US20110083856A1 - Sensor deployment and retrieval system using fluid drag force - Google Patents
Sensor deployment and retrieval system using fluid drag force Download PDFInfo
- Publication number
- US20110083856A1 US20110083856A1 US12/575,585 US57558509A US2011083856A1 US 20110083856 A1 US20110083856 A1 US 20110083856A1 US 57558509 A US57558509 A US 57558509A US 2011083856 A1 US2011083856 A1 US 2011083856A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- sensor
- tubular member
- tubular members
- interior cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 143
- 238000004891 communication Methods 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- -1 debris Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/08—Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
Definitions
- Sensors and other gauges are deployed into and exposed to the environment within a wellbore to measure wellbore properties such as temperature and pressure.
- a typical environment within a wellbore can include drilling fluids, injections fluids, finishing fluids, hydrocarbons, acids, debris, and gases.
- the environment in the wellbore can be corrosive. Continuous exposure to corrosive environments can cause premature failure of the sensors and other gauges, which causes unplanned use of a workover rig to remove and replace.
- the unplanned use of workover rigs increases rig time, costs, personnel costs, and production delays. Each unplanned use of a workover rig also increases operational risks to both equipment and personnel.
- the apparatus includes an outer tubular member disposed about one or more inner tubular members. Each tubular terminates within a fluid directional controller that comprises a housing disposed about the tubular members. At least one opening is formed through the housing, and provides fluid communication between an interior cavity thereof of the housing and an exterior thereof.
- a flow control device is disposed within the housing between the tubular members and the opening. The flow control device can be selectively actuated to expose the interior cavity of the housing to an external environment.
- a bi-directional flow apparatus can be disposed into a wellbore.
- the bi-directional flow apparatus can include an outer tubular member disposed about one or more inner tubular members.
- at least one sensor can be disposed within at least one of the tubular.
- a fluid directional controller can be secured to at least one of the tubular members containing the sensor.
- a fluid can be used to flow the sensor in a first direction through the tubular housing the sensor.
- the sensor can be located within the fluid directional controller, and exposed to an environment of the wellbore for measuring or sensing.
- the system includes a completion assembly having an inner bore and a bi-directional flow apparatus connected to the completion assembly.
- the bi-directional flow apparatus can include an outer tubular member disposed about one or more inner tubular members. Each tubular terminates within a fluid directional controller that comprises a housing disposed about the tubular members.
- the housing can include at least one opening formed there through and in fluid communication with an interior cavity of the housing and an exterior of the housing.
- a flow control device can be disposed within the housing between the tubular members and the opening. The flow control device can be selectively actuated to expose the interior cavity to an external environment.
- FIG. 1 depicts an isometric view of an illustrative apparatus for sensor deployment and retrieval, according to one or more embodiments described;
- FIG. 2 depicts a cross-sectional view of an illustrative fluid directional controller, according to one or more embodiments described;
- FIG. 3 depicts a cross-sectional view of another illustrative fluid directional controller, according to one or more embodiments described;
- FIG. 4 depicts a schematic view of an illustrative system for deploying and selectively retrieving a sensor located within a wellbore, according to one or more embodiments described;
- FIG. 5 depicts a cross-sectional view of an illustrative conduit splice, according to one or more embodiments described.
- FIG. 6 depicts a cross-sectional view of an illustrative wellhead, according to one or more embodiments described.
- FIG. 1 depicts an isometric view of an illustrative apparatus 100 for sensor deployment and retrieval, according to one or more embodiments.
- the apparatus 100 can include one or more “outer” or first tubular members 110 disposed about one or more “inner” or second tubular members (two are shown 120 , 130 ).
- An annulus or flow path 140 is formed between the tubular members 120 , 130 and within the tubular member 110 .
- the apparatus 100 can deploy one or more sensors 150 into a wellbore 105 or other environment to be monitored, and selectively retrieve the sensors 150 therefrom by flowing fluid through the tubular members 110 , 120 , 130 .
- the tubular members 110 , 120 , 130 can be one or more segments or sections of pipe, coiled tubing, or other tubular members. When two or more segments are used, each segment or section of tubular members can be coupled together such that flow between the segments of the tubular members is unobstructed.
- the segments can be coupled together by one or more mechanical fasteners, welds, solders, pressure fits, adhesives, threaded connections, snap latches, or other similar fasteners so that flow between the segments is unobstructed.
- the segments are coupled together by a conduit splice (not shown in FIG. 1 ), but described in FIG. 5 below.
- the sensors 150 can be any downhole sensing or measuring device. Illustrative sensors 150 can include, both single point and distributed measurements for example, one or more pressure sensors, temperature sensors, fluid type analyzers, pH sensors, distributed temperature, distributed pressure, distributed vibration, and acoustic measurements, among others.
- the sensors 150 can be deployed with or without communication or control lines 152 .
- the communication line 152 can be or include one or more fiber optic lines, electrical lines, and/or other communication lines.
- the communication line 152 can provide communication and/or power between the sensors 150 and one or more remote signal sources, transmitters, and/or processors.
- the apparatus 100 can protect the sensors 150 and communication lines 152 , if needed, from corrosive environments, liquids, and/or gases within the wellbore 105 or other environment to be monitored.
- one or more sensors and one or more optional communication lines 152 can be disposed within any one of the inner tubular members 120 , 130 or the annulus 140 , and the apparatus 100 can be at least partially disposed within or adjacent the wellbore 105 or other environment to be monitored.
- Fluid flow can be initiated through the tubular 120 , 130 or annulus 140 that is housing the sensor 150 to be deployed.
- a return or circulation flow path will then be established through the one or more available tubulars 120 , 130 or annulus 140 that are not housing the sensor 150 to be deployed.
- one or more sensors 150 and optional communication lines 152 can be disposed within the first inner tubular member 120 and pressurized with fluid such that the fluid can flow through the tubular member 120 in the first or deployment direction 160 .
- the fluid can return through the flow path of the annulus 140 in a reverse direction, i.e., a second or retrieval direction 170 .
- the second inner tubular member 120 can remain idle or be used as a secondary flow path for either the first 160 or second directions 170 .
- the first direction 160 can be into or toward the wellbore 105 and the second direction 170 can be from or out of the wellbore 105 .
- fluid can flow through the annulus 140 in the first direction 160 , and can return through one or both of the second tubular members 120 , 130 in the second direction 170 . If only one of the second tubular members 120 , 130 is needed for deployment the other can remain idle or serve as the retrieval flow path.
- the idle flow paths can be used to flow a purging fluid or other material to expel or prevent unwanted liquid and/or gas within the apparatus 100 .
- FIG. 2 depicts a cross-sectional view of an illustrative fluid directional controller 200 within a wellbore 205 , according to one or more embodiments.
- the fluid directional controller 200 can include at least one housing 210 having at least one coupling 215 and fluid control device 240 disposed therein.
- the housing 210 can further include an interior cavity 220 , and one or more holes or apertures 230 to provide fluid communication with the wellbore 205 .
- the interior cavity 220 can have an “upper” or first portion 222 and a “lower” or second portion 224 .
- the coupling 215 can be disposed or located within the first portion 222 of the interior cavity 220
- the flow control device 240 can be disposed or located within the second portion 224 .
- the coupling 215 can include one or more openings or flow paths (three are shown 217 , 219 , 225 ) formed therethrough.
- the deployment and retrieval apparatus 100 can be secured to the coupling 215 .
- the coupling 215 can be secured to the outer diameter of the first tubular member 110 , and second tubular members 120 , 130 can be aligned with the openings or flow paths 217 , 219 of the coupling 215 to allow fluid communication through the tubular members 120 , 130 into the interior cavity 220 of the housing 210 .
- the first tubular member 110 can also be aligned with the coupling 215 to allow fluid communication between the annulus 140 within the first tubular member 110 and the interior cavity 220 of the housing 210 via the opening or flow path 225 .
- the flow control device 240 can be any device capable of regulating flow.
- the flow control device 240 can be selectively actuated electronically, mechanically, hydraulically, or by other remote actuation methods.
- the control device 240 can be a ball and seat type flow control valve or check valve, as depicted in FIG. 2 .
- the control device 240 can include a flow path 241 , piston 242 , ball 248 , ball seat 250 , and spring 252 .
- the tubular 130 allows fluid to enter the flow control device 240 so that the fluid can push against the piston 242 , which pushes against the ball 248 .
- the ball 248 moves from a first or “closed” position, away from the ball seat 250 to a second or “open” position, allowing fluid to pass or flow through the flow path 241 into the second portion 224 of the cavity 220 of the housing 210 .
- the spring 252 can return the ball 248 to the first position against the ball seat 250 .
- the deployment and retrieval apparatus 100 can be secured to the coupling 215 to establish fluid communication between the first inner tubular 120 and flow path 217 , and between the second inner tubular 130 and the flow path 219 .
- the annulus 140 within the outer tubular member 110 is in fluid communication with the flow paths 225 .
- the one or more sensors and optional one or more communication lines 152 can be disposed within any one of the inner tubular members 120 , 130 or the annulus 140 .
- the sensor 150 is conveyed through the tubular 120 and located within the opening or flow path 217 within the coupling 215 .
- the fluid can be returned to the surface through the annulus 140 .
- a second fluid or second fluid pressure can be conveyed through the tubular 130 to selectively operate the flow control device 240 .
- the annulus 140 also serves as the fluid return path 170 for this fluid or fluid pressure.
- the inner cavity 220 of the fluid direction controller 200 can be exposed to the surrounding environment within the wellbore 205 , allowing the fluid from the surrounding environment to contact the sensor 150 .
- the fluid from the surrounding environment can enter the inner cavity 220 of the housing 210 by flowing through the apertures 230 .
- the apertures 230 can be formed through one or more surfaces or sides of the housing 210 .
- the environmental fluid can then flow through the flow path 241 within the flow control device 240 when the ball 248 is in the second or open position. Once the sensor 150 performs its measurements or readings on the fluid from the surrounding environment, the ball 248 can be returned to the closed position by releasing the pressure in the tubular 130 .
- a purging fluid can be conveyed through the apparatus 100 through any one or more of the tubulars 110 , 120 , 130 , annulus 140 , or any combination thereof, to clean out the cavity 220 provided within the housings 215 .
- the sensor 150 and/or communication line 152 can have limited exposure to the surrounding fluid for a predetermined and/or controllable period of time.
- the sensor 150 may need to be replaced or substituted with a second sensor (not shown).
- a second sensor may be needed to take a different measurement or reading.
- the replacement sensor can be conveyed through the first tubular member 110 in a first direction 160 and landed within the cavity 220 .
- the fluid can return in the second direction 170 through the flow path 225 and second tubular member 120 .
- the first sensor 150 can be purged or moved through the second tubular member 120 along with the returning fluid.
- the apparatus 100 can be used to simultaneously deploy a sensor 150 and/or communication line 152 into the wellbore 205 and while retrieving another sensor therefrom.
- FIG. 3 depicts a cross-sectional view of another illustrative fluid directional controller 300 , according to one or more embodiments.
- the fluid directional controller 300 can include one or more return conduits 310 connected to the tubular members 120 , 130 , and one or more three-way flow control devices 320 connected to at least one of the second tubular members 120 , 130 and the return conduit 310 .
- the three-way flow control device 320 can place two or more inner diameters of the tubular members 110 , 120 , 130 in fluid communication with one another and/or in fluid communication with the wellbore 305 .
- the three-way flow control device 320 can have multiple flow paths therethrough, and the flow paths can be selectively opened and/or closed to selectively place the tubular members 110 , 120 , 130 and the wellbore 305 in fluid communication. Accordingly, the flow paths can be opened or closed to place the three-way flow control device 320 in one or more configurations or modes.
- the three-way flow control device 320 can have a first mode that provides fluid communication between the second tubular members 120 , 130 .
- a second mode can be selected that provides fluid communication between the second tubular member 120 , the first tubular member 110 , and the wellbore 305 .
- a third mode can be configured that provides fluid communication between the second tubular member 130 , the first tubular member 110 , and the wellbore 305 .
- a fourth mode can be chosen that provides fluid communication between the second tubular members 120 , 130 , the first tubular member 110 , and the wellbore 305 .
- the three-way flow control device 320 can be a three-way pressure relief valve that can be switched between the modes by changing the pressure within the wellbore 305 , within the second tubular member 120 , and/or within the third tubular member 130 .
- the three-way flow control device 320 can be another valve or flow control device, such as a mechanically, a hydraulically, or an electrically operated valve, and the three-way flow control device 320 can be remotely switched between modes.
- the three-way flow control device 320 can be switched between modes by a signal sent from the surface to a solenoid adjacent the three-way flow control device 320 .
- the signal can be transmitted or communicated to the solenoid by wireless telemetry equipment, such as electromagnetic waves, acoustic waves, or the like, or by wire type telemetry, such as a fiber optic cable or an electrical wire.
- the three-way flow control device 320 can be configured to be switched between the various modes by any hydraulic, mechanical, or electrical means.
- the three-way flow control device 320 can be selectively switched between modes to expose the sensor 150 , which can be disposed within the second tubular member 120 adjacent the return conduit 310 , to one or more conditions of the wellbore 305 .
- the three-way flow control device 320 can be placed in the second mode to provide a flow path between the wellbore 305 and the second tubular member 120 .
- the three-way flow control device 320 can be placed in the first mode to provide a flow path between the tubular members 120 , 130 to enable deployment of the sensor 150 and/or communication line 152 .
- Such a configuration would enable circulation of the fluid used to deploy the sensor 150 and/or communication line 152 .
- the sensor 150 can be located within the second tubular member 120 and fluid within the second tubular member 120 can flow in a first direction 160 from the surface. Accordingly, the fluid could deploy the sensor 150 .
- the fluid can flow through the three-way flow control device 320 to the return conduit 310 and to the third tubular member 130 . Within the third tubular member 130 the fluid would flow in a second direction 170 towards the surface, counter to the first direction 160 , and thereby complete a circular cycle.
- the sensor 150 can be retrieved from the wellbore 305 by reversing the direction of flow in the tubular member 120 .
- the three-way flow control device 320 can be placed in the first mode establishing a fluid pathway between the third tubular member 130 and the return conduit 310 . This would enable fluid within the third tubular member 130 to flow in the first direction 160 and continue through the three-way flow control device 320 and the return conduit 310 to the second tubular member 120 .
- the fluid within the second tubular member 120 can then return to the surface by flowing in the second direction 170 .
- the force or motion of the fluid flowing within the second tubular member 120 can facilitate the movement of the sensor 150 disposed within the second tubular member 120 to the surface.
- the fluid directional controller 300 can enable one or more sensors 150 and/or communication line 152 to be deployed into the wellbore 305 and one or more sensors 150 to be retrieved from the wellbore 305 simultaneously.
- a fluid 307 such as a chemical injection for example, can flow through the inner diameter of the tubular member 110 and provide a desired treatment and/or additives to the wellbore 305 .
- the addition of the fluid 307 can be done independently of the deployment or retrieval of one or more sensors 150 and/or communication lines 150 .
- the fluid directional controller 300 can be connected to or include a blow out preventer 340 or safety valve, for example. Via a control line 345 or a remotely initiated signal the blow out preventer 340 can be used to form a pressure seal either around the sensor or with no sensor in place. This allows an embodiment of a system using the fluid directional controller 300 to pump the sensor 150 into place and then seal around the sensor 150 using the blow out preventer 340 .
- the three-way flow control device 320 can then be used to establish fluid communication between the sensor 150 and the surrounding wellbore 305 , enabling the sensor 150 to detect the surrounding wellbore conditions.
- the wellbore fluid may be isolated to just the sensor 150 and return conduit 310 , thereby avoiding the potential of having wellbore fluids travel up either of the tubulars to the surface.
- FIG. 4 depicts a schematic view of an illustrative system 400 for deploying and selectively retrieving a sensor located within a wellbore, according to one or more embodiments.
- the system 400 can include a completion assembly 402 , a wellhead 440 disposed on the wellbore 405 , a wellhead outlet 430 in fluid communication with the wellhead 440 and a tubing string 490 , and a junction box 435 located adjacent the wellhead 440 .
- the apparatus 100 can be disposed adjacent the tubing string 490 having one or more packers 480 and tubing hangers 450 disposed thereon.
- the apparatus 100 can deploy the sensor 150 adjacent, into, or about the completion assembly 402 .
- the apparatus 100 can be deployed free hanging from the surface of the wellbore 405 or the apparatus can be secured to the wellhead 440 .
- the apparatus 100 can be integrated with the completion assembly 402 , disposed within the completion assembly 402 , disposed behind the completion assembly 402 , and/or disposed about a portion of the completion assembly 402 .
- the packers 480 can be any one or more compression or cup packers, inflatable packers, “control line bypass” packers, retrievable type, permanent type, or any other type known in the art.
- the packers 480 are selectively actuated or set within the wellbore 405 to isolate two or more portions of the wellbore 405 from one another.
- the tubing hanger 450 can be any one or more inflatable tubing hangers, mudline tubing hangers, pack-off tubing hangers, or any other type known in the art.
- a preferred tubing hanger is described in U.S. Pat. No. 7,422,065, the contents of which are incorporated herein by reference.
- the tubing hanger 450 can seal a portion of the wellbore 405 , and support the tubing string 490 .
- the wellbore 405 can be cased, as depicted, with casing 408 , or the wellbore 405 can be left as an open hole.
- the casing 408 can have one or more perforations 495 formed therein.
- the perforations 495 can be formed adjacent a hydrocarbon bearing zone 497 , or similar reservoir of interest. After the perforations 495 are formed through the casing 408 , the tubing string 490 and the apparatus 100 can be conveyed into the wellbore 405 .
- a perforated or slotted portion 492 of the tubing string 490 can be located proximate to the perforations 495 , and an end of the inner bore of the tubing string 490 adjacent the perforation portion 492 can be isolated from the wellbore 405 by a sealing member 498 .
- an inflow control device (not shown) may be used to allow fluid from the reservoir to flow into the production tubing string 490 .
- the perforated portion of the tubing string 490 can be selectively used to produce hydrocarbons or other desired fluids from the hydrocarbon bearing zone 497 .
- the tubing string 490 can also provide fluid (e.g., injection, treatment, steam, or other) to the wellbore 405 and/or the hydrocarbon bearing zone 497 adjacent the perforations 495 .
- the hanger 450 and the packer 480 can be actuated after the tubing string 490 is located within the wellbore 405 .
- the apparatus 100 and tubing string 490 can be secured within the wellbore 405 when the hanger 450 and packer 480 are actuated.
- the hanger 450 and the packer 480 can seal an annulus between the tubing string 490 and the casing 408 .
- the apparatus 100 can include one or more sections (two are shown 410 , 420 ) coupled together by a conduit splice 415 .
- the conduit splice 415 can provide flow paths placing the first segment 410 in fluid communication with the second segment 420 . Accordingly, the conduit splice 415 allows for deployment of a communication line 152 that is continuous, circulation of fluids between the segments 410 , 420 , and uninterrupted deployment of the sensor 150 .
- the first segment 410 and the tubing string 490 can be connected to the wellhead 440 .
- the wellhead 440 can be connected to the wellhead outlet 430 , and the wellhead outlet 430 can be placed in fluid communication and/or connected with the apparatus 100 .
- the wellhead outlet 430 can also be in communication with the junction box 435 , which can be configured to provide power to the sensor 150 and/or the completion assembly 402 .
- the junction box 435 can also send signals to and/or receive signals from the sensor 150 .
- the wellhead outlet 430 can be used to provide fluid flow for the tubing string 490 and the apparatus 100 .
- the fluid flowing in the apparatus 100 can be used to deploy the sensor 150 .
- the sensor 150 can flow through the segments 410 , 420 into a fluid directional controller 465 .
- the wellhead outlet 430 can provide fluid flow to the apparatus 100 , and the sensor 150 can be deployed through the first segment 410 .
- the sensor 150 can flow from the first segment 410 to the second segment 420 via conduit splice 415 .
- the second segment 420 can be connected to the fluid directional controller 465 and the sensor 150 can be disposed therein.
- the embodiment of the fluid directional controller 465 can be any manifold or other device that enables bi-directional flow through the apparatus 100 and selectively exposes the sensor 150 to the wellbore 405 .
- the fluid directional controller 465 can be similar to any of the fluid directional controllers described herein.
- the sensor 150 can flow from the second segment 420 into the fluid direction controller 465 , and the fluid directional controller 465 can be used to selectively expose the sensor 150 to the environmental conditions of the wellbore 405 .
- the wellhead outlet 430 can be used to provide a reverse flow through the apparatus 100 , as previously described herein.
- FIG. 5 depicts a cross-sectional view of an illustrative conduit splice 500 , according to one or more embodiments.
- the conduit splice 500 can connect or couple the segments 510 , 520 together.
- the conduit splice 500 can include a main housing 530 .
- the main housing 530 can further include one or more secondary housings (two are shown 540 , 550 ) disposed therein.
- the main housing 530 can be configured to encase or secure about the first tubular member 110 of each of the segments 510 , 520 . Accordingly, the main housing 530 can fluidly couple together the first tubular members 110 of the segments 510 , 520 .
- An inner diameter or interior cavity of the main housing 530 can provide a flow path 502 between the first tubular member 110 of one segment 510 and the first tubular member 110 of the other segment 520 .
- the secondary housings 540 , 550 can be disposed within the main housing 530 .
- the secondary housings 540 , 550 can be configured to respectively couple together the second tubular members 120 , 130 of one segment 510 with the second tubular members 120 , 130 of the other segment 520 .
- the conduit splice 500 respectively establishes flow paths 542 , 552 between the tubular members 120 , 130 of the segments 510 , 520 .
- the conduit splice 500 facilitates bi-directional flow through at least two of the tubular members 110 , 120 , 130 of segments 510 , 520 .
- the fluid can flow in a first direction 160 within at least one of the tubular members 110 , 120 , 130 of the segments 510 , 520 , and flow in a second direction 170 within another of the tubular members 110 , 120 , 130 .
- the fluid flowing in the first direction 160 within the tubular members 110 , 120 , 130 can deploy one or more sensors 150 and/or communication lines 152 into the wellbore 505 .
- the communications line 152 can be continuously deployed through the wellbore 505 .
- Flowing the fluid in the direction opposite to 160 i.e., the second direction 170
- the flow paths 502 , 542 , and 552 can provide fluid communication and uninterrupted flow between the segments 510 , 520 .
- FIG. 6 depicts a cross-sectional view of an illustrative wellhead outlet 600 , according to one or more embodiments.
- the wellhead outlet 600 can include an interface housing 610 having one or more holes or openings (three are shown 630 , 640 , and 650 ) and a flanged member 612 .
- Flanged member 612 may sealingly couple with interface housing 610 and form an interior cavity 614 .
- one or more first clamps 620 may be provided within interior cavity 614 .
- first claim 620 is coupled with an interior surface of flange member 612 .
- the wellhead outlet 600 is configured to be sealingly connected or coupled to the apparatus 100 .
- the well head outlet 600 can maintain the pressure integrity of the apparatus 100 as it exits the wellhead (not shown), such as the wellhead 440 depicted in FIG. 4 .
- the first clamp 620 can be configured to engage and seal about the outer diameter of the first tubular member 110 of the apparatus 100 .
- the passageways 630 , 640 present in the interface housing 610 can be configured to have the tubular members 120 , 130 respectively disposed there through.
- the passageways 630 , 640 can be provided in the interface housing 610 such that the tubular members 120 , 130 are operatively aligned with the first tubular member 110 .
- the passageways 630 , 640 can be configured to respectively seal with the outer diameters of the tubular members 120 , 130 .
- the passageway 650 can provide another orifice for the input and exit of fluid. Accordingly, fluid can be introduced into the annulus of first tubular member 110 via a conduit 655 attached to a fluid source. Alternatively, fluid can exit the annulus of the first tubular member 110 via an interior cavity of the interface housing 610 by flowing through the passageway 650 .
- the passageway 650 can have one or more conduits 655 at least partially disposed therethrough.
- the conduit 655 can be a nozzle, a valve, or a tube, or a combination of the components.
- the flow of fluid into or out of the interface housing 610 can be selectively controlled by the conduit 655 .
- the wellhead 600 can also facilitate the circulation of fluids within the apparatus 100 .
- the wellhead 600 can allow the introduction of fluid pumped in a first direction 160 within the tubular member 120 .
- the fluid may then circulate and return or exit in a second direction 170 within the first tubular member 110 .
- the fluid may continue to exit in the second direction 170 out of the wellhead 600 via the passageway 650 .
- the conduit 655 can be in fluid communication with a recycle loop allowing the fluid exiting the passageway 650 to be returned to the apparatus 100 , for example through the tubular member 120 .
- the reverse of the cycle may be used for retrieving a sensor previously deployed in the tubular member 120 .
- a wellhead outlet could also include additional pressure isolation barriers incorporated to meet associated health and safety requirements.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Pipeline Systems (AREA)
- Flow Control (AREA)
Abstract
Methods, apparatus, and systems for deploying and retrieving sensors downhole are provided. The apparatus can include an outer tubular member disposed about one or more inner tubular members coupled to a fluid directional controller. The fluid directional controller may include a housing separating an interior cavity from an external environment of the wellbore. One end of the outer tubular member and at least one end of an inner tubular member may communicate with the interior cavity. The housing may also include a passageway configured to provide fluid communication between the interior cavity and the external environment. A flow control device may selectively facilitate fluid flow through the passageway. Accordingly, a sensor located in the interior cavity may be selectively exposed to fluid from the external environment. Sensors may be deployed by flowing fluid through a particular tubular member in one direction and retrieved by flowing fluid in another direction.
Description
- Sensors and other gauges are deployed into and exposed to the environment within a wellbore to measure wellbore properties such as temperature and pressure. A typical environment within a wellbore can include drilling fluids, injections fluids, finishing fluids, hydrocarbons, acids, debris, and gases. As such, the environment in the wellbore can be corrosive. Continuous exposure to corrosive environments can cause premature failure of the sensors and other gauges, which causes unplanned use of a workover rig to remove and replace. The unplanned use of workover rigs increases rig time, costs, personnel costs, and production delays. Each unplanned use of a workover rig also increases operational risks to both equipment and personnel.
- There is a need, therefore, for new apparatus and methods for selectively deploying one or more sensors into a wellbore and retrieving the sensors therefrom without the use of a workover rig or similar technology. There is also a need for new apparatus and methods for selectively exposing the sensors to the wellbore environment without the use of a workover rig or similar technology.
- Apparatus, systems, and methods for deploying a sensor and selectively retrieving the sensor are provided. In at least one specific embodiment, the apparatus includes an outer tubular member disposed about one or more inner tubular members. Each tubular terminates within a fluid directional controller that comprises a housing disposed about the tubular members. At least one opening is formed through the housing, and provides fluid communication between an interior cavity thereof of the housing and an exterior thereof. A flow control device is disposed within the housing between the tubular members and the opening. The flow control device can be selectively actuated to expose the interior cavity of the housing to an external environment.
- In at least one other specific embodiment, a bi-directional flow apparatus can be disposed into a wellbore. The bi-directional flow apparatus can include an outer tubular member disposed about one or more inner tubular members. In addition, at least one sensor can be disposed within at least one of the tubular. A fluid directional controller can be secured to at least one of the tubular members containing the sensor. A fluid can be used to flow the sensor in a first direction through the tubular housing the sensor. The sensor can be located within the fluid directional controller, and exposed to an environment of the wellbore for measuring or sensing.
- In at least one other specific embodiment, the system includes a completion assembly having an inner bore and a bi-directional flow apparatus connected to the completion assembly. The bi-directional flow apparatus can include an outer tubular member disposed about one or more inner tubular members. Each tubular terminates within a fluid directional controller that comprises a housing disposed about the tubular members. The housing can include at least one opening formed there through and in fluid communication with an interior cavity of the housing and an exterior of the housing. A flow control device can be disposed within the housing between the tubular members and the opening. The flow control device can be selectively actuated to expose the interior cavity to an external environment.
- So that the recited features can be understood in detail, a more particular description, briefly summarized above, may be had by reference to one or more embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
-
FIG. 1 depicts an isometric view of an illustrative apparatus for sensor deployment and retrieval, according to one or more embodiments described; -
FIG. 2 depicts a cross-sectional view of an illustrative fluid directional controller, according to one or more embodiments described; -
FIG. 3 depicts a cross-sectional view of another illustrative fluid directional controller, according to one or more embodiments described; -
FIG. 4 depicts a schematic view of an illustrative system for deploying and selectively retrieving a sensor located within a wellbore, according to one or more embodiments described; -
FIG. 5 depicts a cross-sectional view of an illustrative conduit splice, according to one or more embodiments described; and -
FIG. 6 depicts a cross-sectional view of an illustrative wellhead, according to one or more embodiments described. -
FIG. 1 depicts an isometric view of anillustrative apparatus 100 for sensor deployment and retrieval, according to one or more embodiments. Theapparatus 100 can include one or more “outer” or firsttubular members 110 disposed about one or more “inner” or second tubular members (two are shown 120, 130). An annulus orflow path 140 is formed between thetubular members tubular member 110. Theapparatus 100 can deploy one ormore sensors 150 into awellbore 105 or other environment to be monitored, and selectively retrieve thesensors 150 therefrom by flowing fluid through thetubular members - The
tubular members FIG. 1 ), but described inFIG. 5 below. - The
sensors 150 can be any downhole sensing or measuring device.Illustrative sensors 150 can include, both single point and distributed measurements for example, one or more pressure sensors, temperature sensors, fluid type analyzers, pH sensors, distributed temperature, distributed pressure, distributed vibration, and acoustic measurements, among others. Thesensors 150 can be deployed with or without communication orcontrol lines 152. Thecommunication line 152, for example, can be or include one or more fiber optic lines, electrical lines, and/or other communication lines. Thecommunication line 152 can provide communication and/or power between thesensors 150 and one or more remote signal sources, transmitters, and/or processors. - The
apparatus 100 can protect thesensors 150 andcommunication lines 152, if needed, from corrosive environments, liquids, and/or gases within thewellbore 105 or other environment to be monitored. In operation, one or more sensors and one or moreoptional communication lines 152 can be disposed within any one of the innertubular members annulus 140, and theapparatus 100 can be at least partially disposed within or adjacent thewellbore 105 or other environment to be monitored. Fluid flow can be initiated through the tubular 120, 130 orannulus 140 that is housing thesensor 150 to be deployed. A return or circulation flow path will then be established through the one or moreavailable tubulars annulus 140 that are not housing thesensor 150 to be deployed. - For example, one or
more sensors 150 andoptional communication lines 152 can be disposed within the first innertubular member 120 and pressurized with fluid such that the fluid can flow through thetubular member 120 in the first ordeployment direction 160. The fluid can return through the flow path of theannulus 140 in a reverse direction, i.e., a second orretrieval direction 170. The second innertubular member 120 can remain idle or be used as a secondary flow path for either the first 160 orsecond directions 170. Thefirst direction 160 can be into or toward thewellbore 105 and thesecond direction 170 can be from or out of thewellbore 105. In another example, fluid can flow through theannulus 140 in thefirst direction 160, and can return through one or both of the secondtubular members second direction 170. If only one of the secondtubular members apparatus 100. -
FIG. 2 depicts a cross-sectional view of an illustrative fluiddirectional controller 200 within awellbore 205, according to one or more embodiments. The fluiddirectional controller 200 can include at least onehousing 210 having at least onecoupling 215 andfluid control device 240 disposed therein. Thehousing 210 can further include aninterior cavity 220, and one or more holes orapertures 230 to provide fluid communication with thewellbore 205. Theinterior cavity 220 can have an “upper” orfirst portion 222 and a “lower” orsecond portion 224. Thecoupling 215 can be disposed or located within thefirst portion 222 of theinterior cavity 220, and theflow control device 240 can be disposed or located within thesecond portion 224. - The
coupling 215 can include one or more openings or flow paths (three are shown 217, 219, 225) formed therethrough. The deployment andretrieval apparatus 100 can be secured to thecoupling 215. For example, thecoupling 215 can be secured to the outer diameter of the firsttubular member 110, and secondtubular members paths coupling 215 to allow fluid communication through thetubular members interior cavity 220 of thehousing 210. The firsttubular member 110 can also be aligned with thecoupling 215 to allow fluid communication between theannulus 140 within the firsttubular member 110 and theinterior cavity 220 of thehousing 210 via the opening or flowpath 225. - The
flow control device 240 can be any device capable of regulating flow. Theflow control device 240 can be selectively actuated electronically, mechanically, hydraulically, or by other remote actuation methods. In at least one specific embodiment, thecontrol device 240 can be a ball and seat type flow control valve or check valve, as depicted inFIG. 2 . - Referring to
FIG. 2 , thecontrol device 240 can include aflow path 241,piston 242,ball 248,ball seat 250, andspring 252. The tubular 130 allows fluid to enter theflow control device 240 so that the fluid can push against thepiston 242, which pushes against theball 248. When the pressure of the fluid exceeds the force provided by thespring 252, theball 248 moves from a first or “closed” position, away from theball seat 250 to a second or “open” position, allowing fluid to pass or flow through theflow path 241 into thesecond portion 224 of thecavity 220 of thehousing 210. Once the pressure applied to thepiston 242 is released, thespring 252 can return theball 248 to the first position against theball seat 250. - In operation, the deployment and
retrieval apparatus 100 can be secured to thecoupling 215 to establish fluid communication between the firstinner tubular 120 and flowpath 217, and between the secondinner tubular 130 and theflow path 219. Additionally, theannulus 140 within the outertubular member 110 is in fluid communication with theflow paths 225. As mentioned above, the one or more sensors and optional one ormore communication lines 152 can be disposed within any one of the innertubular members annulus 140. As depicted inFIG. 2 , however, thesensor 150 is conveyed through the tubular 120 and located within the opening or flowpath 217 within thecoupling 215. The fluid can be returned to the surface through theannulus 140. A second fluid or second fluid pressure can be conveyed through the tubular 130 to selectively operate theflow control device 240. Likewise, theannulus 140 also serves as thefluid return path 170 for this fluid or fluid pressure. - When the
flow control device 240 is opened, theinner cavity 220 of thefluid direction controller 200 can be exposed to the surrounding environment within thewellbore 205, allowing the fluid from the surrounding environment to contact thesensor 150. The fluid from the surrounding environment can enter theinner cavity 220 of thehousing 210 by flowing through theapertures 230. Theapertures 230 can be formed through one or more surfaces or sides of thehousing 210. The environmental fluid can then flow through theflow path 241 within theflow control device 240 when theball 248 is in the second or open position. Once thesensor 150 performs its measurements or readings on the fluid from the surrounding environment, theball 248 can be returned to the closed position by releasing the pressure in the tubular 130. If desired, a purging fluid can be conveyed through theapparatus 100 through any one or more of thetubulars annulus 140, or any combination thereof, to clean out thecavity 220 provided within thehousings 215. As such, thesensor 150 and/orcommunication line 152 can have limited exposure to the surrounding fluid for a predetermined and/or controllable period of time. - After a period of time, the
sensor 150 may need to be replaced or substituted with a second sensor (not shown). For example, a second sensor may be needed to take a different measurement or reading. Although not shown inFIG. 2 , the replacement sensor can be conveyed through the firsttubular member 110 in afirst direction 160 and landed within thecavity 220. The fluid can return in thesecond direction 170 through theflow path 225 and secondtubular member 120. As the fluid returns in thesecond direction 170 within the secondtubular member 120, thefirst sensor 150 can be purged or moved through the secondtubular member 120 along with the returning fluid. Accordingly, theapparatus 100 can be used to simultaneously deploy asensor 150 and/orcommunication line 152 into thewellbore 205 and while retrieving another sensor therefrom. -
FIG. 3 depicts a cross-sectional view of another illustrative fluiddirectional controller 300, according to one or more embodiments. The fluiddirectional controller 300 can include one ormore return conduits 310 connected to thetubular members flow control devices 320 connected to at least one of the secondtubular members return conduit 310. The three-wayflow control device 320 can place two or more inner diameters of thetubular members wellbore 305. The three-wayflow control device 320 can have multiple flow paths therethrough, and the flow paths can be selectively opened and/or closed to selectively place thetubular members wellbore 305 in fluid communication. Accordingly, the flow paths can be opened or closed to place the three-wayflow control device 320 in one or more configurations or modes. - For example, the three-way
flow control device 320 can have a first mode that provides fluid communication between the secondtubular members tubular member 120, the firsttubular member 110, and thewellbore 305. Further, in some cases a third mode can be configured that provides fluid communication between the secondtubular member 130, the firsttubular member 110, and thewellbore 305. Additionally, in other cases a fourth mode can be chosen that provides fluid communication between the secondtubular members tubular member 110, and thewellbore 305. In at least one specific embodiment, the three-wayflow control device 320 can be a three-way pressure relief valve that can be switched between the modes by changing the pressure within thewellbore 305, within the secondtubular member 120, and/or within the thirdtubular member 130. - In one or more embodiments, the three-way
flow control device 320 can be another valve or flow control device, such as a mechanically, a hydraulically, or an electrically operated valve, and the three-wayflow control device 320 can be remotely switched between modes. For example, the three-wayflow control device 320 can be switched between modes by a signal sent from the surface to a solenoid adjacent the three-wayflow control device 320. The signal can be transmitted or communicated to the solenoid by wireless telemetry equipment, such as electromagnetic waves, acoustic waves, or the like, or by wire type telemetry, such as a fiber optic cable or an electrical wire. The three-wayflow control device 320 can be configured to be switched between the various modes by any hydraulic, mechanical, or electrical means. - The three-way
flow control device 320 can be selectively switched between modes to expose thesensor 150, which can be disposed within the secondtubular member 120 adjacent thereturn conduit 310, to one or more conditions of thewellbore 305. For example, the three-wayflow control device 320 can be placed in the second mode to provide a flow path between thewellbore 305 and the secondtubular member 120. - Furthermore, the three-way
flow control device 320 can be placed in the first mode to provide a flow path between thetubular members sensor 150 and/orcommunication line 152. Such a configuration would enable circulation of the fluid used to deploy thesensor 150 and/orcommunication line 152. For example, thesensor 150 can be located within the secondtubular member 120 and fluid within the secondtubular member 120 can flow in afirst direction 160 from the surface. Accordingly, the fluid could deploy thesensor 150. Additionally, the fluid can flow through the three-wayflow control device 320 to thereturn conduit 310 and to the thirdtubular member 130. Within the thirdtubular member 130 the fluid would flow in asecond direction 170 towards the surface, counter to thefirst direction 160, and thereby complete a circular cycle. - The
sensor 150 can be retrieved from thewellbore 305 by reversing the direction of flow in thetubular member 120. For example, in one situation the three-wayflow control device 320 can be placed in the first mode establishing a fluid pathway between the thirdtubular member 130 and thereturn conduit 310. This would enable fluid within the thirdtubular member 130 to flow in thefirst direction 160 and continue through the three-wayflow control device 320 and thereturn conduit 310 to the secondtubular member 120. The fluid within the secondtubular member 120 can then return to the surface by flowing in thesecond direction 170. The force or motion of the fluid flowing within the secondtubular member 120 can facilitate the movement of thesensor 150 disposed within the secondtubular member 120 to the surface. In one or more embodiments, the fluiddirectional controller 300 can enable one ormore sensors 150 and/orcommunication line 152 to be deployed into thewellbore 305 and one ormore sensors 150 to be retrieved from thewellbore 305 simultaneously. - In some embodiments, a fluid 307, such as a chemical injection for example, can flow through the inner diameter of the
tubular member 110 and provide a desired treatment and/or additives to thewellbore 305. The addition of the fluid 307 can be done independently of the deployment or retrieval of one ormore sensors 150 and/orcommunication lines 150. - The fluid
directional controller 300 can be connected to or include a blow outpreventer 340 or safety valve, for example. Via acontrol line 345 or a remotely initiated signal the blow outpreventer 340 can be used to form a pressure seal either around the sensor or with no sensor in place. This allows an embodiment of a system using the fluiddirectional controller 300 to pump thesensor 150 into place and then seal around thesensor 150 using the blow outpreventer 340. The three-wayflow control device 320 can then be used to establish fluid communication between thesensor 150 and the surroundingwellbore 305, enabling thesensor 150 to detect the surrounding wellbore conditions. By using the blow outpreventer 340 and the three-wayflow control device 320 in this way, the wellbore fluid may be isolated to just thesensor 150 and returnconduit 310, thereby avoiding the potential of having wellbore fluids travel up either of the tubulars to the surface. -
FIG. 4 depicts a schematic view of an illustrative system 400 for deploying and selectively retrieving a sensor located within a wellbore, according to one or more embodiments. As shown, in some embodiments the system 400 can include a completion assembly 402, a wellhead 440 disposed on the wellbore 405, a wellhead outlet 430 in fluid communication with the wellhead 440 and a tubing string 490, and a junction box 435 located adjacent the wellhead 440. Theapparatus 100 can be disposed adjacent the tubing string 490 having one or more packers 480 and tubing hangers 450 disposed thereon. - The
apparatus 100 can deploy thesensor 150 adjacent, into, or about the completion assembly 402. Theapparatus 100 can be deployed free hanging from the surface of the wellbore 405 or the apparatus can be secured to the wellhead 440. In one or more embodiments, theapparatus 100 can be integrated with the completion assembly 402, disposed within the completion assembly 402, disposed behind the completion assembly 402, and/or disposed about a portion of the completion assembly 402. - The packers 480 can be any one or more compression or cup packers, inflatable packers, “control line bypass” packers, retrievable type, permanent type, or any other type known in the art. Preferably, the packers 480 are selectively actuated or set within the wellbore 405 to isolate two or more portions of the wellbore 405 from one another.
- The tubing hanger 450 can be any one or more inflatable tubing hangers, mudline tubing hangers, pack-off tubing hangers, or any other type known in the art. A preferred tubing hanger is described in U.S. Pat. No. 7,422,065, the contents of which are incorporated herein by reference. The tubing hanger 450 can seal a portion of the wellbore 405, and support the tubing string 490.
- The wellbore 405 can be cased, as depicted, with casing 408, or the wellbore 405 can be left as an open hole. When the wellbore 405 is cased, the casing 408 can have one or more perforations 495 formed therein. The perforations 495 can be formed adjacent a hydrocarbon bearing zone 497, or similar reservoir of interest. After the perforations 495 are formed through the casing 408, the tubing string 490 and the
apparatus 100 can be conveyed into the wellbore 405. When the tubing string 490 is located within the wellbore 405, a perforated or slotted portion 492 of the tubing string 490 can be located proximate to the perforations 495, and an end of the inner bore of the tubing string 490 adjacent the perforation portion 492 can be isolated from the wellbore 405 by a sealing member 498. In addition or alternatively, an inflow control device (not shown) may be used to allow fluid from the reservoir to flow into the production tubing string 490. - Accordingly, the perforated portion of the tubing string 490 can be selectively used to produce hydrocarbons or other desired fluids from the hydrocarbon bearing zone 497. In addition or alternatively, the tubing string 490 can also provide fluid (e.g., injection, treatment, steam, or other) to the wellbore 405 and/or the hydrocarbon bearing zone 497 adjacent the perforations 495. The hanger 450 and the packer 480 can be actuated after the tubing string 490 is located within the wellbore 405. The
apparatus 100 and tubing string 490 can be secured within the wellbore 405 when the hanger 450 and packer 480 are actuated. Furthermore, the hanger 450 and the packer 480 can seal an annulus between the tubing string 490 and the casing 408. - In one or more embodiments, the
apparatus 100 can include one or more sections (two are shown 410, 420) coupled together by a conduit splice 415. The conduit splice 415 can provide flow paths placing the first segment 410 in fluid communication with the second segment 420. Accordingly, the conduit splice 415 allows for deployment of acommunication line 152 that is continuous, circulation of fluids between the segments 410, 420, and uninterrupted deployment of thesensor 150. - After the tubing string 490 and the
apparatus 100 are secured within the wellbore 405, the first segment 410 and the tubing string 490 can be connected to the wellhead 440. The wellhead 440 can be connected to the wellhead outlet 430, and the wellhead outlet 430 can be placed in fluid communication and/or connected with theapparatus 100. The wellhead outlet 430 can also be in communication with the junction box 435, which can be configured to provide power to thesensor 150 and/or the completion assembly 402. In addition, the junction box 435 can also send signals to and/or receive signals from thesensor 150. - The wellhead outlet 430 can be used to provide fluid flow for the tubing string 490 and the
apparatus 100. The fluid flowing in theapparatus 100 can be used to deploy thesensor 150. Thesensor 150 can flow through the segments 410, 420 into a fluid directional controller 465. For example, the wellhead outlet 430 can provide fluid flow to theapparatus 100, and thesensor 150 can be deployed through the first segment 410. Thesensor 150 can flow from the first segment 410 to the second segment 420 via conduit splice 415. The second segment 420 can be connected to the fluid directional controller 465 and thesensor 150 can be disposed therein. - The embodiment of the fluid directional controller 465 can be any manifold or other device that enables bi-directional flow through the
apparatus 100 and selectively exposes thesensor 150 to the wellbore 405. For example, the fluid directional controller 465 can be similar to any of the fluid directional controllers described herein. Thesensor 150 can flow from the second segment 420 into the fluid direction controller 465, and the fluid directional controller 465 can be used to selectively expose thesensor 150 to the environmental conditions of the wellbore 405. To retrieve thesensor 150 from the wellbore 405, the wellhead outlet 430 can be used to provide a reverse flow through theapparatus 100, as previously described herein. -
FIG. 5 depicts a cross-sectional view of anillustrative conduit splice 500, according to one or more embodiments. In embodiments in which theapparatus 100 has two ormore segments conduit splice 500 can connect or couple thesegments conduit splice 500 can include amain housing 530. Themain housing 530 can further include one or more secondary housings (two are shown 540, 550) disposed therein. Themain housing 530 can be configured to encase or secure about the firsttubular member 110 of each of thesegments main housing 530 can fluidly couple together the firsttubular members 110 of thesegments main housing 530 can provide aflow path 502 between the firsttubular member 110 of onesegment 510 and the firsttubular member 110 of theother segment 520. - The
secondary housings main housing 530. Thesecondary housings tubular members segment 510 with the secondtubular members other segment 520. As such, theconduit splice 500 respectively establishesflow paths tubular members segments conduit splice 500 facilitates bi-directional flow through at least two of thetubular members segments - The fluid can flow in a
first direction 160 within at least one of thetubular members segments second direction 170 within another of thetubular members first direction 160 within thetubular members more sensors 150 and/orcommunication lines 152 into thewellbore 505. Thecommunications line 152 can be continuously deployed through thewellbore 505. Flowing the fluid in the direction opposite to 160 (i.e., the second direction 170) can retrieve one or more previously deployedsensors 150 andcommunication lines 152 from thewellbore 505. During the deployment and retrieval ofsensors 150 andcommunication lines 152, theflow paths segments -
FIG. 6 depicts a cross-sectional view of anillustrative wellhead outlet 600, according to one or more embodiments. Thewellhead outlet 600 can include aninterface housing 610 having one or more holes or openings (three are shown 630, 640, and 650) and aflanged member 612.Flanged member 612 may sealingly couple withinterface housing 610 and form aninterior cavity 614. Withininterior cavity 614, one or morefirst clamps 620 may be provided. In this case,first claim 620 is coupled with an interior surface offlange member 612. Thewellhead outlet 600 is configured to be sealingly connected or coupled to theapparatus 100. In addition, thewell head outlet 600 can maintain the pressure integrity of theapparatus 100 as it exits the wellhead (not shown), such as the wellhead 440 depicted inFIG. 4 . - The
first clamp 620 can be configured to engage and seal about the outer diameter of the firsttubular member 110 of theapparatus 100. Thepassageways interface housing 610 can be configured to have thetubular members passageways interface housing 610 such that thetubular members tubular member 110. In addition, thepassageways tubular members - The
passageway 650 can provide another orifice for the input and exit of fluid. Accordingly, fluid can be introduced into the annulus of firsttubular member 110 via aconduit 655 attached to a fluid source. Alternatively, fluid can exit the annulus of the firsttubular member 110 via an interior cavity of theinterface housing 610 by flowing through thepassageway 650. Thepassageway 650 can have one ormore conduits 655 at least partially disposed therethrough. In some embodiments, theconduit 655 can be a nozzle, a valve, or a tube, or a combination of the components. In one or more embodiments, the flow of fluid into or out of theinterface housing 610 can be selectively controlled by theconduit 655. - The
wellhead 600 can also facilitate the circulation of fluids within theapparatus 100. For example, thewellhead 600 can allow the introduction of fluid pumped in afirst direction 160 within thetubular member 120. The fluid may then circulate and return or exit in asecond direction 170 within the firsttubular member 110. The fluid may continue to exit in thesecond direction 170 out of thewellhead 600 via thepassageway 650. In one or more embodiments, theconduit 655 can be in fluid communication with a recycle loop allowing the fluid exiting thepassageway 650 to be returned to theapparatus 100, for example through thetubular member 120. Of course, the reverse of the cycle may be used for retrieving a sensor previously deployed in thetubular member 120. Although not depicted, it is understood to those of ordinary skill in the art that such a wellhead outlet could also include additional pressure isolation barriers incorporated to meet associated health and safety requirements. - Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.
- While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims (19)
1. A bi-directional flow apparatus configured to facilitate the deployment and retrieval of one or more sensors, the bi-directional flow apparatus comprising:
an outer tubular member disposed about one or more inner tubular members;
a fluid directional controller coupled to an end of the outer tubular member and an end of the one or more inner tubular members, wherein the fluid directional controller comprises:
a housing separating an interior cavity from an external environment of the wellbore wherein the end of the outer tubular member and at least one end of the one or more inner tubular members communicate with the interior cavity;
at least one passageway formed through the housing and configured to provide fluid communication between the interior cavity and the external environment; and
a flow control device configured to selectively facilitate fluid flow between the interior cavity and the external environment via the at least one passageway.
2. The apparatus of claim 1 , wherein at least one of the one or more tubular members is operatively coupled to the flow control device to provide access between the interior cavity and the external environment.
3. The apparatus of claim 1 , wherein the flow control device is a valve.
4. The apparatus of claim 3 , wherein the valve is a three-way flow control valve.
5. The apparatus of claim 1 , wherein the flow control device comprises:
a piston operatively coupled to at least one of the one or more tubular members;
a ball and spring check valve blocking the at least one passageway;
wherein changing pressure in the at least one of the one or more tubular members translates the piston and unblocks the ball and spring check valve from the at least one passageway.
6. A method for deploying and retrieving a sensor from a wellbore location comprising:
locating a bi-directional flow apparatus into the wellbore, the bi-directional flow apparatus comprising:
an outer tubular member disposed about one or more inner tubular members;
a fluid directional controller coupled to an end of the outer tubular member and an end of the one or more inner tubular members, wherein the fluid directional controller comprises:
a housing separating an interior cavity from an external environment of the wellbore wherein the end of the outer tubular member and at least one end of the one or more inner tubular members communicate with the interior cavity;
at least one passageway formed through the housing and configured to provide fluid communication between the interior cavity and the external environment;
a flow control device configured to selectively block fluid flow between the interior cavity and the external environment via the at least one passageway; and
at least one sensor disposed within any of the tubular members;
flowing a fluid in a first direction through the tubular member containing the at least one sensor to locate the at least one sensor within the interior cavity;
actuating the flow control device to facilitate fluid flow between the interior cavity and the external environment; and
measuring at least one property of the wellbore with the at least one sensor.
8. The method of claim 7, further comprising retrieving the at least one sensor by flowing fluid in a second direction through the tubular member containing the at least one sensor.
9. The method of claim 7, further comprising closing a valve downstream of the at least one sensor to prevent fluid from the external environment from flowing to a surface location when the flow control device has been actuated.
10. The method of claim 7, wherein flowing fluid in the first direction through one of the tubular members comprises simultaneously flowing fluid in a second direction through another one of the tubular member.
11. The method of claim 7, wherein the fluid directional controller places the outer tubular member and at least one of the one or more inner tubular members in fluid communication with one another.
12. A system for retrievably deploying at least one sensor into a wellbore; the system comprising:
a completion assembly having an inner bore and provided in the wellbore;
an outer tubular member disposed about one or more inner tubular members;
a fluid directional controller coupled to an end of the outer tubular member and an end of the one or more inner tubular members, wherein the fluid directional controller comprises:
a housing separating an interior cavity from an external environment of a wellbore location to be measured wherein the end of the outer tubular member and at least one end of the one or more inner tubular members communicate with the interior cavity;
at least one passageway formed through the housing and configured to provide fluid communication between the interior cavity and the external environment; and
a flow control device configured to selectively facilitate fluid flow between the interior cavity and the external environment via the at least one passageway;
wherein the at least one sensor is deployed by flowing fluid in a first direction in the tubular member containing the at least one sensor until the at least one sensor is provided in a position exposable to conditions from the external environment.
13. The system of claim 12 , wherein the at least one sensor is deployed within the interior cavity.
14. The system of claim 12 , wherein the tubular members each comprise two or more segments coupled together by a conduit splice.
15. The system of claim 12 , wherein the at least one sensor is retrieved by flowing fluid in a second direction in the tubular member containing the at least one sensor.
16. The system of claim 15 wherein another sensor is simultaneously deployed by flowing fluid in a first direction in another tubular member containing the another sensor.
17. The system of claim 12 , wherein the fluid directional controller comprises:
a return conduit in fluid communication with the tubular members; and
a three-way flow control device connected to the return conduit and at least one of the inner tubular members, wherein the three-way flow control device selectively controls fluid communication between the tubular members and the external environment.
18. The system of claim 12 , wherein the environment of the wellbore comprises wellbore fluids, treatment fluids, gasses, and hydrocarbons.
19. The system of claim 12 , wherein at least one sensor comprises a plurality of sensors simultaneously deployed through one of the tubular members.
20. The system of claim 12 , wherein at least one of the inner tubular members is used to actuate the flow control device disposed within the fluid directional controller.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/575,585 US20110083856A1 (en) | 2009-10-08 | 2009-10-08 | Sensor deployment and retrieval system using fluid drag force |
PCT/US2010/050368 WO2011043947A2 (en) | 2009-10-08 | 2010-09-27 | Sensor deployment and retrieval system using fluid drag force |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/575,585 US20110083856A1 (en) | 2009-10-08 | 2009-10-08 | Sensor deployment and retrieval system using fluid drag force |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110083856A1 true US20110083856A1 (en) | 2011-04-14 |
Family
ID=43853913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/575,585 Abandoned US20110083856A1 (en) | 2009-10-08 | 2009-10-08 | Sensor deployment and retrieval system using fluid drag force |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110083856A1 (en) |
WO (1) | WO2011043947A2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5804713A (en) * | 1994-09-21 | 1998-09-08 | Sensor Dynamics Ltd. | Apparatus for sensor installations in wells |
US6789621B2 (en) * | 2000-08-03 | 2004-09-14 | Schlumberger Technology Corporation | Intelligent well system and method |
US20050279510A1 (en) * | 2004-06-18 | 2005-12-22 | Schlumberger Technology Corporation | Method and System to Deploy Control Lines |
US20060196660A1 (en) * | 2004-12-23 | 2006-09-07 | Schlumberger Technology Corporation | System and Method for Completing a Subterranean Well |
US20060225881A1 (en) * | 2003-02-07 | 2006-10-12 | Schlumberger Technology Corporation | Use of sensors with well test equipment |
US7140435B2 (en) * | 2002-08-30 | 2006-11-28 | Schlumberger Technology Corporation | Optical fiber conveyance, telemetry, and/or actuation |
US20070144746A1 (en) * | 2005-11-29 | 2007-06-28 | Schlumberger Technology Corporation | System and Method for Connecting Multiple Stage Completions |
US7240730B2 (en) * | 2002-12-17 | 2007-07-10 | Schlumberger Technology Corp. | Use of fiber optics in deviated flows |
US20080185144A1 (en) * | 2006-03-30 | 2008-08-07 | Schlumberger Technology Corporation | Providing an expandable sealing element having a slot to receive a sensor array |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4962665A (en) * | 1989-09-25 | 1990-10-16 | Texaco Inc. | Sampling resistivity of formation fluids in a well bore |
US5741962A (en) * | 1996-04-05 | 1998-04-21 | Halliburton Energy Services, Inc. | Apparatus and method for analyzing a retrieving formation fluid utilizing acoustic measurements |
AU2003243787A1 (en) * | 2002-07-03 | 2004-01-23 | Sensor Highway Limited | Pulsed deployment of a cable through a conduit located in a well |
US6955218B2 (en) * | 2003-08-15 | 2005-10-18 | Weatherford/Lamb, Inc. | Placing fiber optic sensor line |
-
2009
- 2009-10-08 US US12/575,585 patent/US20110083856A1/en not_active Abandoned
-
2010
- 2010-09-27 WO PCT/US2010/050368 patent/WO2011043947A2/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5804713A (en) * | 1994-09-21 | 1998-09-08 | Sensor Dynamics Ltd. | Apparatus for sensor installations in wells |
US6789621B2 (en) * | 2000-08-03 | 2004-09-14 | Schlumberger Technology Corporation | Intelligent well system and method |
US7140435B2 (en) * | 2002-08-30 | 2006-11-28 | Schlumberger Technology Corporation | Optical fiber conveyance, telemetry, and/or actuation |
US7240730B2 (en) * | 2002-12-17 | 2007-07-10 | Schlumberger Technology Corp. | Use of fiber optics in deviated flows |
US20060225881A1 (en) * | 2003-02-07 | 2006-10-12 | Schlumberger Technology Corporation | Use of sensors with well test equipment |
US20050279510A1 (en) * | 2004-06-18 | 2005-12-22 | Schlumberger Technology Corporation | Method and System to Deploy Control Lines |
US20060196660A1 (en) * | 2004-12-23 | 2006-09-07 | Schlumberger Technology Corporation | System and Method for Completing a Subterranean Well |
US20070144746A1 (en) * | 2005-11-29 | 2007-06-28 | Schlumberger Technology Corporation | System and Method for Connecting Multiple Stage Completions |
US20080185144A1 (en) * | 2006-03-30 | 2008-08-07 | Schlumberger Technology Corporation | Providing an expandable sealing element having a slot to receive a sensor array |
Also Published As
Publication number | Publication date |
---|---|
WO2011043947A3 (en) | 2011-10-20 |
WO2011043947A2 (en) | 2011-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8496055B2 (en) | Efficient single trip gravel pack service tool | |
US6192983B1 (en) | Coiled tubing strings and installation methods | |
US11215036B2 (en) | Completion systems with a bi-directional telemetry system | |
US9163488B2 (en) | Multiple zone integrated intelligent well completion | |
US9016368B2 (en) | Tubing conveyed multiple zone integrated intelligent well completion | |
US9103207B2 (en) | Multi-zone completion systems and methods | |
OA12723A (en) | Well communication system. | |
US10233725B2 (en) | Downhole system having isolation flow valve and method | |
RU2745682C1 (en) | Energy transmission mechanism for a connection joint for connection with a lateral well finishing tool | |
US10309174B2 (en) | Automated remote actuation system | |
EP3726004A1 (en) | Single trip multi-zone completion systems and methods | |
CA3027345A1 (en) | Modular coiled tubing bottom hole assembly | |
GB2337780A (en) | Surface assembled spoolable coiled tubing strings | |
US20170114615A1 (en) | Remotely-powered casing-based intelligent completion assembly | |
US20110083856A1 (en) | Sensor deployment and retrieval system using fluid drag force | |
MX2009001648A (en) | A fluid loss control system and method for controlling fluid loss. | |
AU2016228178B2 (en) | Multiple zone integrated intelligent well completion | |
AU2012391054B2 (en) | Tubing conveyed multiple zone integrated intelligent well completion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREENAWAY, ROBERT;READ, BARRY;WILSON, COLIN A.;AND OTHERS;SIGNING DATES FROM 20090910 TO 20090930;REEL/FRAME:023459/0005 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |