterized by a set of execution environments 104, to execute various types of programs by the execution unit 102. Execution environments are discussed in more detail below. The concept of files with respect to the inventorying methodology described herein may be generalized to containers that are “persistent host objects,” such as is described in co-pending U.S. patent application Ser. No. 11/346,741 (the '741 application), entitled “Enforcing Alignment of Approved Changes and Deployed Changes in the Software Change Life-Cycle” by Rahul Roy-Chowdhury, E. John Sebes and Jay Vaishnav, filed on Feb. 2, 2006. The persistent host objects may include, for example, files, registry entries, DBMS objects or packaged code such as served by an SOA (service oriented architecture).
  • In particular, a native “binary execution environment” is a mechanism by which execution of native binary code, comprising instructions in the native machine language of the computer system 101, is accomplished by the execution unit 102. In addition to a native binary execution environment, the computer system 101 generally is characterized by a set of other (non-native) execution environments as well. Such a non-native execution environment is a mechanism by which a program, written in a programming language (such as, but not limited to, Java, Perl, Lisp, Visual Basic, Microsoft Word/Excel Macros, etc.) is “run,” eventually resulting in the execution of some native binary code, by the execution unit 102, that corresponds to actions indicated by the program. It is noted that the set of execution environments present on a computer can generally be extended or reduced, by installing or uninstalling corresponding pieces of software.
  • Having generally described characteristics of execution environments, we now discuss some example execution environments. One example execution environment is the native binary execution environment provided by an operating system executing on the computer system. For example, an environment to run executable files (such as those typically designated by a file extension of “.exe”) on a Microsoft™ Windows-based computer system with an Intel™ Pentium-based processor architecture, wherein the executable files comprise native instructions for the Intel™ Pentium processor, is an example of a native binary execution environment. Other execution environments, of the non-native type, include interpreters for processing shell scripts, Perl scripts, Java source code or byte code, and Lisp source code programs and resulting in execution of native binary code that corresponds to actions indicated by the source code programs.
  • Yet other execution environments of the non-native type include execution environments that exist within applications. These execution environments operate to extend the functionality of the applications within which they exist. Examples of such execution environments include a Java Virtual Machine (or a front end to an external Java Virtual Machine) that operates to extend the functionality of a web browser, for example, by processing Java programs (source code or byte code). Another example includes functionality to process Structured Query Language (SQL) code, Microsoft™ Excel macros, and Database Management System (DBMS) macros.
  • As discussed above, a computer system may be characterized by various execution environments. As a result, there are various “types” of files that can be processed by or according to the execution environments. At a particular point in time, the set of execution environments characterizing a particular computer is determinate. As discussed below, a complete (with respect to existing execution environments) inventory of all the files that can be processed by or according to the execution environments characterizing the computer may be maintained as the configuration of the computer evolves over time, including initially generating the inventory, e.g., based on an initial static configuration.
  • FIG. 2 is a flowchart illustrating an example method to initially generate an inventory of files accessible by a computer and that can be processed by or according to the execution environments characterizing the computer. Basically, each file is considered relative to execution environments characterizing the computer and, based on the consideration, a characterization of the'file is cataloged.
  • At step 202, the file system “scan” is begun. Steps 204, 206, 208 and 210 are executed for each file accessible by the computer (or, perhaps, for some other ascertainable set of files). At step 204, a file is considered. At step 206, it is determined, based on a result of step 204, whether the file can be processed by or according to any of the execution environments characterizing the computer (i.e., in shorthand, is “executable”). If a result of the determination at step 206 is affirmative, then at step 208, an identifier of the file is added to an inventory of files. The identifier of the file may include, for example, a name and/or unique path associated with the file. In some examples, the identifier includes data that is useable to verify the integrity of the file contents, such as a hash, checksum or message digest of the file. At step 210, it is determined if all of the files have been considered. If yes, then processing completes at step 212. Otherwise, processing returns to step 206 where a next file is considered.
  • Having broadly discussed a method to initially generate an inventory of files, we now discuss specific examples of how to determine that a file is executable (step 206 of FIG. 2). In one example, the contents of the file are examined, such as a file header. For example, a PE (portable executable) header followed by a COFF (common object file format) header and other optional headers may indicate a Microsoft™ Windows executable file. This file content examination may include, for example, parsing and/or pattern-matching against all or portions of the file body. This may be useful, for example, to determine that an Excel data file has macros embedded therein. In another example, metadata or other attributes maintained by the operating system is considered, such as the name and extension associated with the file and/or a file type. In another example, still other information about the file is considered, such as on what machine or repository the file resides, or which gateway or portal provides access to the file (such as in an SOA, as described below). In another example, a name or other external reference to the file is considered, wherein the name or reference is maintained by an information repository or directory and may follow a naming convention or hierarchical referencing which can be used to infer information about the file (as in an SOA).
  • It is noted that scanning a computer's file system is just one technique for identifying and locating files (which files can then be processed according to step 206), and there are a number of alternative techniques. As one example, if the computer's operating system maintains a full or partial record of the installed software (such as the records maintained by a Microsoft™ Windows OS and available via the “Add or Remove Programs” option in the “Control Panel”), this record can be queried or otherwise examined for files. As another example, if the operating system maintains a full or partial record of available services, the record can be queried or otherwise examined to reveal one or more files involved in providing the services. As another example, if the operating system maintains a full or partial record of the computer's network ports, the record can be queried (for example by using the “netstat” command on a Microsoft™ Windows or Linux-flavored operating system) or otherwise examined to reveal the files involved in listening to the ports, creating connections and/or other processing of the communications on the ports. As another example, if the operating system maintains a full or partial record of the currently loaded drivers or the currently installed drivers, this record can be queried or otherwise examined to reveal files involved in implementing the drivers. In this example, the driver files can optionally be examined to determine whether or not they are signed by their respective vendors. Optionally, files are prevented from being added to the inventory (or otherwise from being designated as “authorized to execute” on the computer, as described below) if they are not properly signed.
  • Optionally, an exhaustive scanning of the file system can be replaced with a combination of one or more of the alternative file locating techniques described in the previous paragraph to yield a complete and accurate inventory of the system, provided that an additional “dependency analysis” step is performed on the files that are placed into the inventory. That is, for a given file under consideration, the dependency analysis comprises examining the file and identifying other files or components referenced or otherwise used by the file, such as libraries and other executables. These identified objects can then be processed according to step 206 and added to the inventory if appropriate, as well as recursively analyzed for their own dependencies. This methodical hybrid technique can save valuable time and processing resources by eliminating the exhaustive scanning of the file system without sacrificing the completeness or accuracy of the inventory.
  • It is further noted that, while the discussion has been directed to files, this concept may be generalized to apply to consideration of “containers” generally that may be processed by an execution environment to result in execution of native binary code that corresponds to actions indicated by instructions within the containers. For example, and not by way of limitation, a database management system (DBMS) is an execution environment for stored-procedures (sprocs), and sprocs may be stored in the DBMS itself and not necessarily in separate files. As another example, a JAR (Java ARchive) file may contain compressed information representing one or more Java classes and associated metadata which can be part of a Java program.
  • Having broadly described an example of initially generating an inventory of files (“containers,” generally) accessible by a computer, with regard to execution environments, we now discuss with reference to FIG. 2-1 how the inventory may be used to exercise execution control. As illustrated by the flowchart in FIG. 2-1, attempts to run an executable file are detected, and authorization to run the executable file is based on the inventory. Referring to FIG. 2-1, at step 352, an attempt to run an executable file is detected. At step 354, it is determined whether the executable file is in the inventory. If the executable file is in the inventory, then the executable file is allowed to be run, at step 356. If the executable file is not in the inventory, then the executable file is blocked from being run, at step 358. Furthermore, an alert and/or log may be generated at step 360.
  • In some examples, the FIG. 2-1 method is run in what may be termed as “tracking mode.” That is, rather than block an executable file from being run, the executable file is allowed to be run (i.e., step 358 is omitted), and the attempt to run the non-inventoried executable file is merely logged. In this way, the effect of execution blocking on a host can be observed without actually substantively changing the operation of the host with respect to running executable files. The log can be studied, if desired, with an eye towards determining whether the inventory includes all of the executable files desired to be in the inventory.
  • With respect to how to detect and/or block an attempt to change an executable file, the '741 application describes methodology to intercept/detect attempts to change objects, as well as describing methodology to block the intercepted/detected change attempts. Similar methodology may be employed with regard to intercepting/detecting attempts to execute objects, as well as to block the intercepted/detected execution attempts.
  • Having broadly described an example of initially generating an inventory of files (“containers,” generally) accessible by a computer and using the inventory to exercise execution control, we now discuss with reference to FIG. 3 how the inventory may be maintained over time. In particular, FIG. 3 is a flowchart illustrating a method operating in conjunction with “normal” operation of a computer, to observe the operation of the computer and to maintain the inventory based on the observed operation. More particularly, when it is determined that the operation of the computer is such to attempt a change that may result in the inventory no longer being up to date, then processing is carried out to react to the change.
  • Referring to FIG. 3, at step 302, an attempted change is detected to the files (or containers, generally) accessible to the computer. At step 304, it is determined if a detected attempted change affects an inventoried file. If the detected attempted change is determined not to affect an inventoried file, then the change is allowed at step 306. At step 308, it is determined if the attempted change created a new file that is executable (e.g., making the determination in a manner similar to that discussed with reference to step 206 in FIG. 2). If a result of step 308 is negative, then processing continues at step 310, where no action results. On the other hand, if a result of step 308 is affirmative, then processing continues at step 322 where it is determined whether the change is authorized (the determination of what changes are authorized is described below). If a result of step 322 is negative, then processing continues at step 324 where no action results. Alternatively, if a result of step 322 is affirmative, then processing continues at step 312, where the new executable file is indicated in the inventory as being executable. If it is determined at step 304 that a detected attempted change does affect an inventoried file, then it is determined at step 314 if the detected attempted change is authorized.
  • Examples of detecting change attempts to a host object are described, for example, in the '741 application. Furthermore, the '741 application also discusses what may be meant by what “affects” an inventoried file. This may mean, for example, changing the object (e.g., a “write,” “rename,” “move,” or “delete” operation), as well as a change in one or more attributes of the file. In some examples, “affects” may also include “read,” “view” or “access” operations, such as in a scenario where some files indicated in the inventory are designated as requiring authorization for such operations. This will in effect allow control over what files (generally containers) can be read, viewed or accessed. In addition, examples of determining what changes are authorized are also described in the '741 application.
  • Other examples of determining what changes are “authorized” are discussed in greater detail below with reference to FIG. 4. If it is determined that the detected attempted change is not authorized, then the detected attempted change is blocked at step 316. Otherwise, the detected attempted change is allowed at step 318. At step 320, the inventory is updated if required based on the change allowed at step 318. For example, as discussed above, the inventory may include an identifier useable to verify the integrity of the file contents, and the identifier may need to be updated when the file contents, file attributes and/or any associated information in the inventory are changed.
  • Having discussed an example of maintaining over time the inventory of files with regard to execution environments, we return to discussing a determination of what changes are authorized, discussed relative to steps 314 and 322 of the FIG. 3 flowchart and with reference to FIG. 4. (Again, reference is also made to the '741 application, which describes how “change authorization policies” can be used to explicitly or implicitly indicate which actors, i.e. users or programs or other entities that initiate changes, are authorized to make what changes to what objects under what circumstances.) The notion of what changes are “authorized” may be flexible but, in one example, changes are authorized only if they are attempted by authorized “updaters.” Examples of updaters generally fall within one of the following categories (though, in some systems, there may be no updaters in one or more of the following categories):
      • anytime updaters: these are programs that are authorized to make changes affecting inventoried files under any condition (e.g., anti-virus software)
      • sometime updaters: these are programs that are authorized to make changes affecting inventoried files only when the computer is “in update mode” (examples of which are discussed later, in greater detail)
      • non-updaters: no authority to make changes affecting inventoried files
  • In another example, “signed updates” and “signed updaters” are employed, using public/private key pairs, digital signatures or other methods for the digital authentication of updates and/or updaters. In this manner, digital authentication may be processed to indicate that an update to a host is authorized. That is, the digital authentication is another way to indicate what changes are authorized.
  • In one example, inventory maintenance is decoupled from checking for change authorization. That is, the inventory is not used in making authorization decisions. Rather, referring to FIG. 3, step 304 is omitted (as are steps 306, 308, 310 and 312). Thus, at step 314, determining whether a change is authorized is independent of whether the file that is attempted to be changed is in an inventory. The change is either blocked (step 316) or allowed (step 318), and the inventory is updated as appropriate.
  • FIG. 4 broadly illustrates an example of how the “updaters” interact to determine that a change is authorized. Referring to FIG. 4, processing begins at step 402 where an entity is attempting to make a change to an inventoried file. At step 404, it is determined if the entity attempting to make the change is an anytime updater. If it is determined that the entity is an anytime updater, then the change is authorized at step 406.
  • If it is determined at step 404 that the entity attempting to make the change is not an anytime updater, then it is determined at step 408 if the system is in update mode. The system is considered to be in update mode if the change authorization policy that is in effect indicates that updates (changes to the system) are allowed by one or more sometime updaters. If it is determined at step 408 that the system is in update mode, then it is determined at step 412 if the entity attempting to make the change is a sometime updater. If it is determined at step 412 that the entity attempting to make the change is a sometime updater, then the change is authorized at step 406. Note that the determination may depend on a number of conditions (as described in the '741 patent), for example on the date and time, the particular updater, the particular nature of the change, the particular attributes of the object to be changed, etc.
  • If it is determined at step 408 that the system is not in update mode, or if it determined at step 412 that the entity attempting to make the change is not a sometime updater, then the change is not authorized at step 410.
  • There are some points of flexibility in configuring authorizations. For example, one such point of flexibility is configuring what is an anytime updater (e.g., configuring an authorization such that a change action by a particular user or program or process is always permitted). For example, an authorization may be configured such that processes executing under a particular group ID are anytime updaters. In a similar manner, an authorization may be configured such that a change action by a particular user (e.g., a process executing under a particular user ID) is permitted when the computer is in “update” mode.
  • Another point of flexibility in configuring authorizations includes defining the conditions, other than defining the particular user, under which a sometime updater is authorized to make changes affecting inventoried files.
  • Under some conditions, there is some leeway and/or ambiguity regarding the timing with which a file should be indicated in the inventory as executable and, in some circumstances, a file that is executable should nevertheless not be so indicated in the inventory at all. For example, a user may cause a “setup.exe” file to run, the result of which includes attempting to add a set of new executable files to the file system. With regard to timing, the files may be added to the inventory one by one, at each attempt to add an executable file to the disk. Another option includes adding all of the executables to the inventory in a batch.
  • Furthermore, it is ambiguous whether the setup.exe file itself, which is run only to install a program (including, perhaps, adding a set of new executable files to the file system, as discussed above) and will not need to remain executable beyond the update window should be indicated in the inventory. In fact, the setup.exe may only function to download another executable file, which is an installer, where it is the execution of the installer that causes the program to be “installed.” Thus, for example, an update window may be opened before the installer is downloaded. After the installer is downloaded, the installer is executed, and the installer is erased while the update window is still open.
  • In some examples, the installation process may be such that the operator may have to do some manual cleanup. For example, if the installation includes a “reboot,” then this may comprise keeping the update window open across the reboot and closing the update window after the post-reboot installation activities are completed.
  • It should be noted that the semantics of the inventory may be reduced to the point where, for example, having an entry in the inventory simply means “this container is an executable on this host,” without indicating anything about whether the executable is actually authorized to execute on the host. Thus, for example, execution authorization can be relegated to a data structure or mechanism separate from the inventory. As another example, the data structure may simply be represented by additional metadata in the inventory indicating “this executable file is (or is not) actually authorized to execute on this host.”
  • As alluded to above, the concept of “files,” and what files are “accessible” to be executed in an execution environment, need not be limited to the traditional notion of files (e.g., an “ordinary” file, existing within the directory structure of an operating system, and that contains either text, data or program). In addition, the “file system” need not be limited to existing on a storage device directly associated with a computer (e.g., residing in a housing that also houses a CPU).
  • That is, the inventory concept may be generalized as follows:
      • generalize “files”→“containers”
      • generalize “local”→“distributed”
  • The first generalization, from “files” to “containers,” has been discussed above. That is, an executable file may contain ordinary code. However, “containers” are more general, and may include files or other “objects” that have code within them but where the files or objects themselves are not typically executed. Examples include Java code containers (such as .jar containers) and stored-procedure containers (i.e., containers of “sprocs”) which reside within databases and are managed by database management systems. In an SOA environment, code containers may be made available through distributed computing services, such as distributed services that use SOAP (Simple Object Access Protocol) as a common language for requests and responses, etc. In fact, the containers need not be files at all. For example, the containers may include objects in databases, packaged code served by SOAs, etc. While much of the description herein uses files as an example, the described methodology is generally applicable to containers that may be processed by execution environments.
  • With regard to distributed files, we now discuss two examples. In the first example, a code container is accessible but resides on a remote file system, such as a networked file system or a network share. In this case, in the course of generating an inventory, the remote file system is scanned, and the containers are processed in a manner similar to that discussed above (e.g., with reference to the FIG. 2 flowchart). In one example, prior to scanning the remote file system, it is ascertained that the contents of the remote file system are reachable to be examined. This may be accomplished, for example, by mounting the remote file system on the host where the processing described with reference to the FIG. 2 flowchart are actually carried out.
  • In another example, code containers are available for access from various repositories via an SOA or similar methodology. Thus, for a particular host (such as the host 101 in FIG. 1), the relevant set of files/containers to consider in creating and/or maintaining an inventory includes files/containers available from the repositories. Thus, the specification of the files/containers to consider includes a specification of the distributed services deemed to be relevant to the host for which the inventory is being generated and/or managed.
  • In one example, the scanning employs the mechanism provided by the SOA to poll what types of “code containers” are available. Some of these code containers are files, while others can be “stubs” that describe or indicate a particular service that is provided remotely (e.g. remote procedure calls). In any event, the inventory is generated and/or maintained to hold an identification for each code container, similar to manner in which the identification of executable files directly stored on a locally-accessible file storage are held.
  • In addition to indicating the executable containers in the inventory, non-executable containers may be indicated in the inventory as a way to write-protect or even read-protect the data in the non-executable containers. Thus, for example, meta-data stored in a container (such as a file) and used in maintaining the inventory may be protected in this manner by placing an identification for the meta-data container into the inventory and designating the container as only writeable by those processes that manage the inventory, such that the meta-data cannot be changed except by executing code that is authorized to make such changes. Note that in this case the container is not designated as an executable, but as a write-protected container. Enforcing read-protection can be done in a similar fashion. Note that as a particular example, read-protection and access-protection (or more generally, read-restriction and access-restriction via authorized readers or accessors, defined in analogy with authorized updaters) can be used to control data exfiltration.
  • In some examples, the methodology described herein is carried out by a computing system under programmed control. In other examples, the methodology described herein is carried out by a person, or in some combination of both.
  • Having described how to use an inventory for execution control, we now discuss some other particular applications of the inventory aside from execution control. In a first application, enterprise computing asset management is carried out using a centralized aggregate inventory. For example, many enterprises have more (or fewer) licenses than required for particular applications. By comparing an easily generated inventory with the licenses, the licensing can be more closely matched to the actual usage.
  • In another example, a “gold image” inventory is generated and maintained, representing a baseline inventory for deployment onto one or more hosts. As the hosts operate over time, their own individual inventories and/or their inventory “deltas” (as measured from the gold image inventory) are maintained on the individual hosts. Thus, for example, a certain amount of delta from the gold image inventory may be considered allowable, but additional updates may be blocked if the update would cause the delta to exceed a threshold. The delta may be quantified in any number of ways, for instance as an absolute number of inventory items, as a ratio of the size of the individual inventory to the size of the gold image inventory, as a ratio of the size of the intersection of the individual and gold image inventories to the size of the gold image inventory, or as any other metric that is meaningful to the business.
  • In another example, efficiency is increased by creating an inventory of a remote repository (e.g., a mountable drive), and then making the ready-made inventory available to individual agents on the individual hosts that have access to the remote repository, either directly or via a central system controller. Thus, the ready-made inventory can be used on individual hosts in order to exercise execution control over the items residing on the remote repository. Note that in general a host may not have sufficient authority over maintaining the inventory of the remote repository in response to changes to the remote repository, or over blocking changes to items as described above. Therefore, it may be useful for the host to check for staleness of inventory items. For example, when a host exercising execution control is processing an attempt to execute a file residing on a remote repository, the host may examine not only that the file has an associated entry in the ready-made inventory, but also that a time stamp of the entry is at least as recent as the creation time stamp of the file. An alternative to using time stamps is using checksums for ensuring that the inventory entries pertain to the exact same file at hand.
  • In another example, a centrally-maintained inventory of a plurality of hosts is used to make decisions involving knowledge of the set of executable files (or other types of files) on the plurality of hosts. This aggregates information about the plurality of hosts onto a central inventory (aggregate inventory), thereby allowing a centralized analysis of the information. The analysis results can then be used to make decisions or perform actions related to one or more of the plurality of hosts. Actions can be initiated locally on a host or remotely in a way that affects the host. Actions can also be performed in a way that does not directly affect the host, but instead affects a related resource, such as an information repository or a network node, as illustrated with examples below.
  • One example of using a central inventory is anti-malware processing. A central inventory may be maintained which indicates a union of the executables on the plurality of hosts together with which files reside on which hosts, and this inventory is scanned by anti-virus or other anti-malware code (as opposed to doing anti-virus code-scans separately on each host). The information provided by such a central scan can then form a basis for making decisions pertaining to, or for performing actions on, one or more of the plurality of hosts, just as if the information had been gathered locally on the individual hosts. For example, if a central scan reveals the presence of a virus on a particular host, an action to remove the virus can be caused to be performed on the host. Similarly, if a central scan reveals that a particular networked host is infected with a worm, then one or more elements of a network infrastructure, such as switches, routers, or firewalls can be instructed to isolate, or otherwise monitor or respond to, the infected host, and further action can be performed on the infected host in order to disable the worm.
  • Another example of using a central inventory is license management. In this example, the central inventory is checked against a record of purchased licenses to perform an analysis indicating which hosts are using which licenses. Follow up steps may include purchasing additional licenses as needed, non-renewal of existing licenses if the analysis indicates unused purchased licenses, removal of software that the analysis indicates is not supposed to be residing on a host, and so on.
  • Another example of using a central inventory is change and configuration management. In this example, the software resident on a plurality of hosts is managed through authorized channels, such as by using a software provisioning system. Here, a central inventory can be used to indicate software resident on the plurality of hosts, and analysis may include identifying software which, while resident on one or more hosts, lacks a trail indicating its deployment onto the hosts through the authorized channels. Follow up actions may include updating records to more accurately indicate the presence of software on hosts, removal of software that is not supposed to be resident on a host, and so on.
  • Another example of using a central inventory relates to the above referenced co-pending U.S. patent application Ser. No. 11/182,320, wherein software resident on one or more of a plurality of hosts or other computing elements (such as network nodes, firewalls, etc.) performs some amount of local analysis or pre-processing related to inventoried containers resident on the host or computing element, and sends results of the analysis to a designated entity for further investigation and response. In such a configuration, the designated entity may maintain a central inventory of one or more containers resident on the plurality of hosts or computing elements, and use the sent results from several hosts in combination with the visibility provided by the central inventory in order to reach conclusions regarding trends in the state of the plurality of hosts and cause actions or further analyses to be performed on one or more of the plurality of hosts. For example, if a host identifies a piece of software resident on the host as malware and shares that information with the designated entity, the entity may refer to the central inventory to determine which other hosts may be harboring that piece of software, alert those hosts, and cause a removal or quarantine of the identified malware.
  • For the above examples using central inventories, note that the union of the inventories of the plurality of hosts (or any other construct of the individual inventories) need not be exact, since even approximate aggregates can save valuable resources as the number of hosts grows. This application of a central inventory can be generalized to any processing that is based on a scan or examination of a plurality of hosts, and the code that scans the centrally-maintained inventory may be, for example, any code for which the inventory provides useful information from which a decision for changing and/or execution may be made. This may include, for example, scanning for adware or spyware, and scanning for copyrighted/licensed material.
  • The foregoing described embodiments are provided as illustrations and descriptions. The invention is not intended to be limited to the precise form described. Other variations and embodiments are possible in light of above examples, and it is thus intended that the scope of the invention not be limited by this detailed description.

Claims (22)

1.-28. (canceled)
29. An apparatus, comprising:
a computer system that includes:
an execution unit;
a storage system that couples to the execution unit and that includes a plurality of containers that collectively form at least a portion of an inventory for the computer system;
a native binary execution environment; and
a non-native binary execution environment, wherein a request to run an executable file is authorized based on criteria, the request being intercepted before the executable file is run, and wherein a determination is made as to whether the request results in an object of the inventory being changed as a result of running the executable file.
30. The apparatus of claim 29, wherein the request is authorized if the object of the inventory is not changed.
31. The apparatus of claim 29, wherein the change is associated with a writing operation, a renaming operation, a moving operation, or a deleting operation of the object.
32. The apparatus of claim 29, wherein the criteria include a particular program implicated by the request and associated with changing the object.
33. The apparatus of claim 29, wherein the criteria includes a particular user associated with the request that changes the object.
34. The apparatus of claim 29, wherein the request is associated with an updater that determines whether the request is authorized.
35. The apparatus of claim 34, wherein the updater is an anytime updater that is authorized to make changes to files within the inventory at any time.
36. The apparatus of claim 34, wherein the updater is a sometime updater that is authorized to make changes to files within the inventory provided the computer system is in an update mode.
37. The apparatus of claim 34, wherein the updater is a non-updater that is prohibited from making changes to files within the inventory of the computer system.
38. The apparatus of claim 34, wherein the updater is a signed updater that includes a digital signature or that includes a public/private key pair.
39. The apparatus of claim 29, wherein a tracking mode is used for the computer system such that attempts to run a non-inventoried executable file are permitted and logged.
40. The apparatus of claim 29, wherein the authorization of the request is dependent on a particular date and time at which the request is received by the computer system.
41. The apparatus of claim 29, wherein the authorization of the request is associated with particular attributes of an object to be changed as a result of the executable file being run.
42. The apparatus of claim 29, wherein the inventory is compared to a gold image inventory in order to identify a particular delta between the inventories, and wherein updates for the computer system are blocked if the updates cause the delta to exceed a predetermined threshold.
43. The apparatus of claim 29, wherein the containers include one or more files that can be accessed by the execution unit.
44. The apparatus of claim 29, wherein the native binary execution environment includes a database management system (DBMS).
45. The apparatus of claim 29, wherein the native binary execution environment is associated with a Java archive (JAR) file that includes compressed information associated with a Java program.
46. The apparatus of claim 29, wherein a centrally maintained inventory for a plurality of hosts is used to authorize additional requests that can change one or more objects relating to the computer system.
47. The apparatus of claim 46, wherein the centrally maintained inventory indicates a union of executables of the plurality of hosts, and wherein the centrally maintained inventory is scanned by antivirus or anti-malware code.
48. The apparatus of claim 46, wherein a result of the scan is used to perform actions on a selected one of the plurality of hosts.
49. The apparatus of claim 46, wherein the centrally maintained inventory is checked against a record of licenses in order to determine which of the hosts are using particular licenses.
US13/022,148 2006-03-27 2011-02-07 Execution environment file inventory Abandoned US20110138461A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/022,148 US20110138461A1 (en) 2006-03-27 2011-02-07 Execution environment file inventory
US14/045,208 US9576142B2 (en) 2006-03-27 2013-10-03 Execution environment file inventory
US15/417,334 US10360382B2 (en) 2006-03-27 2017-01-27 Execution environment file inventory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/277,596 US7895573B1 (en) 2006-03-27 2006-03-27 Execution environment file inventory
US13/022,148 US20110138461A1 (en) 2006-03-27 2011-02-07 Execution environment file inventory

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US11277596 Continuation 2005-03-27
US11/277,596 Continuation US7895573B1 (en) 2006-03-27 2006-03-27 Execution environment file inventory

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/045,208 Continuation US9576142B2 (en) 2006-03-27 2013-10-03 Execution environment file inventory

Publications (1)

Publication Number Publication Date
US20110138461A1 true US20110138461A1 (en) 2011-06-09

Family

ID=43597219

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/277,596 Active 2029-12-23 US7895573B1 (en) 2006-03-27 2006-03-27 Execution environment file inventory
US13/022,148 Abandoned US20110138461A1 (en) 2006-03-27 2011-02-07 Execution environment file inventory
US14/045,208 Active 2026-03-31 US9576142B2 (en) 2006-03-27 2013-10-03 Execution environment file inventory
US15/417,334 Expired - Fee Related US10360382B2 (en) 2006-03-27 2017-01-27 Execution environment file inventory

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/277,596 Active 2029-12-23 US7895573B1 (en) 2006-03-27 2006-03-27 Execution environment file inventory

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/045,208 Active 2026-03-31 US9576142B2 (en) 2006-03-27 2013-10-03 Execution environment file inventory
US15/417,334 Expired - Fee Related US10360382B2 (en) 2006-03-27 2017-01-27 Execution environment file inventory

Country Status (1)

Country Link
US (4) US7895573B1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110047542A1 (en) * 2009-08-21 2011-02-24 Amit Dang System and Method for Enforcing Security Policies in a Virtual Environment
US20110047543A1 (en) * 2009-08-21 2011-02-24 Preet Mohinder System and Method for Providing Address Protection in a Virtual Environment
US20110093950A1 (en) * 2006-04-07 2011-04-21 Mcafee, Inc., A Delaware Corporation Program-based authorization
US20110119760A1 (en) * 2005-07-14 2011-05-19 Mcafee, Inc., A Delaware Corporation Classification of software on networked systems
US8195931B1 (en) 2007-10-31 2012-06-05 Mcafee, Inc. Application change control
US8515075B1 (en) 2008-01-31 2013-08-20 Mcafee, Inc. Method of and system for malicious software detection using critical address space protection
US8544003B1 (en) 2008-12-11 2013-09-24 Mcafee, Inc. System and method for managing virtual machine configurations
US8549546B2 (en) 2003-12-17 2013-10-01 Mcafee, Inc. Method and system for containment of usage of language interfaces
US8549003B1 (en) 2010-09-12 2013-10-01 Mcafee, Inc. System and method for clustering host inventories
US8555404B1 (en) 2006-05-18 2013-10-08 Mcafee, Inc. Connectivity-based authorization
US8561051B2 (en) 2004-09-07 2013-10-15 Mcafee, Inc. Solidifying the executable software set of a computer
US8615502B2 (en) 2008-04-18 2013-12-24 Mcafee, Inc. Method of and system for reverse mapping vnode pointers
US8694738B2 (en) 2011-10-11 2014-04-08 Mcafee, Inc. System and method for critical address space protection in a hypervisor environment
US8701182B2 (en) 2007-01-10 2014-04-15 Mcafee, Inc. Method and apparatus for process enforced configuration management
US8707446B2 (en) 2006-02-02 2014-04-22 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US8713668B2 (en) 2011-10-17 2014-04-29 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US8739272B1 (en) 2012-04-02 2014-05-27 Mcafee, Inc. System and method for interlocking a host and a gateway
US8800024B2 (en) 2011-10-17 2014-08-05 Mcafee, Inc. System and method for host-initiated firewall discovery in a network environment
US8925101B2 (en) 2010-07-28 2014-12-30 Mcafee, Inc. System and method for local protection against malicious software
US8938800B2 (en) 2010-07-28 2015-01-20 Mcafee, Inc. System and method for network level protection against malicious software
US8973144B2 (en) 2011-10-13 2015-03-03 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US8973146B2 (en) 2012-12-27 2015-03-03 Mcafee, Inc. Herd based scan avoidance system in a network environment
US9069586B2 (en) 2011-10-13 2015-06-30 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US9075993B2 (en) 2011-01-24 2015-07-07 Mcafee, Inc. System and method for selectively grouping and managing program files
US9112830B2 (en) 2011-02-23 2015-08-18 Mcafee, Inc. System and method for interlocking a host and a gateway
US20160026449A1 (en) * 2014-07-28 2016-01-28 International Business Machines Corporation Software Discovery in an Environment with Heterogeneous Machine Groups
US9424154B2 (en) 2007-01-10 2016-08-23 Mcafee, Inc. Method of and system for computer system state checks
US9552497B2 (en) 2009-11-10 2017-01-24 Mcafee, Inc. System and method for preventing data loss using virtual machine wrapped applications
US9552198B2 (en) * 2014-09-26 2017-01-24 Oracle International Corporation Drift management of images
US9578052B2 (en) 2013-10-24 2017-02-21 Mcafee, Inc. Agent assisted malicious application blocking in a network environment
US9576142B2 (en) 2006-03-27 2017-02-21 Mcafee, Inc. Execution environment file inventory
US9594881B2 (en) 2011-09-09 2017-03-14 Mcafee, Inc. System and method for passive threat detection using virtual memory inspection
US9665366B2 (en) * 2014-09-26 2017-05-30 Oracle International Corporation Creation of a software configuration signature for software
US10868709B2 (en) 2018-09-10 2020-12-15 Oracle International Corporation Determining the health of other nodes in a same cluster based on physical link information

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101549A2 (en) 2004-12-03 2006-09-28 Whitecell Software, Inc. Secure system for allowing the execution of authorized computer program code
US7603552B1 (en) 2005-05-04 2009-10-13 Mcafee, Inc. Piracy prevention using unique module translation
US8387038B2 (en) * 2006-08-14 2013-02-26 Caterpillar Inc. Method and system for automatic computer and user migration
US20090083544A1 (en) * 2007-08-23 2009-03-26 Andrew Scholnick Security process for private data storage and sharing
US9740735B2 (en) * 2007-11-07 2017-08-22 Microsoft Technology Licensing, Llc Programming language extensions in structured queries
US20130055369A1 (en) * 2011-08-24 2013-02-28 Mcafee, Inc. System and method for day-zero authentication of activex controls
US9052956B2 (en) * 2012-08-30 2015-06-09 Hewlett-Packard Development Company, L.P. Selecting execution environments
GB2519790B (en) * 2013-10-30 2017-07-12 1E Ltd Configuration of network devices
US10223074B2 (en) * 2015-12-11 2019-03-05 International Business Machines Corporation Determining the identity of software in software containers
US20220138311A1 (en) * 2018-01-08 2022-05-05 Digital Immunity Llc Systems and methods for detecting and mitigating code injection attacks

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778226A (en) * 1989-10-20 1998-07-07 Iomega Corporation Kernels, description tables and device drivers
US5907860A (en) * 1993-10-18 1999-05-25 National Semiconductor Corporation System and method of retiring store data from a write buffer
US5987610A (en) * 1998-02-12 1999-11-16 Ameritech Corporation Computer virus screening methods and systems
US5987611A (en) * 1996-12-31 1999-11-16 Zone Labs, Inc. System and methodology for managing internet access on a per application basis for client computers connected to the internet
US5991881A (en) * 1996-11-08 1999-11-23 Harris Corporation Network surveillance system
US6073142A (en) * 1997-06-23 2000-06-06 Park City Group Automated post office based rule analysis of e-mail messages and other data objects for controlled distribution in network environments
US6256773B1 (en) * 1999-08-31 2001-07-03 Accenture Llp System, method and article of manufacture for configuration management in a development architecture framework
US6321267B1 (en) * 1999-11-23 2001-11-20 Escom Corporation Method and apparatus for filtering junk email
US20020056076A1 (en) * 2000-10-24 2002-05-09 Vcis, Inc. Analytical virtual machine
US20020069367A1 (en) * 2000-12-06 2002-06-06 Glen Tindal Network operating system data directory
US20020083175A1 (en) * 2000-10-17 2002-06-27 Wanwall, Inc. (A Delaware Corporation) Methods and apparatus for protecting against overload conditions on nodes of a distributed network
US6449040B1 (en) * 1998-11-11 2002-09-10 Shimadzu Corporation Spectrophotometer with validation programs
US6460050B1 (en) * 1999-12-22 2002-10-01 Mark Raymond Pace Distributed content identification system
US20030014667A1 (en) * 2001-07-16 2003-01-16 Andrei Kolichtchak Buffer overflow attack detection and suppression
US20030023736A1 (en) * 2001-07-12 2003-01-30 Kurt Abkemeier Method and system for filtering messages
US20030033510A1 (en) * 2001-08-08 2003-02-13 David Dice Methods and apparatus for controlling speculative execution of instructions based on a multiaccess memory condition
US20030145232A1 (en) * 2002-01-31 2003-07-31 Poletto Massimiliano Antonio Denial of service attacks characterization
US6611925B1 (en) * 2000-06-13 2003-08-26 Networks Associates Technology, Inc. Single point of entry/origination item scanning within an enterprise or workgroup
US20030163718A1 (en) * 2000-04-12 2003-08-28 Johnson Harold J. Tamper resistant software-mass data encoding
US20030167399A1 (en) * 2002-03-01 2003-09-04 Yves Audebert Method and system for performing post issuance configuration and data changes to a personal security device using a communications pipe
US20030200332A1 (en) * 1999-07-29 2003-10-23 Amit Gupta Method and apparatus for dynamic proxy insertion in network traffic flow
US20030220944A1 (en) * 2002-04-03 2003-11-27 Lyman Schottland Paul Joseph Delta replication of source files and packages across networked resources
US6748534B1 (en) * 2000-03-31 2004-06-08 Networks Associates, Inc. System and method for partitioned distributed scanning of a large dataset for viruses and other malware
US6795966B1 (en) * 1998-05-15 2004-09-21 Vmware, Inc. Mechanism for restoring, porting, replicating and checkpointing computer systems using state extraction
US20050086047A1 (en) * 2001-12-27 2005-04-21 Kiyotaka Uchimoto Syntax analysis method and apparatus
US20050108516A1 (en) * 2003-04-17 2005-05-19 Robert Balzer By-pass and tampering protection for application wrappers
US20050108562A1 (en) * 2003-06-18 2005-05-19 Khazan Roger I. Technique for detecting executable malicious code using a combination of static and dynamic analyses
US6907600B2 (en) * 2000-12-27 2005-06-14 Intel Corporation Virtual translation lookaside buffer
US20050132346A1 (en) * 2003-12-10 2005-06-16 Sap Aktiengesellschaft Software interface monitor method and system
US6934755B1 (en) * 2000-06-02 2005-08-23 Sun Microsystems, Inc. System and method for migrating processes on a network
US20060004875A1 (en) * 2004-05-11 2006-01-05 Microsoft Corporation CMDB schema
US20060037016A1 (en) * 2004-07-28 2006-02-16 Oracle International Corporation Methods and systems for modifying nodes in a cluster environment
US7007302B1 (en) * 2001-08-31 2006-02-28 Mcafee, Inc. Efficient management and blocking of malicious code and hacking attempts in a network environment
US7024548B1 (en) * 2003-03-10 2006-04-04 Cisco Technology, Inc. Methods and apparatus for auditing and tracking changes to an existing configuration of a computerized device
US20060085785A1 (en) * 2004-10-15 2006-04-20 Emc Corporation Method and apparatus for configuring, monitoring and/or managing resource groups including a virtual machine
US20060101277A1 (en) * 2004-11-10 2006-05-11 Meenan Patrick A Detecting and remedying unauthorized computer programs
US20060136911A1 (en) * 2004-12-17 2006-06-22 Intel Corporation Method, apparatus and system for enhacing the usability of virtual machines
US20060133223A1 (en) * 2003-03-28 2006-06-22 Matsusuhita Electric Industrial Co., Ltd. Recording medium, recording device usint the same, and reproduction device
US20060136910A1 (en) * 2004-12-17 2006-06-22 Intel Corporation Method, apparatus and system for improving security in a virtual machine host
US7069330B1 (en) * 2001-07-05 2006-06-27 Mcafee, Inc. Control of interaction between client computer applications and network resources
US20060200863A1 (en) * 2005-03-01 2006-09-07 Microsoft Corporation On-access scan of memory for malware
US20060230314A1 (en) * 2005-04-07 2006-10-12 Sanjar Amir F Automatic generation of solution deployment descriptors
US20060236398A1 (en) * 2005-04-14 2006-10-19 International Business Machines Corporation Selective virus scanning system and method
US20070011746A1 (en) * 2005-07-11 2007-01-11 Microsoft Corporation Per-user and system granular audit policy implementation
US20070028303A1 (en) * 2005-07-29 2007-02-01 Bit 9, Inc. Content tracking in a network security system
US20070050579A1 (en) * 2005-08-30 2007-03-01 Hall Kenwood H Method and apparatus for synchronizing an industrial controller with a redundant controller
US20070050764A1 (en) * 2005-08-30 2007-03-01 Microsoft Corporation Hierarchical virtualization with a multi-level virtualization mechanism
US20070074199A1 (en) * 2005-09-27 2007-03-29 Sebastian Schoenberg Method and apparatus for delivering microcode updates through virtual machine operations
US20070136579A1 (en) * 2005-12-09 2007-06-14 University Of Washington Web browser operating system
US20070143851A1 (en) * 2005-12-21 2007-06-21 Fiberlink Method and systems for controlling access to computing resources based on known security vulnerabilities
US20070169079A1 (en) * 2005-11-08 2007-07-19 Microsoft Corporation Software update management
US20070192329A1 (en) * 2006-01-24 2007-08-16 Citrix Systems, Inc. Methods and systems for executing, by a virtual machine, an application program requested by a client machine
US20070220507A1 (en) * 2006-03-20 2007-09-20 Microsoft Corporation Managing version information for software components
US20070220061A1 (en) * 2005-06-21 2007-09-20 Oren Tirosh Method and system for tracking an operation performed on an information asset with metadata associated therewith
US20080005737A1 (en) * 2006-06-30 2008-01-03 Bratin Saha Concurrent thread execution using user-level asynchronous signaling
US20080005798A1 (en) * 2006-06-30 2008-01-03 Ross Alan D Hardware platform authentication and multi-purpose validation
US20080010304A1 (en) * 2006-03-29 2008-01-10 Santosh Vempala Techniques for clustering a set of objects
US20080022384A1 (en) * 2006-06-06 2008-01-24 Microsoft Corporation Reputation Driven Firewall
US20080034416A1 (en) * 2006-08-03 2008-02-07 Arkesh Kumar Methods and systems for routing packets in a vpn-client-to-vpn-client connection via an ssl/vpn network appliance
US20080052468A1 (en) * 2005-12-12 2008-02-28 Sytex, Inc. Methods, systems and computer readable medium for detecting memory overflow conditions
US7346781B2 (en) * 2001-12-06 2008-03-18 Mcafee, Inc. Initiating execution of a computer program from an encrypted version of a computer program
US7349931B2 (en) * 2005-04-14 2008-03-25 Webroot Software, Inc. System and method for scanning obfuscated files for pestware
US20080082977A1 (en) * 2006-09-29 2008-04-03 Microsoft Corporation Automatic load and balancing for virtual machines to meet resource requirements
US7370360B2 (en) * 2002-05-13 2008-05-06 International Business Machines Corporation Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US20080120499A1 (en) * 2006-11-16 2008-05-22 Zimmer Vincent J Methods and apparatus for defeating malware
US20080163207A1 (en) * 2007-01-03 2008-07-03 International Business Machines Corporation Moveable access control list (acl) mechanisms for hypervisors and virtual machines and virtual port firewalls
US20080163210A1 (en) * 2006-12-29 2008-07-03 Mic Bowman Dynamic virtual machine generation
US20080165952A1 (en) * 2007-01-07 2008-07-10 Michael Smith Secure Booting A Computing Device
US20080184373A1 (en) * 2007-01-25 2008-07-31 Microsoft Corporation Protection Agents and Privilege Modes
US20080235534A1 (en) * 2007-03-22 2008-09-25 International Business Machines Corporation Integrity protection in data processing systems
US20090007100A1 (en) * 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US20090038017A1 (en) * 2007-08-02 2009-02-05 David Durham Secure vault service for software components within an execution environment
US20090043993A1 (en) * 2006-03-03 2009-02-12 Simon Andrew Ford Monitoring Values of Signals within an Integrated Circuit
US20090055693A1 (en) * 2007-08-08 2009-02-26 Dmitriy Budko Monitoring Execution of Guest Code in a Virtual Machine
US7506155B1 (en) * 2000-06-22 2009-03-17 Gatekeeper Llc E-mail virus protection system and method
US20090113110A1 (en) * 2007-10-30 2009-04-30 Vmware, Inc. Providing VMM Access to Guest Virtual Memory
US20090144300A1 (en) * 2007-08-29 2009-06-04 Chatley Scott P Coupling a user file name with a physical data file stored in a storage delivery network
US7546333B2 (en) * 2002-10-23 2009-06-09 Netapp, Inc. Methods and systems for predictive change management for access paths in networks
US7546594B2 (en) * 2003-12-15 2009-06-09 Microsoft Corporation System and method for updating installation components using an installation component delta patch in a networked environment
US20090150639A1 (en) * 2007-12-07 2009-06-11 Hideo Ohata Management apparatus and management method
US7552479B1 (en) * 2005-03-22 2009-06-23 Symantec Corporation Detecting shellcode that modifies IAT entries
US7577995B2 (en) * 2003-09-16 2009-08-18 At&T Intellectual Property I, L.P. Controlling user-access to computer applications
US20090249438A1 (en) * 2008-03-27 2009-10-01 Moshe Litvin Moving security for virtual machines
US20090249053A1 (en) * 2008-03-31 2009-10-01 Zimmer Vincent J Method and apparatus for sequential hypervisor invocation
US7669195B1 (en) * 2003-07-31 2010-02-23 Hewlett-Packard Development Company, L.P. Electronic device network supporting compression and decompression in electronic devices and update generator
US20100071035A1 (en) * 2008-09-12 2010-03-18 Renata Budko Methods and systems for securely managing virtualization platform
US7685635B2 (en) * 2005-03-11 2010-03-23 Microsoft Corporation Systems and methods for multi-level intercept processing in a virtual machine environment
US7703090B2 (en) * 2004-08-31 2010-04-20 Microsoft Corporation Patch un-installation
US20100114825A1 (en) * 2008-10-27 2010-05-06 Vmware, Inc. Version control environment for virtual machines
US7765538B2 (en) * 2004-10-29 2010-07-27 Hewlett-Packard Development Company, L.P. Method and apparatus for determining which program patches to recommend for installation
US7809704B2 (en) * 2006-06-15 2010-10-05 Microsoft Corporation Combining spectral and probabilistic clustering
US7818377B2 (en) * 2004-05-24 2010-10-19 Microsoft Corporation Extended message rule architecture
US7823148B2 (en) * 2002-05-22 2010-10-26 Oracle America, Inc. System and method for performing patch installation via a graphical user interface
US20110035423A1 (en) * 2005-03-18 2011-02-10 Sony Corporation Reproducing apparatus, reproducing method, program, program storage medium, data delivery system, data structure, and manufacturing method of recording medium
US20110047543A1 (en) * 2009-08-21 2011-02-24 Preet Mohinder System and Method for Providing Address Protection in a Virtual Environment
US7908653B2 (en) * 2004-06-29 2011-03-15 Intel Corporation Method of improving computer security through sandboxing
US7966659B1 (en) * 2006-04-18 2011-06-21 Rockwell Automation Technologies, Inc. Distributed learn mode for configuring a firewall, security authority, intrusion detection/prevention devices, and the like
US7996836B1 (en) * 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US8015563B2 (en) * 2006-04-14 2011-09-06 Microsoft Corporation Managing virtual machines with system-wide policies

Family Cites Families (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982430A (en) 1985-04-24 1991-01-01 General Instrument Corporation Bootstrap channel security arrangement for communication network
US4688169A (en) 1985-05-30 1987-08-18 Joshi Bhagirath S Computer software security system
US5155847A (en) 1988-08-03 1992-10-13 Minicom Data Corporation Method and apparatus for updating software at remote locations
US5560008A (en) 1989-05-15 1996-09-24 International Business Machines Corporation Remote authentication and authorization in a distributed data processing system
US5222134A (en) 1990-11-07 1993-06-22 Tau Systems Corporation Secure system for activating personal computer software at remote locations
US5390314A (en) 1992-10-09 1995-02-14 American Airlines, Inc. Method and apparatus for developing scripts that access mainframe resources that can be executed on various computer systems having different interface languages without modification
US5339261A (en) 1992-10-22 1994-08-16 Base 10 Systems, Inc. System for operating application software in a safety critical environment
JP3777196B2 (en) * 1994-05-10 2006-05-24 富士通株式会社 Communication control device for client / server system
JP3042341B2 (en) 1994-11-30 2000-05-15 日本電気株式会社 Local I / O Control Method for Cluster-Coupled Multiprocessor System
US6282712B1 (en) 1995-03-10 2001-08-28 Microsoft Corporation Automatic software installation on heterogeneous networked computer systems
US5699513A (en) 1995-03-31 1997-12-16 Motorola, Inc. Method for secure network access via message intercept
US5787427A (en) 1996-01-03 1998-07-28 International Business Machines Corporation Information handling system, method, and article of manufacture for efficient object security processing by grouping objects sharing common control access policies
US5842017A (en) 1996-01-29 1998-11-24 Digital Equipment Corporation Method and apparatus for forming a translation unit
US5907709A (en) 1996-02-08 1999-05-25 Inprise Corporation Development system with methods for detecting invalid use and management of resources and memory at runtime
US5884298A (en) * 1996-03-29 1999-03-16 Cygnet Storage Solutions, Inc. Method for accessing and updating a library of optical discs
US5907708A (en) 1996-06-03 1999-05-25 Sun Microsystems, Inc. System and method for facilitating avoidance of an exception of a predetermined type in a digital computer system by providing fix-up code for an instruction in response to detection of an exception condition resulting from execution thereof
US5787177A (en) 1996-08-01 1998-07-28 Harris Corporation Integrated network security access control system
US5926832A (en) 1996-09-26 1999-07-20 Transmeta Corporation Method and apparatus for aliasing memory data in an advanced microprocessor
US6141698A (en) 1997-01-29 2000-10-31 Network Commerce Inc. Method and system for injecting new code into existing application code
US7821926B2 (en) 1997-03-10 2010-10-26 Sonicwall, Inc. Generalized policy server
US5944839A (en) 1997-03-19 1999-08-31 Symantec Corporation System and method for automatically maintaining a computer system
US6587877B1 (en) 1997-03-25 2003-07-01 Lucent Technologies Inc. Management of time and expense when communicating between a host and a communication network
US6192475B1 (en) 1997-03-31 2001-02-20 David R. Wallace System and method for cloaking software
US6167522A (en) 1997-04-01 2000-12-26 Sun Microsystems, Inc. Method and apparatus for providing security for servers executing application programs received via a network
US6356957B2 (en) 1997-04-03 2002-03-12 Hewlett-Packard Company Method for emulating native object oriented foundation classes on a target object oriented programming system using a template library
US5987557A (en) 1997-06-19 1999-11-16 Sun Microsystems, Inc. Method and apparatus for implementing hardware protection domains in a system with no memory management unit (MMU)
US6275938B1 (en) 1997-08-28 2001-08-14 Microsoft Corporation Security enhancement for untrusted executable code
US6192401B1 (en) 1997-10-21 2001-02-20 Sun Microsystems, Inc. System and method for determining cluster membership in a heterogeneous distributed system
US6393465B2 (en) 1997-11-25 2002-05-21 Nixmail Corporation Junk electronic mail detector and eliminator
WO1999057654A1 (en) 1998-05-06 1999-11-11 Matsushita Electric Industrial Co., Ltd. Method and system for digital data transmission/reception
US6442686B1 (en) 1998-07-02 2002-08-27 Networks Associates Technology, Inc. System and methodology for messaging server-based management and enforcement of crypto policies
US6182142B1 (en) * 1998-07-10 2001-01-30 Encommerce, Inc. Distributed access management of information resources
US6338149B1 (en) 1998-07-31 2002-01-08 Westinghouse Electric Company Llc Change monitoring system for a computer system
US6546425B1 (en) 1998-10-09 2003-04-08 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
JP3522141B2 (en) 1999-01-28 2004-04-26 富士通株式会社 Automatic generation method of program inheriting correction program, automatic program generation device, and recording medium recording program for automatically generating program inheriting correction program
US6969352B2 (en) 1999-06-22 2005-11-29 Teratech Corporation Ultrasound probe with integrated electronics
US6453468B1 (en) 1999-06-30 2002-09-17 B-Hub, Inc. Methods for improving reliability while upgrading software programs in a clustered computer system
US6496477B1 (en) 1999-07-09 2002-12-17 Texas Instruments Incorporated Processes, articles, and packets for network path diversity in media over packet applications
US7340684B2 (en) 1999-08-19 2008-03-04 National Instruments Corporation System and method for programmatically generating a second graphical program based on a first graphical program
US7406603B1 (en) * 1999-08-31 2008-07-29 Intertrust Technologies Corp. Data protection systems and methods
US6990591B1 (en) 1999-11-18 2006-01-24 Secureworks, Inc. Method and system for remotely configuring and monitoring a communication device
US6662219B1 (en) 1999-12-15 2003-12-09 Microsoft Corporation System for determining at subgroup of nodes relative weight to represent cluster by obtaining exclusive possession of quorum resource
US6526418B1 (en) * 1999-12-16 2003-02-25 Livevault Corporation Systems and methods for backing up data files
US7836494B2 (en) 1999-12-29 2010-11-16 Intel Corporation System and method for regulating the flow of information to or from an application
US6769008B1 (en) 2000-01-10 2004-07-27 Sun Microsystems, Inc. Method and apparatus for dynamically altering configurations of clustered computer systems
US7082456B2 (en) 2000-03-17 2006-07-25 Filesx Ltd. Accelerating responses to requests made by users to an internet
US6941470B1 (en) * 2000-04-07 2005-09-06 Everdream Corporation Protected execution environments within a computer system
US7325127B2 (en) 2000-04-25 2008-01-29 Secure Data In Motion, Inc. Security server system
US6377808B1 (en) 2000-04-27 2002-04-23 Motorola, Inc. Method and apparatus for routing data in a communication system
AU2001262958A1 (en) 2000-04-28 2001-11-12 Internet Security Systems, Inc. Method and system for managing computer security information
US6769115B1 (en) 2000-05-01 2004-07-27 Emc Corporation Adaptive interface for a software development environment
US6847993B1 (en) 2000-05-31 2005-01-25 International Business Machines Corporation Method, system and program products for managing cluster configurations
US20030061506A1 (en) 2001-04-05 2003-03-27 Geoffrey Cooper System and method for security policy
US8204999B2 (en) 2000-07-10 2012-06-19 Oracle International Corporation Query string processing
US7093239B1 (en) * 2000-07-14 2006-08-15 Internet Security Systems, Inc. Computer immune system and method for detecting unwanted code in a computer system
US7350204B2 (en) 2000-07-24 2008-03-25 Microsoft Corporation Policies for secure software execution
DE60102934T2 (en) 2000-08-04 2005-03-10 Xtradyne Technologies Ag PROCEDURE AND SYSTEM FOR MEETING-BASED AUTHORIZATION AND ACCESS CONTROL FOR NETWORKED APPLICATION OBJECTS
AUPQ968100A0 (en) 2000-08-25 2000-09-21 Telstra Corporation Limited A management system
CN1592898A (en) 2000-09-01 2005-03-09 Tut系统公司 Method and system to pre-compile configuration information for a data communications device
US20020165947A1 (en) 2000-09-25 2002-11-07 Crossbeam Systems, Inc. Network application apparatus
US7606898B1 (en) 2000-10-24 2009-10-20 Microsoft Corporation System and method for distributed management of shared computers
US6930985B1 (en) 2000-10-26 2005-08-16 Extreme Networks, Inc. Method and apparatus for management of configuration in a network
US7054930B1 (en) 2000-10-26 2006-05-30 Cisco Technology, Inc. System and method for propagating filters
US6834301B1 (en) 2000-11-08 2004-12-21 Networks Associates Technology, Inc. System and method for configuration, management, and monitoring of a computer network using inheritance
US6766334B1 (en) 2000-11-21 2004-07-20 Microsoft Corporation Project-based configuration management method and apparatus
US20020133586A1 (en) 2001-01-16 2002-09-19 Carter Shanklin Method and device for monitoring data traffic and preventing unauthorized access to a network
JP2002244898A (en) 2001-02-19 2002-08-30 Hitachi Ltd Database managing program and database system
US6993012B2 (en) 2001-02-20 2006-01-31 Innomedia Pte, Ltd Method for communicating audio data in a packet switched network
US7739497B1 (en) 2001-03-21 2010-06-15 Verizon Corporate Services Group Inc. Method and apparatus for anonymous IP datagram exchange using dynamic network address translation
WO2002093334A2 (en) * 2001-04-06 2002-11-21 Symantec Corporation Temporal access control for computer virus outbreaks
US6918110B2 (en) 2001-04-11 2005-07-12 Hewlett-Packard Development Company, L.P. Dynamic instrumentation of an executable program by means of causing a breakpoint at the entry point of a function and providing instrumentation code
CN1141821C (en) 2001-04-25 2004-03-10 数位联合电信股份有限公司 Redirectable network access system
US6988101B2 (en) 2001-05-31 2006-01-17 International Business Machines Corporation Method, system, and computer program product for providing an extensible file system for accessing a foreign file system from a local data processing system
US6715050B2 (en) 2001-05-31 2004-03-30 Oracle International Corporation Storage access keys
US6988124B2 (en) 2001-06-06 2006-01-17 Microsoft Corporation Locating potentially identical objects across multiple computers based on stochastic partitioning of workload
US7290266B2 (en) 2001-06-14 2007-10-30 Cisco Technology, Inc. Access control by a real-time stateful reference monitor with a state collection training mode and a lockdown mode for detecting predetermined patterns of events indicative of requests for operating system resources resulting in a decision to allow or block activity identified in a sequence of events based on a rule set defining a processing policy
US7065767B2 (en) 2001-06-29 2006-06-20 Intel Corporation Managed hosting server auditing and change tracking
US7010796B1 (en) 2001-09-28 2006-03-07 Emc Corporation Methods and apparatus providing remote operation of an application programming interface
US7278161B2 (en) 2001-10-01 2007-10-02 International Business Machines Corporation Protecting a data processing system from attack by a vandal who uses a vulnerability scanner
US7177267B2 (en) 2001-11-09 2007-02-13 Adc Dsl Systems, Inc. Hardware monitoring and configuration management
EP1315066A1 (en) 2001-11-21 2003-05-28 BRITISH TELECOMMUNICATIONS public limited company Computer security system
US7853643B1 (en) 2001-11-21 2010-12-14 Blue Titan Software, Inc. Web services-based computing resource lifecycle management
US7159036B2 (en) 2001-12-10 2007-01-02 Mcafee, Inc. Updating data from a source computer to groups of destination computers
US7039949B2 (en) 2001-12-10 2006-05-02 Brian Ross Cartmell Method and system for blocking unwanted communications
US6959373B2 (en) 2001-12-10 2005-10-25 Incipient, Inc. Dynamic and variable length extents
US10033700B2 (en) 2001-12-12 2018-07-24 Intellectual Ventures I Llc Dynamic evaluation of access rights
CA2469633C (en) 2001-12-13 2011-06-14 Japan Science And Technology Agency Software safety execution system
US7398389B2 (en) 2001-12-20 2008-07-08 Coretrace Corporation Kernel-based network security infrastructure
US7096500B2 (en) 2001-12-21 2006-08-22 Mcafee, Inc. Predictive malware scanning of internet data
US6772345B1 (en) 2002-02-08 2004-08-03 Networks Associates Technology, Inc. Protocol-level malware scanner
US6941449B2 (en) 2002-03-04 2005-09-06 Hewlett-Packard Development Company, L.P. Method and apparatus for performing critical tasks using speculative operations
US20070253430A1 (en) 2002-04-23 2007-11-01 Minami John S Gigabit Ethernet Adapter
US20030221190A1 (en) 2002-05-22 2003-11-27 Sun Microsystems, Inc. System and method for performing patch installation on multiple devices
US7024404B1 (en) 2002-05-28 2006-04-04 The State University Rutgers Retrieval and display of data objects using a cross-group ranking metric
US7512977B2 (en) 2003-06-11 2009-03-31 Symantec Corporation Intrustion protection system utilizing layers
US8843903B1 (en) * 2003-06-11 2014-09-23 Symantec Corporation Process tracking application layered system
US7823203B2 (en) 2002-06-17 2010-10-26 At&T Intellectual Property Ii, L.P. Method and device for detecting computer network intrusions
US7139916B2 (en) 2002-06-28 2006-11-21 Ebay, Inc. Method and system for monitoring user interaction with a computer
US8924484B2 (en) 2002-07-16 2014-12-30 Sonicwall, Inc. Active e-mail filter with challenge-response
US7522906B2 (en) 2002-08-09 2009-04-21 Wavelink Corporation Mobile unit configuration management for WLANs
JP2004078507A (en) 2002-08-16 2004-03-11 Sony Corp Access control device, access control method and computer program
US7647410B2 (en) 2002-08-28 2010-01-12 Procera Networks, Inc. Network rights management
US7624347B2 (en) 2002-09-17 2009-11-24 At&T Intellectual Property I, L.P. System and method for forwarding full header information in email messages
US20040088398A1 (en) 2002-11-06 2004-05-06 Barlow Douglas B. Systems and methods for providing autoconfiguration and management of nodes
US7353501B2 (en) 2002-11-18 2008-04-01 Microsoft Corporation Generic wrapper scheme
US7865931B1 (en) 2002-11-25 2011-01-04 Accenture Global Services Limited Universal authorization and access control security measure for applications
US7346927B2 (en) 2002-12-12 2008-03-18 Access Business Group International Llc System and method for storing and accessing secure data
US20040143749A1 (en) 2003-01-16 2004-07-22 Platformlogic, Inc. Behavior-based host-based intrusion prevention system
US20040167906A1 (en) 2003-02-25 2004-08-26 Smith Randolph C. System consolidation tool and method for patching multiple servers
US7529754B2 (en) 2003-03-14 2009-05-05 Websense, Inc. System and method of monitoring and controlling application files
US8209680B1 (en) * 2003-04-11 2012-06-26 Vmware, Inc. System and method for disk imaging on diverse computers
US7607010B2 (en) 2003-04-12 2009-10-20 Deep Nines, Inc. System and method for network edge data protection
US20040230963A1 (en) 2003-05-12 2004-11-18 Rothman Michael A. Method for updating firmware in an operating system agnostic manner
DE10324189A1 (en) 2003-05-28 2004-12-16 Robert Bosch Gmbh Method for controlling access to a resource of an application in a data processing device
US7657599B2 (en) 2003-05-29 2010-02-02 Mindshare Design, Inc. Systems and methods for automatically updating electronic mail access lists
US7827602B2 (en) 2003-06-30 2010-11-02 At&T Intellectual Property I, L.P. Network firewall host application identification and authentication
US7454489B2 (en) 2003-07-01 2008-11-18 International Business Machines Corporation System and method for accessing clusters of servers from the internet network
US7283517B2 (en) 2003-07-22 2007-10-16 Innomedia Pte Stand alone multi-media terminal adapter with network address translation and port partitioning
US7463590B2 (en) * 2003-07-25 2008-12-09 Reflex Security, Inc. System and method for threat detection and response
US7526541B2 (en) 2003-07-29 2009-04-28 Enterasys Networks, Inc. System and method for dynamic network policy management
US7925722B1 (en) 2003-08-01 2011-04-12 Avocent Corporation Method and apparatus for discovery and installation of network devices through a network
US7401104B2 (en) * 2003-08-21 2008-07-15 Microsoft Corporation Systems and methods for synchronizing computer systems through an intermediary file system share or device
US7523493B2 (en) 2003-08-29 2009-04-21 Trend Micro Incorporated Virus monitor and methods of use thereof
US7464408B1 (en) 2003-08-29 2008-12-09 Solidcore Systems, Inc. Damage containment by translation
US8539063B1 (en) 2003-08-29 2013-09-17 Mcafee, Inc. Method and system for containment of networked application client software by explicit human input
US7360097B2 (en) 2003-09-30 2008-04-15 Check Point Software Technologies, Inc. System providing methodology for securing interfaces of executable files
US20050081053A1 (en) 2003-10-10 2005-04-14 International Business Machines Corlporation Systems and methods for efficient computer virus detection
US7930351B2 (en) 2003-10-14 2011-04-19 At&T Intellectual Property I, L.P. Identifying undesired email messages having attachments
US7280956B2 (en) * 2003-10-24 2007-10-09 Microsoft Corporation System, method, and computer program product for file encryption, decryption and transfer
US7814554B1 (en) * 2003-11-06 2010-10-12 Gary Dean Ragner Dynamic associative storage security for long-term memory storage devices
US20050114672A1 (en) 2003-11-20 2005-05-26 Encryptx Corporation Data rights management of digital information in a portable software permission wrapper
US20040172551A1 (en) 2003-12-09 2004-09-02 Michael Connor First response computer virus blocking.
US7840968B1 (en) 2003-12-17 2010-11-23 Mcafee, Inc. Method and system for containment of usage of language interfaces
JP2005202523A (en) 2004-01-13 2005-07-28 Sony Corp Computer device and process control method
US7272654B1 (en) 2004-03-04 2007-09-18 Sandbox Networks, Inc. Virtualizing network-attached-storage (NAS) with a compact table that stores lossy hashes of file names and parent handles rather than full names
JP4480422B2 (en) 2004-03-05 2010-06-16 富士通株式会社 Unauthorized access prevention method, apparatus, system, and program
US7783735B1 (en) 2004-03-22 2010-08-24 Mcafee, Inc. Containment of network communication
JP2005275839A (en) 2004-03-25 2005-10-06 Nec Corp Software use permission method and system
WO2005099214A1 (en) 2004-03-30 2005-10-20 Telecom Italia S.P.A. Method and system for network intrusion detection, related network and computer program product
US7966658B2 (en) 2004-04-08 2011-06-21 The Regents Of The University Of California Detecting public network attacks using signatures and fast content analysis
EP1745342A2 (en) 2004-04-19 2007-01-24 Securewave S.A. On-line centralized and local authorization of executable files
US7890946B2 (en) 2004-05-11 2011-02-15 Microsoft Corporation Efficient patching
EP1762114B1 (en) 2004-05-24 2015-11-04 Google, Inc. Location based access control in a wireless network
US7506170B2 (en) 2004-05-28 2009-03-17 Microsoft Corporation Method for secure access to multiple secure networks
US20050273858A1 (en) * 2004-06-07 2005-12-08 Erez Zadok Stackable file systems and methods thereof
US7624445B2 (en) 2004-06-15 2009-11-24 International Business Machines Corporation System for dynamic network reconfiguration and quarantine in response to threat conditions
JP4341517B2 (en) 2004-06-21 2009-10-07 日本電気株式会社 Security policy management system, security policy management method and program
US7694150B1 (en) 2004-06-22 2010-04-06 Cisco Technology, Inc System and methods for integration of behavioral and signature based security
US20050289538A1 (en) 2004-06-23 2005-12-29 International Business Machines Corporation Deploying an application software on a virtual deployment target
US7203864B2 (en) 2004-06-25 2007-04-10 Hewlett-Packard Development Company, L.P. Method and system for clustering computers into peer groups and comparing individual computers to their peers
JP5026964B2 (en) 2004-07-09 2012-09-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for providing different services in a multimedia communication system
US20060015501A1 (en) 2004-07-19 2006-01-19 International Business Machines Corporation System, method and program product to determine a time interval at which to check conditions to permit access to a file
JP2006059217A (en) 2004-08-23 2006-03-02 Mitsubishi Electric Corp Software memory image generation apparatus and built-in device software update system and program
US7873955B1 (en) 2004-09-07 2011-01-18 Mcafee, Inc. Solidifying the executable software set of a computer
US7392374B2 (en) 2004-09-21 2008-06-24 Hewlett-Packard Development Company, L.P. Moving kernel configurations
US7561515B2 (en) 2004-09-27 2009-07-14 Intel Corporation Role-based network traffic-flow rate control
US8146145B2 (en) 2004-09-30 2012-03-27 Rockstar Bidco Lp Method and apparatus for enabling enhanced control of traffic propagation through a network firewall
US7685632B2 (en) 2004-10-01 2010-03-23 Microsoft Corporation Access authorization having a centralized policy
US7506364B2 (en) 2004-10-01 2009-03-17 Microsoft Corporation Integrated access authorization
US20060080656A1 (en) * 2004-10-12 2006-04-13 Microsoft Corporation Methods and instructions for patch management
US8099060B2 (en) 2004-10-29 2012-01-17 Research In Motion Limited Wireless/wired mobile communication device with option to automatically block wireless communication when connected for wired communication
JP4676499B2 (en) 2004-11-04 2011-04-27 テルコーディア ライセンシング カンパニー, リミテッド ライアビリティ カンパニー Exploit code detection in network flows
WO2006101549A2 (en) 2004-12-03 2006-09-28 Whitecell Software, Inc. Secure system for allowing the execution of authorized computer program code
US7607170B2 (en) 2004-12-22 2009-10-20 Radware Ltd. Stateful attack protection
US7752667B2 (en) 2004-12-28 2010-07-06 Lenovo (Singapore) Pte Ltd. Rapid virus scan using file signature created during file write
US7849269B2 (en) 2005-01-24 2010-12-07 Citrix Systems, Inc. System and method for performing entity tag and cache control of a dynamically generated object not identified as cacheable in a network
US7302558B2 (en) 2005-01-25 2007-11-27 Goldman Sachs & Co. Systems and methods to facilitate the creation and configuration management of computing systems
US7385938B1 (en) 2005-02-02 2008-06-10 At&T Corp. Method and apparatus for adjusting a network device configuration change distribution schedule
US20130247027A1 (en) 2005-02-16 2013-09-19 Solidcore Systems, Inc. Distribution and installation of solidified software on a computer
US8056138B2 (en) 2005-02-26 2011-11-08 International Business Machines Corporation System, method, and service for detecting improper manipulation of an application
JP2006270894A (en) 2005-03-25 2006-10-05 Fuji Xerox Co Ltd Gateway unit, terminal device, communications system and program
US7562385B2 (en) 2005-04-20 2009-07-14 Fuji Xerox Co., Ltd. Systems and methods for dynamic authentication using physical keys
US7603552B1 (en) 2005-05-04 2009-10-13 Mcafee, Inc. Piracy prevention using unique module translation
US7363463B2 (en) 2005-05-13 2008-04-22 Microsoft Corporation Method and system for caching address translations from multiple address spaces in virtual machines
US8001245B2 (en) 2005-06-01 2011-08-16 International Business Machines Corporation System and method for autonomically configurable router
CN101218568A (en) 2005-07-11 2008-07-09 微软公司 Per-user and system granular audit policy implementation
US7856661B1 (en) 2005-07-14 2010-12-21 Mcafee, Inc. Classification of software on networked systems
US7983254B2 (en) 2005-07-20 2011-07-19 Verizon Business Global Llc Method and system for securing real-time media streams in support of interdomain traversal
US7984493B2 (en) 2005-07-22 2011-07-19 Alcatel-Lucent DNS based enforcement for confinement and detection of network malicious activities
WO2007016478A2 (en) 2005-07-29 2007-02-08 Bit9, Inc. Network security systems and methods
US7962616B2 (en) 2005-08-11 2011-06-14 Micro Focus (Us), Inc. Real-time activity monitoring and reporting
US8166474B1 (en) 2005-09-19 2012-04-24 Vmware, Inc. System and methods for implementing network traffic management for virtual and physical machines
EP1770915A1 (en) 2005-09-29 2007-04-04 Matsushita Electric Industrial Co., Ltd. Policy control in the evolved system architecture
US7712132B1 (en) 2005-10-06 2010-05-04 Ogilvie John W Detecting surreptitious spyware
US8131825B2 (en) 2005-10-07 2012-03-06 Citrix Systems, Inc. Method and a system for responding locally to requests for file metadata associated with files stored remotely
US7725737B2 (en) 2005-10-14 2010-05-25 Check Point Software Technologies, Inc. System and methodology providing secure workspace environment
US9055093B2 (en) 2005-10-21 2015-06-09 Kevin R. Borders Method, system and computer program product for detecting at least one of security threats and undesirable computer files
US8296437B2 (en) 2005-12-29 2012-10-23 Logmein, Inc. Server-mediated setup and maintenance of peer-to-peer client computer communications
US20070168861A1 (en) 2006-01-17 2007-07-19 Bell Denise A Method for indicating completion status of user initiated and system created tasks
US7757269B1 (en) 2006-02-02 2010-07-13 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US20090178110A1 (en) 2006-03-03 2009-07-09 Nec Corporation Communication Control Device, Communication Control System, Communication Control Method, and Communication Control Program
US7895573B1 (en) 2006-03-27 2011-02-22 Mcafee, Inc. Execution environment file inventory
KR20070099201A (en) 2006-04-03 2007-10-09 삼성전자주식회사 Method of security management for mobile wireless device and apparatus for security management using the same
US7870387B1 (en) 2006-04-07 2011-01-11 Mcafee, Inc. Program-based authorization
US8352930B1 (en) 2006-04-24 2013-01-08 Mcafee, Inc. Software modification by group to minimize breakage
US8458673B2 (en) 2006-04-26 2013-06-04 Flexera Software Llc Computer-implemented method and system for binding digital rights management executable code to a software application
US7849507B1 (en) 2006-04-29 2010-12-07 Ironport Systems, Inc. Apparatus for filtering server responses
US8555404B1 (en) 2006-05-18 2013-10-08 Mcafee, Inc. Connectivity-based authorization
US20080082662A1 (en) 2006-05-19 2008-04-03 Richard Dandliker Method and apparatus for controlling access to network resources based on reputation
US8291409B2 (en) 2006-05-22 2012-10-16 Microsoft Corporation Updating virtual machine with patch on host that does not have network access
US20070276950A1 (en) 2006-05-26 2007-11-29 Rajesh Dadhia Firewall For Dynamically Activated Resources
US7831997B2 (en) 2006-06-22 2010-11-09 Intel Corporation Secure and automatic provisioning of computer systems having embedded network devices
US20070300215A1 (en) 2006-06-26 2007-12-27 Bardsley Jeffrey S Methods, systems, and computer program products for obtaining and utilizing a score indicative of an overall performance effect of a software update on a software host
US8009566B2 (en) 2006-06-26 2011-08-30 Palo Alto Networks, Inc. Packet classification in a network security device
US7950056B1 (en) 2006-06-30 2011-05-24 Symantec Corporation Behavior based processing of a new version or variant of a previously characterized program
US8495181B2 (en) 2006-08-03 2013-07-23 Citrix Systems, Inc Systems and methods for application based interception SSI/VPN traffic
US8015388B1 (en) 2006-08-04 2011-09-06 Vmware, Inc. Bypassing guest page table walk for shadow page table entries not present in guest page table
US20080059123A1 (en) 2006-08-29 2008-03-06 Microsoft Corporation Management of host compliance evaluation
EP1901192A1 (en) 2006-09-14 2008-03-19 British Telecommunications Public Limited Company Mobile application registration
US7769731B2 (en) 2006-10-04 2010-08-03 International Business Machines Corporation Using file backup software to generate an alert when a file modification policy is violated
US9697019B1 (en) 2006-10-17 2017-07-04 Manageiq, Inc. Adapt a virtual machine to comply with system enforced policies and derive an optimized variant of the adapted virtual machine
US8584199B1 (en) 2006-10-17 2013-11-12 A10 Networks, Inc. System and method to apply a packet routing policy to an application session
US8055904B1 (en) 2006-10-19 2011-11-08 United Services Automobile Assocation (USAA) Systems and methods for software application security management
US7979749B2 (en) 2006-11-15 2011-07-12 International Business Machines Corporation Method and infrastructure for detecting and/or servicing a failing/failed operating system instance
US8091127B2 (en) 2006-12-11 2012-01-03 International Business Machines Corporation Heuristic malware detection
US20080155336A1 (en) 2006-12-20 2008-06-26 International Business Machines Corporation Method, system and program product for dynamically identifying components contributing to service degradation
US8332929B1 (en) 2007-01-10 2012-12-11 Mcafee, Inc. Method and apparatus for process enforced configuration management
US9424154B2 (en) 2007-01-10 2016-08-23 Mcafee, Inc. Method of and system for computer system state checks
US20080178278A1 (en) 2007-01-22 2008-07-24 Doron Grinstein Providing A Generic Gateway For Accessing Protected Resources
JP4715774B2 (en) 2007-03-02 2011-07-06 日本電気株式会社 Replication method, replication system, storage device, program
US20080282080A1 (en) 2007-05-11 2008-11-13 Nortel Networks Limited Method and apparatus for adapting a communication network according to information provided by a trusted client
US20080295173A1 (en) 2007-05-21 2008-11-27 Tsvetomir Iliev Tsvetanov Pattern-based network defense mechanism
US7930327B2 (en) 2007-05-21 2011-04-19 International Business Machines Corporation Method and apparatus for obtaining the absolute path name of an open file system object from its file descriptor
US20080301770A1 (en) 2007-05-31 2008-12-04 Kinder Nathan G Identity based virtual machine selector
CN101370004A (en) 2007-08-16 2009-02-18 华为技术有限公司 Distribution method and multicast apparatus for multicast conversation security policy
US20090049172A1 (en) 2007-08-16 2009-02-19 Robert Miller Concurrent Node Self-Start in a Peer Cluster
US7913529B2 (en) 2007-08-28 2011-03-29 Cisco Technology, Inc. Centralized TCP termination with multi-service chaining
US8250641B2 (en) 2007-09-17 2012-08-21 Intel Corporation Method and apparatus for dynamic switching and real time security control on virtualized systems
US8195931B1 (en) 2007-10-31 2012-06-05 Mcafee, Inc. Application change control
US8701189B2 (en) 2008-01-31 2014-04-15 Mcafee, Inc. Method of and system for computer system denial-of-service protection
US8788805B2 (en) 2008-02-29 2014-07-22 Cisco Technology, Inc. Application-level service access to encrypted data streams
US8615502B2 (en) 2008-04-18 2013-12-24 Mcafee, Inc. Method of and system for reverse mapping vnode pointers
US9058420B2 (en) 2008-06-20 2015-06-16 Vmware, Inc. Synchronous decoupled program analysis in virtual environments
US8234709B2 (en) 2008-06-20 2012-07-31 Symantec Operating Corporation Streaming malware definition updates
WO2010016904A2 (en) 2008-08-07 2010-02-11 Serge Nabutovsky Link exchange system and method
US8726391B1 (en) 2008-10-10 2014-05-13 Symantec Corporation Scheduling malware signature updates in relation to threat awareness and environmental safety
CN101741820B (en) 2008-11-13 2013-12-18 华为技术有限公司 Method, system and device for recognizing and determining color graphic adapter (CGA) public key
JP4770921B2 (en) 2008-12-01 2011-09-14 日本電気株式会社 Gateway server, file management system, file management method and program
US8544003B1 (en) 2008-12-11 2013-09-24 Mcafee, Inc. System and method for managing virtual machine configurations
US8274895B2 (en) 2009-01-26 2012-09-25 Telefonaktiebolaget L M Ericsson (Publ) Dynamic management of network flows
US8904520B1 (en) 2009-03-19 2014-12-02 Symantec Corporation Communication-based reputation system
US8387046B1 (en) 2009-03-26 2013-02-26 Symantec Corporation Security driver for hypervisors and operating systems of virtualized datacenters
US8060722B2 (en) 2009-03-27 2011-11-15 Vmware, Inc. Hardware assistance for shadow page table coherence with guest page mappings
US20100299277A1 (en) 2009-05-19 2010-11-25 Randy Emelo System and method for creating and enhancing mentoring relationships
US8205035B2 (en) 2009-06-22 2012-06-19 Citrix Systems, Inc. Systems and methods for integration between application firewall and caching
US8359422B2 (en) 2009-06-26 2013-01-22 Vmware, Inc. System and method to reduce trace faults in software MMU virtualization
GB2471716A (en) 2009-07-10 2011-01-12 F Secure Oyj Anti-virus scan management using intermediate results
JP2010016834A (en) 2009-07-16 2010-01-21 Nippon Telegr & Teleph Corp <Ntt> Filtering method
US8381284B2 (en) 2009-08-21 2013-02-19 Mcafee, Inc. System and method for enforcing security policies in a virtual environment
US8572695B2 (en) 2009-09-08 2013-10-29 Ricoh Co., Ltd Method for applying a physical seal authorization to documents in electronic workflows
US8234408B2 (en) 2009-09-10 2012-07-31 Cloudshield Technologies, Inc. Differentiating unique systems sharing a common address
US20110072129A1 (en) 2009-09-21 2011-03-24 At&T Intellectual Property I, L.P. Icmp proxy device
US9552497B2 (en) 2009-11-10 2017-01-24 Mcafee, Inc. System and method for preventing data loss using virtual machine wrapped applications
WO2011105362A1 (en) 2010-02-26 2011-09-01 日本ゼオン株式会社 Conjugated diene rubber, rubber composition, crosslinked rubber, tire, and process for production of conjugated diene rubber
US9390263B2 (en) 2010-03-31 2016-07-12 Sophos Limited Use of an application controller to monitor and control software file and application environments
US8875292B1 (en) 2010-04-05 2014-10-28 Symantec Corporation Systems and methods for managing malware signatures
US8813209B2 (en) 2010-06-03 2014-08-19 International Business Machines Corporation Automating network reconfiguration during migrations
US8938800B2 (en) 2010-07-28 2015-01-20 Mcafee, Inc. System and method for network level protection against malicious software
US8925101B2 (en) 2010-07-28 2014-12-30 Mcafee, Inc. System and method for local protection against malicious software
US8549003B1 (en) 2010-09-12 2013-10-01 Mcafee, Inc. System and method for clustering host inventories
US20130179971A1 (en) 2010-09-30 2013-07-11 Hewlett-Packard Development Company, L.P. Virtual Machines
US9075993B2 (en) 2011-01-24 2015-07-07 Mcafee, Inc. System and method for selectively grouping and managing program files
US9112830B2 (en) 2011-02-23 2015-08-18 Mcafee, Inc. System and method for interlocking a host and a gateway
US20130247192A1 (en) 2011-03-01 2013-09-19 Sven Krasser System and method for botnet detection by comprehensive email behavioral analysis
US9552215B2 (en) 2011-03-08 2017-01-24 Rackspace Us, Inc. Method and system for transferring a virtual machine
US9122877B2 (en) 2011-03-21 2015-09-01 Mcafee, Inc. System and method for malware and network reputation correlation
US8776234B2 (en) 2011-04-20 2014-07-08 Kaspersky Lab, Zao System and method for dynamic generation of anti-virus databases
US9594881B2 (en) 2011-09-09 2017-03-14 Mcafee, Inc. System and method for passive threat detection using virtual memory inspection
US8694738B2 (en) 2011-10-11 2014-04-08 Mcafee, Inc. System and method for critical address space protection in a hypervisor environment
US9069586B2 (en) 2011-10-13 2015-06-30 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US8973144B2 (en) 2011-10-13 2015-03-03 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US8713668B2 (en) 2011-10-17 2014-04-29 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US8800024B2 (en) 2011-10-17 2014-08-05 Mcafee, Inc. System and method for host-initiated firewall discovery in a network environment
US8713684B2 (en) 2012-02-24 2014-04-29 Appthority, Inc. Quantifying the risks of applications for mobile devices
US8793489B2 (en) 2012-03-01 2014-07-29 Humanconcepts, Llc Method and system for controlling data access to organizational data maintained in hierarchical
US8739272B1 (en) 2012-04-02 2014-05-27 Mcafee, Inc. System and method for interlocking a host and a gateway
US8931043B2 (en) 2012-04-10 2015-01-06 Mcafee Inc. System and method for determining and using local reputations of users and hosts to protect information in a network environment
US9292688B2 (en) 2012-09-26 2016-03-22 Northrop Grumman Systems Corporation System and method for automated machine-learning, zero-day malware detection
US8973146B2 (en) 2012-12-27 2015-03-03 Mcafee, Inc. Herd based scan avoidance system in a network environment
US9311480B2 (en) 2013-03-15 2016-04-12 Mcafee, Inc. Server-assisted anti-malware client
WO2014142986A1 (en) 2013-03-15 2014-09-18 Mcafee, Inc. Server-assisted anti-malware client
CN105580023B (en) 2013-10-24 2019-08-16 迈克菲股份有限公司 The malicious application of agency's auxiliary in network environment prevents

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778226A (en) * 1989-10-20 1998-07-07 Iomega Corporation Kernels, description tables and device drivers
US5907860A (en) * 1993-10-18 1999-05-25 National Semiconductor Corporation System and method of retiring store data from a write buffer
US5991881A (en) * 1996-11-08 1999-11-23 Harris Corporation Network surveillance system
US5987611A (en) * 1996-12-31 1999-11-16 Zone Labs, Inc. System and methodology for managing internet access on a per application basis for client computers connected to the internet
US6073142A (en) * 1997-06-23 2000-06-06 Park City Group Automated post office based rule analysis of e-mail messages and other data objects for controlled distribution in network environments
US5987610A (en) * 1998-02-12 1999-11-16 Ameritech Corporation Computer virus screening methods and systems
US6795966B1 (en) * 1998-05-15 2004-09-21 Vmware, Inc. Mechanism for restoring, porting, replicating and checkpointing computer systems using state extraction
US6449040B1 (en) * 1998-11-11 2002-09-10 Shimadzu Corporation Spectrophotometer with validation programs
US20030200332A1 (en) * 1999-07-29 2003-10-23 Amit Gupta Method and apparatus for dynamic proxy insertion in network traffic flow
US6256773B1 (en) * 1999-08-31 2001-07-03 Accenture Llp System, method and article of manufacture for configuration management in a development architecture framework
US6321267B1 (en) * 1999-11-23 2001-11-20 Escom Corporation Method and apparatus for filtering junk email
US6460050B1 (en) * 1999-12-22 2002-10-01 Mark Raymond Pace Distributed content identification system
US6748534B1 (en) * 2000-03-31 2004-06-08 Networks Associates, Inc. System and method for partitioned distributed scanning of a large dataset for viruses and other malware
US20030163718A1 (en) * 2000-04-12 2003-08-28 Johnson Harold J. Tamper resistant software-mass data encoding
US6934755B1 (en) * 2000-06-02 2005-08-23 Sun Microsystems, Inc. System and method for migrating processes on a network
US6611925B1 (en) * 2000-06-13 2003-08-26 Networks Associates Technology, Inc. Single point of entry/origination item scanning within an enterprise or workgroup
US7506155B1 (en) * 2000-06-22 2009-03-17 Gatekeeper Llc E-mail virus protection system and method
US20020083175A1 (en) * 2000-10-17 2002-06-27 Wanwall, Inc. (A Delaware Corporation) Methods and apparatus for protecting against overload conditions on nodes of a distributed network
US20020056076A1 (en) * 2000-10-24 2002-05-09 Vcis, Inc. Analytical virtual machine
US20020069367A1 (en) * 2000-12-06 2002-06-06 Glen Tindal Network operating system data directory
US6907600B2 (en) * 2000-12-27 2005-06-14 Intel Corporation Virtual translation lookaside buffer
US7069330B1 (en) * 2001-07-05 2006-06-27 Mcafee, Inc. Control of interaction between client computer applications and network resources
US20030023736A1 (en) * 2001-07-12 2003-01-30 Kurt Abkemeier Method and system for filtering messages
US20030014667A1 (en) * 2001-07-16 2003-01-16 Andrei Kolichtchak Buffer overflow attack detection and suppression
US20030033510A1 (en) * 2001-08-08 2003-02-13 David Dice Methods and apparatus for controlling speculative execution of instructions based on a multiaccess memory condition
US7007302B1 (en) * 2001-08-31 2006-02-28 Mcafee, Inc. Efficient management and blocking of malicious code and hacking attempts in a network environment
US7346781B2 (en) * 2001-12-06 2008-03-18 Mcafee, Inc. Initiating execution of a computer program from an encrypted version of a computer program
US20050086047A1 (en) * 2001-12-27 2005-04-21 Kiyotaka Uchimoto Syntax analysis method and apparatus
US20030145232A1 (en) * 2002-01-31 2003-07-31 Poletto Massimiliano Antonio Denial of service attacks characterization
US20030167399A1 (en) * 2002-03-01 2003-09-04 Yves Audebert Method and system for performing post issuance configuration and data changes to a personal security device using a communications pipe
US20030220944A1 (en) * 2002-04-03 2003-11-27 Lyman Schottland Paul Joseph Delta replication of source files and packages across networked resources
US7370360B2 (en) * 2002-05-13 2008-05-06 International Business Machines Corporation Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US7823148B2 (en) * 2002-05-22 2010-10-26 Oracle America, Inc. System and method for performing patch installation via a graphical user interface
US7546333B2 (en) * 2002-10-23 2009-06-09 Netapp, Inc. Methods and systems for predictive change management for access paths in networks
US7024548B1 (en) * 2003-03-10 2006-04-04 Cisco Technology, Inc. Methods and apparatus for auditing and tracking changes to an existing configuration of a computerized device
US20060133223A1 (en) * 2003-03-28 2006-06-22 Matsusuhita Electric Industrial Co., Ltd. Recording medium, recording device usint the same, and reproduction device
US20050108516A1 (en) * 2003-04-17 2005-05-19 Robert Balzer By-pass and tampering protection for application wrappers
US20050108562A1 (en) * 2003-06-18 2005-05-19 Khazan Roger I. Technique for detecting executable malicious code using a combination of static and dynamic analyses
US7669195B1 (en) * 2003-07-31 2010-02-23 Hewlett-Packard Development Company, L.P. Electronic device network supporting compression and decompression in electronic devices and update generator
US7577995B2 (en) * 2003-09-16 2009-08-18 At&T Intellectual Property I, L.P. Controlling user-access to computer applications
US20050132346A1 (en) * 2003-12-10 2005-06-16 Sap Aktiengesellschaft Software interface monitor method and system
US7546594B2 (en) * 2003-12-15 2009-06-09 Microsoft Corporation System and method for updating installation components using an installation component delta patch in a networked environment
US20060004875A1 (en) * 2004-05-11 2006-01-05 Microsoft Corporation CMDB schema
US7818377B2 (en) * 2004-05-24 2010-10-19 Microsoft Corporation Extended message rule architecture
US7908653B2 (en) * 2004-06-29 2011-03-15 Intel Corporation Method of improving computer security through sandboxing
US7937455B2 (en) * 2004-07-28 2011-05-03 Oracle International Corporation Methods and systems for modifying nodes in a cluster environment
US20060037016A1 (en) * 2004-07-28 2006-02-16 Oracle International Corporation Methods and systems for modifying nodes in a cluster environment
US7703090B2 (en) * 2004-08-31 2010-04-20 Microsoft Corporation Patch un-installation
US20060085785A1 (en) * 2004-10-15 2006-04-20 Emc Corporation Method and apparatus for configuring, monitoring and/or managing resource groups including a virtual machine
US7765538B2 (en) * 2004-10-29 2010-07-27 Hewlett-Packard Development Company, L.P. Method and apparatus for determining which program patches to recommend for installation
US20060101277A1 (en) * 2004-11-10 2006-05-11 Meenan Patrick A Detecting and remedying unauthorized computer programs
US20060136911A1 (en) * 2004-12-17 2006-06-22 Intel Corporation Method, apparatus and system for enhacing the usability of virtual machines
US20060136910A1 (en) * 2004-12-17 2006-06-22 Intel Corporation Method, apparatus and system for improving security in a virtual machine host
US20060200863A1 (en) * 2005-03-01 2006-09-07 Microsoft Corporation On-access scan of memory for malware
US7685635B2 (en) * 2005-03-11 2010-03-23 Microsoft Corporation Systems and methods for multi-level intercept processing in a virtual machine environment
US20110035423A1 (en) * 2005-03-18 2011-02-10 Sony Corporation Reproducing apparatus, reproducing method, program, program storage medium, data delivery system, data structure, and manufacturing method of recording medium
US7552479B1 (en) * 2005-03-22 2009-06-23 Symantec Corporation Detecting shellcode that modifies IAT entries
US20060230314A1 (en) * 2005-04-07 2006-10-12 Sanjar Amir F Automatic generation of solution deployment descriptors
US7349931B2 (en) * 2005-04-14 2008-03-25 Webroot Software, Inc. System and method for scanning obfuscated files for pestware
US20060236398A1 (en) * 2005-04-14 2006-10-19 International Business Machines Corporation Selective virus scanning system and method
US20070220061A1 (en) * 2005-06-21 2007-09-20 Oren Tirosh Method and system for tracking an operation performed on an information asset with metadata associated therewith
US20070011746A1 (en) * 2005-07-11 2007-01-11 Microsoft Corporation Per-user and system granular audit policy implementation
US20070028303A1 (en) * 2005-07-29 2007-02-01 Bit 9, Inc. Content tracking in a network security system
US20070050764A1 (en) * 2005-08-30 2007-03-01 Microsoft Corporation Hierarchical virtualization with a multi-level virtualization mechanism
US20070050579A1 (en) * 2005-08-30 2007-03-01 Hall Kenwood H Method and apparatus for synchronizing an industrial controller with a redundant controller
US20070074199A1 (en) * 2005-09-27 2007-03-29 Sebastian Schoenberg Method and apparatus for delivering microcode updates through virtual machine operations
US20070169079A1 (en) * 2005-11-08 2007-07-19 Microsoft Corporation Software update management
US20070136579A1 (en) * 2005-12-09 2007-06-14 University Of Washington Web browser operating system
US20080052468A1 (en) * 2005-12-12 2008-02-28 Sytex, Inc. Methods, systems and computer readable medium for detecting memory overflow conditions
US20070143851A1 (en) * 2005-12-21 2007-06-21 Fiberlink Method and systems for controlling access to computing resources based on known security vulnerabilities
US20070192329A1 (en) * 2006-01-24 2007-08-16 Citrix Systems, Inc. Methods and systems for executing, by a virtual machine, an application program requested by a client machine
US20090043993A1 (en) * 2006-03-03 2009-02-12 Simon Andrew Ford Monitoring Values of Signals within an Integrated Circuit
US20070220507A1 (en) * 2006-03-20 2007-09-20 Microsoft Corporation Managing version information for software components
US20080010304A1 (en) * 2006-03-29 2008-01-10 Santosh Vempala Techniques for clustering a set of objects
US8015563B2 (en) * 2006-04-14 2011-09-06 Microsoft Corporation Managing virtual machines with system-wide policies
US7966659B1 (en) * 2006-04-18 2011-06-21 Rockwell Automation Technologies, Inc. Distributed learn mode for configuring a firewall, security authority, intrusion detection/prevention devices, and the like
US20080022384A1 (en) * 2006-06-06 2008-01-24 Microsoft Corporation Reputation Driven Firewall
US7809704B2 (en) * 2006-06-15 2010-10-05 Microsoft Corporation Combining spectral and probabilistic clustering
US20080005737A1 (en) * 2006-06-30 2008-01-03 Bratin Saha Concurrent thread execution using user-level asynchronous signaling
US20080005798A1 (en) * 2006-06-30 2008-01-03 Ross Alan D Hardware platform authentication and multi-purpose validation
US20080034416A1 (en) * 2006-08-03 2008-02-07 Arkesh Kumar Methods and systems for routing packets in a vpn-client-to-vpn-client connection via an ssl/vpn network appliance
US20080082977A1 (en) * 2006-09-29 2008-04-03 Microsoft Corporation Automatic load and balancing for virtual machines to meet resource requirements
US20080120499A1 (en) * 2006-11-16 2008-05-22 Zimmer Vincent J Methods and apparatus for defeating malware
US7996836B1 (en) * 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US20080163210A1 (en) * 2006-12-29 2008-07-03 Mic Bowman Dynamic virtual machine generation
US20080163207A1 (en) * 2007-01-03 2008-07-03 International Business Machines Corporation Moveable access control list (acl) mechanisms for hypervisors and virtual machines and virtual port firewalls
US20080165952A1 (en) * 2007-01-07 2008-07-10 Michael Smith Secure Booting A Computing Device
US20080184373A1 (en) * 2007-01-25 2008-07-31 Microsoft Corporation Protection Agents and Privilege Modes
US20080235534A1 (en) * 2007-03-22 2008-09-25 International Business Machines Corporation Integrity protection in data processing systems
US20090007100A1 (en) * 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US20090038017A1 (en) * 2007-08-02 2009-02-05 David Durham Secure vault service for software components within an execution environment
US20090055693A1 (en) * 2007-08-08 2009-02-26 Dmitriy Budko Monitoring Execution of Guest Code in a Virtual Machine
US20090144300A1 (en) * 2007-08-29 2009-06-04 Chatley Scott P Coupling a user file name with a physical data file stored in a storage delivery network
US20090113110A1 (en) * 2007-10-30 2009-04-30 Vmware, Inc. Providing VMM Access to Guest Virtual Memory
US20090150639A1 (en) * 2007-12-07 2009-06-11 Hideo Ohata Management apparatus and management method
US20090249438A1 (en) * 2008-03-27 2009-10-01 Moshe Litvin Moving security for virtual machines
US20090249053A1 (en) * 2008-03-31 2009-10-01 Zimmer Vincent J Method and apparatus for sequential hypervisor invocation
US20100071035A1 (en) * 2008-09-12 2010-03-18 Renata Budko Methods and systems for securely managing virtualization platform
US20100114825A1 (en) * 2008-10-27 2010-05-06 Vmware, Inc. Version control environment for virtual machines
US20110047543A1 (en) * 2009-08-21 2011-02-24 Preet Mohinder System and Method for Providing Address Protection in a Virtual Environment

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8762928B2 (en) 2003-12-17 2014-06-24 Mcafee, Inc. Method and system for containment of usage of language interfaces
US8561082B2 (en) 2003-12-17 2013-10-15 Mcafee, Inc. Method and system for containment of usage of language interfaces
US8549546B2 (en) 2003-12-17 2013-10-01 Mcafee, Inc. Method and system for containment of usage of language interfaces
US8561051B2 (en) 2004-09-07 2013-10-15 Mcafee, Inc. Solidifying the executable software set of a computer
US20110119760A1 (en) * 2005-07-14 2011-05-19 Mcafee, Inc., A Delaware Corporation Classification of software on networked systems
US8307437B2 (en) 2005-07-14 2012-11-06 Mcafee, Inc. Classification of software on networked systems
US8763118B2 (en) 2005-07-14 2014-06-24 Mcafee, Inc. Classification of software on networked systems
US9134998B2 (en) 2006-02-02 2015-09-15 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US9602515B2 (en) 2006-02-02 2017-03-21 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US8707446B2 (en) 2006-02-02 2014-04-22 Mcafee, Inc. Enforcing alignment of approved changes and deployed changes in the software change life-cycle
US10360382B2 (en) 2006-03-27 2019-07-23 Mcafee, Llc Execution environment file inventory
US9576142B2 (en) 2006-03-27 2017-02-21 Mcafee, Inc. Execution environment file inventory
US8321932B2 (en) 2006-04-07 2012-11-27 Mcafee, Inc. Program-based authorization
US20110093950A1 (en) * 2006-04-07 2011-04-21 Mcafee, Inc., A Delaware Corporation Program-based authorization
US8555404B1 (en) 2006-05-18 2013-10-08 Mcafee, Inc. Connectivity-based authorization
US8707422B2 (en) 2007-01-10 2014-04-22 Mcafee, Inc. Method and apparatus for process enforced configuration management
US9864868B2 (en) 2007-01-10 2018-01-09 Mcafee, Llc Method and apparatus for process enforced configuration management
US8701182B2 (en) 2007-01-10 2014-04-15 Mcafee, Inc. Method and apparatus for process enforced configuration management
US9424154B2 (en) 2007-01-10 2016-08-23 Mcafee, Inc. Method of and system for computer system state checks
US8195931B1 (en) 2007-10-31 2012-06-05 Mcafee, Inc. Application change control
US8701189B2 (en) 2008-01-31 2014-04-15 Mcafee, Inc. Method of and system for computer system denial-of-service protection
US8515075B1 (en) 2008-01-31 2013-08-20 Mcafee, Inc. Method of and system for malicious software detection using critical address space protection
US8615502B2 (en) 2008-04-18 2013-12-24 Mcafee, Inc. Method of and system for reverse mapping vnode pointers
US8544003B1 (en) 2008-12-11 2013-09-24 Mcafee, Inc. System and method for managing virtual machine configurations
US20110047542A1 (en) * 2009-08-21 2011-02-24 Amit Dang System and Method for Enforcing Security Policies in a Virtual Environment
US8341627B2 (en) 2009-08-21 2012-12-25 Mcafee, Inc. Method and system for providing user space address protection from writable memory area in a virtual environment
US8381284B2 (en) 2009-08-21 2013-02-19 Mcafee, Inc. System and method for enforcing security policies in a virtual environment
US20110047543A1 (en) * 2009-08-21 2011-02-24 Preet Mohinder System and Method for Providing Address Protection in a Virtual Environment
US8869265B2 (en) 2009-08-21 2014-10-21 Mcafee, Inc. System and method for enforcing security policies in a virtual environment
US9652607B2 (en) 2009-08-21 2017-05-16 Mcafee, Inc. System and method for enforcing security policies in a virtual environment
US9552497B2 (en) 2009-11-10 2017-01-24 Mcafee, Inc. System and method for preventing data loss using virtual machine wrapped applications
US9832227B2 (en) 2010-07-28 2017-11-28 Mcafee, Llc System and method for network level protection against malicious software
US8925101B2 (en) 2010-07-28 2014-12-30 Mcafee, Inc. System and method for local protection against malicious software
US9467470B2 (en) 2010-07-28 2016-10-11 Mcafee, Inc. System and method for local protection against malicious software
US8938800B2 (en) 2010-07-28 2015-01-20 Mcafee, Inc. System and method for network level protection against malicious software
US8843496B2 (en) 2010-09-12 2014-09-23 Mcafee, Inc. System and method for clustering host inventories
US8549003B1 (en) 2010-09-12 2013-10-01 Mcafee, Inc. System and method for clustering host inventories
US9075993B2 (en) 2011-01-24 2015-07-07 Mcafee, Inc. System and method for selectively grouping and managing program files
US9866528B2 (en) 2011-02-23 2018-01-09 Mcafee, Llc System and method for interlocking a host and a gateway
US9112830B2 (en) 2011-02-23 2015-08-18 Mcafee, Inc. System and method for interlocking a host and a gateway
US9594881B2 (en) 2011-09-09 2017-03-14 Mcafee, Inc. System and method for passive threat detection using virtual memory inspection
US8694738B2 (en) 2011-10-11 2014-04-08 Mcafee, Inc. System and method for critical address space protection in a hypervisor environment
US9069586B2 (en) 2011-10-13 2015-06-30 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US9465700B2 (en) 2011-10-13 2016-10-11 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US8973144B2 (en) 2011-10-13 2015-03-03 Mcafee, Inc. System and method for kernel rootkit protection in a hypervisor environment
US9946562B2 (en) 2011-10-13 2018-04-17 Mcafee, Llc System and method for kernel rootkit protection in a hypervisor environment
US8713668B2 (en) 2011-10-17 2014-04-29 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US9882876B2 (en) 2011-10-17 2018-01-30 Mcafee, Llc System and method for redirected firewall discovery in a network environment
US9356909B2 (en) 2011-10-17 2016-05-31 Mcafee, Inc. System and method for redirected firewall discovery in a network environment
US8800024B2 (en) 2011-10-17 2014-08-05 Mcafee, Inc. System and method for host-initiated firewall discovery in a network environment
US10652210B2 (en) 2011-10-17 2020-05-12 Mcafee, Llc System and method for redirected firewall discovery in a network environment
US8739272B1 (en) 2012-04-02 2014-05-27 Mcafee, Inc. System and method for interlocking a host and a gateway
US9413785B2 (en) 2012-04-02 2016-08-09 Mcafee, Inc. System and method for interlocking a host and a gateway
US10171611B2 (en) 2012-12-27 2019-01-01 Mcafee, Llc Herd based scan avoidance system in a network environment
US8973146B2 (en) 2012-12-27 2015-03-03 Mcafee, Inc. Herd based scan avoidance system in a network environment
US9578052B2 (en) 2013-10-24 2017-02-21 Mcafee, Inc. Agent assisted malicious application blocking in a network environment
US11171984B2 (en) 2013-10-24 2021-11-09 Mcafee, Llc Agent assisted malicious application blocking in a network environment
US10645115B2 (en) 2013-10-24 2020-05-05 Mcafee, Llc Agent assisted malicious application blocking in a network environment
US10205743B2 (en) 2013-10-24 2019-02-12 Mcafee, Llc Agent assisted malicious application blocking in a network environment
US20160026449A1 (en) * 2014-07-28 2016-01-28 International Business Machines Corporation Software Discovery in an Environment with Heterogeneous Machine Groups
US9535677B2 (en) * 2014-07-28 2017-01-03 International Business Machines Corporation Software discovery in an environment with heterogeneous machine groups
US10073690B2 (en) 2014-09-26 2018-09-11 Oracle International Corporation Populating content for a base version of an image
US10073693B2 (en) 2014-09-26 2018-09-11 Oracle International Corporation Drift management of images
US9921820B2 (en) 2014-09-26 2018-03-20 Oracle International Corporation Version management of images
US9665366B2 (en) * 2014-09-26 2017-05-30 Oracle International Corporation Creation of a software configuration signature for software
US10824414B2 (en) 2014-09-26 2020-11-03 Oracle International Corporation Drift management of images
US9552198B2 (en) * 2014-09-26 2017-01-24 Oracle International Corporation Drift management of images
US10868709B2 (en) 2018-09-10 2020-12-15 Oracle International Corporation Determining the health of other nodes in a same cluster based on physical link information
US11463303B2 (en) 2018-09-10 2022-10-04 Oracle International Corporation Determining the health of other nodes in a same cluster based on physical link information

Also Published As

Publication number Publication date
US20140101783A1 (en) 2014-04-10
US7895573B1 (en) 2011-02-22
US10360382B2 (en) 2019-07-23
US9576142B2 (en) 2017-02-21
US20170140168A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US10360382B2 (en) Execution environment file inventory
US20220284094A1 (en) Methods and apparatus for malware threat research
US8782800B2 (en) Parametric content control in a network security system
JP5809084B2 (en) Network security system and method
US7243348B2 (en) Computing apparatus with automatic integrity reference generation and maintenance
US8984636B2 (en) Content extractor and analysis system
JP6370747B2 (en) System and method for virtual machine monitor based anti-malware security
US8272058B2 (en) Centralized timed analysis in a network security system
US7512977B2 (en) Intrustion protection system utilizing layers
US7549164B2 (en) Intrustion protection system utilizing layers and triggers
US20070289019A1 (en) Methodology, system and computer readable medium for detecting and managing malware threats
US20070028302A1 (en) Distributed meta-information query in a network
US20090271863A1 (en) Identifying unauthorized privilege escalations
KR20050039661A (en) Operating system resource protection
US20070079364A1 (en) Directory-secured packages for authentication of software installation
Bagheri et al. Automated dynamic enforcement of synthesized security policies in android
Govindavajhala et al. Windows access control demystified
Yang et al. Optimus: association-based dynamic system call filtering for container attack surface reduction
Venkatakrishnan et al. An Approach for Secure Software Installation.
US8788845B1 (en) Data access security
Harel et al. Mitigating Unknown Cybersecurity Threats in Performance Constrained Electronic Control Units
Rubio-Medrano et al. DyPolDroid: Protecting Users and Organizations from Permission-Abuse Attacks in Android
KR20090080469A (en) Method and System for preventing installation of program
KR20230169268A (en) Endpoint detection and response to cybersecurity attacks
Griffiths et al. Fireguard-A secure browser with reduced forensic footprint

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION