US20110110372A1 - Systems and methods to perform hybrid switching and routing functions - Google Patents
Systems and methods to perform hybrid switching and routing functions Download PDFInfo
- Publication number
- US20110110372A1 US20110110372A1 US13/006,985 US201113006985A US2011110372A1 US 20110110372 A1 US20110110372 A1 US 20110110372A1 US 201113006985 A US201113006985 A US 201113006985A US 2011110372 A1 US2011110372 A1 US 2011110372A1
- Authority
- US
- United States
- Prior art keywords
- router
- data
- network device
- downstream
- address
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/60—Router architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/66—Layer 2 routing, e.g. in Ethernet based MAN's
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/30—Peripheral units, e.g. input or output ports
Definitions
- the present invention relates generally to data processing and, more particularly, to systems and methods for aggregating large numbers of devices.
- An issue that is beginning to arise in network environments involves the answer to the question of how to connect a large number of customer devices to a single point.
- the issue is particularly troublesome when the number of customer devices becomes quite large, such as tens of thousands or hundreds of thousands or more customer devices.
- FIG. 1 is a diagram of one existing system 100 for connecting a large number of customer devices.
- System 100 includes customer devices (CDs) 110 - 1 through 110 -N (collectively referred to as customer devices 110 ) connected to device 120 via switch 130 and router 140 .
- Customer devices 110 may include personal computers.
- Device 120 may include a personal computer or a network device, such as a router or switch.
- Switch 130 and router 140 may include conventional network devices.
- FIG. 2 is a simplified diagram of an IP packet 200 .
- IP packet 200 includes payload 210 , source IP address (SA IP ) 220 , destination IP address (DA IP ) 230 , source media access control (MAC) address (S MAC ) 240 , and destination MAC address (D MAC ) 250 .
- Payload 210 includes the data to be transmitted by customer device 110 - 1 .
- Source IP address 220 includes the IP address associated with the source device (i.e., customer device 110 - 1 ).
- Destination IP address 230 includes the IP address associated with the destination device (i.e., device 120 ).
- Source MAC address 240 includes the MAC address associated with customer device 110 - 1 .
- Destination MAC address 250 includes the MAC address associated with router 140 .
- switch 130 receives and forwards it to router 140 using destination MAC address 250 .
- router 140 reads destination IP address 230 to determine how to route the packet.
- Router 140 looks up the MAC address of device 120 using, for example, a MAC address table.
- Router 140 replaces its MAC address in destination MAC address 250 with the MAC address of device 120 .
- Router 140 also replaces the MAC address of customer device 110 - 1 in source MAC address 240 with its own MAC address (i.e., the MAC address of router 140 ).
- Payload 210 , source IP address 220 , and destination IP address 230 remain the same.
- Router 140 then transmits the packet to device 120 .
- FIG. 3 is a simplified diagram of an IP packet 300 .
- IP packet 300 includes destination MAC address (D MAC ) 310 , source MAC address (S MAC ) 320 , destination IP address (DA IP ) 330 , source IP address (SA IP ) 340 , and payload 350 .
- Destination MAC address 310 includes the MAC address associated with router 140 .
- Source MAC address 320 includes the MAC address associated with the source device (i.e., device 120 ).
- Destination IP address 330 includes the IP address associated with the destination device (i.e., customer device 110 - 1 ).
- Source IP address 340 includes the IP address associated with device 120 .
- Payload 350 includes the data to be transmitted to customer device 110 - 1 .
- router 140 when device 120 transmits the packet, router 140 receives the packet and reads destination IP address 330 to determine how to route the packet. Router 140 then looks up the MAC address of customer device 110 - 1 using, for example, a MAC address table. Router 140 replaces its MAC address in destination MAC address 310 with the MAC address associated with customer device 110 - 1 . Router 140 also replaces the MAC address associated with device 120 in source MAC address 320 with its own MAC address (i.e., the MAC address of router 140 ). Payload 350 , source IP address 340 , and destination IP address 330 remain the same. Router 140 then transmits the packet to switch 130 . Switch 130 receives and forwards the packet to customer device 110 - 1 using destination MAC address 310 .
- the size of the MAC address table in router 140 becomes unmanageable. For example, when the number of customer devices 110 reaches one hundred thousand or more, the MAC address table requires one hundred thousand or more entries, making it difficult to build. As a result, system 100 is ineffective for aggregating large numbers of customer devices 110 .
- FIG. 4 is a diagram of another existing system 400 for connecting a large number of customer devices.
- System 400 includes customer devices (CDs) 410 - 1 through 410 -N (collectively referred to as customer devices 410 ) connected to device 420 via routers 430 - 1 through 430 -M (collectively referred to as routers 430 ) and router 440 .
- Customer devices 410 may include any type of customer device, such as personal computers.
- Device 420 may include a personal computer or a network device, such as a router or switch.
- Routers 430 and 440 may include conventional network devices.
- Routers 430 and 440 do not scale well. For example, in some implementations both routers 430 and 440 are capable of handling approximately one thousand IP addresses. In order to connect a large number of customer devices 410 , such as one hundred thousand customer devices 410 , it would be necessary to connect approximately one hundred routers 430 to router 440 , thereby creating a complex connection of devices.
- a system aggregates connections to multiple customer devices.
- the system receives data, performs switching functions on the data when the data is to be transmitted in a first direction, performs routing functions on the data when the data is to be transmitted in a second direction, and transmits the data in the first or second direction.
- a system that aggregates connections to multiple customer devices.
- the system includes a network device and a hybrid device.
- the hybrid device connects to the customer devices and the network device.
- the hybrid device is configured to function as a switch when transmitting data in an upstream direction from the customer devices to the network device and function as a router when transmitting data in a downstream direction from the network device to the customer devices.
- a hybrid device includes multiple switch/router modules.
- Each of the switch/router modules includes switch logic configured to process data transmitted in a first direction as a switch, and router logic configured to process data transmitted in a second direction as a router.
- a switch/router module is connected between a group of communication devices and a network device.
- the switch/router module includes switch logic configured to function as a switch when transmitting data in an upstream direction from the communication devices to the network device, and router logic configured to function as a router when transmitting data in a downstream direction from the network device to the communication devices.
- a first network device connects between multiple communication devices and a second network device.
- the first network device includes multiple switch/router modules, where each of the switch/router modules connects to a group of the communication devices.
- Each of the switch/router modules includes switch logic and router logic.
- the switch logic is configured to perform layer 2 switching on data transmitted in a first direction from the communication devices to the second network device.
- the switch logic receives data for transmission in the first direction
- the switch logic is configured to identify where to forward the data and forward the data without modifying the data.
- the router logic is configured to perform layer 3 switching on data transmitted in a second direction from the second network device to the communication devices.
- the router logic When the router logic receives data for transmission in the second direction, the router logic is configured to read a destination IP address associated with the data to determine how to route the data, identify a destination MAC address associated with a destination of the data, modify the data to include the identified destination MAC address, and forward the modified data based on the identified destination MAC address.
- FIG. 1 is a block diagram of an existing system for connecting a large number of customer devices
- FIG. 2 is a simplified diagram of an IP packet
- FIG. 3 is a simplified diagram of another IP packet
- FIG. 4 is a block diagram of another existing system for connecting a large number of customer devices
- FIG. 5 is an exemplary diagram of a system in which systems and methods consistent with the principles of the invention may be implemented
- FIG. 6 is an exemplary diagram of the hybrid device of FIG. 5 according to an implementation consistent with the principles of the invention.
- FIG. 7 is an exemplary diagram of a switch/router module of FIG. 6 according to an implementation consistent with the principles of the invention.
- FIG. 8 is a flowchart of exemplary processing within the system of FIG. 5 for packets transmitted in the upstream direction according to an implementation consistent with the principles of the invention
- FIG. 9 is an exemplary simplified diagram of a packet according to the implementation of FIG. 8 ;
- FIG. 10 is a flowchart of exemplary processing within the system of FIG. 5 for packets transmitted in the downstream direction according to an implementation consistent with the principles of the invention.
- FIG. 11 is an exemplary simplified diagram of a packet according to the implementation of FIG. 10 .
- hybrid device that is capable of functioning as a switch for traffic flow in one direction and a router for traffic flow in another direction.
- the hybrid device may provide layer 2 switching for traffic flow in the one direction and layer 3 switching for traffic flow in the other direction.
- the hybrid device facilitates the aggregation of large numbers of customer devices to a signal point.
- FIG. 5 is a block diagram illustrating an exemplary system 500 in which systems and methods consistent with the principles of the invention may be implemented.
- System 500 may include customer devices (CDs) 510 - 1 through 510 -N (collectively referred to as customer devices 510 ) connected to device 520 via router 530 and hybrid device 540 . While N customer devices 510 and a single device 520 , router 530 , and hybrid device 540 are shown in FIG. 5 , there may be more of these devices in practice.
- CDs customer devices
- N customer devices 510 and a single device 520 , router 530 , and hybrid device 540 are shown in FIG. 5 , there may be more of these devices in practice.
- Connections between customer devices 510 , device 520 , router 530 , and hybrid device 540 may be made directly (e.g., point-to-point) or indirectly (e.g., via one or more other devices and/or networks) via wired, wireless, optical connections, other types of connections, or combinations of these.
- Customer devices 510 may include wired and/or wireless communication devices, such as personal computers, cable modems, personal digital assistants, and wireless telephone devices. Each of customer devices 510 shown in FIG. 5 may include one or more physical and/or virtual communication devices (e.g., 2400 communication devices). Device 520 may also include a customer device, similar to customer devices 510 , or a network device, such as a router or switch. Router 530 may include a conventional router that routes packets along a path from a source to a destination.
- Hybrid device 540 may include a network device that provides switching functions (e.g., layer 2 switching) for traffic in one direction and routing functions (e.g., layer 3 switching) for traffic in another direction.
- FIG. 6 is an exemplary diagram of hybrid device 540 according to an implementation consistent with the principles of the invention.
- Hybrid device 540 may include one or more switch/router (SW/R) modules 610 - 1 through 610 -N (collectively referred to as switch/router modules 610 ).
- SW/R switch/router
- each of switch/router modules 610 corresponds to one of customer devices 510 , which, as described above, may include multiple communication devices. In other implementations, there may be a different association of switch/router modules 610 to customer devices 510 .
- Switch/router modules 610 may process packets transmitted between customer devices 510 and router 530 .
- FIG. 7 is an exemplary diagram of a switch/router module, such as switch/router module 610 - 1 , according to an implementation consistent with the principles of the invention.
- Switch/router modules 610 - 2 through 610 -N may be configured similarly.
- Switch/router module 610 - 1 may include switch logic 710 and router logic 720 .
- Switch logic 710 may include logic that functions as a switch when transmitting packets in the upstream direction (i.e., in the direction from customer devices 510 to router 530 ).
- Router logic 720 may include logic that functions as a router when transmitting packets in the downstream direction (i.e., in the direction from router 530 to customer devices 510 ).
- FIG. 8 is a flowchart of exemplary processing within system 500 for packets transmitted in the upstream direction according to an implementation consistent with the principles of the invention.
- Processing may begin with a customer device “A,” such as customer device 510 - 1 , desiring to transmit a packet to a destination device “X” (e.g., device 520 ).
- Customer device 510 - 1 may generate a request for an out-of-switch/router-subnet address (act 810 ).
- customer device 510 - 1 may use the address resolution protocol (ARP) to obtain the MAC address of the device that is responsible for sending packets outside of the subnet/connected devices of customer device side of switch/router 610 - 1 .
- ARP address resolution protocol
- router “R” e.g., router 530
- router 530 is the device responsible for sending packets outside of the subnet.
- FIG. 9 is an exemplary simplified diagram of a packet according to this implementation.
- the packet may include payload 910 , source IP address (SA IP ) 920 , destination IP address (DA IP ) 930 , source MAC address (S MAC ) 940 , and destination MAC address (D MAC ) 950 .
- Payload 910 may include the data that customer device 510 - 1 desires to send.
- Source IP address 920 may include the IP address associated with customer device 510 - 1 .
- Destination IP address 930 may include the IP address associated with device 520 .
- Source MAC address 940 may include the MAC address associated with customer device 510 - 1 .
- Destination MAC address 950 may include the MAC address associated with router 530 , which it received in the reply to its request.
- customer device 510 - 1 may transmit the packet to hybrid device 540 (act 830 ).
- Hybrid device 540 may receive the packet and perform layer 2 switching (act 840 ).
- switch logic 710 ( FIG. 7 ) of hybrid device 540 may identify where to send the packet and pass the packet onto router 530 like a switch (act 850 ).
- Router 530 may receive the packet and process it, as necessary, for transmission to its destination (e.g., device 520 ) (act 860 ). For example, router 530 may read destination IP address 930 to determine how to route the packet. Router 530 may then look up the MAC address of device 520 using, for example, a MAC address table. Router 530 replaces its MAC address in destination MAC address 950 with the MAC address associated with device 520 . Router 530 also replaces the MAC address associated with customer device 510 - 1 in source MAC address 940 with its own MAC address (i.e., the MAC address of router 530 ). Payload 910 , source IP address 920 , and destination IP address 930 may remain the same. Router 530 may then transmit the packet toward device 520 .
- Router 530 may then transmit the packet toward device 520 .
- FIG. 10 is a flowchart of exemplary processing within system 500 for packets transmitted in the downstream direction according to an implementation consistent with the principles of the invention. Processing may begin with a device “X” (e.g., device 520 ) desiring to transmit a packet to a customer device “A,” such as customer device 510 - 1 .
- FIG. 11 is an exemplary simplified diagram of a packet according to this implementation. The packet may include destination MAC address (D MAC ) 1110 , source MAC address (S MAC ) 1120 , destination IP address (DA IP ) 1130 , source IP address (SA IP ) 1140 , and payload 1150 .
- D MAC destination MAC address
- S MAC source MAC address
- DA IP destination IP address
- SA IP source IP address
- Destination MAC address 1110 may include the MAC address associated with router 530 (or another device that connects to router 530 ).
- Source MAC address 1120 may include the MAC address associated with device 520 .
- Destination IP address 1130 may include the IP address associated with customer device 510 - 1 .
- Source IP address 1140 may include the IP address associated with device 520 .
- Payload 1150 may include the data that device 520 desires to send.
- device 520 may transmit the packet, which is received by router 530 (act 1010 ).
- Router 530 may process the packet and forward it to hybrid device 540 (act 1020 ). For example, router 530 may read destination IP address 1130 to determine how to route the packet. Router 530 then looks up the MAC address of router 720 (within hybrid device 540 ) that serves customer device 110 - 1 using, for example, a MAC address table. Router 530 may replace its MAC address in destination MAC address 1110 with the MAC address of router 720 . Router 530 may also replace the MAC address of device 520 in source MAC address 1120 with its own MAC address (i.e., the MAC address of router 530 ). Payload 1150 , source IP address 1140 , and destination IP address 1130 may remain the same. Router 530 may then transmit the packet to router 720 within hybrid device 540 .
- Router 720 may receive the packet and perform layer 3 switching (act 1030 ). For example, router 720 may read destination IP address 1130 to determine how to route the packet. Router 720 then looks up the MAC address of customer device 510 - 1 using, for example, a MAC address table. Router 720 may replace its MAC address in destination MAC address 1110 with the MAC address of customer device 510 - 1 . Router 530 may also replace the MAC address of router 530 in source MAC address 1120 with its own MAC address (i.e., the MAC address of router 720 ). Payload 1150 , source IP address 1140 , and destination IP address 1130 may remain the same. Router 720 may then transmit the packet to client device 510 - 1 (act 1040 ).
- the hybrid device functions as a switch that may perform layer 2 switching on packets it forwards in an upstream direction and functions as a router that may perform layer 3 switching on packets it forwards in a downstream direction.
- system 500 has been described as including a router 530 connected to hybrid device 540 .
- router 530 may be replaced with a switch.
- device 520 would need to have knowledge of numerous routers (e.g., routers 720 of hybrid device 540 ) instead of a single router (i.e., router 530 ).
- logic that performs one or more functions.
- This logic may include hardware, such as an application specific integrated circuit, software, or a combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
A system aggregates connections to multiple customer devices. The system receives data, performs switching functions on the data when the data is to be transmitted in a first direction, performs routing functions on the data when the data is to be transmitted in a second direction, and transmits the data in the first or second direction.
Description
- This application claims priority under 35 U.S.C. §119 based on U.S. Provisional Application No. 60/475,901, filed Jun. 5, 2003, the disclosure of which is incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates generally to data processing and, more particularly, to systems and methods for aggregating large numbers of devices.
- 2. Description of Related Art
- An issue that is beginning to arise in network environments involves the answer to the question of how to connect a large number of customer devices to a single point. The issue is particularly troublesome when the number of customer devices becomes quite large, such as tens of thousands or hundreds of thousands or more customer devices.
- Some existing systems address this issue.
FIG. 1 is a diagram of one existingsystem 100 for connecting a large number of customer devices.System 100 includes customer devices (CDs) 110-1 through 110-N (collectively referred to as customer devices 110) connected todevice 120 viaswitch 130 androuter 140.Customer devices 110 may include personal computers.Device 120 may include a personal computer or a network device, such as a router or switch. Switch 130 androuter 140 may include conventional network devices. - When a customer device, such as customer device 110-1, sends a packet to
device 120, customer device 110-1 may generate an Internet Protocol (IP) packet.FIG. 2 is a simplified diagram of anIP packet 200.IP packet 200 includespayload 210, source IP address (SAIP) 220, destination IP address (DAIP) 230, source media access control (MAC) address (SMAC) 240, and destination MAC address (DMAC) 250.Payload 210 includes the data to be transmitted by customer device 110-1.Source IP address 220 includes the IP address associated with the source device (i.e., customer device 110-1).Destination IP address 230 includes the IP address associated with the destination device (i.e., device 120).Source MAC address 240 includes the MAC address associated with customer device 110-1.Destination MAC address 250 includes the MAC address associated withrouter 140. - Returning to
FIG. 1 , when customer device 110-1 transmits the packet,switch 130 receives and forwards it torouter 140 usingdestination MAC address 250. Whenrouter 140 receives the packet,router 140 readsdestination IP address 230 to determine how to route the packet.Router 140 then looks up the MAC address ofdevice 120 using, for example, a MAC address table.Router 140 replaces its MAC address indestination MAC address 250 with the MAC address ofdevice 120.Router 140 also replaces the MAC address of customer device 110-1 insource MAC address 240 with its own MAC address (i.e., the MAC address of router 140).Payload 210,source IP address 220, anddestination IP address 230 remain the same.Router 140 then transmits the packet todevice 120. - In the opposite direction, when
device 120 sends a packet to a customer device, such as customer device 110-1,device 120 may generate an Internet Protocol (IP) packet.FIG. 3 is a simplified diagram of anIP packet 300.IP packet 300 includes destination MAC address (DMAC) 310, source MAC address (SMAC) 320, destination IP address (DAIP) 330, source IP address (SAIP) 340, andpayload 350.Destination MAC address 310 includes the MAC address associated withrouter 140.Source MAC address 320 includes the MAC address associated with the source device (i.e., device 120).Destination IP address 330 includes the IP address associated with the destination device (i.e., customer device 110-1).Source IP address 340 includes the IP address associated withdevice 120.Payload 350 includes the data to be transmitted to customer device 110-1. - Returning to
FIG. 1 , whendevice 120 transmits the packet,router 140 receives the packet and readsdestination IP address 330 to determine how to route the packet.Router 140 then looks up the MAC address of customer device 110-1 using, for example, a MAC address table.Router 140 replaces its MAC address indestination MAC address 310 with the MAC address associated with customer device 110-1.Router 140 also replaces the MAC address associated withdevice 120 insource MAC address 320 with its own MAC address (i.e., the MAC address of router 140).Payload 350,source IP address 340, anddestination IP address 330 remain the same.Router 140 then transmits the packet to switch 130.Switch 130 receives and forwards the packet to customer device 110-1 usingdestination MAC address 310. - When there is a large number of
customer devices 110 connected to router 140 (via switch 130), the size of the MAC address table inrouter 140 becomes unmanageable. For example, when the number ofcustomer devices 110 reaches one hundred thousand or more, the MAC address table requires one hundred thousand or more entries, making it difficult to build. As a result,system 100 is ineffective for aggregating large numbers ofcustomer devices 110. -
FIG. 4 is a diagram of another existing system 400 for connecting a large number of customer devices. System 400 includes customer devices (CDs) 410-1 through 410-N (collectively referred to as customer devices 410) connected to device 420 via routers 430-1 through 430-M (collectively referred to as routers 430) and router 440. Customer devices 410 may include any type of customer device, such as personal computers. Device 420 may include a personal computer or a network device, such as a router or switch. Routers 430 and 440 may include conventional network devices. - Routers 430 and 440 do not scale well. For example, in some implementations both routers 430 and 440 are capable of handling approximately one thousand IP addresses. In order to connect a large number of customer devices 410, such as one hundred thousand customer devices 410, it would be necessary to connect approximately one hundred routers 430 to router 440, thereby creating a complex connection of devices.
- As a result, there is a need for mechanisms to facilitate connection of large numbers of customer devices to a single point.
- Systems and methods consistent with the principles of the invention address this and other needs by providing a hybrid device that facilitates connection of large numbers of devices by functioning as a switch in one direction and a router in another direction.
- According to one aspect consistent with the principles of the invention, a system aggregates connections to multiple customer devices. The system receives data, performs switching functions on the data when the data is to be transmitted in a first direction, performs routing functions on the data when the data is to be transmitted in a second direction, and transmits the data in the first or second direction.
- According to another aspect, a system that aggregates connections to multiple customer devices is provided. The system includes a network device and a hybrid device. The hybrid device connects to the customer devices and the network device. The hybrid device is configured to function as a switch when transmitting data in an upstream direction from the customer devices to the network device and function as a router when transmitting data in a downstream direction from the network device to the customer devices.
- According to yet another aspect, a hybrid device includes multiple switch/router modules. Each of the switch/router modules includes switch logic configured to process data transmitted in a first direction as a switch, and router logic configured to process data transmitted in a second direction as a router.
- According to a further aspect, a switch/router module is connected between a group of communication devices and a network device. The switch/router module includes switch logic configured to function as a switch when transmitting data in an upstream direction from the communication devices to the network device, and router logic configured to function as a router when transmitting data in a downstream direction from the network device to the communication devices.
- According to another aspect, a first network device connects between multiple communication devices and a second network device. The first network device includes multiple switch/router modules, where each of the switch/router modules connects to a group of the communication devices. Each of the switch/router modules includes switch logic and router logic. The switch logic is configured to perform
layer 2 switching on data transmitted in a first direction from the communication devices to the second network device. When the switch logic receives data for transmission in the first direction, the switch logic is configured to identify where to forward the data and forward the data without modifying the data. The router logic is configured to performlayer 3 switching on data transmitted in a second direction from the second network device to the communication devices. When the router logic receives data for transmission in the second direction, the router logic is configured to read a destination IP address associated with the data to determine how to route the data, identify a destination MAC address associated with a destination of the data, modify the data to include the identified destination MAC address, and forward the modified data based on the identified destination MAC address. - The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment of the invention and, together with the description, explain the invention. In the drawings,
-
FIG. 1 is a block diagram of an existing system for connecting a large number of customer devices; -
FIG. 2 is a simplified diagram of an IP packet; -
FIG. 3 is a simplified diagram of another IP packet; -
FIG. 4 is a block diagram of another existing system for connecting a large number of customer devices; -
FIG. 5 is an exemplary diagram of a system in which systems and methods consistent with the principles of the invention may be implemented; -
FIG. 6 is an exemplary diagram of the hybrid device ofFIG. 5 according to an implementation consistent with the principles of the invention; -
FIG. 7 is an exemplary diagram of a switch/router module ofFIG. 6 according to an implementation consistent with the principles of the invention; -
FIG. 8 is a flowchart of exemplary processing within the system ofFIG. 5 for packets transmitted in the upstream direction according to an implementation consistent with the principles of the invention; -
FIG. 9 is an exemplary simplified diagram of a packet according to the implementation ofFIG. 8 ; -
FIG. 10 is a flowchart of exemplary processing within the system ofFIG. 5 for packets transmitted in the downstream direction according to an implementation consistent with the principles of the invention; and -
FIG. 11 is an exemplary simplified diagram of a packet according to the implementation ofFIG. 10 . - The following detailed description of the invention refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims and equivalents.
- Systems and methods consistent with principles of the invention provide a hybrid device that is capable of functioning as a switch for traffic flow in one direction and a router for traffic flow in another direction. In one implementation, the hybrid device may provide
layer 2 switching for traffic flow in the one direction andlayer 3 switching for traffic flow in the other direction. The hybrid device facilitates the aggregation of large numbers of customer devices to a signal point. - While the description to follow will focus on the processing of packets, systems and methods consistent with the principles of the invention are not so limited. In fact, systems and methods consistent with the principles of the invention may operate upon any form of data, including packet and non-packet data.
-
FIG. 5 is a block diagram illustrating an exemplary system 500 in which systems and methods consistent with the principles of the invention may be implemented. System 500 may include customer devices (CDs) 510-1 through 510-N (collectively referred to as customer devices 510) connected to device 520 viarouter 530 andhybrid device 540. WhileN customer devices 510 and a single device 520,router 530, andhybrid device 540 are shown inFIG. 5 , there may be more of these devices in practice. Connections betweencustomer devices 510, device 520,router 530, andhybrid device 540 may be made directly (e.g., point-to-point) or indirectly (e.g., via one or more other devices and/or networks) via wired, wireless, optical connections, other types of connections, or combinations of these. -
Customer devices 510 may include wired and/or wireless communication devices, such as personal computers, cable modems, personal digital assistants, and wireless telephone devices. Each ofcustomer devices 510 shown inFIG. 5 may include one or more physical and/or virtual communication devices (e.g., 2400 communication devices). Device 520 may also include a customer device, similar tocustomer devices 510, or a network device, such as a router or switch.Router 530 may include a conventional router that routes packets along a path from a source to a destination. -
Hybrid device 540 may include a network device that provides switching functions (e.g.,layer 2 switching) for traffic in one direction and routing functions (e.g.,layer 3 switching) for traffic in another direction.FIG. 6 is an exemplary diagram ofhybrid device 540 according to an implementation consistent with the principles of the invention.Hybrid device 540 may include one or more switch/router (SW/R) modules 610-1 through 610-N (collectively referred to as switch/router modules 610). In one implementation, each of switch/router modules 610 corresponds to one ofcustomer devices 510, which, as described above, may include multiple communication devices. In other implementations, there may be a different association of switch/router modules 610 tocustomer devices 510. Switch/router modules 610 may process packets transmitted betweencustomer devices 510 androuter 530. -
FIG. 7 is an exemplary diagram of a switch/router module, such as switch/router module 610-1, according to an implementation consistent with the principles of the invention. Switch/router modules 610-2 through 610-N may be configured similarly. Switch/router module 610-1 may includeswitch logic 710 androuter logic 720.Switch logic 710 may include logic that functions as a switch when transmitting packets in the upstream direction (i.e., in the direction fromcustomer devices 510 to router 530).Router logic 720 may include logic that functions as a router when transmitting packets in the downstream direction (i.e., in the direction fromrouter 530 to customer devices 510). -
FIG. 8 is a flowchart of exemplary processing within system 500 for packets transmitted in the upstream direction according to an implementation consistent with the principles of the invention. Processing may begin with a customer device “A,” such as customer device 510-1, desiring to transmit a packet to a destination device “X” (e.g., device 520). Customer device 510-1 may generate a request for an out-of-switch/router-subnet address (act 810). For example, customer device 510-1 may use the address resolution protocol (ARP) to obtain the MAC address of the device that is responsible for sending packets outside of the subnet/connected devices of customer device side of switch/router 610-1. In this case, assume that router “R” (e.g., router 530) is the device responsible for sending packets outside of the subnet. - Customer device 510-1 may receive a reply to its request, which may, in this case, contain the MAC address of router 530 (act 820). Customer device 510-1 may then populate the packet.
FIG. 9 is an exemplary simplified diagram of a packet according to this implementation. The packet may includepayload 910, source IP address (SAIP) 920, destination IP address (DAIP) 930, source MAC address (SMAC) 940, and destination MAC address (DMAC) 950.Payload 910 may include the data that customer device 510-1 desires to send.Source IP address 920 may include the IP address associated with customer device 510-1.Destination IP address 930 may include the IP address associated with device 520.Source MAC address 940 may include the MAC address associated with customer device 510-1.Destination MAC address 950 may include the MAC address associated withrouter 530, which it received in the reply to its request. - Returning to
FIG. 8 , customer device 510-1 may transmit the packet to hybrid device 540 (act 830).Hybrid device 540 may receive the packet and performlayer 2 switching (act 840). For example, switch logic 710 (FIG. 7 ) ofhybrid device 540 may identify where to send the packet and pass the packet ontorouter 530 like a switch (act 850). -
Router 530 may receive the packet and process it, as necessary, for transmission to its destination (e.g., device 520) (act 860). For example,router 530 may readdestination IP address 930 to determine how to route the packet.Router 530 may then look up the MAC address of device 520 using, for example, a MAC address table.Router 530 replaces its MAC address indestination MAC address 950 with the MAC address associated with device 520.Router 530 also replaces the MAC address associated with customer device 510-1 insource MAC address 940 with its own MAC address (i.e., the MAC address of router 530).Payload 910,source IP address 920, anddestination IP address 930 may remain the same.Router 530 may then transmit the packet toward device 520. -
FIG. 10 is a flowchart of exemplary processing within system 500 for packets transmitted in the downstream direction according to an implementation consistent with the principles of the invention. Processing may begin with a device “X” (e.g., device 520) desiring to transmit a packet to a customer device “A,” such as customer device 510-1.FIG. 11 is an exemplary simplified diagram of a packet according to this implementation. The packet may include destination MAC address (DMAC) 1110, source MAC address (SMAC) 1120, destination IP address (DAIP) 1130, source IP address (SAIP) 1140, andpayload 1150.Destination MAC address 1110 may include the MAC address associated with router 530 (or another device that connects to router 530).Source MAC address 1120 may include the MAC address associated with device 520.Destination IP address 1130 may include the IP address associated with customer device 510-1.Source IP address 1140 may include the IP address associated with device 520.Payload 1150 may include the data that device 520 desires to send. - Returning to
FIG. 10 , device 520 may transmit the packet, which is received by router 530 (act 1010).Router 530 may process the packet and forward it to hybrid device 540 (act 1020). For example,router 530 may readdestination IP address 1130 to determine how to route the packet.Router 530 then looks up the MAC address of router 720 (within hybrid device 540) that serves customer device 110-1 using, for example, a MAC address table.Router 530 may replace its MAC address indestination MAC address 1110 with the MAC address ofrouter 720.Router 530 may also replace the MAC address of device 520 insource MAC address 1120 with its own MAC address (i.e., the MAC address of router 530).Payload 1150,source IP address 1140, anddestination IP address 1130 may remain the same.Router 530 may then transmit the packet torouter 720 withinhybrid device 540. -
Router 720 may receive the packet and performlayer 3 switching (act 1030). For example,router 720 may readdestination IP address 1130 to determine how to route the packet.Router 720 then looks up the MAC address of customer device 510-1 using, for example, a MAC address table.Router 720 may replace its MAC address indestination MAC address 1110 with the MAC address of customer device 510-1.Router 530 may also replace the MAC address ofrouter 530 insource MAC address 1120 with its own MAC address (i.e., the MAC address of router 720).Payload 1150,source IP address 1140, anddestination IP address 1130 may remain the same.Router 720 may then transmit the packet to client device 510-1 (act 1040). - Systems and methods consistent with principles of the invention provide a hybrid device that facilitates the aggregation of hundreds of thousands of customers in a cost effective manner. The hybrid device functions as a switch that may perform
layer 2 switching on packets it forwards in an upstream direction and functions as a router that may performlayer 3 switching on packets it forwards in a downstream direction. - The foregoing description of preferred embodiments of the present invention provides illustration and description, but is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention.
- For example, system 500 has been described as including a
router 530 connected tohybrid device 540. In another implementation consistent with the principles of the invention,router 530 may be replaced with a switch. In this case, device 520 would need to have knowledge of numerous routers (e.g.,routers 720 of hybrid device 540) instead of a single router (i.e., router 530). - Also, certain portions of the invention have been described as “logic” that performs one or more functions. This logic may include hardware, such as an application specific integrated circuit, software, or a combination of hardware and software.
- While series of acts have been described with regard to the flowcharts of
FIGS. 8 and 9 , the order of the acts may differ in other implementations consistent with the principles of the invention. Further, non-dependent acts may be performed in parallel. - No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Where only one item is intended, the term “one” or similar language is used. The scope of the invention is defined by the claims and their equivalents.
Claims (21)
1-25. (canceled)
26. A system comprising:
a network device to:
receive data from a downstream device and other data from an upstream device,
perform, when transmitting the data, only layer 2 switching, and
perform, when transmitting the other data, only layer 3 switching.
27. The network device of claim 26 , where, when transmitting the other data, the network device is further to:
determine, based on an address table, a destination address associated with the downstream device.
28. The network device of claim 26 , where the network device receives data from a particular group of downstream devices, the particular group of downstream devices including the downstream device, and
where the network device is associated with the particular group of downstream devices.
29. The network device of claim 26 , where the network device receives data from a plurality of downstream devices, the plurality of downstream devices including the downstream device, and
where the network device further comprises:
a plurality of modules, where each of the plurality of modules is associated with one of the plurality of downstream devices, and
where each of the plurality of modules is to:
perform, when transmitting the data, only layer 2 switching, and
perform, when transmitting the other data, only layer 3 switching.
30. The network device of claim 26 , where the network device receives data from a plurality of downstream devices, the plurality of downstream devices including the downstream device, and
where the network device further comprises:
a plurality of modules, where each of the plurality of modules is associated with a particular group of the plurality of downstream devices, and
where each of the plurality of modules is to:
perform, when transmitting the data, only layer 2 switching, and
perform, when transmitting the other data, only layer 3 switching.
31. The network device of claim 26 , where, when transmitting the other data, the network device is further to:
identify, based on a destination Internet Protocol (IP) address and a destination media access control (MAC) address associated with the other data, the downstream device.
32. The network device of claim 26 , where the upstream device comprises a router.
33. The network device of claim 26 , where the upstream device comprises a switch.
34. A method comprising:
receiving, by a network device, data from a plurality of downstream devices and other data from an upstream network device;
performing, by the network device, only layer 2 switching to transmit the data; and
performing, by the network device, only layer 3 switching to transmit the other data.
35. The method of claim 34 , where performing only layer 3 switching further comprises:
determining, based on an address determined from an address table associated with the network device, a destination address associated with one of the plurality of downstream devices.
36. The method of claim 34 , further comprising:
associating a first module of the network device with a particular group of the plurality of downstream devices; and
where performing only layer 2 switching further comprises:
utilizing the first module to transmit data received from a particular group of the plurality of downstream devices.
37. The method of claim 34 , further comprising:
associating each of a plurality of modules, of the network device, with each of the plurality of downstream devices; and
where performing only layer 2 switching further comprises:
utilizing each one of the plurality of modules to transmit data received from the respective associated one of the plurality of downstream devices.
38. The method of claim 34 , further comprising:
associating each of a plurality of modules, of the network device, with each of a plurality of groups of the plurality of downstream devices; and
where performing only layer 2 switching further comprises:
utilizing each one of the plurality of modules to transmit data received from the respective associated one of the plurality of groups of the plurality of downstream devices.
39. The method of claim 38 , where performing only layer 3 switching further comprises:
identifying, based on a destination Internet Protocol (IP) address and a destination media access control (MAC) address associated with the other data, one of the plurality of downstream devices.
40. A system comprising:
a device to connect a plurality of downstream devices and an upstream device, the device to:
function only as a switch when transmitting a first packet in an upstream direction from a first downstream device of the plurality of downstream devices, and
function only as a router when transmitting a second packet in a downstream direction from the upstream device to the first downstream device of the plurality of downstream devices.
41. The system of claim 40 , where, when functioning only as a switch, the device is further to:
perform only layer 2 switching.
42. The system of claim 41 , where, when functioning only as a router, the device is further to:
perform only layer 3 switching.
43. The system of claim 40 , where, when functioning only as a router, the device is further to:
read a destination Internet Protocol (IP) address associated with the second packet, and
identify, based on the read IP address, a destination media access control (MAC) address associated with first downstream device of the plurality of downstream devices.
44. The system of claim 43 , where, when functioning only as a router, the device is further to:
modify the second packet to include the identified MAC address.
45. The system of claim 40 , where, when functioning only as a router, the device is further to:
identify, based on an address table, a destination address corresponding to the first downstream device of the plurality of downstream devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/006,985 US20110110372A1 (en) | 2003-06-05 | 2011-01-14 | Systems and methods to perform hybrid switching and routing functions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47590103P | 2003-06-05 | 2003-06-05 | |
US10/856,852 US7899929B1 (en) | 2003-06-05 | 2004-06-01 | Systems and methods to perform hybrid switching and routing functions |
US13/006,985 US20110110372A1 (en) | 2003-06-05 | 2011-01-14 | Systems and methods to perform hybrid switching and routing functions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/856,852 Continuation US7899929B1 (en) | 2003-06-05 | 2004-06-01 | Systems and methods to perform hybrid switching and routing functions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110110372A1 true US20110110372A1 (en) | 2011-05-12 |
Family
ID=43617410
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/856,852 Active 2028-05-27 US7899929B1 (en) | 2003-06-05 | 2004-06-01 | Systems and methods to perform hybrid switching and routing functions |
US13/006,985 Abandoned US20110110372A1 (en) | 2003-06-05 | 2011-01-14 | Systems and methods to perform hybrid switching and routing functions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/856,852 Active 2028-05-27 US7899929B1 (en) | 2003-06-05 | 2004-06-01 | Systems and methods to perform hybrid switching and routing functions |
Country Status (1)
Country | Link |
---|---|
US (2) | US7899929B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103686440A (en) * | 2012-09-20 | 2014-03-26 | 华为技术有限公司 | Method converting three layer multicast into two layer multicast and related devices |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7899929B1 (en) * | 2003-06-05 | 2011-03-01 | Juniper Networks, Inc. | Systems and methods to perform hybrid switching and routing functions |
JP4903815B2 (en) * | 2006-01-23 | 2012-03-28 | アライドテレシスホールディングス株式会社 | Method and system for improving traffic distribution over a communications network |
ATE463121T1 (en) * | 2006-10-12 | 2010-04-15 | Koninkl Kpn Nv | METHOD AND SYSTEM FOR PREPARING SERVICES FROM AN ACCESS DEVICE IN A HOME NETWORK |
US8345702B2 (en) | 2007-02-07 | 2013-01-01 | Marvell World Trade Ltd. | Method and apparatus for flexible interface bypass options in switches |
US8910233B2 (en) * | 2008-12-22 | 2014-12-09 | Mediatek Inc. | Signal processing apparatuses capable of processing initially reproduced packets prior to buffering the initially reproduced packets |
US9608902B2 (en) * | 2011-06-16 | 2017-03-28 | Qualcomm Incorporated | Communication mechanism in a network of nodes with multiple interfaces |
US8862702B2 (en) | 2012-07-18 | 2014-10-14 | Accedian Networks Inc. | Systems and methods of installing and operating devices without explicit network addresses |
JP6337622B2 (en) * | 2014-06-03 | 2018-06-06 | 富士通株式会社 | Route setting device and route setting method |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5920705A (en) * | 1996-01-31 | 1999-07-06 | Nokia Ip, Inc. | Method and apparatus for dynamically shifting between routing and switching packets in a transmission network |
US6049834A (en) * | 1998-05-08 | 2000-04-11 | Cisco Technology, Inc. | Layer 3 switch unicast protocol |
US6104870A (en) * | 1998-07-02 | 2000-08-15 | International Business Machines Corporation | Method and system for improving communications in data communications networks that provide network emulation |
US6104727A (en) * | 1995-04-21 | 2000-08-15 | Hybrid Networks, Inc. | Asymmetric communication system with regulated upstream channel |
US20010043614A1 (en) * | 1998-07-17 | 2001-11-22 | Krishna Viswanadham | Multi-layer switching apparatus and method |
US20020006136A1 (en) * | 2000-04-07 | 2002-01-17 | Mallory Tracy D. | Method for selecting an operating mode for a frame-based communications network |
US20020178289A1 (en) * | 2001-05-25 | 2002-11-28 | Yoshitoshi Kurose | Communications device, address modification device, communications method and communications control program |
US20030046706A1 (en) * | 2001-08-29 | 2003-03-06 | Rakib Selim Shlomo | Active cable modem outside customer premises servicing multiple customer premises |
US20040042596A1 (en) * | 1997-08-29 | 2004-03-04 | Arbinet-Thexchange, Inc. | System and method for IP bandwidth trading |
US6707817B1 (en) * | 1999-03-17 | 2004-03-16 | Broadcom Corporation | Method for handling IP multicast packets in network switch |
US20040093430A1 (en) * | 2002-11-07 | 2004-05-13 | Thomas David Andrew | Method and system for managing communication in a computer network using aliases of computer network addresses |
US6801528B2 (en) * | 2002-07-03 | 2004-10-05 | Ericsson Inc. | System and method for dynamic simultaneous connection to multiple service providers |
US6865613B1 (en) * | 1999-03-15 | 2005-03-08 | Cisco Technology, Inc. | IP network for accomodating mobile users with incompatible network addressing |
US6876654B1 (en) * | 1998-04-10 | 2005-04-05 | Intel Corporation | Method and apparatus for multiprotocol switching and routing |
US6934260B1 (en) * | 2000-02-01 | 2005-08-23 | Advanced Micro Devices, Inc. | Arrangement for controlling learning of layer 3 network addresses in a network switch |
US7023863B1 (en) * | 1999-10-29 | 2006-04-04 | 3Com Corporation | Apparatus and method for processing encrypted packets in a computer network device |
US7069344B2 (en) * | 2000-03-20 | 2006-06-27 | At&T Corp. | Method and apparatus for coordinating a change in service provider between a client and a server |
US7088727B1 (en) * | 1997-03-12 | 2006-08-08 | Nomadix, Inc. | System and method for establishing network connection with unknown network and/or user device |
US7222188B1 (en) * | 1995-12-08 | 2007-05-22 | Nortel Networks Limited | Method and apparatus for forwarding traffic between locally attached networks using level 3 addressing information |
US7287072B1 (en) * | 2000-10-17 | 2007-10-23 | Sprint Communications Company L.P. | Remote monitoring information management |
US7342884B2 (en) * | 2002-03-13 | 2008-03-11 | Harmonic, Inc. | Method and apparatus for one directional communications in bidirectional communications channel |
US7401126B2 (en) * | 2001-03-23 | 2008-07-15 | Neteffect, Inc. | Transaction switch and network interface adapter incorporating same |
US7478173B1 (en) * | 2003-12-18 | 2009-01-13 | Wmware, Inc. | Method and system for sharing a network connection in a virtual computer system |
US7499450B2 (en) * | 2004-04-30 | 2009-03-03 | Infineon Technologies Ag | Router IP port for an IP router |
US7899929B1 (en) * | 2003-06-05 | 2011-03-01 | Juniper Networks, Inc. | Systems and methods to perform hybrid switching and routing functions |
US7924837B1 (en) * | 2000-07-31 | 2011-04-12 | Avaya Communication Israel Ltd. | IP multicast in VLAN environment |
-
2004
- 2004-06-01 US US10/856,852 patent/US7899929B1/en active Active
-
2011
- 2011-01-14 US US13/006,985 patent/US20110110372A1/en not_active Abandoned
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104727A (en) * | 1995-04-21 | 2000-08-15 | Hybrid Networks, Inc. | Asymmetric communication system with regulated upstream channel |
US7222188B1 (en) * | 1995-12-08 | 2007-05-22 | Nortel Networks Limited | Method and apparatus for forwarding traffic between locally attached networks using level 3 addressing information |
US5920705A (en) * | 1996-01-31 | 1999-07-06 | Nokia Ip, Inc. | Method and apparatus for dynamically shifting between routing and switching packets in a transmission network |
US7088727B1 (en) * | 1997-03-12 | 2006-08-08 | Nomadix, Inc. | System and method for establishing network connection with unknown network and/or user device |
US20040042596A1 (en) * | 1997-08-29 | 2004-03-04 | Arbinet-Thexchange, Inc. | System and method for IP bandwidth trading |
US6876654B1 (en) * | 1998-04-10 | 2005-04-05 | Intel Corporation | Method and apparatus for multiprotocol switching and routing |
US6049834A (en) * | 1998-05-08 | 2000-04-11 | Cisco Technology, Inc. | Layer 3 switch unicast protocol |
US6104870A (en) * | 1998-07-02 | 2000-08-15 | International Business Machines Corporation | Method and system for improving communications in data communications networks that provide network emulation |
US20010043614A1 (en) * | 1998-07-17 | 2001-11-22 | Krishna Viswanadham | Multi-layer switching apparatus and method |
US6865613B1 (en) * | 1999-03-15 | 2005-03-08 | Cisco Technology, Inc. | IP network for accomodating mobile users with incompatible network addressing |
US6707817B1 (en) * | 1999-03-17 | 2004-03-16 | Broadcom Corporation | Method for handling IP multicast packets in network switch |
US20040170176A1 (en) * | 1999-03-17 | 2004-09-02 | Broadcom Corporation | Method for handling IP multicast packets in network switch |
US7023863B1 (en) * | 1999-10-29 | 2006-04-04 | 3Com Corporation | Apparatus and method for processing encrypted packets in a computer network device |
US6934260B1 (en) * | 2000-02-01 | 2005-08-23 | Advanced Micro Devices, Inc. | Arrangement for controlling learning of layer 3 network addresses in a network switch |
US7069344B2 (en) * | 2000-03-20 | 2006-06-27 | At&T Corp. | Method and apparatus for coordinating a change in service provider between a client and a server |
US20020006136A1 (en) * | 2000-04-07 | 2002-01-17 | Mallory Tracy D. | Method for selecting an operating mode for a frame-based communications network |
US7924837B1 (en) * | 2000-07-31 | 2011-04-12 | Avaya Communication Israel Ltd. | IP multicast in VLAN environment |
US7287072B1 (en) * | 2000-10-17 | 2007-10-23 | Sprint Communications Company L.P. | Remote monitoring information management |
US7401126B2 (en) * | 2001-03-23 | 2008-07-15 | Neteffect, Inc. | Transaction switch and network interface adapter incorporating same |
US20020178289A1 (en) * | 2001-05-25 | 2002-11-28 | Yoshitoshi Kurose | Communications device, address modification device, communications method and communications control program |
US20030046706A1 (en) * | 2001-08-29 | 2003-03-06 | Rakib Selim Shlomo | Active cable modem outside customer premises servicing multiple customer premises |
US7342884B2 (en) * | 2002-03-13 | 2008-03-11 | Harmonic, Inc. | Method and apparatus for one directional communications in bidirectional communications channel |
US6801528B2 (en) * | 2002-07-03 | 2004-10-05 | Ericsson Inc. | System and method for dynamic simultaneous connection to multiple service providers |
US20040093430A1 (en) * | 2002-11-07 | 2004-05-13 | Thomas David Andrew | Method and system for managing communication in a computer network using aliases of computer network addresses |
US7899929B1 (en) * | 2003-06-05 | 2011-03-01 | Juniper Networks, Inc. | Systems and methods to perform hybrid switching and routing functions |
US7478173B1 (en) * | 2003-12-18 | 2009-01-13 | Wmware, Inc. | Method and system for sharing a network connection in a virtual computer system |
US7499450B2 (en) * | 2004-04-30 | 2009-03-03 | Infineon Technologies Ag | Router IP port for an IP router |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103686440A (en) * | 2012-09-20 | 2014-03-26 | 华为技术有限公司 | Method converting three layer multicast into two layer multicast and related devices |
WO2014044206A1 (en) * | 2012-09-20 | 2014-03-27 | 华为技术有限公司 | Method and related device for converting layer-3 multicast into layer-2 multicast |
Also Published As
Publication number | Publication date |
---|---|
US7899929B1 (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110110372A1 (en) | Systems and methods to perform hybrid switching and routing functions | |
EP2600573B1 (en) | Method for transmitting addresses correspondence relationship in second-layer protocol using link status routing | |
US9614759B2 (en) | Systems and methods for providing anycast MAC addressing in an information handling system | |
JP5373625B2 (en) | Method and apparatus for multicast routing | |
EP1949621B1 (en) | Techniques for inserting internet protocol services in a broadband access network | |
US20030204618A1 (en) | Using virtual identifiers to process received data routed through a network | |
US7133929B1 (en) | System and method for providing detailed path information to clients | |
CN102263646B (en) | Multicasting within a distributed control plane of a switch | |
RU2661768C2 (en) | Arp processing method, switch device and control module | |
CN100525237C (en) | Data transferring system, method and network transferring apparatus | |
US20070195793A1 (en) | Methods, systems, and computer program products for selective layer 2 port blocking using layer 2 source addresses | |
US20050111455A1 (en) | VLAN server | |
CN102792651B (en) | At the device of MAC layer application service path Route Selection | |
CN101632273A (en) | Methods, systems, and computer program products for source-aware IP routing at a media gateway | |
CN109639552B (en) | Three-layer forwarding method and device | |
US6980547B1 (en) | Distributed switch/router silicon engine | |
US20220166715A1 (en) | Communication system and communication method | |
CN103392324A (en) | Message forwarding toward a source end node in a converged network environment | |
CN105187311A (en) | Message forwarding method and message forwarding device | |
US7145911B2 (en) | Method and system for parallel hash transformation for an address input | |
US10229459B1 (en) | Method and apparatus for routing in transaction management systems | |
US20060098665A1 (en) | Systems and methods for communicating with bi-nodal network elements | |
US9025606B2 (en) | Method and network node for use in link level communication in a data communications network | |
US7969994B2 (en) | Method and apparatus for multiple connections to group of switches | |
US8094564B2 (en) | Communication system, method and apparatus for providing mirroring service in the communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |