US20110116976A1 - Laboratory reactor with a reaction vessel - Google Patents

Laboratory reactor with a reaction vessel Download PDF

Info

Publication number
US20110116976A1
US20110116976A1 US13/000,833 US200913000833A US2011116976A1 US 20110116976 A1 US20110116976 A1 US 20110116976A1 US 200913000833 A US200913000833 A US 200913000833A US 2011116976 A1 US2011116976 A1 US 2011116976A1
Authority
US
United States
Prior art keywords
laboratory reactor
reactor according
feet
placement
laboratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/000,833
Inventor
Andreas Zeller
Erhard Eble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IKA Werke GmbH and Co KG
Original Assignee
IKA Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IKA Werke GmbH and Co KG filed Critical IKA Werke GmbH and Co KG
Assigned to IKA-WERKE GMBH & CO. KG reassignment IKA-WERKE GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZELLER, ANDREAS, EBLE, ERHARD
Publication of US20110116976A1 publication Critical patent/US20110116976A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/805Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis wherein the stirrers or the receptacles are moved in order to bring them into operative position; Means for fixing the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2117Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/212Measuring of the driving system data, e.g. torque, speed or power data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2206Use of stored recipes for controlling the computer programs, e.g. for manipulation, handling, production or composition in mixing plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/22Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for apportioning materials by weighing prior to mixing them
    • G01G19/24Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for apportioning materials by weighing prior to mixing them using a single weighing apparatus
    • G01G19/30Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for apportioning materials by weighing prior to mixing them using a single weighing apparatus having electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/23Support or suspension of weighing platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00011Laboratory-scale plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00184Controlling or regulating processes controlling the weight of reactants in the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/14Means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the invention relates to a laboratory reactor with a reaction vessel, closed and connected to a device for changing the pressure, i.e. with a device for creating overpressure or a vacuum, to accept media to be processed and/or to be mixed and/or to be made reacting with each other or at least with one processing and/or measuring aggregate or mixing and/or agitating device engaging said vessel, as well as a holder for receiving said vessel, which has a base facing a support area.
  • Such laboratory reactors are known in multiple forms and different designs. Frequently they are designed in a modular fashion and serve to optimize and reproduce chemical reaction, mixing, dispersing, and/or homogenization processes on a laboratory scale. For example, the following processes can be performed thereby:
  • Such laboratory reactions can frequently be adjusted by the user to the respective objective.
  • temperature measuring devices, agitators, dispersing devices, and/or thermostats can be used, and also be adjusted in various manners, such as program-controlled via computers and/or microprocessors.
  • single-walled and dual-walled vessel can be used with or without bottom drains made from a special glass or stainless steel, with generally the basic equipment includes a stand system for connecting on the one hand the vessel and on the other hand the arrangements, apparatuses, and measuring devices to be used. The connection for the devices is frequently embodied such that the processing and measuring devices can be mounted above the vessel so that they can engage the vessel from above.
  • laboratory reactors are known in which a drive shaft for a mixing device is inserted into the vessel through the bottom.
  • the object is to provide a laboratory reactor of the type defined at the outset, by which the filling, refilling, and/or adding can be performed in a simple and controlled fashion.
  • the laboratory reactor defined at the outset is characterized such that on the bottom of the holder several placement feet are provided or connected or effectively fastened, in their operating position pointing upwards or in a vertical direction, supported in an elastic or adjustable or movable fashion against a return or spring force.
  • a part of the movable support of the placement foot or feet is particularly beneficial for a part of the movable support of the placement foot or feet to be effectively connected to a weighing device.
  • a simple design option is to render the mobility of the placement feet to be effective at a weighing or measuring device.
  • the placement foot or feet may comprise at least partially a spring-elastic material and include a transmission element to the weighing device based on the elasticity of the placement foot or placement feet.
  • Another modified version may provide that at least two placement feet or several or all placement feet are connected to each other mechanically. This is another way to impinge or control an appropriate weighing device.
  • connection of two placement feet may show a distance between them and the support area or at least two support feet can be connected in one piece to form a wide support foot, which comprises or impinges a joint weighing device or two separate ones.
  • a wide support foot which comprises or impinges a joint weighing device or two separate ones.
  • the stability of the laboratory reactor can be improved and simultaneously the weighing function can be achieved.
  • an embodiment is preferred, though, in which these several individual placement feet each cooperate with one weighing device, for example via appropriate sensors, such that even existing laboratory reactors can largely remain unchanged, but may be retrofitted with the respective movable and elastic placement feet comprising a weighing function.
  • a preferred embodiment may provide that the elastic or adjustable or movable placement feet impinge levers or rockers or end pieces, which cooperate with the weighing device or are in an effective connection therewith or alternatively comprise a weighing device.
  • the levers or rockers or end pieces, movable via the placement feet may be provided with sensors for measuring force or with measuring strips or Piezo-elements as the components of a weighing device. This way, an appropriate weighing function can be realized within a minimum amount of space.
  • the sensors for measuring forces of several or all placement feet can be combined with a microprocessor or a computer such that the weight forces compensated at the individual placement feet are added and/or averaged. This way, right from the start the user is provided with one weight statement and/or a total weight or its change can be displayed in a suitable fashion or be forwarded to a control device, which can react to the change of weight.
  • One embodiment of the laboratory reactor according to the invention may provide that it comprises an electronic storage for recipes, in which individual components of mixtures are stored, defined according to substance and weight, and thus the integrated weighing function can be processed menu controlled. This way, frequently repeated processing and mixing steps can be considerably automated and streamlined.
  • an operating, control, and/or storage unit is arranged at and connected to the laboratory reactor or a housing in a detachable fashion and is connected to the driving parts, located in the laboratory reactor or the housing, to the weighing device and/or additional aggregates by way of a radio or cable connection.
  • an operating, control, and/or storage unit is arranged at and connected to the laboratory reactor or a housing in a detachable fashion and is connected to the driving parts, located in the laboratory reactor or the housing, to the weighing device and/or additional aggregates by way of a radio or cable connection.
  • the agitation and/or mixing device or processing aggregate of the laboratory reactor may provide a torque detection, which may particularly occur via the current draw of the drive motor. If applicable, if a speed control is provided, its setting may also be used to determine the torque. If the torque changes due to a change in viscosity, this may also be a reason to add one or more substances, with here it may be important that this occurs by a predetermined weight, which is easily possible in a simple fashion using the placement feet and the weighing device.
  • the device to change the pressure i.e. to create an overpressure or preferably a vacuum in the reaction vessel, sealed appropriately tightly, may also be a pump, for example a vacuum pump, connected or able to be connected to the laboratory reactor or the reactor vessel.
  • this device for changing the pressure may be allocated to the laboratory reactor regardless if said device is a direct part of the laboratory reactor or an independent, separate device. This may lead to a change of weights in another processing step of materials or substances in the laboratory reactor, which can be detected by the weighing device according to the invention and corrected, if necessary.
  • FIG. 1 is a perspective view of a laboratory reactor according to the invention with a reaction vessel and a fastening rod for mounting processing and/or measuring aggregates or devices, such as mixers and/or agitators, dispersing or homogenization devices, with a fastening to the ground being provided, at which placement feet are arranged at the bottom,
  • aggregates or devices such as mixers and/or agitators, dispersing or homogenization devices
  • FIG. 2 is a view of the bottom of the base of the laboratory reactor.
  • FIG. 3 is an enlarged longitudinal cross-section through the base in the area of an placement foot according to the sectional line D-D in FIG. 2 .
  • a laboratory reactor marked 1 in its entirety, comprises a reactor or reaction vessel, marked 2 in its entirety, for accepting and processing substances, which shall be processed and/or mixed in a suitable manner or can react with each other, which in turn can occur via processing and/or measuring devices and aggregates, not shown in greater detail in the drawing, and which may be inserted into the reaction vessel 2 , for example, in the area of the lid 3 .
  • a device not shown in greater detail, for changing the pressure in the appropriately sealed reaction vessel 2 may be connected or potentially connected, for example a pump or preferably a vacuum pump.
  • Such devices may be fastened at a fastening rod 4 , allocated to the overall fastener of the laboratory reactor 1 , for example in an adjustable and/or detachable fashion, if such aggregates or devices are not engaging the reaction vessel or reactor vessel 2 from below.
  • the laboratory reactor 1 as a whole can be placed upon a support area and for this purpose it comprises four placement feet 6 at the bottom of its base 5 , shown particularly in FIG. 2 , facing said support area.
  • they are supported in an elastic or adjustable or movable fashion upwards or in the vertical direction against a return force or spring force and are provided or connected or in an effective connection to a weighing device in a manner to be described in the following such that the weight of the reactor or reaction vessel 2 and its content can be determined and monitored.
  • the material to be processed can be correctly dosed with regards to weight and one or more components can also be added subsequently with their weight portions being correct, with any changes in weight occurring in this context immediately being detected and monitored by the weighing device.
  • the placement feet 6 are here supported on the base 5 of the laboratory reactor 1 , with its bottom facing the support area.
  • FIG. 3 it is provided that a portion of the movable support of the placement feet 6 is in an effective connection to the weighing device, with the weighing device itself not being shown.
  • the placement feet 6 each impinge a lever 7 embodied as a spring, which is deflected by an increase of the weight force and thus a stronger displacement of the foot 6 into its support.
  • These spring-like levers 7 movable by the placement feet 6 , may be provided or cooperate with force-measuring sensors or measuring strips or Piezo-elements, not shown in greater detail, which are parts of a weighing device. This way, with increasing weight the motion of the foot 6 may deform the elastic lever 7 into the base 5 to a greater extent and transfer said deformation via the above-mentioned sensors to the weighing device.
  • the lever 7 embodied as a spring is protected at its bottom by a cover 8 and thus it cannot be activated unintentionally.
  • This cover 8 and the elastic lever 7 are here fastened and/or stretched by a screw 9 to the base 5 .
  • the force measuring sensors of all placement feet 6 can here be combined, in a manner not shown in greater detail, with a microprocessor or computer, so that all weight force—portions compensated by the individual placement feet 6 can be added to a total weight.
  • an operating unit 10 is discernible at a laboratory reactor 1 , which may also be embodied as a control and/or storage unit, and be detachably connected to the laboratory reactor 1 or a housing allocated thereto, and connected via radio frequency or a cable connection to drive parts or aggregates located in the laboratory reactor 1 or its housing.
  • the operating unit 10 can also be operated at a distance from the actual laboratory reactor 1 , if the laboratory reactor 1 shall be used at a position hard to access.
  • the agitator(s) and/or mixer(s) or processing aggregate(s), either engaging the reactor vessel 2 from above through a lid 3 or from below, may comprise torque detection, not shown in greater detail, which may particularly occur via the power draw of the drive engine of such a device or aggregate. Further, a speed control may be provided at an agitator and/or mixer or processing aggregate, with its setting may serve to determine the torque.
  • FIG. 1 it is discernible that the reactor or reaction vessel 2 is closed and this allows for the provision of a device for changing the pressure, i.e. a device for creating an overpressure or a vacuum, in order to allow influencing the reaction of the substance located inside the vessel 2 .
  • a device for changing the pressure i.e. a device for creating an overpressure or a vacuum
  • the laboratory reactor 1 with a reaction vessel 2 for accepting media or substances to be processed comprises devices or aggregates to process or mix media or components or also to measure them, which can engage the reaction or reactor vessel 2 from above or also from below.
  • the laboratory reactor 1 comprises placement feet 6 , which are supported in a movable or elastic fashion and which are connected to a weight measuring device or sensors allocated to a weight measuring device such that the weight of the substance to be processed or any change of weight can be determined without any expensive additional weighing processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Accessories For Mixers (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)

Abstract

A laboratory reactor (1) with a reaction vessel (2) for receiving media or substances to be processed has devices or units for processing or mixing media or components and for measuring, the devices or units being able to engage in the reaction vessel or reactor vessel (2) from above or below. On the lower side of the base (5), the laboratory reactor (1) has placement feet (6) which are mounted movably or flexibly and are connected to a weight measuring device or to sensors belonging to a weight-measuring device such that the weight of the product to be processed or a change in weight can be determined without complicated additional weighing operations.

Description

    BACKGROUND
  • The invention relates to a laboratory reactor with a reaction vessel, closed and connected to a device for changing the pressure, i.e. with a device for creating overpressure or a vacuum, to accept media to be processed and/or to be mixed and/or to be made reacting with each other or at least with one processing and/or measuring aggregate or mixing and/or agitating device engaging said vessel, as well as a holder for receiving said vessel, which has a base facing a support area.
  • Such laboratory reactors are known in multiple forms and different designs. Frequently they are designed in a modular fashion and serve to optimize and reproduce chemical reaction, mixing, dispersing, and/or homogenization processes on a laboratory scale. For example, the following processes can be performed thereby:
      • the production of crèmes, lotions, emulsions, and liposome-preparations of the pharmaceutical and cosmetic field,
      • the integration of solid matters, such as calcium carbonate, talcum, titanium dioxide, and other substances into liquid polymers,
      • the integration of additives and solid polymer compounds into mineral oils,
      • the grinding and defibration of solid matter and fibers in liquids and polymers.
  • Such laboratory reactions can frequently be adjusted by the user to the respective objective. Here, for example temperature measuring devices, agitators, dispersing devices, and/or thermostats can be used, and also be adjusted in various manners, such as program-controlled via computers and/or microprocessors. Here, single-walled and dual-walled vessel can be used with or without bottom drains made from a special glass or stainless steel, with generally the basic equipment includes a stand system for connecting on the one hand the vessel and on the other hand the arrangements, apparatuses, and measuring devices to be used. The connection for the devices is frequently embodied such that the processing and measuring devices can be mounted above the vessel so that they can engage the vessel from above.
  • Additionally, laboratory reactors are known in which a drive shaft for a mixing device is inserted into the vessel through the bottom.
  • In such laboratory reactors for the processing of substances, frequently importance is given to very precisely (defined) amount, which during the processing may change, if applicable, and which are to be filled either successively or also simultaneously, or which may change during processing with regards to their weight or due to chemical reactions, if for example a heating function is included.
  • In order to allow filling or refilling or gradually adding additional material during processing it had to be ensured in the past that such substances are added in precisely the correct amount, i.e. each of them had to be measured in advance. This is considered cumbersome and expensive.
  • SUMMARY
  • Therefore the object is to provide a laboratory reactor of the type defined at the outset, by which the filling, refilling, and/or adding can be performed in a simple and controlled fashion.
  • In order to attain this object the laboratory reactor defined at the outset is characterized such that on the bottom of the holder several placement feet are provided or connected or effectively fastened, in their operating position pointing upwards or in a vertical direction, supported in an elastic or adjustable or movable fashion against a return or spring force.
  • In this way it is possible, during the processing of substances, to determine changes of the amount to be processed, for example by way of evaporation, and to introduce substances or products, subsequently to be added, in their correct weight or amount without being required to separately dose the components to be added. Additionally, if necessary a constant monitoring of the weight of the processed mixture of substances is possible. Further, a very precise dosing of individual components of the mixture can occur during their filling process into an already installed reaction vessel.
  • It is particularly beneficial for a part of the movable support of the placement foot or feet to be effectively connected to a weighing device. Here, a simple design option is to render the mobility of the placement feet to be effective at a weighing or measuring device.
  • In a modified embodiment the placement foot or feet may comprise at least partially a spring-elastic material and include a transmission element to the weighing device based on the elasticity of the placement foot or placement feet.
  • It is particularly beneficial if several or, preferably, all placement feet are supported in an elastic or movable fashion and provided on or connected to a weighing device. This results in a particularly precise weighing of mixtures and components of mixtures.
  • Another modified version may provide that at least two placement feet or several or all placement feet are connected to each other mechanically. This is another way to impinge or control an appropriate weighing device.
  • The connection of two placement feet may show a distance between them and the support area or at least two support feet can be connected in one piece to form a wide support foot, which comprises or impinges a joint weighing device or two separate ones. In this way, the stability of the laboratory reactor can be improved and simultaneously the weighing function can be achieved. With regards to common laboratory reactors having several individual placement feet an embodiment is preferred, though, in which these several individual placement feet each cooperate with one weighing device, for example via appropriate sensors, such that even existing laboratory reactors can largely remain unchanged, but may be retrofitted with the respective movable and elastic placement feet comprising a weighing function.
  • A preferred embodiment may provide that the elastic or adjustable or movable placement feet impinge levers or rockers or end pieces, which cooperate with the weighing device or are in an effective connection therewith or alternatively comprise a weighing device.
  • The levers or rockers or end pieces, movable via the placement feet, may be provided with sensors for measuring force or with measuring strips or Piezo-elements as the components of a weighing device. This way, an appropriate weighing function can be realized within a minimum amount of space.
  • It is beneficial for the sensors for measuring forces of several or all placement feet to be combined with a microprocessor or a computer such that the weight forces compensated at the individual placement feet are added and/or averaged. This way, right from the start the user is provided with one weight statement and/or a total weight or its change can be displayed in a suitable fashion or be forwarded to a control device, which can react to the change of weight.
  • One embodiment of the laboratory reactor according to the invention may provide that it comprises an electronic storage for recipes, in which individual components of mixtures are stored, defined according to substance and weight, and thus the integrated weighing function can be processed menu controlled. This way, frequently repeated processing and mixing steps can be considerably automated and streamlined.
  • Another embodiment may provide that an operating, control, and/or storage unit is arranged at and connected to the laboratory reactor or a housing in a detachable fashion and is connected to the driving parts, located in the laboratory reactor or the housing, to the weighing device and/or additional aggregates by way of a radio or cable connection. This way, the user can also operate the laboratory reactor from a greater distance and/or read the various displays, which is advantageous for example when the laboratory reactor shall be operated under a protective cover, for example an exhaust, and the user still intends to perform operation functions.
  • The agitation and/or mixing device or processing aggregate of the laboratory reactor may provide a torque detection, which may particularly occur via the current draw of the drive motor. If applicable, if a speed control is provided, its setting may also be used to determine the torque. If the torque changes due to a change in viscosity, this may also be a reason to add one or more substances, with here it may be important that this occurs by a predetermined weight, which is easily possible in a simple fashion using the placement feet and the weighing device.
  • The device to change the pressure, i.e. to create an overpressure or preferably a vacuum in the reaction vessel, sealed appropriately tightly, may also be a pump, for example a vacuum pump, connected or able to be connected to the laboratory reactor or the reactor vessel. Thus, this device for changing the pressure may be allocated to the laboratory reactor regardless if said device is a direct part of the laboratory reactor or an independent, separate device. This may lead to a change of weights in another processing step of materials or substances in the laboratory reactor, which can be detected by the weighing device according to the invention and corrected, if necessary.
  • Primarily in combinations of individual or several of the above-described features and measures a laboratory reactor develops, in which the weight of the matter to be processed or made to react and any potential change in weight, either during processing or during the addition of other components, can immediately be recognized and detected and, if necessary, corrected or evaluated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following an exemplary embodiment of the invention is explained in greater detail using the drawing. It shows, in a partially schematic illustration:
  • FIG. 1 is a perspective view of a laboratory reactor according to the invention with a reaction vessel and a fastening rod for mounting processing and/or measuring aggregates or devices, such as mixers and/or agitators, dispersing or homogenization devices, with a fastening to the ground being provided, at which placement feet are arranged at the bottom,
  • FIG. 2 is a view of the bottom of the base of the laboratory reactor, and
  • FIG. 3 is an enlarged longitudinal cross-section through the base in the area of an placement foot according to the sectional line D-D in FIG. 2.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the exemplary embodiment a laboratory reactor, marked 1 in its entirety, comprises a reactor or reaction vessel, marked 2 in its entirety, for accepting and processing substances, which shall be processed and/or mixed in a suitable manner or can react with each other, which in turn can occur via processing and/or measuring devices and aggregates, not shown in greater detail in the drawing, and which may be inserted into the reaction vessel 2, for example, in the area of the lid 3. Alternatively, at or in the area of the lid 3 a device, not shown in greater detail, for changing the pressure in the appropriately sealed reaction vessel 2 may be connected or potentially connected, for example a pump or preferably a vacuum pump. Such devices may be fastened at a fastening rod 4, allocated to the overall fastener of the laboratory reactor 1, for example in an adjustable and/or detachable fashion, if such aggregates or devices are not engaging the reaction vessel or reactor vessel 2 from below.
  • In the exemplary embodiment according to FIG. 2 the laboratory reactor 1 as a whole can be placed upon a support area and for this purpose it comprises four placement feet 6 at the bottom of its base 5, shown particularly in FIG. 2, facing said support area. In the operating position according to FIG. 3, they are supported in an elastic or adjustable or movable fashion upwards or in the vertical direction against a return force or spring force and are provided or connected or in an effective connection to a weighing device in a manner to be described in the following such that the weight of the reactor or reaction vessel 2 and its content can be determined and monitored. Additionally the material to be processed can be correctly dosed with regards to weight and one or more components can also be added subsequently with their weight portions being correct, with any changes in weight occurring in this context immediately being detected and monitored by the weighing device.
  • The placement feet 6 are here supported on the base 5 of the laboratory reactor 1, with its bottom facing the support area.
  • According to FIG. 3 it is provided that a portion of the movable support of the placement feet 6 is in an effective connection to the weighing device, with the weighing device itself not being shown. Here, it is discernible that the placement feet 6 each impinge a lever 7 embodied as a spring, which is deflected by an increase of the weight force and thus a stronger displacement of the foot 6 into its support. These spring-like levers 7, movable by the placement feet 6, may be provided or cooperate with force-measuring sensors or measuring strips or Piezo-elements, not shown in greater detail, which are parts of a weighing device. This way, with increasing weight the motion of the foot 6 may deform the elastic lever 7 into the base 5 to a greater extent and transfer said deformation via the above-mentioned sensors to the weighing device.
  • Here, the lever 7 embodied as a spring is protected at its bottom by a cover 8 and thus it cannot be activated unintentionally. This cover 8 and the elastic lever 7 are here fastened and/or stretched by a screw 9 to the base 5.
  • The force measuring sensors of all placement feet 6 can here be combined, in a manner not shown in greater detail, with a microprocessor or computer, so that all weight force—portions compensated by the individual placement feet 6 can be added to a total weight.
  • In FIG. 1, an operating unit 10 is discernible at a laboratory reactor 1, which may also be embodied as a control and/or storage unit, and be detachably connected to the laboratory reactor 1 or a housing allocated thereto, and connected via radio frequency or a cable connection to drive parts or aggregates located in the laboratory reactor 1 or its housing. In this way, the operating unit 10 can also be operated at a distance from the actual laboratory reactor 1, if the laboratory reactor 1 shall be used at a position hard to access.
  • The agitator(s) and/or mixer(s) or processing aggregate(s), either engaging the reactor vessel 2 from above through a lid 3 or from below, may comprise torque detection, not shown in greater detail, which may particularly occur via the power draw of the drive engine of such a device or aggregate. Further, a speed control may be provided at an agitator and/or mixer or processing aggregate, with its setting may serve to determine the torque.
  • In FIG. 1 it is discernible that the reactor or reaction vessel 2 is closed and this allows for the provision of a device for changing the pressure, i.e. a device for creating an overpressure or a vacuum, in order to allow influencing the reaction of the substance located inside the vessel 2.
  • The laboratory reactor 1 with a reaction vessel 2 for accepting media or substances to be processed comprises devices or aggregates to process or mix media or components or also to measure them, which can engage the reaction or reactor vessel 2 from above or also from below. At the bottom of the base 5 the laboratory reactor 1 comprises placement feet 6, which are supported in a movable or elastic fashion and which are connected to a weight measuring device or sensors allocated to a weight measuring device such that the weight of the substance to be processed or any change of weight can be determined without any expensive additional weighing processes.

Claims (14)

1. A laboratory reactor (1) comprising a closed reaction vessel (2), connected to a device for changing pressure that is adapted to accept substances to be processed or to be mixed or to be made reacting with each other, at least one processing or measuring aggregate or agitator engaging said vessel (2), a holder for receiving the vessel (2), which has a base facing a support area, several placement feet (6) are provided at a bottom of the holder, supported elastically or adjustable or movable in an upward or vertical direction against a return force or spring force and a weighing device being provided or connected or effectively connected to the placement feet (6).
2. A laboratory reactor according to claim 1, wherein a portion of a movable support of the placement feet (6) is in an effective connection to the weighing device.
3. A laboratory reactor according to claim 1, wherein at least one of the placement feet (6) at least partially comprises a spring-elastic material and is provided with a transfer element connected to the weighing device, movable by an elasticity of the placement foot (6).
4. A laboratory reactor according to claim 1, wherein some of the placement feet (6) or all placement feet (6) are supported in an elastic or movable fashion and provided or connected or in an effective connection to the weighing device.
5. A laboratory reactor according to claim 1, wherein at least two of the placement feet (6) are mechanically connected to each other.
6. A laboratory reactor according to claim 5, wherein a connection between two of the placement feet (6) has a distance between them and the support area or at least of the two placement feet (6) are combined or connected in one piece to a wide support base, comprising or impinging two of the weighing devices.
7. A laboratory reactor according to claim 1, wherein the elastic or adjustable or movable support feet (6) impinge levers (7) or rockers or end pieces, which cooperate with the weighing devices or are connected thereto or are in an effective connection thereto.
8. A laboratory reactor according to claim 7, wherein the levers (7) or rockers or end pieces, movable by the placement feet (6), are provided with force measurement sensors or measuring strips or Piezo-elements as components of the weighing device.
9. A laboratory reactor according to claim 8, wherein the force measurement sensors combine several or all of the placement feet (6) to a microprocessor or computer in a manner such that weight forces compensated by the individual placement feet are at least one of added or averaged.
10. A laboratory reactor according to claim 1, wherein further comprising an electronic storage for recipes, in which individual components of components of mixtures defined according to their material and weight are stored and can be processed menu-controlled by way of integrated weighing functions.
11. A laboratory reactor according to claim 1, wherein an operating, control or storage unit (10) is provided and connected to the laboratory reactor (1) or a housing in a detachable fashion and connected to drive parts located in the laboratory reactor (1) and other aggregates via radio frequency or cable connection.
12. A laboratory reactor according to claim 1, wherein the agitator or mixer or processing aggregate comprises a torque detection function, which occurs via a power draw of a drive motor.
13. A laboratory reactor according to claim 1, wherein a torque control is provided at the agitator or mixer or the processing aggregate, that includes settings that determine the torque.
14. A laboratory reactor according to claim 1, wherein the device for changing the pressure, to create an overpressure or a vacuum in the laboratory vessel (2) upon it being sealed, is a pump that can be or is connected to the laboratory reactor (1) or the reaction vessel (2).
US13/000,833 2008-06-24 2009-05-13 Laboratory reactor with a reaction vessel Abandoned US20110116976A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008029900A DE102008029900B4 (en) 2008-06-24 2008-06-24 Laboratory reactor with a reaction vessel
DE102008029900.6 2008-06-24
PCT/EP2009/003383 WO2009156023A1 (en) 2008-06-24 2009-05-13 Laboratory reactor with a reaction vessel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/003383 A-371-Of-International WO2009156023A1 (en) 2008-06-24 2009-05-13 Laboratory reactor with a reaction vessel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/315,695 Continuation-In-Part US9417172B2 (en) 2008-06-24 2014-06-26 Laboratory reactor with a reaction vessel

Publications (1)

Publication Number Publication Date
US20110116976A1 true US20110116976A1 (en) 2011-05-19

Family

ID=40902895

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/000,833 Abandoned US20110116976A1 (en) 2008-06-24 2009-05-13 Laboratory reactor with a reaction vessel
US14/315,695 Active 2029-05-21 US9417172B2 (en) 2008-06-24 2014-06-26 Laboratory reactor with a reaction vessel

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/315,695 Active 2029-05-21 US9417172B2 (en) 2008-06-24 2014-06-26 Laboratory reactor with a reaction vessel

Country Status (5)

Country Link
US (2) US20110116976A1 (en)
EP (1) EP2291234B1 (en)
CN (1) CN102065990B (en)
DE (1) DE102008029900B4 (en)
WO (1) WO2009156023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014008547A1 (en) * 2012-07-10 2014-01-16 Esmartluggage Pty Ltd Improved luggage and weighing system for luggage
US20160123795A1 (en) * 2013-06-15 2016-05-05 Ika-Werke Gmbh & Co. Kg Laboratory stand with set-up feet for scales
CN105983384A (en) * 2015-02-28 2016-10-05 江苏康鹏农化有限公司 Pesticide producing reaction kettle of improved structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100417A (en) * 2019-03-19 2022-07-06 株式会社日立ハイテク Automatic analyzer
CN114835141B (en) * 2022-03-31 2023-08-04 贵州光瑞新能源科技有限公司 Preparation process and device of lithium hexafluorophosphate electrolyte

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284627A (en) * 1987-08-25 1994-02-08 Stranco, Inc. Polymer activation apparatus

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228714A1 (en) * 1982-07-31 1984-02-09 Saarberg + Dr. C. Otto Gesellschaft für Kohledruckvergasung mbH, 6620 Völklingen Arrangement for conveying solid materials to a despatching container under pressure
JPS6350311Y2 (en) * 1984-11-16 1988-12-23
CN2044066U (en) * 1988-05-11 1989-09-06 中国科学院计算技术研究所新技术发展公司 Electronic belt balance
DE8906487U1 (en) * 1988-06-04 1989-08-31 Sartorius GmbH, 3400 Göttingen Top-loading electronic scale
US4910024A (en) * 1988-07-05 1990-03-20 Micro Chemical, Inc. Method and apparatus for administering live bacteria as feed additives to livestock and poultry
CN2037471U (en) * 1988-09-20 1989-05-10 邓国良 Spring balance
JPH0726864B2 (en) * 1990-02-22 1995-03-29 株式会社ワイエムシィ Electronic stirrer with built-in magnetic stirrer
CN2088240U (en) * 1990-12-31 1991-11-06 王全龄 Balance for weighing persons in the bathroom and bedroom
DE4208368A1 (en) * 1992-03-16 1993-09-23 Braun Ag FORCE MEASURING DEVICE FOR HOUSEHOLD APPLIANCES
US5402834A (en) * 1992-11-25 1995-04-04 Merck & Co., Inc. Solution preparation system
US5261742A (en) * 1993-02-23 1993-11-16 Eastman Kodak Company Air-powered apparatus and method for mixing a liquefied sample and weighing the sample
KR0121130B1 (en) * 1994-10-27 1997-11-10 구자홍 Weighing method and apparatus for water in a refrigerator
DE29605403U1 (en) * 1996-03-24 1997-07-24 Saur, Dietrich, Dr., 55127 Mainz Device for the transmission of measurement data in gravimetric titration
IL117658A0 (en) * 1996-03-26 1996-07-23 Technion Res & Dev Foundation Weighing device and method
US20010011609A1 (en) * 1998-10-23 2001-08-09 James W. Rudolph Method and apparatus for measurement of weight during cvi/cvd process
DE10005920A1 (en) * 2000-02-10 2001-08-16 Vorwerk Co Interholding Food processor
US6797894B2 (en) * 2001-11-09 2004-09-28 Sunbeam Products, Inc. Weigh scale having unitary platform and load cell structures
US6838624B2 (en) * 2002-08-22 2005-01-04 Idt Technology Limited Weighing scale
DE102006011370A1 (en) * 2006-03-09 2007-09-20 Eppendorf Ag Device for mixing, in particular, laboratory vessel contents with a sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284627A (en) * 1987-08-25 1994-02-08 Stranco, Inc. Polymer activation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014008547A1 (en) * 2012-07-10 2014-01-16 Esmartluggage Pty Ltd Improved luggage and weighing system for luggage
US20160123795A1 (en) * 2013-06-15 2016-05-05 Ika-Werke Gmbh & Co. Kg Laboratory stand with set-up feet for scales
US10337910B2 (en) * 2013-06-15 2019-07-02 IKA—Werke Gmbh & Co. KG Laboratory stand with set-up feet for scales
CN105983384A (en) * 2015-02-28 2016-10-05 江苏康鹏农化有限公司 Pesticide producing reaction kettle of improved structure

Also Published As

Publication number Publication date
CN102065990A (en) 2011-05-18
US20140308180A1 (en) 2014-10-16
DE102008029900B4 (en) 2010-10-14
US9417172B2 (en) 2016-08-16
EP2291234B1 (en) 2019-05-01
WO2009156023A1 (en) 2009-12-30
DE102008029900A1 (en) 2010-02-25
EP2291234A1 (en) 2011-03-09
CN102065990B (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US9417172B2 (en) Laboratory reactor with a reaction vessel
CN102066886B (en) Magnetic stirrer with mounting feet
AU2004283491B2 (en) Apparatus for dispensing a plurality of fluids and container for use in the same
CN106943975A (en) A kind of flexible puddler packaged type reactor of high efficiency
CN210570981U (en) Electronic scale with stirring function
Kaiser et al. Power input measurements in stirred bioreactors at laboratory scale
CN101274240A (en) Precise chemical reagents preparation instrument
US10337910B2 (en) Laboratory stand with set-up feet for scales
CN205994363U (en) Food processor
KR102501003B1 (en) Apparatus of Mixing for Producing Cosmetics and System by that
CN105919463A (en) Food processing machine
CN208254684U (en) Pressure sensor assembly and the equipment for measuring soil sample Atterberg Limit
Gerson et al. Quantitative measurements of mixing intensity in shake-flasks and stirred tank reactors: use of the Mixmeter, a mixing process analyzer
SE512126C2 (en) Process for determining the amount / activity is catalysed before or in connection with bleaching of cellulose fibers preferably contained in a pulp suspension.
CN212855552U (en) Temperature-control magnetic stirrer capable of measuring weight of medicine
SE506420C2 (en) Method and apparatus for measuring the content of chemicals during bleaching
CN209771885U (en) A dispensing device for clinical pharmacy
CN214585183U (en) Card type moisture tester with data representation
CN209296613U (en) Portable instrument for analyzing water content
CN214159320U (en) Agitator with measurement function
CN218854026U (en) A join in marriage fluid reservoir for feed processing
ES2221739T3 (en) PROCEDURE FOR OBTAINING RESINS WITH DEFINED MEDIUM MOLECULAR WEIGHT AND WITH DEFINED VISCOSITY.
CN214584120U (en) Sampling device for food safety monitoring
CN218250156U (en) High-precision high-humidity generating device
CN216062813U (en) Digital display stirrer capable of measuring viscosity

Legal Events

Date Code Title Description
AS Assignment

Owner name: IKA-WERKE GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZELLER, ANDREAS;EBLE, ERHARD;SIGNING DATES FROM 20101213 TO 20101217;REEL/FRAME:025604/0550

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION