US20110086992A1 - Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa - olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof - Google Patents

Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa - olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof Download PDF

Info

Publication number
US20110086992A1
US20110086992A1 US12/971,843 US97184310A US2011086992A1 US 20110086992 A1 US20110086992 A1 US 20110086992A1 US 97184310 A US97184310 A US 97184310A US 2011086992 A1 US2011086992 A1 US 2011086992A1
Authority
US
United States
Prior art keywords
molecular weight
copolymers
olefins
homopolymers
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/971,843
Inventor
Marcia Silva Lacerda Miranda
Fernanda Oliveira Vieira da Cunha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Braskem SA
Original Assignee
Braskem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braskem SA filed Critical Braskem SA
Priority to US12/971,843 priority Critical patent/US20110086992A1/en
Assigned to BRASKEM S/A reassignment BRASKEM S/A ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIRANDA, MARCIA SILVA LACERDA, VIEIRA DA CUNHA, FERNANDA OLIVEIRA
Publication of US20110086992A1 publication Critical patent/US20110086992A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/22Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to supported metallocene catalysts and to a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table and containing groups of monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, in the absence of activators as aluminoxanes or organoboron base compounds, with application in ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins.
  • the invention also relates to the catalytic support and to the ethylene homopolymers and ethylene copolymers with ⁇ -olefins, of high and ultra high molecular weight, such as HMWPE and UHMWPE, with broad molecular weight distribution, thus produced.
  • the present catalytic system presented in this patent application can be used in slurry, bulk and gas phase polymerization processes.
  • Metallocene-type complexes are increasingly becoming important as a new generation of catalysts for the preparation of polyolefins.
  • metallocenes it is understood transition metal complexes containing one or more ⁇ ligands of the cyclopentadienyl type, substituted or not, such as, for example, sandwich- or half-sandwich-type compounds, i.e., metal complexed to two ⁇ ligands or one n ligand, respectively.
  • These complexes become active in olefin polymerization when activated by an organometallic compound also known as cocatalyst.
  • organometallic compound also known as cocatalyst.
  • cocatalysts aluminoxanes, particularly methylaluminoxane (herein referred as MAO).
  • the homogeneous metallocene catalytic systems not only show high catalytic activities, but also the capacity to control the properties of the polyolefins as function of the compounds used in its synthesis and reaction conditions.
  • toluene which is commonly used in the formulation of aluminoxanes solution, particularly the MAO, is increasingly becoming highly undesirable due to toxicological reasons in relation to the field of application of the polyolefins and storage stability reasons of the highly concentrated formulations (tendency to gel formation).
  • metallocene catalysts with monocyclopentadienyl ligand such as, for example, CpTiCl 3 after reacting with MAO, are effective in the polymerization of styrene obtaining high yields of syndiotactic polystyrene.
  • CpTiCl 3 -MAO complex has very low activity for ethylene polymerization.
  • organoboron based compounds can also be used as activators, and the patents WO 91/09882, WO 94/03506, EP 628574 and WO 95/15815 teach to use them along with metallocene catalysts during the supported catalyst preparation.
  • the Chinese patent CN 1364817A shows that it is possible to obtain polyethylene from a silica-based supported metallocene catalyst containing monocyclopentadienyl and ⁇ -dicetone ligands, magnesium chloride and activated by MAO.
  • HMWPE viscosimetric molecular weight
  • UHMWPE ultra high molecular weight
  • the HMWPE shows viscosimetric molecular weight (herein referred as Mv) that may range between 500,000 to 2,500,000 g/mol
  • the UHMWPE shows Mv that is above 2,500,000 g/mol, which represents about 10 to 20 times more than the molecular weight of conventional high-density polyethylene (herein referred as HDPE).
  • the U.S. Pat. No. 5,576,600 teaches how to prepare a UHMWPE with a Ziegler-Natta catalyst and also shows that ⁇ -olefins, such as butene-1, which can be incorporated in these polyethylenes.
  • the commercially produced UHMWPE in moderate pressures and temperatures is traditionally obtained by Ziegler-Natta catalyst, as showed in patents U.S. Pat. No. 5,880,055 and BR 9,203,645A.
  • Another characteristic of these polymers is that they show similar property to the conventional HDPE that is the broad molecular weight distribution (herein referred as MWD), with the MWD value ranging from 5 to 20.
  • 6,265,504 in its turn, teaches how to produce a polyethylene with Mw higher than 3,000,000 g/mol and a MWD below 5 with single-site type catalyst, which is an organometallic compound containing a ligand with heteroatom, and activated by non-aluminoxane compounds.
  • single-site type catalyst which is an organometallic compound containing a ligand with heteroatom, and activated by non-aluminoxane compounds.
  • Other single-site catalysts containing ligands as pyridine are reported in the U.S. Pat. No. 5,637,660 and are particularly useful to produce UHMWPE with Mw above 3,000,000 g/mol.
  • references in the state of the art do not describe nor suggest a process for the preparation of supported metallocene catalysts for the reaction of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins from supported metallocene catalysts based on transition metals of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators such as aluminoxanes or organoboron compounds and that produce ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, with broad molecular weight distribution, used in gas-phase and bulk polymerization processes in addition to processes in slurry, as described and claimed in this application
  • the obtained ethylene homopolymers and ethylene copolymers with ⁇ -olefins show high molecular weight, broad MWD, in the presence of mentioned supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not.
  • the present invention relates to a process for preparation of supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, for the reaction of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins, from a catalytic support prepared in the absence of activators such as aluminoxanes or organoboron based compounds.
  • the present invention also relates to a process to produce ethylene homopolymers or ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, with broad MWD, in the presence of the mentioned supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators like aluminoxanes or organoboron based compounds.
  • the invention also relates to the catalytic support prepared in the absence of activators such as aluminoxanes or organoboron based compounds, to the supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, and broad MWD, and to the polymerization processes to produce ethylene homopolymers and ethylene copolymers with ⁇ -olefins with high molecular weight and ultra high molecular weight in presence of the mentioned supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substitute
  • the present invention relates to a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the application in reactions of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefin and to the ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, and broad MWD, obtained in processes of liquid-phase polymerization, i.e., in slurry, bulk or suspension, or in gas-phase, produced this way.
  • the process to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, of the present invention comprises the reaction between (1) catalytic support and (2) reaction product between transition metal complex of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, and an activator which is an organometallic compound of the groups 2 or 13 of the Periodic Table and a non-aluminoxane activator.
  • the process of the present invention of preparation to obtain the catalytic support comprises the following steps:
  • the process of the present invention of preparation to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, comprises the following steps:
  • the present invention provides a process to obtain a catalytic support based on thermally treated silica with a solution of organometallic compound of the groups 2 or 13 of the Periodic Table and posteriorly with the solution of a magnesium-based compound with a polar solvent.
  • the present invention also provides a process to obtain a catalytic support where is performed a posterior treatment with a solution of one or more organometallic compounds of the groups 2 or 13 of the periodic table.
  • the present invention also provides a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, from the catalytic support.
  • the present invention provides the supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, especially suitable for the production of HMWPE and UHMWPE polymers.
  • the present invention provides the preparation of ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE.
  • the present invention also provides the use of the supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in processes of liquid phase (slurry, bulk or suspension) or gas phase polymerization.
  • the present invention also provides the preparation of ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE in processes of liquid phase (slurry, bulk or suspension) or gas phase polymerization, with the mentioned supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not.
  • the present invention also provides the preparation of ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE and broad MWD, in processes of liquid phase (slurry, bulk or suspension) or gas phase polymerization, with the mentioned supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators such as aluminoxanes or organoboron based compounds.
  • TFP MFG ⁇ 100 /MA Equation 1
  • MFG mass of fines retained on a 120 sieve and background
  • MA total mass of the polymer sample
  • the invention relates to a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators such as aluminoxanes or organoboron based compounds, to the supported metallocene catalysts based on transition metal of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the application in ethylene homopolymerization and ethylene copolymerization reactions with ⁇ -olefin in liquid phase (slurry, bulk or suspension) or gas phase processes and to the ethylene homopolymers and ethylene copolymers with ⁇ -olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, and broad M
  • the process to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, of the present invention involves the reaction between (1) catalytic support and (2) the reaction product between the transition metal complex of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, and a non-aluminoxane activator.
  • the process of the present invention of preparation to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, comprises the following steps:
  • the preferable support used was silica and this is microspheroidal and presents the following characteristics: median particle diameter (D 50 ) between 0.5 and 80 ⁇ m, preferably between 1 and 60 ⁇ m, a superficial area between 50 and 500 m 2 /g, preferably between 100 and 300 m 2 /g, a volume of pores between 1.0 and 2.0 ml/g, preferably between 1.5 and 1.8 ml/g, an average diameter of pores between 10 and 40 nm, preferably between 20 and 30 nm.
  • This silica must undergo a thermal treatment before its use in the preparation of the catalytic support.
  • Such treatment must be performed in inert atmosphere, at a temperature ranging from 100 to 800° C., for a period of 1 to 20 h.
  • the remaining content of OH groups in the silica surface is ranging from 0.1 to 2 mmoles OH per g of silica, preferably between 0.5 and 1.5 mmoles per g of silica.
  • the impregnation of silica is preferably performed suspending the silica, previously thermally treated, in a proportion ranging between 10 and 20 parts per weight for each 100 parts in volume of the solution of organometallic compound of the groups 2 or 13 of the periodic table, in an inert organic solvent, and keeping under stirring at a temperature that may range between the room temperature and boiling temperature of the solution of organometallic compound of the groups 2 or 13 of the periodic table, in inert organic solvent, preferably between 25° C. and 60° C., for a period from 30 to 120 minutes, preferably between 50 and 70 minutes.
  • the most proper organometallic compounds of the groups 2 or 13 of the Periodic Table to be used in the step a) are aluminum alkyl compounds and aluminum alkyl halocarbons.
  • Specific examples of such compounds are trimethylluminum (TMAL), triethylaluminum (TEAL), tri-isobutilaluminum (TIBAL), tri-n-hexilaluminum (TNHAL), tri-n-octilaluminum (TNOAL), dimethylaluminum chloride (DMAC), methylaluminum dichloride (MADC), diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), di-isobutylaluminum chloride (DIBAC), isobutylaluminum dichloride (MONIBAC).
  • TMAL trimethylluminum
  • TEAL triethylaluminum
  • TIBAL tri-isobutilaluminum
  • TNOAL tri-
  • Aliphatic hydrocarbons used as solvents to prepare the solution of organometallic compound of the groups 2 or 13 of the Periodic Table can present between 4 and 50 carbons, preferably between 6 and 20 carbons.
  • Specific examples of these aliphatic hydrocarbons used as solvents are n-hexane, n-heptane, isopentane, n-octane, isoparaffin and more preferably n-hexane, isopentane and n-heptane.
  • the step of impregnation of the solution of organometallic compound of the groups 2 or 13 of the Periodic Table, in an inert organic solvent is performed using an amount of organometallic compound in a range from 0.01 to 1 mmol of the metal belonging to the groups 2 or 13 of the Periodic Table per mol of groups OH present in the silica surface, preferably between 0.1 and 0.7 mmol of the metal belonging to the groups 2 or 13 of the Periodic Table per mol of groups OH present in the silica surface.
  • the treated silica can be recovered after removal of liquid present in the step a) by different usual methods such as decantation and siphonation, filtration and vacuum removal.
  • the operation temperature in this step can vary between room temperature and boiling temperature of the aliphatic hydrocarbon used as solvent, preferably at room temperature.
  • the dried silica is used directly in the following step.
  • a liquid compound is obtained from the solubilization of, at least, a magnesium-based compound, selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy and a polar solvent.
  • a magnesium-based compound selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy and a polar solvent.
  • it is necessary to heat the mixture of these compounds up to a temperature ranging from 25° to 150° C., preferably between 40° and 100° C., for a period from 0.5 to 10 hours, preferably between 1 and 5 hours.
  • the solution containing the mentioned compounds needs to be prepared under turbulent stirring and under inert conditions.
  • magnesium-based compound selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy to be used in the step b) are magnesium dichloride(MgCl 2 ), magnesium ethoxy chloride(Mg(OCH 2 CH 3 )Cl), magnesium ethyl chloride(Mg(CH 2 CH 3 )Cl), diethyl magnesium (Mg(CH 2 CH 3 ) 2 ), diethoxy magnesium(Mg(OCH 2 CH 3 ) 2 ).
  • magnesium dichloride, MgCl 2 is preferably used.
  • the most proper polar solvents for the solubilization of, at least, a magnesium-based compound, selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy and magnesium dialkoxy of the step (b) are selected among ethers, alcohols and ketones. Specific examples of these polar solvents are ethyl ether, tetrahydrofuran, ethyl alcohol and ketone metylethyl, more preferably ethyl alcohol and tetrahydrofuran.
  • the quantity of magnesium-based compound used in the preparation of the described solution in the step (b) corresponds to a range of 0.002 to 0.2 g of magnesium compound per g of silica.
  • the silica obtained in step (a) is put in contact with the solution obtained in the step (b).
  • the impregnation that happens in this step is performed suspending 10 to 20 parts per silica weight, obtained in the step (a), for each 100 parts per volume of solution obtained in the step (b).
  • the suspension is kept under stirring at a temperature ranging from room temperature to the boiling temperature of the polar solvent used in the step (b), preferably between 50° C. and 100 ° C., for a period of 30 to 300 minutes, preferably between 60 and 240 minutes.
  • the polar solvent used in the solution of the step (b) is removed per vacuum in the step (d).
  • the remaining polar solvent in the solid obtained in (d) after the use of the vacuum must remain between 7 and 15% wt, preferably between 8 and 12% wt.
  • the solid obtained in (d) is suspended in an inert organic solvent such as hexane or heptane, and this is put in contact with one or more organometallic compounds of the groups 2 or 13 of the Periodic Table, in order to remove the content of remaining polar solvent in the solid.
  • an inert organic solvent such as hexane or heptane
  • organometallic compounds of the groups 2 or 13 of the Periodic Table range between 0.2 and 2, preferably between 0.3 and 1.
  • the reaction between the organometallic compounds of the groups 2 or 13 of the Periodic Table and the remaining polar solvent in the solid happens under stirring at a temperature that may range between the room temperature and boiling temperature of the solution of organometallic compounds of the groups 2 or 13 of the Periodic Table, in inert organic solvent, preferably between 25° C. and 60° C., for a period of 30 to 300 minutes, preferably between 50 and 120 minutes.
  • the most proper organometallic compounds of the groups 2 or 13 of the Periodic Table to be used in the step (e) are aluminum alkyl compounds and aluminum alkyl halocarbons.
  • Specific examples of such compounds are trimethylluminum (TMAL), triethylaluminum (TEAL), tri-isobutylaluminum (TIBAL), tri-n-hexilaluminum (TNHAL), tri-n-octilaluminum (TNOAL), dimethylaluminum chloride (DMAC), methylaluminum dichloride (MADC), diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), di-isobutylaluminum chloride (DIBAC), isobutylaluminum dichloride (MONIBAC), ethylmagnesium butyl (BEM), octilmagnesium butyl (BOMAG), methylmagnesium chloride and ethylmagnesium
  • the different compounds can be fed in the same solution or in separate solutions, at the same time or in subsequent additions.
  • the catalytic support of the present invention obtained at the end of the step (e) can present in its composition a remaining content of polar solvent that can range between 1 and 8% wt.
  • the transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not is dissolved in an inert organic solvent of the aliphatic or aromatic hydrocarbon, preferably aliphatic, at a temperature ranging from the room temperature to the boiling temperature of the organic solvent used, preferably between 30° and 150° C.
  • Transition metal complexes of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, used for this purpose are composed of the groups 4 or 5 of the periodic table, preferably of the group 4, such as, for example, Ti, Zr and Hf.
  • Such complexes present organic groups of monocyclopentadienyl, monoindenyl or monofluorenyl type, which can be substituted or not, i.e., such groups are mononuclear aromatic rings that are linked to the transition metal by ⁇ bond.
  • Other ligands can be linked to the transition metal such as, halogens and alkoxy groups, preferably chlorides and methoxy, respectively.
  • transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, used in the present invention is derived from a formula compound
  • M is a transition metal of the groups 4 or 5;
  • Q which can be equal or different, is a halogen radical, aryl radical, alkyl radical containing between 1 and 5 carbon atoms or alkoxy radical containing between 1 and 5 carbon atoms;
  • L is a bulky ligand of the cyclopentadienyl, indenyl or fluorenyl type, substituted or not by hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl, linked to the transition metal by ⁇ bond.
  • examples representing, but not limiting, the compounds having the formula 1 include CpTiCl 3 , CpZrCl 3 , CpHfCl 3 , CpVCl 3 , CpTi(Me) 3 , CpZr(Me) 3 , CpHf(Me) 3 , CpTi(OMe) 3 , CpZr(OMe) 3 , CpHf(OMe) 3 , CpTi(OEt) 3 , CpZr(OEt) 3 , CpHf(OEt) 3 , IndTiCl 3 , IndZrCl 3 , IndHfCl 3 , IndVCl 3 , IndTi(Me) 3 , IndZr(Me) 3 , IndHf(Me) 3 , IndTi(Me) 3 , IndZr(OMe) 3 , IndHf(OMe) 3 , IndVCl 3
  • organic solvents of the aliphatic hydrocarbon type to suspend or solubilize the transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, are n-hexane, n-heptane, isopentane, n-octane, isoparaffin and more preferably are n-hexane, isopentane and n-heptane.
  • the quantity of organometallic compound of the groups 2 or 13 of the Periodic Table, relative to the transition metal, corresponds to a molar ratio that varies between 0.5 and 5, preferably between 1 and 4.
  • step (g) the solid product obtained in (e) is reacted with the product in solution obtained in the step (f) at a temperature ranging from the room temperature to the boiling temperature of the organic solvent used, preferably between 30° and 150° C., for a period from 30 to 300 minutes, preferably between 50 and 120 minutes.
  • the solid obtained in (g) is put in contact with a halogenating agent.
  • halogenating agents for the practice of the present invention are preferably pure or diluted liquids in an inert organic solvent.
  • the halogenating agents include dimethylaluminum chloride (DMAC), methylaluminum dichloride (MADC), diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), di-isobutylaluminum chloride (DIBAC), isobutylaluminum dichloride (MONIBAC), aluminum ethyl sesquichloride (EASC), silicon tetrachloride(SiCl 4 ), tetrachloride tin(SnCl 4 ), trichlorosilan methyl(MeSiCl 3 ), dimethyl dichlorosilan(Me 2 SiCl 2 ), titanium tetrach
  • the preferred halogenating agents are chlorination agents and among them, aluminum ethyl sesquichloride (EASC), silicon tetrachloride(SiCl 4 ), tin tetrachloride(SnCl 4 ), chloroform and dichloromethane are preferred, more preferably the silicon tetrachloride(SiCl 4 ).
  • EASC aluminum ethyl sesquichloride
  • SiCl 4 silicon tetrachloride
  • SnCl 4 tin tetrachloride
  • chloroform and dichloromethane chloroform and dichloromethane
  • the quantity of halogenating agent used optionally in the step (h) of the process, relative to the transition metal, corresponds to a molar ratio between 0.5 and 5, preferably between 1 and 3.
  • the required time for the halogenation of the transition metal complexes of the groups 4 or 5 of the Periodic Table containing groups of the monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, and containing alkoxy radicals ranges between 0.5 and 5 h, preferably between 1 and 3 h.
  • the required temperature for the halogenation of the transition metal complexes of the groups 4 or 5 of the Periodic Table containing groups of the monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, and containing alkoxy radicals ranges between the room temperature and the boiling temperature of the inert organic solvent used, preferably between 30° and 100° C.
  • the solid product obtained in (g) or (h) is rinsed with an inert organic solvent, preferably hexane, and then dried.
  • the washing temperature can vary between the room temperature and the boiling temperature of the inert organic solvent used, preferably between 30° and 150° C., for a period of 30 to 300 minutes, preferably between 50 and 120 minutes.
  • the particle size distribution of the supported metallocene catalysts based on the present invention is quite similar to the particle size distribution of the silica used as support and, as a consequence, its D 50 ranges between 0.5 and 80 ⁇ m.
  • the supported metallocene catalysts of the present invention are proper to be used in process of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins in liquid or gas phases. More specifically, the supported metallocene catalysts of the present invention are proper to be used in processes in bulk, slurry and gas.
  • the cocatalyst used in the process of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins, using the supported complex of the present invention is an aluminum alkyl, preferably TMAL, TEAL or TIBAL.
  • the molar ratio Al/M in the process of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins ranges from 30:1 to 500:1.
  • An important aspect of the supported complex of the present invention is its ability to produce, when submitted to the conditions of ethylene homopolymerization and ethylene copolymerization with ⁇ -olefins of high molecular weight (HMWPE) and ethylene homopolymers and ethylene copolymers with ⁇ -olefins of ultra-high molecular weight (UHMWPE), with controlled morphology, i.e., spherical, presenting high bulk density (B.D.), i.e., ranging from 0.33 and 0.47 g/cm 3 and low TFP, i.e., between 0 and 0.4% wt and good flow, i.e., TE ranging from 6 and 12 seconds.
  • HMWPE high molecular weight
  • UHMWPE ultra-high molecular weight
  • the supported metallocene catalysts of the present invention are used with advantage in the ethylene homopolymerization and ethylene copolymerization with olefins such as, propene, butene-1, hexene-1,4-methyl-pentene-1, octene-1 and dodecene-1.
  • olefins such as, propene, butene-1, hexene-1,4-methyl-pentene-1, octene-1 and dodecene-1.
  • these supported metallocene catalysts are used in the preparation of ethylene homopolymers and copolymers with ⁇ -olefins of high molecular weight (HMWPE) and of ethylene homopolymers and ethylene copolymers with ⁇ -olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, i.e., MWD ranging from 2 to 15, preferably ranging from 3.7 to 8.
  • HMWPE high molecular weight
  • UHMWPE ultra-high molecular weight
  • Ethylene homopolymers and copolymers with ⁇ -olefins of high molecular weight (HMWPE) and ethylene homopolymers and ethylene copolymers with ⁇ -olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, of the present invention show ⁇ ranging from 2 to 30 dL/g.
  • HMWPE high molecular weight
  • UHMWPE ultra-high molecular weight
  • the ethylene homopolymers and copolymers with ⁇ -olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with ⁇ -olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, of the present invention present Mv ranging from 200,000 to 10,000,000 g/mol.
  • the ethylene homopolymers and copolymers with ⁇ -olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with ⁇ -olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution present Mv ranging from 500,000 to 9,000,000 g/mol.
  • the ethylene homopolymers and copolymers with ⁇ -olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with ⁇ -olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, of the present invention present P.D. ranging from 0.940 to 0.900 g/cm 3 .
  • transition metal complexes of the group 4 of the periodic table such as, for example, CpTiCl 3 and IndTiCl 3 and organometallic compounds of the group 13 of the periodic table, such as TEAL, TMAL, TIBAL e DEAC, acquired from Akzo Nobel.
  • the magnesium-based compound selected among magnesium halocarbons was MgCl 2 , acquired from Maruyasu Co. All reagents mentioned above were used as received.
  • Tetrahydrofuran (THF) was acquired from Tedia Brazil and purified with metallic sodium for water removal and with nitrogen, for oxygen removal.
  • Silica XPO-2402, Dehydrated 25 micron Support and SYLOPOL 5550 were acquired from GRACE DAVISON and used as received.
  • n-hexane the organic solvent used, n-hexane, was acquired from Phillips Petroleum and purified with molecular sieve 3A and nitrogen, to remove water and oxygen, respectively.
  • the catalytic support obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
  • the copolymerization of ethylene with different ⁇ -olefins was conducted in slurry for a period of 2 h, during which time the pressure of ethylene was kept constantly. After this period, the reactor was cooled down until room temperature, depressurized and open for polymer removal, with the resin being dried in stove (60° C.) during one hour.

Abstract

The present invention relates a process for the preparation of catalytic support and the supported metallocene catalysts used in the production of ethylene homopolymers and ethylene copolymers with α-olefins, of high and ultra high molecular weight with broad molecular weight distribution, in gas or liquid phase polymerization processes, the latter being in slurry, bulk or suspension, and the products obtained from these processes.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application, which is based on and claims priority to co-pending U.S. Utility patent application Ser. No. 12/163,711, filed on Jun. 27, 2008, which claims priority to co-pending Brazilian Patent Application No. PI 0703586-1 filed Oct. 19, 2007, which is entirely incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to supported metallocene catalysts and to a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table and containing groups of monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, in the absence of activators as aluminoxanes or organoboron base compounds, with application in ethylene homopolymerization and ethylene copolymerization with α-olefins. The invention also relates to the catalytic support and to the ethylene homopolymers and ethylene copolymers with α-olefins, of high and ultra high molecular weight, such as HMWPE and UHMWPE, with broad molecular weight distribution, thus produced. The present catalytic system presented in this patent application can be used in slurry, bulk and gas phase polymerization processes.
  • BACKGROUND INFORMATION
  • Metallocene-type complexes are increasingly becoming important as a new generation of catalysts for the preparation of polyolefins. By metallocenes, it is understood transition metal complexes containing one or more π ligands of the cyclopentadienyl type, substituted or not, such as, for example, sandwich- or half-sandwich-type compounds, i.e., metal complexed to two π ligands or one n ligand, respectively. These complexes become active in olefin polymerization when activated by an organometallic compound also known as cocatalyst. Known examples of cocatalysts, widely used in the activation of metallocenes, are aluminoxanes, particularly methylaluminoxane (herein referred as MAO).
  • Comparatively to the conventional Ziegler-Natta catalytic system, the homogeneous metallocene catalytic systems not only show high catalytic activities, but also the capacity to control the properties of the polyolefins as function of the compounds used in its synthesis and reaction conditions.
  • A great number of publications related to the preparation of polyolefins with metallocenes are appearing in literature. However, the disadvantage, in most cases, is the fact to be required the use of a large excess of aluminoxanes, in relation to the transition metal content of the catalyst, to yield acceptable productivities. Due to the high cost of the aluminoxane and also to the necessity of extra work of purification of the polymers obtained, the production of poliolefins in industrial scale, based on these catalytic systems, generally becomes anti-economic. Besides, the use of toluene, which is commonly used in the formulation of aluminoxanes solution, particularly the MAO, is increasingly becoming highly undesirable due to toxicological reasons in relation to the field of application of the polyolefins and storage stability reasons of the highly concentrated formulations (tendency to gel formation).
  • Efforts have been made in the sense to substitute, at least partially, the use of aluminoxanes for lower cost compounds or those having less adverse effects in the productivity, morphology and properties of the polymers. Such efforts are shown in the patents EP-A 287666, EP-A 294942, EP-A 442725, EP-A 553757 and WO 97/11775.
  • According to Ishihara in his article Macromolecules 21, 3356 (1988), metallocene catalysts with monocyclopentadienyl ligand such as, for example, CpTiCl3, after reacting with MAO, are effective in the polymerization of styrene obtaining high yields of syndiotactic polystyrene. However, Chien had demonstrated in his article, J. Polym. Sci., Polym. Chem. Ed. 28, 15 (1990), that the CpTiCl3-MAO complex has very low activity for ethylene polymerization.
  • Other known problem of the use of metallocene catalysts are the “poor” morphology of the polymeric material obtained; this results in apparent low bulk density and heterogeneous polymer. Since the replication phenomenon is being applied to polymerization reactions, i.e., the formation of polymer particles with morphology similar to those of catalyst particles, the problem has been resolved only improving the morphology of the catalyst used on those reactions. Methods for producing supported metallocene catalysts are described, for example, in the patents WO 95/07939, WO 87/03889, WO 94/28034, EP 206794 and EP 250600, where derivatives of aluminoxane compounds are used as cocatalysts. In addition to aluminoxane compounds, organoboron based compounds can also be used as activators, and the patents WO 91/09882, WO 94/03506, EP 628574 and WO 95/15815 teach to use them along with metallocene catalysts during the supported catalyst preparation.
  • The Chinese patent CN 1364817A, in its turn, shows that it is possible to obtain polyethylene from a silica-based supported metallocene catalyst containing monocyclopentadienyl and β-dicetone ligands, magnesium chloride and activated by MAO.
  • Several catalytic systems have been used to produce polyethylenes presenting an extremely high molecular weight. Such polymers are usually known as ethylene homopolymer or ethylene copolymer with α-olefins, of high and ultra high molecular weights, called henceforth HMWPE and UHMWPE, respectively. The HMWPE shows viscosimetric molecular weight (herein referred as Mv) that may range between 500,000 to 2,500,000 g/mol, while the UHMWPE shows Mv that is above 2,500,000 g/mol, which represents about 10 to 20 times more than the molecular weight of conventional high-density polyethylene (herein referred as HDPE).
  • The U.S. Pat. No. 5,576,600 teaches how to prepare a UHMWPE with a Ziegler-Natta catalyst and also shows that α-olefins, such as butene-1, which can be incorporated in these polyethylenes.
  • The commercially produced UHMWPE in moderate pressures and temperatures is traditionally obtained by Ziegler-Natta catalyst, as showed in patents U.S. Pat. No. 5,880,055 and BR 9,203,645A. Another characteristic of these polymers is that they show similar property to the conventional HDPE that is the broad molecular weight distribution (herein referred as MWD), with the MWD value ranging from 5 to 20.
  • Highly active metallocene catalysts as any single-site type catalyst for HMWPE and UHMWPE synthesis are not very common. For example, the U.S. Pat. No. 5,444,145 teaches how to prepare polyethylene presenting ponderal average molecular weight (herein referred as Mw) until 1,000,000 g/mol and containing incorporated α-olefins, with a homogeneous metallocene catalyst. Such polyethylenes show narrow MWD and a homogeneous distribution of α-olefin in the polyethylene chain. Moreover, the U.S. Pat. No. 6,265,504, in its turn, teaches how to produce a polyethylene with Mw higher than 3,000,000 g/mol and a MWD below 5 with single-site type catalyst, which is an organometallic compound containing a ligand with heteroatom, and activated by non-aluminoxane compounds. Other single-site catalysts containing ligands as pyridine are reported in the U.S. Pat. No. 5,637,660 and are particularly useful to produce UHMWPE with Mw above 3,000,000 g/mol.
  • Recently, in patent WO 02/079272, the synthesis of a homogeneous metallocene catalyst with bisindenil ligands with double bridge between these ligands which produced a polyethylene with Mw between 500,000 e 10,000,000 g/mol, was reported.
  • The U.S. Pat. No. 6,265,504 comments that the patent processes include solution, slurry and gas-phase, but the preference is by the process in solution. U.S. Pat. No. 5,444,145, in its turn, comments that the catalyst can be used in polymerization processes using liquid phase for synthesis.
  • Therefore, references in the state of the art, considered alone or in combination, do not describe nor suggest a process for the preparation of supported metallocene catalysts for the reaction of ethylene homopolymerization and ethylene copolymerization with α-olefins from supported metallocene catalysts based on transition metals of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators such as aluminoxanes or organoboron compounds and that produce ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, with broad molecular weight distribution, used in gas-phase and bulk polymerization processes in addition to processes in slurry, as described and claimed in this application
  • The obtained ethylene homopolymers and ethylene copolymers with α-olefins show high molecular weight, broad MWD, in the presence of mentioned supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not. More specifically, the present invention relates to a process for preparation of supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, for the reaction of ethylene homopolymerization and ethylene copolymerization with α-olefins, from a catalytic support prepared in the absence of activators such as aluminoxanes or organoboron based compounds. More specifically, the present invention also relates to a process to produce ethylene homopolymers or ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, with broad MWD, in the presence of the mentioned supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators like aluminoxanes or organoboron based compounds. The invention also relates to the catalytic support prepared in the absence of activators such as aluminoxanes or organoboron based compounds, to the supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, and broad MWD, and to the polymerization processes to produce ethylene homopolymers and ethylene copolymers with α-olefins with high molecular weight and ultra high molecular weight in presence of the mentioned supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, and in the absence of activators such as aluminoxanes or organoboron based compounds.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the supported metallocene catalysts based on transition metal of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the application in reactions of ethylene homopolymerization and ethylene copolymerization with α-olefin and to the ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, and broad MWD, obtained in processes of liquid-phase polymerization, i.e., in slurry, bulk or suspension, or in gas-phase, produced this way.
  • The process to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, of the present invention comprises the reaction between (1) catalytic support and (2) reaction product between transition metal complex of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, and an activator which is an organometallic compound of the groups 2 or 13 of the Periodic Table and a non-aluminoxane activator.
  • The process of the present invention of preparation to obtain the catalytic support comprises the following steps:
    • a) Impregnation of a silica, thermally activated, using a solution of organometallic compound of the groups 2 or 13 of the periodic table, in an inert organic solvent;
    • b) Preparation of a solution of one or more magnesium-based compounds with a polar solvent;
    • c) Impregnation of the silica obtained in (a) using the prepared solution in (b);
    • d) Removal of the polar solvent by vacuum;
    • e) Reaction of the solid obtained in (d) with a solution of one or more organometallic compounds of the groups 2 or 13 of the periodic table, in an inert organic solvent;
  • The process of the present invention of preparation to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, comprises the following steps:
    • f) Reaction of a transition metal complex of the groups 4 or 5 of the periodic table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, with solution of one or more organometallic compounds of the groups 2 or 13 of the periodic table, in an inert organic solvent;
    • g) Reaction of the solid obtained in (e) with the solution obtained in (f);
    • h) Optionally, reaction between the solid obtained in (g) with a halogenating agent;
  • Thus, the present invention provides a process to obtain a catalytic support based on thermally treated silica with a solution of organometallic compound of the groups 2 or 13 of the Periodic Table and posteriorly with the solution of a magnesium-based compound with a polar solvent.
  • The present invention also provides a process to obtain a catalytic support where is performed a posterior treatment with a solution of one or more organometallic compounds of the groups 2 or 13 of the periodic table.
  • The present invention also provides a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, from the catalytic support.
  • The present invention provides the supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, especially suitable for the production of HMWPE and UHMWPE polymers.
  • The present invention provides the preparation of ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE.
  • The present invention also provides the use of the supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in processes of liquid phase (slurry, bulk or suspension) or gas phase polymerization.
  • The present invention also provides the preparation of ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE in processes of liquid phase (slurry, bulk or suspension) or gas phase polymerization, with the mentioned supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not.
  • The present invention also provides the preparation of ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE and broad MWD, in processes of liquid phase (slurry, bulk or suspension) or gas phase polymerization, with the mentioned supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators such as aluminoxanes or organoboron based compounds.
  • DETAILED DESCRIPTION OF THE PREFERRED MODALITIES
  • Throughout the present specification, the terms below have the following meaning:
    • HDPE: high density polyethylene
    • HMWPE: ethylene homopolymers or ethylene copolymers with α-olefins, with high molecular weight
    • UHMWPE: ethylene homopolymers or ethylene copolymers with α-olefins, with ultra high molecular weight
    • LLDPE: linear low density polyethylene
    • TEAL: triethylaluminum
    • TMAL: trimethylaluminum
    • TIBAL: tri-isobutylaluminum
    • TNHAL: tri-n-hexylaluminum
    • DMAC: dimethylaluminum chloride
    • DEAC: diethylaluminum chloride
    • THF: tetrahydrofuran
    • Cp: cyclopentadienyl ligand
    • Ind: indenyl ligand
    • Flu: fluorenyl ligand
    • Me: methyl group
    • nBu: n-butyl group
    • Ti content: amount, in % wt, of titanium in the supported metallocene catalyst, determined by colorimetric analysis in an ultraviolet spectrometer Cary 100 from Varian.
    • Hf content: amount, in % wt, of hafnium in the supported metallocene catalyst, determined by X-Ray Fluorescence using a spectrometer from Bruker model S4.
    • Mg content: percent, in % wt, of magnesium in the catalytic support or supported metallocene catalyst, determined by atomic absorption spectroscopy using a Spectraa 110 spectrometer from Varian.
    • Al content: amount, in % wt, of aluminum in the catalytic support or supported metallocene catalyst, determined by atomic absorption spectroscopy using a Spectraa 110 spectrometer from Varian.
    • Cl content: amount, in % wt, of chlorine in the supported metallocene catalyst, determined by titration.
    • THF content: amount, in % wt, of tetrahydrofuran on catalytic support or supported metallocene catalyst, measured by gas chromatography in a CP 6800 equipment from Varian.
    • Al/M: molar ratio between aluminum and transition metal of the groups 4 or 5 of the Periodic Table of the supported metallocene catalyst molar ratio.
    • Al/THF: molar ratio between aluminum and tetrahydrofuran of the catalytic support.
    • A: catalytic activity of the ethylene homopolymerization and ethylene copolymerization with α-olefins, in Kg PE/g catalyst.
    • VC4=: volume, in mL, of butene-1 added to the reactor for ethylene copolymerization.
    • VCn=: volume, in mL, of α-olefin added to the reactor for ethylene copolymerization, where n can range from 3 to12.
    • D50: median particle diameter of the catalytic support or supported metallocene catalysts, determined according to a method based in the principle of optical diffraction of monochromatic laser light, using a Mastersizer 2000 apparatus.
    • TFP: represents the amount of fines, in % wt, in the polymer by the method for sieving where this content is measured from equation 1, as follows:

  • TFP=MFG×100/MA   Equation 1
  • where,
  • MFG=mass of fines retained on a 120 sieve and background;
  • MA=total mass of the polymer sample;
  • 100=conversion factor.
    • B.D.: represents polymer bulk density, in g/cm3, measured by the method ASTM D-1895.
    • TE: represents the flowing time, in seconds (s), of the polymers determined from the method that consists in leaving the sample to flow by gravity effect through a funnel with defined dimensions and measure the total time for flowing.
    • P.D.: represents density in the molded, in g/cm3, and measured by the method ASTM D-792.
    • Tm2: represents the melting temperature, in ° C., of the polymer determined by
    • Differential Scanning calorimetry performed in equipment Thermal Analysis Instruments DSC-2010.
    • η: represents polymer intrinsic viscosity, in dL/g, determined by ASTM D-4020.
    • Mv: represents polymer viscosimetric molecular weight calculated by Margolies equation contained in ASTM D-4020.
    • MWD: represents the polymer molecular weight distribution (Mw/Mn), determined from GPC curve performed in an equipment Waters GPC 150C equipped with refraction index detector.
    • Cn =: represents percent in weight (% wt), of α-olefin linked to the polymer chain, determined by 13C NMR, where n can range from 3 to 12 and represents the number of carbons present in α-olefin.
    • As used in this patent, in reference to the Periodic Table of Elements, the new numeration scheme of the Periodic Table is used as in the reference CRC HANDBOOK OF CHEMISTRY AND PHYSICS (David R. Lide ed., CRC Press 81.sup.st ed. 2000).
  • The invention relates to a process for the preparation of supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, in the absence of activators such as aluminoxanes or organoboron based compounds, to the supported metallocene catalysts based on transition metal of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, to the application in ethylene homopolymerization and ethylene copolymerization reactions with α-olefin in liquid phase (slurry, bulk or suspension) or gas phase processes and to the ethylene homopolymers and ethylene copolymers with α-olefins, with high molecular weight and ultra high molecular weight, such as HMWPE and UHMWPE, and broad MWD, produced this way.
  • The process to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, of the present invention involves the reaction between (1) catalytic support and (2) the reaction product between the transition metal complex of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, and a non-aluminoxane activator.
  • The process of the present invention of preparation of the catalytic support comprised the following steps:
    • a) Impregnation of a silica, thermally activated, using a solution of organometallic compound of the groups 2 or 13 of the Periodic Table, in an inert organic solvent;
    • b) Preparation of a solution of one or more magnesium-based compounds with a polar solvent;
    • c) Impregnation of the silica obtained in (a) using the prepared solution in (b);
    • d) Removal of the polar solvent by vacuum;
    • e) Reaction of the solid obtained in (d) with a solution of one or more organometallic compounds of the groups 2 or 13 of the Periodic Table, in an inert organic solvent;
  • The process of the present invention of preparation to obtain supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, comprises the following steps:
    • f) Reaction of a transition metal complex of the groups 4 or 5 of the Periodic Table, containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl, substituted or not, with solution of one or more organometallic compounds of the groups 2 or 13 of the periodic table, in an inert organic solvent;
    • g) Reaction of the solid obtained in (e) with the solution obtained in (f);
    • h) Optionally, reaction between the solid obtained in (g) with a halogenating agent.
  • In step (a) of the process for preparation of the catalytic support of the present invention, the preferable support used was silica and this is microspheroidal and presents the following characteristics: median particle diameter (D50) between 0.5 and 80 μm, preferably between 1 and 60 μm, a superficial area between 50 and 500 m2/g, preferably between 100 and 300 m2/g, a volume of pores between 1.0 and 2.0 ml/g, preferably between 1.5 and 1.8 ml/g, an average diameter of pores between 10 and 40 nm, preferably between 20 and 30 nm. This silica must undergo a thermal treatment before its use in the preparation of the catalytic support. Such treatment must be performed in inert atmosphere, at a temperature ranging from 100 to 800° C., for a period of 1 to 20 h. After this thermal treatment, the remaining content of OH groups in the silica surface is ranging from 0.1 to 2 mmoles OH per g of silica, preferably between 0.5 and 1.5 mmoles per g of silica.
  • In the step (a) of the process for preparation of the catalytic support of the present invention, the impregnation of silica is preferably performed suspending the silica, previously thermally treated, in a proportion ranging between 10 and 20 parts per weight for each 100 parts in volume of the solution of organometallic compound of the groups 2 or 13 of the periodic table, in an inert organic solvent, and keeping under stirring at a temperature that may range between the room temperature and boiling temperature of the solution of organometallic compound of the groups 2 or 13 of the periodic table, in inert organic solvent, preferably between 25° C. and 60° C., for a period from 30 to 120 minutes, preferably between 50 and 70 minutes.
  • The most proper organometallic compounds of the groups 2 or 13 of the Periodic Table to be used in the step a) are aluminum alkyl compounds and aluminum alkyl halocarbons. Specific examples of such compounds are trimethylluminum (TMAL), triethylaluminum (TEAL), tri-isobutilaluminum (TIBAL), tri-n-hexilaluminum (TNHAL), tri-n-octilaluminum (TNOAL), dimethylaluminum chloride (DMAC), methylaluminum dichloride (MADC), diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), di-isobutylaluminum chloride (DIBAC), isobutylaluminum dichloride (MONIBAC). These compounds can be used concentrated or preferably dissolved in an organic solvent of the aliphatic hydrocarbon type.
  • Aliphatic hydrocarbons used as solvents to prepare the solution of organometallic compound of the groups 2 or 13 of the Periodic Table can present between 4 and 50 carbons, preferably between 6 and 20 carbons. Specific examples of these aliphatic hydrocarbons used as solvents are n-hexane, n-heptane, isopentane, n-octane, isoparaffin and more preferably n-hexane, isopentane and n-heptane.
  • In the step (a) of the process for preparation of the catalytic support of the present invention, the step of impregnation of the solution of organometallic compound of the groups 2 or 13 of the Periodic Table, in an inert organic solvent, is performed using an amount of organometallic compound in a range from 0.01 to 1 mmol of the metal belonging to the groups 2 or 13 of the Periodic Table per mol of groups OH present in the silica surface, preferably between 0.1 and 0.7 mmol of the metal belonging to the groups 2 or 13 of the Periodic Table per mol of groups OH present in the silica surface.
  • In the end of the step of impregnation of silica with the solution of organometallic compound of the groups 2 or 13 of the periodic table, in an inert organic solvent, the treated silica can be recovered after removal of liquid present in the step a) by different usual methods such as decantation and siphonation, filtration and vacuum removal. The operation temperature in this step can vary between room temperature and boiling temperature of the aliphatic hydrocarbon used as solvent, preferably at room temperature. The dried silica is used directly in the following step.
  • According to the present invention, in the step (b) of the process, a liquid compound is obtained from the solubilization of, at least, a magnesium-based compound, selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy and a polar solvent. Generally, it is necessary to heat the mixture of these compounds up to a temperature ranging from 25° to 150° C., preferably between 40° and 100° C., for a period from 0.5 to 10 hours, preferably between 1 and 5 hours. The solution containing the mentioned compounds needs to be prepared under turbulent stirring and under inert conditions.
  • The most proper magnesium-based compound, selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy to be used in the step b) are magnesium dichloride(MgCl2), magnesium ethoxy chloride(Mg(OCH2CH3)Cl), magnesium ethyl chloride(Mg(CH2CH3)Cl), diethyl magnesium (Mg(CH2CH3)2), diethoxy magnesium(Mg(OCH2CH3)2). Magnesium dichloride, MgCl2, is preferably used.
  • The most proper polar solvents for the solubilization of, at least, a magnesium-based compound, selected among magnesium halocarbon, magnesium alkoxy halocarbon, magnesium alkyl halocarbon, magnesium dialkyl and magnesium dialkoxy and magnesium dialkoxy of the step (b) are selected among ethers, alcohols and ketones. Specific examples of these polar solvents are ethyl ether, tetrahydrofuran, ethyl alcohol and ketone metylethyl, more preferably ethyl alcohol and tetrahydrofuran.
  • The quantity of magnesium-based compound used in the preparation of the described solution in the step (b) corresponds to a range of 0.002 to 0.2 g of magnesium compound per g of silica.
  • In the step (c), the silica obtained in step (a) is put in contact with the solution obtained in the step (b). The impregnation that happens in this step is performed suspending 10 to 20 parts per silica weight, obtained in the step (a), for each 100 parts per volume of solution obtained in the step (b). The suspension is kept under stirring at a temperature ranging from room temperature to the boiling temperature of the polar solvent used in the step (b), preferably between 50° C. and 100 ° C., for a period of 30 to 300 minutes, preferably between 60 and 240 minutes. After this period, the polar solvent used in the solution of the step (b) is removed per vacuum in the step (d). The remaining polar solvent in the solid obtained in (d) after the use of the vacuum must remain between 7 and 15% wt, preferably between 8 and 12% wt.
  • In the step (e) of the process for preparation of the catalytic support of the present invention, the solid obtained in (d) is suspended in an inert organic solvent such as hexane or heptane, and this is put in contact with one or more organometallic compounds of the groups 2 or 13 of the Periodic Table, in order to remove the content of remaining polar solvent in the solid. The molar ratio between organometallic compound of the groups 2 or 13 of the Periodic Table, and the remaining polar solvent in the solid, range between 0.2 and 2, preferably between 0.3 and 1. The reaction between the organometallic compounds of the groups 2 or 13 of the Periodic Table and the remaining polar solvent in the solid happens under stirring at a temperature that may range between the room temperature and boiling temperature of the solution of organometallic compounds of the groups 2 or 13 of the Periodic Table, in inert organic solvent, preferably between 25° C. and 60° C., for a period of 30 to 300 minutes, preferably between 50 and 120 minutes.
  • The most proper organometallic compounds of the groups 2 or 13 of the Periodic Table to be used in the step (e) are aluminum alkyl compounds and aluminum alkyl halocarbons. Specific examples of such compounds are trimethylluminum (TMAL), triethylaluminum (TEAL), tri-isobutylaluminum (TIBAL), tri-n-hexilaluminum (TNHAL), tri-n-octilaluminum (TNOAL), dimethylaluminum chloride (DMAC), methylaluminum dichloride (MADC), diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), di-isobutylaluminum chloride (DIBAC), isobutylaluminum dichloride (MONIBAC), ethylmagnesium butyl (BEM), octilmagnesium butyl (BOMAG), methylmagnesium chloride and ethylmagnesium chloride. These compounds can be used concentrated or preferably dissolved in an organic solvent of the aliphatic hydrocarbon type.
  • When using more than one organometallic compound of the groups 2 or 13 of the Periodic Table in the step (e), the different compounds can be fed in the same solution or in separate solutions, at the same time or in subsequent additions.
  • The catalytic support of the present invention obtained at the end of the step (e) can present in its composition a remaining content of polar solvent that can range between 1 and 8% wt.
  • In the step (f) of the process for preparation of the supported metallocene catalysts based on transition metals of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, of the present invention, the transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, is dissolved in an inert organic solvent of the aliphatic or aromatic hydrocarbon, preferably aliphatic, at a temperature ranging from the room temperature to the boiling temperature of the organic solvent used, preferably between 30° and 150° C.
  • Transition metal complexes of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, used for this purpose are composed of the groups 4 or 5 of the periodic table, preferably of the group 4, such as, for example, Ti, Zr and Hf. Such complexes present organic groups of monocyclopentadienyl, monoindenyl or monofluorenyl type, which can be substituted or not, i.e., such groups are mononuclear aromatic rings that are linked to the transition metal by π bond. Other ligands can be linked to the transition metal such as, halogens and alkoxy groups, preferably chlorides and methoxy, respectively.
  • The transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, used in the present invention is derived from a formula compound

  • [L]-MQ3   formula 1
  • where,
  • M is a transition metal of the groups 4 or 5;
  • Q, which can be equal or different, is a halogen radical, aryl radical, alkyl radical containing between 1 and 5 carbon atoms or alkoxy radical containing between 1 and 5 carbon atoms;
  • L is a bulky ligand of the cyclopentadienyl, indenyl or fluorenyl type, substituted or not by hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl, linked to the transition metal by π bond.
  • According to examples incorporated to the present invention, examples representing, but not limiting, the compounds having the formula 1 include CpTiCl3, CpZrCl3, CpHfCl3, CpVCl3, CpTi(Me)3, CpZr(Me)3, CpHf(Me)3, CpTi(OMe)3, CpZr(OMe)3, CpHf(OMe)3, CpTi(OEt)3, CpZr(OEt)3, CpHf(OEt)3, IndTiCl3, IndZrCl3, IndHfCl3, IndVCl3, IndTi(Me)3, IndZr(Me)3, IndHf(Me)3, IndTi(Me)3, IndZr(OMe)3, IndHf(OMe)3, IndTi(OEt)3, IndZr(OEt)3, IndHf(OEt)3, FIuTiCl3, FluZrCl3, FluHfCl3, FluVCl3, FluTi(Me)3, FluZr(Me)3, FluHf(Me)3, FluTi(OMe)3, FluZr(OMe)3, FluHf(OMe)3, FluTi(OEt)3, FluZr(OEt)3, FluHf(OEt)3, (MeCp)TiCl3, (MeCp)ZrCl3, (MeCp)HfCl3, (MeCp)VCl3, (MeCp)Ti(Me)3, (MeCp)Zr(Me)3, (MeCp)Hf(Me)3, (MeCp)Ti(OMe)3, (MeCp)Zr(OMe)3, (MeCp)Hf(OMe)3, (MeCp)Ti(OEt)3, (MeCp)Zr(OEt)3, (MeCp)Hf(OEt)3, (nBuCp)TiCl3, (nBuCp)ZrCl3, (nBuCp)HfCl3, (nBuCp)VCl3, (nBuCp)Ti(Me)3, (nBuCp)Zr(Me)3, (nBuCp)Hf(Me)3, (nBuCp)Ti(OCH3)3, (nBuCp)Zr(OCH3)3, (nBuCp)Hf(OCH3)3, (nBuCp)Ti(OEt)3, (nBuCp)Zr(OEt)3, (nBuCp)Hf(OEt)3, (Me5Cp)TiCl3, (Me5Cp)ZrCl3, (Me5Cp)HfCl3, (Me5Cp)VCl3, (Me5Cp)Ti(Me)3, (Me5Cp)Zr(Me)3, (Me5Cp)Hf(Me)3, (Me5Cp)Ti(OMe)3, (Me5Cp)Zr(OMe)3, (Me5Cp)Hf(OMe)3, (Me5Cp)Ti(OEt)3, (Me5Cp)Zr(OEt)3, (Me5Cp)Hf(OEt)3, (4,7-Me2Ind)TiCl3, (4,7-Me2Ind)ZrCl3, (4,7-Me2Ind)HfCl3, (4,7-Me2Ind)VCl3, (4,7-Me2Ind)Ti(Me)3, (4,7-Me2Ind)Zr(Me)3, (4,7-Me2Ind)Hf(Me)3, (4,7-Me2Ind)Ti(OMe)3, (4,7-Me2Ind)Zr(OMe)3, (4,7-Me2Ind)Hf(OMe)3, (4,7-Me2Ind)Ti(OEt)3, (4,7-Me2Ind)Zr(OEt)3, (4,7-Me2Ind)Hf(OCH2CH3)3, (2-MeInd)TiCl3, (2-MeInd)ZrCl3, (2-MeInd)HfCl3, (2-MeInd)VCl3, (2-MeInd)Ti(Me)3, (2-MeInd)Zr(Me)3, (2-MeInd)Hf(Me)3, (2-MeInd)Ti(OMe)3, (2-MeInd)Zr(OMe)3, (2-MeInd)Hf(OMe)3, (2-MeInd)Ti(OEt)3, (2-MeInd)Zr(OEt)3, (2-MeInd)Hf(OEt)3, (2-arillnd)TiCl3, (2-ariInd)ZrCl3, (2-arilInd)HfCl3, (2-arilInd)VCl3, (2-arilInd)Ti(Me)3, (2-arilInd)Zr(Me)3, (2-arilInd)Hf(Me)3, (2-arilInd)Ti(OMe)3, (2-arilInd)Zr(OMe)3, (2-arilInd)Hf(OMe)3, (2-arilInd)Ti(OEt)3, (2-arilInd)Zr(OEt)3, (2-arilInd)Hf(OEt)3, (4,5,6,7-H4Ind)TiCl3, (4,5,6,7-H4Ind)ZrCl3, (4,5,6,7-H4Ind)HfCl3, (4,5,6,7-H4Ind)VCl3, (4,5,6,7-H4Ind)Ti(Me)3, (4,5,6,7-H4Ind)Zr(Me)3, (4,5,6,7-H4Ind)Hf(Me)3, (4,5,6,7-H4Ind)Ti(OMe)3, (4,5,6,7-H4Ind)Zr(OMe)3, (4,5,6,7-H4Ind)Hf(OMe)3, (4,5,6,7-H4Ind)Ti(OEt)3, (4,5,6,7-H4Ind)Zr(OEt)3, (4,5,6,7-H4Ind)Hf(OEt)3, (9-MeFlu)TiCl3, (9-MeFlu)ZrCl3, (9-MeFlu)HfCl3, (9-MeFlu)VCl3, (9-MeFlu)Ti(Me)3, (9-MeFlu)Zr(Me)3, (9-MeFlu)Hf(Me)3, (9-MeFlu)Ti(OMe)3, (9-MeFlu)Zr(OMe)3, (9-MeFlu)Hf(OMe)3, (9-MeFlu)Ti(OEt)3, (9-MeFlu)Zr(OEt)3, (9-MeFlu)Hf(OEt)3.
  • The most proper organic solvents of the aliphatic hydrocarbon type to suspend or solubilize the transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, are n-hexane, n-heptane, isopentane, n-octane, isoparaffin and more preferably are n-hexane, isopentane and n-heptane.
  • The quantity of transition metal complex of the groups 4 or 5 of the Periodic Table containing ligands like monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, used in the preparation of the solution corresponding to a range from 0.002 to 0.2 g of transition metal complex of the groups 4 or 5 of the Periodic Table per g of silica.
  • The quantity of organometallic compound of the groups 2 or 13 of the Periodic Table, relative to the transition metal, corresponds to a molar ratio that varies between 0.5 and 5, preferably between 1 and 4.
  • In the step (g), the solid product obtained in (e) is reacted with the product in solution obtained in the step (f) at a temperature ranging from the room temperature to the boiling temperature of the organic solvent used, preferably between 30° and 150° C., for a period from 30 to 300 minutes, preferably between 50 and 120 minutes.
  • Optionally, in the step (h), the solid obtained in (g) is put in contact with a halogenating agent. Useful halogenating agents for the practice of the present invention are preferably pure or diluted liquids in an inert organic solvent. Examples representing, but not limiting, the halogenating agents include dimethylaluminum chloride (DMAC), methylaluminum dichloride (MADC), diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), di-isobutylaluminum chloride (DIBAC), isobutylaluminum dichloride (MONIBAC), aluminum ethyl sesquichloride (EASC), silicon tetrachloride(SiCl4), tetrachloride tin(SnCl4), trichlorosilan methyl(MeSiCl3), dimethyl dichlorosilan(Me2SiCl2), titanium tetrachloride(TiCl4), vanadium tetrachloride(VCl4), carbon tetrachloride (CCl4), t-butyl chloride, chloroform and dichloromethane.
  • The preferred halogenating agents are chlorination agents and among them, aluminum ethyl sesquichloride (EASC), silicon tetrachloride(SiCl4), tin tetrachloride(SnCl4), chloroform and dichloromethane are preferred, more preferably the silicon tetrachloride(SiCl4).
  • The quantity of halogenating agent used optionally in the step (h) of the process, relative to the transition metal, corresponds to a molar ratio between 0.5 and 5, preferably between 1 and 3.
  • The required time for the halogenation of the transition metal complexes of the groups 4 or 5 of the Periodic Table containing groups of the monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, and containing alkoxy radicals ranges between 0.5 and 5 h, preferably between 1 and 3 h. The required temperature for the halogenation of the transition metal complexes of the groups 4 or 5 of the Periodic Table containing groups of the monocyclopentadienyl, monoindenyl or monofluorenyl type, substituted or not, and containing alkoxy radicals ranges between the room temperature and the boiling temperature of the inert organic solvent used, preferably between 30° and 100° C.
  • The solid product obtained in (g) or (h) is rinsed with an inert organic solvent, preferably hexane, and then dried. The washing temperature can vary between the room temperature and the boiling temperature of the inert organic solvent used, preferably between 30° and 150° C., for a period of 30 to 300 minutes, preferably between 50 and 120 minutes.
  • The particle size distribution of the supported metallocene catalysts based on the present invention is quite similar to the particle size distribution of the silica used as support and, as a consequence, its D50 ranges between 0.5 and 80 μm.
  • The supported metallocene catalysts of the present invention are proper to be used in process of ethylene homopolymerization and ethylene copolymerization with α-olefins in liquid or gas phases. More specifically, the supported metallocene catalysts of the present invention are proper to be used in processes in bulk, slurry and gas.
  • The cocatalyst used in the process of ethylene homopolymerization and ethylene copolymerization with α-olefins, using the supported complex of the present invention, is an aluminum alkyl, preferably TMAL, TEAL or TIBAL. The molar ratio Al/M in the process of ethylene homopolymerization and ethylene copolymerization with α-olefins ranges from 30:1 to 500:1.
  • An important aspect of the supported complex of the present invention is its ability to produce, when submitted to the conditions of ethylene homopolymerization and ethylene copolymerization with α-olefins of high molecular weight (HMWPE) and ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with controlled morphology, i.e., spherical, presenting high bulk density (B.D.), i.e., ranging from 0.33 and 0.47 g/cm3 and low TFP, i.e., between 0 and 0.4% wt and good flow, i.e., TE ranging from 6 and 12 seconds. This way, the supported metallocene catalysts can be fed directly to the polymerization reactor. Particular forms to feed the supported metallocene catalysts to the polymerization reactor are powder, paste, in oil suspension or in suspension with solvent.
  • The supported metallocene catalysts of the present invention are used with advantage in the ethylene homopolymerization and ethylene copolymerization with olefins such as, propene, butene-1, hexene-1,4-methyl-pentene-1, octene-1 and dodecene-1. In particular, these supported metallocene catalysts are used in the preparation of ethylene homopolymers and copolymers with α-olefins of high molecular weight (HMWPE) and of ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, i.e., MWD ranging from 2 to 15, preferably ranging from 3.7 to 8.
  • Ethylene homopolymers and copolymers with α-olefins of high molecular weight (HMWPE) and ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, of the present invention show η ranging from 2 to 30 dL/g. More specifically, the ethylene homopolymers and copolymers with α-olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, present η ranging from 4 to 28 dL/g.
  • The ethylene homopolymers and copolymers with α-olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, of the present invention present Mv ranging from 200,000 to 10,000,000 g/mol. More specifically, the ethylene homopolymers and copolymers with α-olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, present Mv ranging from 500,000 to 9,000,000 g/mol.
  • The ethylene homopolymers and copolymers with α-olefins of high molecular weight (HMWPE) and the ethylene homopolymers and ethylene copolymers with α-olefins of ultra-high molecular weight (UHMWPE), with broad molecular weight distribution, of the present invention present P.D. ranging from 0.940 to 0.900 g/cm3.
  • EXAMPLES
  • In the examples of the present invention, which must not be considered limiting, used transition metal complexes of the group 4 of the periodic table, such as, for example, CpTiCl3 and IndTiCl3 and organometallic compounds of the group 13 of the periodic table, such as TEAL, TMAL, TIBAL e DEAC, acquired from Akzo Nobel. The magnesium-based compound selected among magnesium halocarbons, was MgCl2, acquired from Maruyasu Co. All reagents mentioned above were used as received. Tetrahydrofuran (THF) was acquired from Tedia Brazil and purified with metallic sodium for water removal and with nitrogen, for oxygen removal. Silica XPO-2402, Dehydrated 25 micron Support and SYLOPOL 5550 were acquired from GRACE DAVISON and used as received.
  • In the examples related below, the organic solvent used, n-hexane, was acquired from Phillips Petroleum and purified with molecular sieve 3A and nitrogen, to remove water and oxygen, respectively. The organometallic compounds TEAL, TMAL, TIBAL, DMAC e DEAC, were used in solution of n-hexane in a concentration ranging from 10 to 13% wt, depending on the organometallic compound used. All operations were performed using inert atmosphere of nitrogen with upper limit of 1.5 ppm of moisture.
  • Example 1 a) Preparation of the Catalytic Support
  • In a 5 L reactor equipped with mechanical stirring and previously purged with nitrogen, was added 44.5 g (0.462 mol) of MgCl2 and 2.5 L of dried THF. This mixture was heated until 60° C. and stirred at 100 rpm for 5 h for complete solubilization of the MgCl2. The obtained solution was, after this period, cooled down to 35° C. In this solution, 300 g of silica XPO-2402 were added, previously dehydrated at 600° C. and treated with 22.3 ml (0.163 mol) of diluted TEAL in n-hexane for 50 minutes at temperature of 25° C. Once finished the addition of silica, the mixture was heated up to 60° C. and stirred at 100 rpm for 1 h. After this period, we stop the stirring and start the THF evaporation through vacuum until the THF content to be incorporated in the support to reach a range between 8 and 12% wt.
  • The catalytic support obtained was characterized, presenting the following characteristics:
      • THF content: 11.2% wt
      • Mg content: 2.3% wt
      • Al content: 1.2% wt
    b) Preparation of Supported Metallocene Catalyst
  • In 1-L reactor equipped with mechanical stirring and previously purged with nitrogen, 32 g of the catalytic support prepared in the step (a) and 0.5 L of n-hexane were added. In this suspension, stirred at 200 rpm and the temperature of 25° C., it was slowly added 5.6 mL (45 mol) of diluted DEAC diluted in n-hexane (Al/THF=0.45). The suspension was stirred for 2 h and after this period, the solvent was removed by siphonation. The catalytic support obtained, after this treatment, was characterized presenting the following characteristics:
      • THF content: 7.2% wt
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 3.2 g (0.015 mol) of CpTiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 7.32 mL (0.03 mol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In the catalytic support obtained after the treatment with DEAC, 0.5 L of n-hexane was again added and the suspension was heated up to 50° C. In this suspension stirred at 100 rpm, the dark solution of CpTiCl3/TIBAL was slowly added and, after the addition was ended, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was reduced to 30° C. The solid obtained was filtered and dried under fluidization with nitrogen.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • THF content: 3.8% wt
      • Ti content: 2.6% wt
      • Mg content: 2.1% wt
      • Al content: 2.8% wt
      • Cl content: 10.7% wt
      • D50: 60 μm
    Example 2 b) Preparation of Supported Metallocene Catalyst
  • In a 200-mL reactor equipped with mechanical stirring and previously purged with nitrogen, 6.1 g of the catalytic support prepared in the step a) of the EXAMPLE 1 and 50 mL of n-hexane were added. In this suspension, stirred at 200 rpm and under temperature of 25° C., it was slowly added 0.4 mL (4.1 mmol) of diluted TMAL in n-hexane (Al/THF=0.45). The suspension was stirred for 2 h and, after this period, the solvent was removed by siphonation. The catalytic support obtained, after this treatment, was characterized presenting the following characteristics:
      • THF content: 3.3% wt
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 0.61 g (2.8 mmol) of the CpTiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 1.4 mL (5.5 mmol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In the catalytic support obtained after the treatment with TMAL, 50 mL of n-hexane was again added and the suspension was heated up to 50° C. In this suspension stirred at 100 rpm, the dark solution of CpTiCl3/TIBAL was slowly added and, after the addition was ended, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was elevated to 30° C. The solid obtained was filtered and dried under fluidization with nitrogen.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • THF content: 1.3% wt
      • Ti content: 1.7% wt
      • Mg content: 1.9% wt
      • Al content: 7.3% wt
      • Cl content: 9.2% wt
      • D50: 60 μm
    Example 3 b) Preparation of Supported Metallocene Catalyst
  • In a 200-mL reactor equipped with mechanical stirring and previously purged with nitrogen, 6.1 g of the catalytic support prepared in the step a) of the EXAMPLE 1 and 50 mL of n-hexane were added. In this suspension, stirred at 200 rpm and the temperature of 25° C., it was slowly added 1.44 mL (4.2 mmol) of diluted TNHAL in n-hexane (Al/THF=0.45). The suspension was stirred for 2 h and after this period, the solvent was removed by siphonation. The catalytic support obtained, after this treatment, was characterized presenting the following characteristics:
      • THF content: 3.4% wt
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 0.61 g (2.8 mmol) of the CpTiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 1.4 mL (5.5 mmol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In the catalytic support obtained after the treatment with TNHAL, 50 mL of n-hexane were again added and the suspension was heated up to 50° C. In this suspension stirred at 100 rpm, the dark solution of CpTiCl3/TIBAL was slowly added and, after the addition was ended, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was elevated to 30° C. The solid obtained was filtered and dried under fluidization with nitrogen.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • THF content: 1.6% wt
      • Ti content: 1.8% wt
      • Mg content: 2.1% wt
      • Al content: 5.3% wt
      • Cl content: 8.8% wt
      • D50: 58 μm
    Example 4 b) Preparation of Supported Metallocene Catalyst
  • In a 200-mL reactor equipped with mechanical stirring and previously purged with nitrogen, 6.1 g of the catalytic support prepared in the step a) of the EXAMPLE 1 and 50 mL of n-hexane were added. In this suspension, stirred at 200 rpm and the temperature of 25° C., it was slowly added 3.15 mL (9.2 mmol) of diluted TNHAL in n-hexane (Al/THF=1). The suspension was stirred for 2 h and after this period, the solvent was removed by siphonation. The catalytic support obtained, after this treatment, was characterized presenting the following characteristics:
      • THF content: 2.0% p/p
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 0.61 g (2.8 mmol) of the CpTiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 1.4 mL (5.5 mmol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In the catalytic support obtained after the treatment with TNHAL, 50 mL of n-hexane were again added and the suspension was heated up to 50° C. On this suspension stirred at 100 rpm, the dark solution of CpTiCl3/TIBAL was slowly added and, after the addition was ended, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was elevated to 30° C. The solid obtained was filtered and dried under fluidization with nitrogen.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • THF content: 1.0% wt
      • Ti content: 2.8% wt
      • Mg content: 1.9% wt
      • Al content: 9.3% wt
      • Cl content: 10.2% wt
      • D50: 60 μm
    Example 5 b) Preparation of Supported Metallocene Catalyst
  • In a 200-mL reactor equipped with mechanical stirring and previously purged with nitrogen, 6.5 g of the catalytic support prepared in the step a) of the EXAMPLE 1 and 50 mL of n-hexane were added. In this suspension, stirred at 200 rpm and the temperature of 25° C., it was slowly added 0.6 mL (4.8 mmol) of diluted DEAC in n-hexane (Al/THF=1). The suspension was stirred for 2 h and after this period, the solvent was removed by siphonation. The catalytic support obtained, after this treatment, was characterized presenting the following characteristics:
      • THF content: 3.9% wt
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 0.65 g (2.4 mmol) of the IndTiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 1.2 mL (4.7 mmol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In the catalytic support obtained after the treatment with DEAC, 50 mL of n-hexane were again added and the suspension was heated up to 50° C. On this suspension stirred at 100 rpm, the dark solution of IndTiCl3/TIBAL was slowly added and, after the addition was ended, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was elevated to 30° C. The solid obtained was filtered and dried under fluidization with nitrogen.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • THF Content: 3.4% wt
      • Ti Content: 1.1% wt
      • Mg Content: 2.1% wt
      • Al Content: 3.1% wt
      • Cl Content: 9.3% wt
      • D50: 60 μm
    Example 6 b) Preparation of Supported Metallocene Catalyst
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 0.65 g (3 mmol) of the CpTiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 1.5 mL (5.9 mmol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In a 200-mL reactor equipped with mechanical stirring and previously purged with nitrogen, 6.9 g of the silica Sylopol 5550 and 50 mL of n-hexane were added. In this suspension, stirred at 100 rpm, it was slowly added the dark solution of CpTiCl3/TIBAL and, after ending the addition, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was reduced by 30° C. The solid obtained was filtered and dried under nitrogen fluidization.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • Ti Content: 1.6% wt
      • Mg Content: 3.7% wt
      • Al Content: 1.9% wt
      • Cl Content: 13.1% wt
      • D50: 53 μm
    Example 7 b)) Preparation of Supported Metallocene Catalyst
  • In a 200-mL reactor equipped with mechanical stirring and previously purged with nitrogen, 6.5 g of the catalytic support prepared in the step a) of the EXAMPLE 1 and 50 mL of n-hexane were added. In this suspension, stirred at 200 rpm and the temperature of 25° C., it was slowly added 3.4 mL (9.9 mmol) of diluted TNHAL in n-hexane (Al/THF=1). The suspension was stirred for 2 h and after this period, the solvent was removed by siphonation. The catalytic support obtained, after this treatment, was characterized presenting the following characteristics:
      • THF Content: 2.9% wt
  • In a schlenk, equipped with magnetic stirrer and dipped in a heat oil bath, 0.63 g (2.2 mmol) of the (Me5Cp)TiCl3 and 70 mL of n-hexane were transferred. In this suspension heated up to 50° C. and under stirring, 1.1 mL (4.3 mmol) of diluted TIBAL in n-hexane (Al/Ti=2) was slowly added. The dark solution obtained was stirred for 2.5 h at 50° C.
  • In the catalytic support obtained after the treatment with TNHAL, 50 mL of n-hexane was again added and the suspension was heated up to 50° C. On this suspension stirred at 100 rpm, the dark solution of (Me5Cp)TiCl3/TIBAL was slowly added and, after the addition was ended, the suspension was stirred at 100 rpm at 50° C. for 2 h. Elapsed this period, the temperature was elevated to 30° C. The solid obtained was filtered and dried under fluidization with nitrogen.
  • The Supported metallocene catalyst obtained was characterized, presenting the following characteristics:
      • THF Content: 1.4% wt
      • Ti Content: 0.7% wt
      • Mg Content: 2.3% wt
      • Al Content: 4.4% wt
      • Cl Content: 8.5% wt
      • D50: 58 μm
        Homopolymerization with Ethylene
  • In a 4-liter stainless steel reactor from Autoclave Engineer's Inc., it was performed, initially, a purge with N2 for 1 hour at a temperature of 70° C. and, then, the reactor was cooled down to 30° C. After that, a suspension was transferred, in n-hexane, formed by the supported complex and TMAL (Al/Ti=300) followed by 280 g of anhydrous propane. After that, the temperature was increased up to 60° C. again, and the remaining 520 g of anhydrous propane were added. Then, the temperature was again elevated to 75° C. and, then, the reactor was fed with 7 bar of ethylene. The homopolymerization of ethylene was conducted in slurry for a period of 2 h, during which time the pressure of ethylene was steady. After this period, the reactor was cooled down to the room temperature, depressurized and open for polymer removal, with the resin being dried in stove (60° C.) during one hour. The results of catalytic activity (A) and bulk density (B.D.) are presented in the Table 1 below. In Table 2, in its turn, the results of the polyethylene resins, such as η, Mv, polymer density (P.D.) and MWD, are presented.
  • TABLE 1
    Supported Metallocene A
    Polymer- Catalyst (kg pol/ B.D. TFP TE
    ization EXAMPLE g cat) (g/cm3) (% wt) (s)
    1 1 0.60 0.40 0.2 9.0
    2 2 0.50 0.37 0.1 9.5
    3 3 1.10 0.34 0.3 11.0
    4 4 1.40 0.34 0.2 11.5
    5 5 2.30 0.37 0.1 9.6
    6 6 0.16 n.a. n.a. n.a.
    7 a) 1 0.60 0.40 0 8.5
    8 b) 1 0.30 n.a. n.a. n.a.
    9 7 2.60 0.35 0.4 11.0
    a) It was used TIBAL as cocatalyst in the place of TMAL;
    b) It was used DEAC as cocatalyst In the place of TMAL;
    n.a.: not analyzed
  • TABLE 2
    Supported Metallocene
    Catalyst η Mv P.D.
    Polymerization EXAMPLE (dL/g) (g/mol) (g/cm3) MWD
    1 1 15.3 3,160,000 0.934 5.1
    2 2 7.0 990,950 0.930 n.a.
    3 3 13.5 2,634,497 0.928 n.a.
    4 4 12.7 2.422,947 0.929 n.a.
    5 5 21.4 5,229,000 0.928 6.1
    6 6 14.9 3,050,500 n.a. n.a.
    7 a) 1 19.6 4,594,990 0.930 n.a.
    8 b) 1 21.2 5,172,651 n.a. n.a.
    9 7 15.2 3,142,800 n.a. n.a.

    Copolymerization of Ethylene with Butene-1
  • In a 4-liter stainless steel reactor from Autoclave Engineer's Inc., it was performed, initially, a purge with N2 for 1 hour at a temperature of 70° C. and, then, the reactor was cooled down until 30° C. After that, a suspension was transferred, in n-hexane, formed by the supported complex and TMAL (Al/Ti=300) followed by 280 g of anhydrous propane. The temperature was increased to 60° C., and after the addition of liquid butane-1 (different volumes), the remaining 520 g of anhydrous propane were added. Then, the temperature was increased again to 75° C. and, then, the reactor was fed with 7 bar of ethylene. The copolymerization of ethylene with butene-1 was conducted in slurry for a period of 2 h, during which time the pressure of ethylene was kept constantly. After this period, the reactor was cooled down to the room temperature, depressurized and open for polymer removal, with the resin being dried in stove (60° C.) during one hour. The results of catalytic activity (A), bulk density (B.D.), content of fines in polymers (TFP) and flow time (TE) are presented in the Table 3 below. In Table 4, in its turn, the results of the polyethylene resins, such as η, Mv, polymer density (P.D.), content of butene-1 (C4 =), melting temperature (Tm2) and MWD are presented.
  • TABLE 3
    Supported
    Metallocene A
    Polymer- Catalyst VC4= (kg pol/ B.D. TFP TE
    ization EXAMPLE (mL) g cat) (g/cm3) (% wt) (s)
    10 1 100 1.60 0.34 0.1 10.2
    11 1 600 2.50 0.34 0.1 9.8
    12 5 600 2.73 0.33 0.1 9.5
    13 6 300 1.30 0.36 0.2 10.0
  • TABLE 4
    Supported Metallocene
    Polymer- Catalyst η Mv P.D. C4 = Tm2
    ization EXAMPLE (dL/g) (g/mol) (g/cm3) (% wt) (° C.) MWD
    10 1 11.0 1,943,107 0.923 2.6 n.a. 4.8
    11 1 7.3 1,065,726 0.912 5.0 124 5.6
    12 5 10.0 1,712,000 0.910 7.2 n.a. 5.3
    13 6 10.2 1,700,000 0.911 2.0 n.a. n.a.

    Copolymerization of Ethylene with Different α-Olefins
  • In a 4-liter stainless steel reactor from Autoclave Engineer's Inc., it was performed, initially, a purge with N2 for 1 hour at a temperature of 70° C. and, then, the reactor was cooled down until 30° C. After that, a suspension was transferred, in n-hexane, formed by the supported complex and TMAL (Al/Ti=300) followed by 280 g of anhydrous propane. The temperature was increased until 60° C., and after the addition of α-olefin (different α-olefins) liquid (different volumes), the remaining 520 g of anhydrous propane were added. Then, the temperature was increased again until 75° C. and, then, the reactor was fed with 7 bar of ethylene. The copolymerization of ethylene with different α-olefins was conducted in slurry for a period of 2 h, during which time the pressure of ethylene was kept constantly. After this period, the reactor was cooled down until room temperature, depressurized and open for polymer removal, with the resin being dried in stove (60° C.) during one hour. The results of catalytic activity (A) and bulk density (B.D.) are presented in the Table 5 below. In Table 6, however, the results of the polyethylene resins, such as η, Mv, polymer density (P.D.), content of α-olefin (Cn =), melting temperature (Tm2) and MWD, are presented.
  • TABLE 5
    Supported A
    Complex VCn= (kg pol/g B.D.
    Polymerization EXAMPLE α-olefin (mL) cat) (g/cm3)
    14 1 Propene 300 0.41 0.38
    15 1 Hexene-1 300 1.35 0.37
    16 1 4-MP-1 300 0.23 0.39
    17 5 Hexene-1 300 2.20 0.35
    4-MP-1 = 4-mehyl-pentene-1
  • TABLE 6
    Supported
    Complex η Mv P.D. Cn = Tm2
    Polymerization EXAMPLE (dL/g) (g/mol) (g/cm3) (% wt) (° C.) MWD
    14 1 4.4 471,000 n.a. 17.1  111.6 6.1
    15 1 5.5 697,420 0.918 n.a. n.a. 3.6
    16 1 9.0 1,446,473 n.a. n.a. n.a. 2.7
    17 5 11.1 2,000,000 0.917 6.5 n.a. n.a.
    Comparative Supported n.a. 250,000 2)  0.919 3) 9.0 n.a. 2.0
    Example 1) metallocene
    n.a.: not analyzed
    1) Commercial product data
    2) Value calculated by GPC (Mw)
    3) Analysis method: ASTM D-1928-C
  • It must be clear to all those acquiring knowledge about this technique that the present invention can be set of other specific forms without getting far from the spirit or scope of the invention. Particularly, it must comprise that the invention can be set in the described forms.
  • Therefore, the present examples and configurations must be considered as illustrative and not restrictive, and the invention must not be limited to the details supplied in this document, but can be modified within the scope and equivalent of the attached claims.

Claims (10)

1. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, wherein said homopolymers and copolymers are obtained from the reaction of the supported metallocene catalyst and an organometallic compound of the groups 2 or 13 of the Periodic Table, where the molar ratio Al/M ranges from 30:1 to 500:1, in the presence of ethylene and alternatively an α-olefin.
2. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein the organometallic compound of the groups 2 or 13 of the Periodic Table to be used are preferably TMAL, TEAL or TIBAL.
3. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present broad molecular weight distribution (MWD) in the presence of supported metallocene catalysts proper to be used in processes in bulk, slurry and gas phase, with MWD ranging from 2 to 15.
4. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present broad molecular weight distribution (MWD) in the presence of supported metallocene catalysts proper to be used in processes in bulk, slurry and gas phase, with MWD ranging, preferably from 3 to 8.
5. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present controlled morphology, spherical, presenting high bulk density (B.D.), ranging from 0.33 and 0.47 g/cm3, low TFP, between 0 and 0.4%-wt and good flowability, with TE ranging from 6 and 12 seconds.
6. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present intrinsic viscosity (η) ranging from 2 to 30 dL/g.
7. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present intrinsic viscosity (η) ranging, preferably from 4 to 28 dL/g.
8. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present viscosimetric molecular weight (Mv) ranging from 200,000 to 10,000,000 g/mol.
9. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present viscosimetric molecular weight (Mv) ranging preferably from 400,000 to 9,000,000 g/mol.
10. Ethylene homopolymers and copolymers with alfa-olefins of high and ultra molecular weight, according to claim 1, wherein said homopolymers and copolymers present density in the molded (P.D.) ranging from 0.934 to 0.900 g/cm3.
US12/971,843 2007-10-19 2010-12-17 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa - olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof Abandoned US20110086992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/971,843 US20110086992A1 (en) 2007-10-19 2010-12-17 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa - olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BRPI0703586-1A BRPI0703586B1 (en) 2007-10-19 2007-10-19 SUPPORTED METALOCENE CATALYST, AND HIGH AND ULTRA HIGH MOLECULAR ALPHA ETHYLENE COPOLYMERS
US12/163,711 US8324126B2 (en) 2007-10-19 2008-06-27 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa-olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas
US12/971,843 US20110086992A1 (en) 2007-10-19 2010-12-17 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa - olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/163,711 Division US8324126B2 (en) 2007-10-19 2008-06-27 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa-olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas

Publications (1)

Publication Number Publication Date
US20110086992A1 true US20110086992A1 (en) 2011-04-14

Family

ID=40262664

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/163,711 Active 2029-07-07 US8324126B2 (en) 2007-10-19 2008-06-27 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa-olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas
US12/971,843 Abandoned US20110086992A1 (en) 2007-10-19 2010-12-17 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa - olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/163,711 Active 2029-07-07 US8324126B2 (en) 2007-10-19 2008-06-27 Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa-olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas

Country Status (4)

Country Link
US (2) US8324126B2 (en)
EP (1) EP2050767B1 (en)
CN (1) CN101412763B (en)
BR (1) BRPI0703586B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617357B2 (en) 2012-07-02 2017-04-11 Irpc Public Company Limited. Catalyst for olefin polymerization and a method for the preparation thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057114A2 (en) * 2009-11-09 2011-05-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methods of making and deposition methods using hafnium- or zirconium-containing compounds
KR20130089166A (en) 2010-07-06 2013-08-09 티코나 게엠베하 Process for producing high molecular weight polyethylene
EP2591019A2 (en) 2010-07-06 2013-05-15 Ticona GmbH Process for producing high molecular weight polyethylene
US8722819B2 (en) 2010-07-06 2014-05-13 Ticona Gmbh Process for producing high molecular weight polyethylene
CN102958959B (en) 2010-07-06 2015-11-25 提克纳有限公司 Produce the method for High molecular weight polyethylene
JP2013531111A (en) 2010-07-06 2013-08-01 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング High molecular weight polyethylene fibers and membranes, their manufacture and use
DK2739655T3 (en) 2011-08-05 2017-11-13 Total Res & Technology Feluy CATALYSTS FOR PREPARING POLYETHYLE WITH ULTRA HIGH MOLECULE WEIGHT (UHMWPE)
CA2760264C (en) 2011-12-05 2018-08-21 Nova Chemicals Corporation Passivated supports for use with olefin polymerization catalysts
JP6521027B2 (en) * 2013-07-10 2019-05-29 東ソー株式会社 Ultra-high molecular weight polyethylene copolymer
JP6572520B2 (en) * 2013-07-10 2019-09-11 東ソー株式会社 Ultra high molecular weight polyethylene particles and molded articles comprising the same
WO2015189306A1 (en) * 2014-06-12 2015-12-17 Total Research & Technology Feluy Process for preparing a polyethylene in at least one continuously stirred tank reactor
FR3023183A1 (en) * 2014-07-04 2016-01-08 IFP Energies Nouvelles CATALYTIC COMPOSITION AND METHOD FOR SELECTIVE DIMERIZATION OF ETHYLENE TO BUTENE-1
CN107936163B (en) * 2016-10-13 2021-05-07 中国石化扬子石油化工有限公司 Ultra-high molecular weight polyethylene, method for producing same and use thereof
CN107936162B (en) * 2016-10-13 2021-03-26 中国石化扬子石油化工有限公司 Ultra-high molecular weight polyethylene, method for producing same and use thereof
US10889663B2 (en) 2017-11-29 2021-01-12 Exxonmobil Chemical Patents Inc. Asymmetric ANSA-metallocene catalyst compounds for producing polyolefins having a broad molecular weight distribution
US10882925B2 (en) 2017-11-29 2021-01-05 Exxonmobil Chemical Patents Inc. Catalysts that produce polyethylene with broad, bimodal molecular weight distribution
CN113754798A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Spheroidal ultra-macroporous mesoporous material, polyolefin catalyst, preparation method of polyolefin catalyst and olefin polymerization method
US20230036349A1 (en) 2021-07-15 2023-02-02 Braskem S.A. Continuous process for metallocene preliminary polymerization for gas-phase polymerization process
CN115636887B (en) * 2021-07-20 2024-03-26 中国石油天然气股份有限公司 Supported metallocene catalyst and preparation method thereof
TWI791362B (en) 2021-12-27 2023-02-01 財團法人工業技術研究院 Organometallic complex, catalyst composition employing the same, and method for preparing polyolefin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965477A (en) * 1997-02-21 1999-10-12 Council Of Scientific & Industrial Research Process for the preparation of supported metallocene catalyst
US20020173603A1 (en) * 2000-03-08 2002-11-21 Katrin Kohler Catalyst system for the Ziegler-Natta polymerization of olefins
US20060094589A1 (en) * 2002-11-04 2006-05-04 China Petroleum And Chemical Corporation Catalyst for polymerization of ethylene, preparation thereof and use of the same
US20060287449A1 (en) * 2003-03-10 2006-12-21 Koichi Miyamoto Ultrahigh-molecular ethylene polymer
US20070105712A1 (en) * 2005-11-04 2007-05-10 Jens Panitzky Process for manufacturing ultra high molecular weight polymers using novel bridged metallocene catalysts

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1268754A (en) 1985-06-21 1990-05-08 Howard Curtis Welborn, Jr. Supported polymerization catalyst
WO1987003889A1 (en) 1985-12-24 1987-07-02 Mitsui Petrochemical Industries, Ltd. Process for polymerization of alpha-olefins
DE3752260T2 (en) 1986-09-24 1999-09-02 Mitsui Chemicals Process for olefin polymerization
JP2538595B2 (en) 1987-05-13 1996-09-25 三井石油化学工業株式会社 Solid catalyst for olefin polymerization
FI85151C (en) 1989-09-06 1992-03-10 Neste Oy New carrier catalyst for polymerization of ethylene
ATE186918T1 (en) 1990-01-02 1999-12-15 Exxon Chemical Patents Inc SUPPORTED IONIC METALLOCE CATALYSTS FOR OLEFIN POLYMERIZATION
JP2826362B2 (en) 1990-02-13 1998-11-18 三井化学株式会社 Method for producing solid catalyst for olefin polymerization, solid catalyst for olefin polymerization, and method for polymerizing olefin
TW304963B (en) 1992-01-27 1997-05-11 Hoechst Ag
WO1993021242A1 (en) 1992-04-20 1993-10-28 Exxon Chemical Patents Inc. Ethylene/branched olefin copolymers
ES2167336T3 (en) 1992-08-05 2002-05-16 Exxonmobil Chem Patents Inc IONIC CATALYSTS SUPPORTED OF TRANSITIONAL METAL FOR POLYMERIZATION OF OLEFINS.
BR9203645A (en) 1992-09-17 1994-03-22 Polialden Petroquimica SUITABLE CATALYTIC SYSTEM FOR THE PRODUCTION OF POLYETHYLENE OF ULTRA HIGH MOLECULAR WEIGHT, PROCESS FOR THE PRODUCTION OF MOLECULAR WEIGHT POLYETHYLENE POLYETHYLENE OF ULTRA HIGH MOLECULAR WEIGHT, PROCESS FOR THE PRODUCTION OF A CATALYSTIC COMPONENT AND SUIT OF THE CATALYTIC SYSTEM
AU683899B2 (en) 1993-05-25 1997-11-27 Exxon Chemical Patents Inc. Supported metallocene catalyst systems for the polymerization of olefins, preparation and use thereof
JP2882241B2 (en) 1993-06-07 1999-04-12 東ソー株式会社 Olefin polymerization catalyst and olefin polymerization method
FI96611C (en) 1993-09-10 1996-07-25 Neste Oy Heterogeneous polymerization catalyst and process for its preparation
DE69427095T2 (en) 1993-09-17 2001-11-15 Exxonmobil Chem Patents Inc POLYMERIZATION CATALYST SYSTEMS, THEIR PRODUCTION AND USE
US5498582A (en) 1993-12-06 1996-03-12 Mobil Oil Corporation Supported metallocene catalysts for the production of polyolefins
US5576600A (en) 1994-12-23 1996-11-19 Dynatenn, Inc. Broad high current ion source
US5637660A (en) 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
US5885924A (en) 1995-06-07 1999-03-23 W. R. Grace & Co.-Conn. Halogenated supports and supported activators
CA2241812A1 (en) 1995-09-28 1997-04-03 Cornelia Fritze Supported catalyst system, process for its production and its use in polymerising olefines
US6750216B2 (en) * 1996-03-08 2004-06-15 Adolor Corporation Kappa agonist compounds and pharmaceutical formulations thereof
CN1074771C (en) * 1996-12-30 2001-11-14 中国科学院长春应用化学研究所 Preparation of polymer carrier metallocene catalyst
US6801788B1 (en) * 1997-09-09 2004-10-05 Samsung Electronics Co., Ltd. Distributed architecture for a base station transceiver subsystem having a radio unit that is remotely programmable
US6643338B1 (en) * 1998-10-07 2003-11-04 Texas Instruments Incorporated Space time block coded transmit antenna diversity for WCDMA
US6265504B1 (en) 1999-09-22 2001-07-24 Equistar Chemicals, Lp Preparation of ultra-high-molecular-weight polyethylene
CN1338477A (en) * 2000-08-15 2002-03-06 中国石油化工集团公司 Carrier catalyst system and process for preparing LLDPE
US20020093819A1 (en) * 2001-01-18 2002-07-18 Ching-Sheng Chen Rapidly directional assembled and water-proof lamp
CN1136239C (en) 2001-01-18 2004-01-28 中国石油化工股份有限公司 Magnesium halide/silicon dioxide loaded semi-metallocene catalyst and its preparation and use
WO2002079272A1 (en) 2001-03-29 2002-10-10 Dsm N.V. Process for the preparation of a high-molecular-weight polyethylene
US7704728B2 (en) * 2001-07-18 2010-04-27 The University Of Michigan Microfluidic gravity pump with constant flow rate
CN1142195C (en) * 2001-07-31 2004-03-17 中国石油化工股份有限公司 Polythene catalyst loaded by semi-metallocene
US6697052B2 (en) * 2001-11-02 2004-02-24 Lite-On Semiconductor Corp. Optical mouse chip with silicon retina structure
US6876868B2 (en) * 2002-04-08 2005-04-05 Motorola, Inc. System and method for predictive transmit power control for mobile stations in a multiple access wireless communication system
CN1259347C (en) * 2002-11-07 2006-06-14 中国科学院化学研究所 Carried catalyzer for olefinic polymerization and preparation method
CA2427403C (en) * 2003-04-21 2008-10-28 Regents Of The University Of Minnesota Space-time-frequency coded ofdm over frequency-selective fading channels
AU2004235848B2 (en) * 2003-05-09 2011-08-04 Boehringer Ingelheim International Gmbh Hepatitis C virus NS5B polymerase inhibitor binding pocket
US7602388B2 (en) * 2003-07-16 2009-10-13 Honeywood Technologies, Llc Edge preservation for spatially varying power conservation
KR100790092B1 (en) * 2003-08-18 2007-12-31 삼성전자주식회사 Apparatus and method for scheduling resource in a radio communication system using multi-user multiple input multiple output scheme
KR100466502B1 (en) * 2003-10-17 2005-01-15 (주) 디엔에프솔루션 Polymerization catalyst for production of polyethylene with broad molecular weight distribution and its preparation method
KR20050075477A (en) * 2004-01-15 2005-07-21 삼성전자주식회사 Communicating method between mimo stations
TWI270853B (en) * 2004-09-10 2007-01-11 Mediatek Inc Method and device for determining slicing level of track-crossing signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965477A (en) * 1997-02-21 1999-10-12 Council Of Scientific & Industrial Research Process for the preparation of supported metallocene catalyst
US20020173603A1 (en) * 2000-03-08 2002-11-21 Katrin Kohler Catalyst system for the Ziegler-Natta polymerization of olefins
US20060094589A1 (en) * 2002-11-04 2006-05-04 China Petroleum And Chemical Corporation Catalyst for polymerization of ethylene, preparation thereof and use of the same
US20060287449A1 (en) * 2003-03-10 2006-12-21 Koichi Miyamoto Ultrahigh-molecular ethylene polymer
US20070105712A1 (en) * 2005-11-04 2007-05-10 Jens Panitzky Process for manufacturing ultra high molecular weight polymers using novel bridged metallocene catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617357B2 (en) 2012-07-02 2017-04-11 Irpc Public Company Limited. Catalyst for olefin polymerization and a method for the preparation thereof

Also Published As

Publication number Publication date
EP2050767A1 (en) 2009-04-22
BRPI0703586A2 (en) 2009-10-20
US20090163682A1 (en) 2009-06-25
EP2050767B1 (en) 2016-07-13
CN101412763B (en) 2015-12-16
US8324126B2 (en) 2012-12-04
CN101412763A (en) 2009-04-22
BRPI0703586B1 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
US8324126B2 (en) Process of preparation of catalytic support and supported metallocene catalysts for production of homopolymers and copolymers of ethylene with alfa-olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas
US9458258B2 (en) Process for the preparation of catalytic support and supported bimetallic catalysts for production of homopolymers and copolymers of ethylene with α-olefins, of high and ultra high molecular weight and with broad molecular weight distribution in slurry, bulk and gas phase processes and products thereof
US6995109B2 (en) Method of making a bimetallic catalyst with higher activity
CN103237817B (en) The support of the catalyst of modification
EP1764378B1 (en) Catalyst composition for polymerization of olefins, polymerization process using the same, and method for its preparation
JP2004526818A (en) Dual-site olefin polymerization catalyst composition
US6403520B1 (en) Catalyst compositions for polymerizing olefins to multimodal molecular weight distribution polymer, processes for production and use of the catalyst
US20050003950A1 (en) Method of making mixed ziegler-natta/metallocece catalysts
US8524627B2 (en) Activating supports with controlled distribution of OH groups
US9434795B2 (en) Production of vinyl terminated polyethylene using supported catalyst system
JPH0721005B2 (en) Catalyst composition for (co) polymerization of ethylene
WO2007149262A2 (en) Olefin polymerization process
US6448348B1 (en) Process for polymerizing olefins with supported Ziegler-Natta catalyst systems
KR20060118556A (en) Polymerisation process
EP1330476B1 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
JP2004035893A (en) NEW CATALYST COMPOSITION AND PROCESS FOR POLYMERIZING OLEFIN AND COPOLYMERIZING OLEFIN WITH alpha-OLEFIN USING IT
US20030045659A1 (en) Process for polymerizing olefins with supported Ziegler-Natta catalyst systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRASKEM S/A, BRAZIL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIRANDA, MARCIA SILVA LACERDA;VIEIRA DA CUNHA, FERNANDA OLIVEIRA;REEL/FRAME:025519/0707

Effective date: 20080731

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION