US20110094492A1 - Device for feeding water steam via a heat exchanger in a combustion chamber and a method - Google Patents

Device for feeding water steam via a heat exchanger in a combustion chamber and a method Download PDF

Info

Publication number
US20110094492A1
US20110094492A1 US12/937,098 US93709809A US2011094492A1 US 20110094492 A1 US20110094492 A1 US 20110094492A1 US 93709809 A US93709809 A US 93709809A US 2011094492 A1 US2011094492 A1 US 2011094492A1
Authority
US
United States
Prior art keywords
water
heat exchanger
jacket
containing medium
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/937,098
Other languages
English (en)
Inventor
Eduard Alper Bolkan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOTEC - FORSCHUNGS- und ENTWICKLUNGSGESELLSCHAFT MBH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to BOLKAN, EDUARD ALPER reassignment BOLKAN, EDUARD ALPER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOLKAN, EDUARD ALPER
Publication of US20110094492A1 publication Critical patent/US20110094492A1/en
Assigned to BOTEC - FORSCHUNGS- UND ENTWICKLUNGSGESELLSCHAFT MBH reassignment BOTEC - FORSCHUNGS- UND ENTWICKLUNGSGESELLSCHAFT MBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOLKAN, EDUARD ALPER
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/03Adding water into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/032Producing and adding steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • F22G3/005Annular steam tubes, i.e. the steam being heated between concentric tubes with the heating fluid flowing in inner and around outer tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/16Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying an electrostatic field to the body of the heat-exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the subject-matter of the invention is a device for feeding water steam via a heat exchanger in a combustion chamber and a method for using said device.
  • the problem of the present invention is to make available a particularly advantageous embodiment of the generation of heated water steam to be fed into the combustion chamber of a thermal engine.
  • Combustion chambers such as those suitable for the performance of the invention can be part of thermal engines or also of heating burners.
  • Thermal engines in the sense of the invention are reciprocating piston engines, such as for example two-stroke, spark-ignition and/or diesel engines. Apart from these, however, rotary piston engines and gas turbines are also suitable.
  • Such thermal engines or heating burners comprise a fuel and combustion-air supply (intake air) as well as an exhaust for hot combustion gases (exhaust gases).
  • Suitable fuels are substances oxidisable with heat gain. Examples are hydrocarbons and their derivatives. Suitable derivatives are plant oils, biodiesels, such as esters of saturated or unsaturated fatty acids, in particular methyl ester and/or ethyl ester, or alcohols, ethanol, propanol or methanol.
  • a multi-wall tube heat exchanger or a multi-wall spiral heat exchanger is part of the device according to the invention.
  • the heat exchanger comprises an inner tube, an inner jacket tube and outer jacket tube.
  • the inner jacket shell is formed by the inner tube and the inner jacket tube, the outer jacket shell by the inner and outer jacket tube.
  • the hot exhaust gas of the thermal engine flows in each case through the inner tube (first jacket shell) and the outer jacket shell of the tube heat exchanger.
  • the outer jacket shell is bounded gas-tight to the exterior by the outer jacket tube.
  • the water steam-containing, gaseous medium is fed in the inner jacket shell, on the one hand bounded gas-tight by the inner tube, on the other hand bounded gas-tight by the inner jacket tube, so that said medium is sucked in by the intake connection piece of the thermal engine.
  • Hot exhaust gas preferably flows in an equi-directional flow through inner tube and outer jacket tube and the water steam-containing, gaseous medium is introduced in a counter-flow.
  • the water steam-containing, gaseous medium is preferably fed via an inlet with a larger cross-section than the inner jacket tube tangentially and in particular at an angle of 45 to 135° to the flow direction in the heat exchanger, in relation to the operating direction of the heat exchanger, and is carried away independently thereof tangentially via a larger cross-section.
  • the exhaust gas is also preferably fed and/or carried away tangentially, in each case preferably via a larger inlet cross-section.
  • a spiral heat exchanger is also suitable.
  • the latter comprises two jacket shells wound into each other.
  • the production takes place for example by the fact that an elongated rectangular sheet metal is folded together roughly at half the length. It is then wound up starting from the middle to form a spiral, as a result of which there arise two separate jacket shells spaced apart from one another, whereof one is supplied with exhaust gas and the other with the water steam-containing, gaseous medium.
  • the supply takes place on the one hand via the front face and on the other hand via the open-lying outer jacket shell.
  • the cold medium (the water steam-containing, gaseous medium) is preferably fed externally and the hot medium (exhaust gas) internally.
  • the cold medium is brought into contact on both sides with two hot contact surfaces in which exhaust gas is conveyed. It is particularly advantageous if the winding in the spiral heat exchanger takes place in such a way that, in the direction of the outlet of the heat exchanger, the water steam-containing, gaseous medium is compressed by the smaller cross-sectional width of the jacket shell for the hot medium.
  • the exhaust gas heats the water steam-containing, gaseous medium in the heat exchanger to a temperature of over 550° C., preferably 600 to 900° C., in particular 650 to 800° C.
  • the exhaust gas is preferably conveyed for example rotating clockwise in the heat exchanger and the water steam-containing, gaseous medium rotating anticlockwise (or vice versa).
  • the gas has an outflow rate of up to approx. 2000 km/h when the outlet valve is opened and these gases are conveyed directly in tangential paths at the exhaust gas flange, it is possible to imagine the enormous cyclical turbulence.
  • the exhaust gas-conveying jacket shell(s) enclose(s) the inner jacket shell for both types of heat exchanger with the water steam-containing, gaseous medium from both sides, said inner jacket shell lying in the middle and being connected to the intake side of the combustion chamber.
  • the heat exchange takes place particularly effectively via both exchange surfaces.
  • the supply of the water steam-containing, gaseous medium to the engine takes place in the intake region for the combustion air, advantageously through a Venturi flange with slots at a narrow point, in particular at the narrowest point.
  • other fuels can advantageously also be fed at the same time with the water steam-containing, gaseous medium.
  • the exchange surfaces of the jacket shells advantageously comprise, on the outer and/or the inner exchange surfaces, unevennesses in the form of recesses and/or bulges in arbitrary geometrical shapes, for example peripheral beads, S-shaped, rectilinear, helical recesses, cylindrical, conical, cylindrical with conical countersinking, spherical or hemispherical.
  • the recesses and/or bulges introduced into the material serve to enlarge the surface for the heat exchange, but also have a fluid-related significance, because they are intended to guide the gas flows in such a way that the latter become turbulent, preferably concentrically about the axis of the heat exchanger.
  • Micro-eddy formations can also occur here, such as is produced for example by the nanoperforation of the material.
  • a micro- or nano-perforation is particularly well suited. Micro- or nano-perforations can be introduced into the material by laser treatment.
  • the heat exchanger and its walls are preferably produced from special steel, glass, aluminium, brass and/or copper.
  • the water steam-containing, gaseous medium is therefore exposed to great heat and is heated, the intake air supply at the same time generating an under-pressure, as a result of which the boiling point is lowered. Furthermore, the gas mixture experiences a marked shearing action due to the tangential inflows, combined, as the case may be, with the material processing described above.
  • the tangentially guided, turbulent air flows have a self-cleaning effect and counteract clogging of the heat exchanger.
  • the water steam-containing, gaseous medium can for example be obtained by condensation from water which arises during combustion in the rear region shortly before the outlet of the exhaust system.
  • the exhaust gas can be cooled, for example, by a multi-stage baffle plate labyrinth in order to condense water, and the water is conveyed by means of a fluid pump following the evaporator or an intermediate water storage tank.
  • the device becomes independent of the supply of water from the exterior.
  • the excess steam-distilled and purified water can be discharged into the environment without problem.
  • the further component part of the invention is the treatment of the employed waters, optionally also other employed fluids or gases (e.g. hydrocarbons), with permanent magnetic fields and/or electromagnetic fields.
  • employed waters optionally also other employed fluids or gases (e.g. hydrocarbons), with permanent magnetic fields and/or electromagnetic fields.
  • the fluids and vapours are conveyed (separated or jointly) during the operation within the circuit through gaps, channels and/or tubes by permanent magnets or electromagnets (with up to 14,000 Gauss), as a result of which not only is the cluster formation broken up and the surface tension reduced, but also the molecules are polarised.
  • the fluids or gases are preferably subjected to a magnetic field of 8,000 to 14,000 Gauss.
  • the water steam-containing, gaseous medium is further provided with substances oxidisable with an energy gain as further fuels.
  • substances oxidisable with an energy gain are in particular hydrocarbons.
  • the evaporation products are converted from the liquid state into the vapour state, preferably using the heat from the hot exhaust gases.
  • the proportion of water in such a gas mixture can vary depending on the quality of the fuels. Good results are obtained with a petrol mixture with a petrol to water ratio (in each case volume related to the liquid state) of 10 to 30 up to 80 to 70 vol. %, in particular 20 to 80 vol. %.
  • Residues can also be used as further fuels, such as used petroleum spirits, frying fats, plant oils or animal fats. Surprisingly, even sulphuric acid can be added (e.g. sulphuric acid/water: 30 to 70 vol. %).
  • Water and further fuels can also be injected into the heat exchanger and do not necessarily have to be evaporated beforehand, whereby here an atomisation preferably takes place and the heat exchanger brings about the evaporation.
  • evaporation it is however preferable for the evaporation to take place separately and for the further fuels and/or the water to be heated by exhaust gas heat or residual heat in evaporators provided for the purpose and to be carried away in vapour form, if need be also via a heated supply vessel for the gases, said supply vessel being provided for the purpose and being under pressure.
  • the hot exhaust gases are preferably fed to the heat exchanger immediately after leaving the combustion chamber.
  • the exhaust gas manifold can for example be part of the heat exchanger.
  • the water is used as distilled water or water demineralised by osmosis or ion exchanger. It is also possible partially to split the water by electrolysis in order to use hydrogen-rich water as the water steam-containing, gaseous medium and to introduce the same into the heat exchanger.
  • FIG. 1 shows a tube heat exchanger
  • FIG. 2 shows a general diagram of the installation with the tube heat exchanger according to FIG. 1 and in addition two evaporators.
  • Heat exchanger 1 comprises an inner tube 2 , an inner jacket tube 3 and outer jacket tube 4 .
  • Inner jacket shell 6 is formed by inner tube 2 , which surrounds first jacket shell 5 , and inner jacket tube 3 , outer jacket shell 7 being formed by inner jacket tube 3 and outer jacket tube 4 .
  • Hot exhaust gas 10 of the thermal engine flows in each case in an equi-direction flow through first jacket shell 5 (in this case a full-hollow body, but not necessarily) and outer jacket shell 7 of the tube heat exchanger.
  • first jacket shell 5 in this case a full-hollow body, but not necessarily
  • outer jacket shell 7 of the tube heat exchanger In the case of the opposite operating direction, water-containing medium 11 a is conveyed in inner jacket shell 6 .
  • Inlet 8 a , 8 b , 8 c and outlet 9 a , 9 b , 9 c of the heat exchanger each have a larger cross-section than the respective jacket layer.
  • Exhaust gas 10 and water-containing medium 11 a are fed and carried away tangentially with respect to operating direction 12 of the heat exchanger.
  • exhaust gas and water-containing medium in the jacket shells circulate about the axis of the heat exchanger, preferably with the opposite direction of rotation with respect to the pair exhaust gas—water-containing medium.
  • FIG. 2 shows the general diagram of the installation using the example of an internal combustion engine operated with petrol and water. Further evaporators with suitable fuels can of course be incorporated.
  • An evaporator for hydrocarbons 13 in the present case petrol as the fuel, and an evaporator for water 14 are provided.
  • the vapour rates are mixed or metered by control valves 15 , 16 , 17 and transferred into heat exchanger 1 according to FIG. 1 .
  • the evaporators are heated by means of exhaust gas or by the engine cooling water (not shown).
  • the desired temperature can be adjusted by suitable mechanical or electronic control circuits.
  • the fluid vapours are fed by controllers 15 , 16 in a suitable mixing ratio to heat exchanger 1 . If necessary, fresh air is added via further controller 17 .
  • the gas supply is brought about by the engine, which acts like a gas pump.
  • the effect of the gas flow is that ambient air is fed via pipes 18 and the latter bubbles through the liquid phase at the outlet of the pipes.
  • the gas supply rate or the speed can be regulated by means of controller 21 .
  • Controller 22 further makes available (if necessary) additional fresh air and/or fuel gases immediately before the entry to the engine (in a controllable manner).
  • Heat exchanger 1 is heated with hot exhaust gas via exhaust gas manifold 23 .
  • the exhaust gas flows through the heat exchanger in a counter-flow relative to the water steam- and fuel-containing medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
US12/937,098 2008-04-11 2009-04-09 Device for feeding water steam via a heat exchanger in a combustion chamber and a method Abandoned US20110094492A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008018664.3 2008-04-11
DE102008018664.3A DE102008018664B4 (de) 2008-04-11 2008-04-11 Vorrichtung zur Zufuhr von Wasserdampf über einen Wärmetauscher in einen Brennraum und Verfahren
PCT/DE2009/000474 WO2009124538A2 (fr) 2008-04-11 2009-04-09 Dispositif d'alimentation en vapeur d'eau via un échangeur de chaleur dans une chambre de combustion, et procédé associé

Publications (1)

Publication Number Publication Date
US20110094492A1 true US20110094492A1 (en) 2011-04-28

Family

ID=41111516

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/937,098 Abandoned US20110094492A1 (en) 2008-04-11 2009-04-09 Device for feeding water steam via a heat exchanger in a combustion chamber and a method

Country Status (8)

Country Link
US (1) US20110094492A1 (fr)
EP (1) EP2268972B1 (fr)
CA (1) CA2721046A1 (fr)
DE (1) DE102008018664B4 (fr)
DK (1) DK2268972T3 (fr)
ES (1) ES2397591T3 (fr)
PL (1) PL2268972T3 (fr)
WO (1) WO2009124538A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106121869A (zh) * 2016-08-30 2016-11-16 王文礼 一种汽车燃油节省装置
US20200309634A1 (en) * 2019-03-25 2020-10-01 Ipex Technologies Inc. Heat exchanging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012123934A2 (fr) * 2011-03-13 2012-09-20 Abraham Sadeh Système à énergie solaire

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316273A (en) * 1939-07-13 1943-04-13 Meyer Ludwig Heater
US2703701A (en) * 1946-05-20 1955-03-08 Modine Mfg Co Heat exchanger
US3323585A (en) * 1965-08-25 1967-06-06 Robert B Cannon Header structure for heat transfer apparatus
US3913663A (en) * 1974-05-03 1975-10-21 Jack R Gates Energy conservation chamber
US3938233A (en) * 1974-08-12 1976-02-17 Cannon Robert B Heat transfer apparatus
US4228848A (en) * 1979-01-23 1980-10-21 Grumman Energy Systems, Inc. Leak detection for coaxial heat exchange system
US4242877A (en) * 1977-03-08 1981-01-06 Friedhelm Geerkens Heat-exchanger element for a freeze drier
US4351389A (en) * 1981-07-27 1982-09-28 Stephen Guarnaschelli Heat exchanger apparatus
US4368711A (en) * 1979-11-26 1983-01-18 Larry Allen Apparatus and a method for operating an internal combustion engine
US4385593A (en) * 1981-04-13 1983-05-31 The Chemithon Corporation Introduction of alcohol-water mixture into gasoline-operated engine
US4610298A (en) * 1981-12-08 1986-09-09 Stork Amsterdam B.V. Process and installation for applying a controllable heat-exchange in regenerative heat-exchanger
US4638852A (en) * 1985-08-16 1987-01-27 Basseen Sanjiv K Air dryer for pneumatic systems
US4644934A (en) * 1985-05-03 1987-02-24 Kaus David P Solar energy heating system
US4697434A (en) * 1985-10-17 1987-10-06 Mitsubishi Denki Kabushiki Kaisha Prime mover driven air-conditioning and hot-water supplying system
US4834172A (en) * 1988-01-12 1989-05-30 W. Schmidt Gmbh & Co. Kg Heat exchanger
US4909192A (en) * 1987-10-10 1990-03-20 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method and cylinder head structure for supply of fuel into a piston engine
US5331807A (en) * 1993-12-03 1994-07-26 Hricak Richard Z Air fuel magnetizer
US5557921A (en) * 1994-05-02 1996-09-24 Abb Management Ag Power plant
US5992353A (en) * 1997-05-23 1999-11-30 Posselt; Werner Method for operating an internal combustion engine and the latter itself
US6390185B1 (en) * 2001-03-06 2002-05-21 Richard A. Proeschel Annular flow concentric tube recuperator
US20030168210A1 (en) * 2002-03-05 2003-09-11 Matthew Dunn Heat exchanger
US20030188700A1 (en) * 2001-04-06 2003-10-09 Masato Mitsuhashi Method of operating reciprocating internal combustion engines, and system therefor
US20050133202A1 (en) * 2001-11-09 2005-06-23 Aalborg Industries A/S Heat exchanger, combination with heat exchanger and method of manufacturing the heat exchanger
US20070039725A1 (en) * 2005-08-19 2007-02-22 Jeroen Valensa Water vaporizer with intermediate steam superheating pass
US20070187067A1 (en) * 2006-02-15 2007-08-16 Hitachi Cable, Ltd. Heat transfer tube and heat exchanger using same
US20080271877A1 (en) * 2007-02-21 2008-11-06 Gerald Glass Apparatus for multi-tube heat exchanger with turbulence promoters

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446590A (en) * 1987-08-12 1989-02-21 Hitachi Ltd Method of efficiencyly enhancing condensation heat transfer
DE3925795A1 (de) * 1989-08-04 1991-02-07 Walter Englmann Spiralrohr-waermetauscher
JPH0826780B2 (ja) 1993-02-26 1996-03-21 石川島播磨重工業株式会社 部分再生式二流体ガスタービン
DE19833293C1 (de) * 1998-07-24 2000-01-20 Gunther Botsch Trennvorrichtung
JP2001027131A (ja) * 1999-07-16 2001-01-30 Ishikawajima Harima Heavy Ind Co Ltd 複圧蒸気噴射型部分再生サイクルガスタービン
US6916564B2 (en) * 2000-05-31 2005-07-12 Nuvera Fuel Cells, Inc. High-efficiency fuel cell power system with power generating expander
AU2002359575A1 (en) * 2001-12-05 2003-06-23 Lawrence G. Clawson High efficiency otto cycle engine with power generating expander
AU2003240580A1 (en) 2002-06-10 2003-12-22 Rgp Engineering, Llc System and method for producing injection-quality steam for combustion turbine power augmentation
SE0301585D0 (sv) 2003-05-30 2003-05-30 Euroturbine Ab Förfarande för drift av en gasturbingrupp

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316273A (en) * 1939-07-13 1943-04-13 Meyer Ludwig Heater
US2703701A (en) * 1946-05-20 1955-03-08 Modine Mfg Co Heat exchanger
US3323585A (en) * 1965-08-25 1967-06-06 Robert B Cannon Header structure for heat transfer apparatus
US3913663A (en) * 1974-05-03 1975-10-21 Jack R Gates Energy conservation chamber
US3938233A (en) * 1974-08-12 1976-02-17 Cannon Robert B Heat transfer apparatus
US4242877A (en) * 1977-03-08 1981-01-06 Friedhelm Geerkens Heat-exchanger element for a freeze drier
US4228848A (en) * 1979-01-23 1980-10-21 Grumman Energy Systems, Inc. Leak detection for coaxial heat exchange system
US4368711A (en) * 1979-11-26 1983-01-18 Larry Allen Apparatus and a method for operating an internal combustion engine
US4385593A (en) * 1981-04-13 1983-05-31 The Chemithon Corporation Introduction of alcohol-water mixture into gasoline-operated engine
US4351389A (en) * 1981-07-27 1982-09-28 Stephen Guarnaschelli Heat exchanger apparatus
US4610298A (en) * 1981-12-08 1986-09-09 Stork Amsterdam B.V. Process and installation for applying a controllable heat-exchange in regenerative heat-exchanger
US4644934A (en) * 1985-05-03 1987-02-24 Kaus David P Solar energy heating system
US4638852A (en) * 1985-08-16 1987-01-27 Basseen Sanjiv K Air dryer for pneumatic systems
US4697434A (en) * 1985-10-17 1987-10-06 Mitsubishi Denki Kabushiki Kaisha Prime mover driven air-conditioning and hot-water supplying system
US4909192A (en) * 1987-10-10 1990-03-20 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method and cylinder head structure for supply of fuel into a piston engine
US4834172A (en) * 1988-01-12 1989-05-30 W. Schmidt Gmbh & Co. Kg Heat exchanger
US5331807A (en) * 1993-12-03 1994-07-26 Hricak Richard Z Air fuel magnetizer
US5557921A (en) * 1994-05-02 1996-09-24 Abb Management Ag Power plant
US5992353A (en) * 1997-05-23 1999-11-30 Posselt; Werner Method for operating an internal combustion engine and the latter itself
US6390185B1 (en) * 2001-03-06 2002-05-21 Richard A. Proeschel Annular flow concentric tube recuperator
US20030188700A1 (en) * 2001-04-06 2003-10-09 Masato Mitsuhashi Method of operating reciprocating internal combustion engines, and system therefor
US20050133202A1 (en) * 2001-11-09 2005-06-23 Aalborg Industries A/S Heat exchanger, combination with heat exchanger and method of manufacturing the heat exchanger
US20030168210A1 (en) * 2002-03-05 2003-09-11 Matthew Dunn Heat exchanger
US20070039725A1 (en) * 2005-08-19 2007-02-22 Jeroen Valensa Water vaporizer with intermediate steam superheating pass
US20070187067A1 (en) * 2006-02-15 2007-08-16 Hitachi Cable, Ltd. Heat transfer tube and heat exchanger using same
US20080271877A1 (en) * 2007-02-21 2008-11-06 Gerald Glass Apparatus for multi-tube heat exchanger with turbulence promoters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106121869A (zh) * 2016-08-30 2016-11-16 王文礼 一种汽车燃油节省装置
US20200309634A1 (en) * 2019-03-25 2020-10-01 Ipex Technologies Inc. Heat exchanging device

Also Published As

Publication number Publication date
CA2721046A1 (fr) 2009-10-15
PL2268972T3 (pl) 2013-03-29
DE102008018664A1 (de) 2009-10-29
EP2268972B1 (fr) 2012-10-17
DK2268972T3 (da) 2013-02-04
WO2009124538A2 (fr) 2009-10-15
WO2009124538A3 (fr) 2010-04-01
ES2397591T3 (es) 2013-03-08
DE102008018664B4 (de) 2014-10-30
EP2268972A2 (fr) 2011-01-05

Similar Documents

Publication Publication Date Title
US7487764B2 (en) Pre-ignition fuel treatment system
EP2643437B1 (fr) Utilisation d'un carburant contenant de méthanol et procédé à alimenter un moteur à allumage par compression
RU2642715C2 (ru) Двухступенчатая вакуумная горелка
US20060196483A1 (en) Fuel vaporization systems for vaporizing liquid fuel
CN103158498B (zh) 用于运行可借助碳氢化合物燃料运行的加热器的方法
CN109973266B (zh) 一种多级喷射的甲醇发动机冷启动装置及方法
US20110174277A1 (en) Universal hydrogen plasma carburetor
Kowalewicz Combustion systems of high-speed piston IC engines
PT1611338E (pt) Sistema para a melhoria do rendimento energético de um motor
AU6919894A (en) Fuel supply system for internal combustion engines
US20110094492A1 (en) Device for feeding water steam via a heat exchanger in a combustion chamber and a method
JP2004286310A (ja) 水エマルジョン燃料用の電磁誘導式バーナ装置
JP2000274313A (ja) 気体燃料混合エネルギ源と内燃機関を用いたコンバインドシステム、及びその方法
HU201982B (en) Internal combustion power machine
JP2008057441A (ja) 内燃機関の燃料供給装置
WO2018069360A1 (fr) Moteur à combustion
JPS54113721A (en) Device for reforming exhaust gas from engine
NL2024727B1 (en) Fuel treatment system and process
RU2807268C1 (ru) Способ подготовки жидкого топлива к сжиганию и устройство для его осуществления
SU1432255A2 (ru) Двигатель внутреннего сгорани
CA2054007C (fr) Appareil servant a produire du carburant et methode connexe
SU1686212A1 (ru) Двигатель внутреннего сгорани
US20120210997A1 (en) Method and device for generating steam and low oxygen gas
CN117109025A (zh) 无氮燃烧系统及其燃烧控制方法
Nikipelov et al. On-Board Plasma Assisted Fuel Reforming

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOLKAN, EDUARD ALPER, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOLKAN, EDUARD ALPER;REEL/FRAME:025557/0960

Effective date: 20101220

AS Assignment

Owner name: BOTEC - FORSCHUNGS- UND ENTWICKLUNGSGESELLSCHAFT M

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOLKAN, EDUARD ALPER;REEL/FRAME:027287/0576

Effective date: 20111124

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION