US20110070955A1 - Cross Groove Type Constant Velocity Joint with Composite Groove Patterns - Google Patents

Cross Groove Type Constant Velocity Joint with Composite Groove Patterns Download PDF

Info

Publication number
US20110070955A1
US20110070955A1 US12/563,029 US56302909A US2011070955A1 US 20110070955 A1 US20110070955 A1 US 20110070955A1 US 56302909 A US56302909 A US 56302909A US 2011070955 A1 US2011070955 A1 US 2011070955A1
Authority
US
United States
Prior art keywords
groove
grooves
joint member
group
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/563,029
Other versions
US8382600B2 (en
Inventor
Seung Tark Oh
Tae Hong Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Wia Corp
Original Assignee
Hyundai Wia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Wia Corp filed Critical Hyundai Wia Corp
Priority to US12/563,029 priority Critical patent/US8382600B2/en
Assigned to Hyundai Wia Corporation reassignment Hyundai Wia Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, TAE HONG, OH, SEUNG TARK
Priority to US12/702,757 priority patent/US8500566B2/en
Publication of US20110070955A1 publication Critical patent/US20110070955A1/en
Priority to US13/477,186 priority patent/US8409020B2/en
Priority to US13/684,832 priority patent/US20130079163A1/en
Priority to US13/685,983 priority patent/US20130085003A1/en
Application granted granted Critical
Publication of US8382600B2 publication Critical patent/US8382600B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/229Prismatic coupling parts having each groove centre-line lying on planes parallel to the axis of the respective coupling part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/24Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts comprising balls, rollers, or the like between overlapping driving faces, e.g. cogs, on both coupling parts

Definitions

  • the present invention relates to a cross groove type constant velocity joint for use in a drive system, and more particularly, to a cross groove type constant velocity joint having composite groove shapes, typically for use in a drive system of, for example, an automobile for transmitting rotational torque between two rotating shafts thereof.
  • a cross groove type constant velocity joint (hereinafter to be referred as a “cross groove joint”) is one type of constant velocity universal joints used for transmitting rotational torque between the rotating shafts (i.e., the driving shaft and the driven shaft), typically for the drive system of automobiles.
  • the cross groove joint includes an outer joint member with a plurality of ball grooves formed on the inner surface thereof, and an inner joint member with a plurality of ball grooves formed on the outer surface thereof, in which the corresponding ball grooves of the outer joint member and the inner joint member are configured to pair with each other and slanted in opposite directions with respect to the center or rotating axis of the joint.
  • FIGS. 1-2 illustrate one example of a conventional cross groove type joint which retains six balls in the ball grooves for transmitting the rotational torque between the outer and inner joint members to drive the drive system.
  • This cross groove joint includes an outer joint member 1 with six grooves formed on the inner surface thereof, an inner joint member 3 with six grooves formed on the outer surface thereof, six balls 2 retained in the pared grooves of the outer and inner joint members for torque transfer between the outer and inner joint members 1 and 3 , and a cage 4 configured to support the balls 2 to a plane bisecting the angle of articulation between the axes of rotation of the outer and inner joint members 1 and 3 .
  • the outer joint member 1 has a plurality of (i.e., six) inwardly facing outer ball grooves 1 a alternately skewed with a skew angle ⁇ in opposite directions relative to an axis of rotation of the outer joint member 1 .
  • the inner joint member 3 positioned inside the outer joint member 1 has a plurality of (i.e., six) outwardly facing inner ball grooves 3 a alternately skewed with the same skew angle ⁇ in opposite directions relative to an axis of rotation of the inner joint member 3 .
  • the outer and inner ball grooves 1 a and 3 a face each other in crossed pairs with each of the balls 2 positioned between each crossed pair for torque transfer between the inner and outer joint members 1 and 3 .
  • the cage 4 includes a plurality of (i.e., six) cage windows 4 a with a dimension sufficient to accommodate the ball movement L 2 .
  • the width L 4 of each cage web 4 b must be designed to have a dimension at least the same or less than the minimum thickness L 1 of outer joint member 1 .
  • FIGS. 3( a ) and ( b ) illustrate a conventional cross groove joint with eight balls.
  • the eight ball cross groove joint includes an outer joint member 11 , an inner joint member 33 , balls 22 for torque transfer between the outer and inner joint members, and a cage 44 configured to support the balls to a plane bisecting the angle of articulation between the axes of rotation of the outer and the inner joint member.
  • the outer joint member 11 has a plurality of inwardly facing outer ball grooves 11 a alternately skewed with a skew angle ⁇ in opposite directions relative to an axis of rotation of the outer joint member.
  • the inner joint member 33 placed inside the outer joint member 11 similarly has a plurality of (i.e., eight) outwardly facing inner ball grooves 33 a alternately skewed with the same skew angle ⁇ , however, oriented in opposite directions relative to an axis of rotation of inner joint member 33 .
  • the outer and inner ball grooves 11 a and 33 a face each other in crossed pairs with each of the balls 22 retained between each crossed pair for torque transfer between the inner and outer joint members.
  • the cage 44 includes a plurality of (i.e., eight) cage windows 44 a with a dimension sufficient to accommodate the ball movement L 22 .
  • the width L 44 of each cage web 44 b must be designed to have a dimension the same or less than the minimum thickness L 11 of outer joint member 11 .
  • the cross groove joint with higher balls can provide more compact design and secure a smoother and reliable operation as compared to the cross groove joint with six balls
  • the cross groove joint with eight balls for example, is designed to have the same pitch circle diameter (PCD) as the joint having six balls
  • the ball diameter of the eight ball joint can be reduced because the load on each ball groove and the stress onto the cage web 44 b decreases by the increase of the number of the balls.
  • the size of each cage window 44 a can also be reduced compared to the joint containing six balls.
  • the higher ball (e.g., eight ball) type cross groove joint may also include certain shortcomings or disadvantages as described below, for example. Because the eight ball type joint includes more (i.e., eight) cage windows 44 a , the thickness of the cage web 44 b is also reduced, and thus, the stress on the cage web 44 b becomes greater than that of the six ball type. Comparing to the joint with six balls having the same PCD, the increased amount of stress on the cage web (due to the reduction of cage web thickness) exceeds that of the decreased amount of stress owing to the increase of the number of balls. Therefore, the higher ball (e.g., eight ball) type cross groove joint may have a weakened strength and durability in the cage web, and thus, the load bearing capacity of the joint can be deteriorated than that of the conventional six ball type joint.
  • the present invention provides a cross groove joint (preferably, but not necessarily, of higher ball type) with a compact and durable structure, in particular, with the strength of the cage web enhanced than that of the conventional cross groove joints as described above.
  • the present invention provides a cross groove joint including an outer joint member with a plurality of inwardly facing ball grooves and an inner joint member with a plurality of outwardly facing ball grooves, in which the shapes of the ball grooves of the outer and inner joint member are configured to increase the thickness and also the mechanical strength of the cage web as compared to the conventional cross groove joint as described above.
  • the mechanical strength and durability of the cage is influenced by skew angle ⁇ (see FIG. 4 , for example).
  • skew angle ⁇ see FIG. 4 , for example.
  • the ball movement L 22 in circumferential direction increases and the size of cage window 44 a should also be increase to accommodate the ball movement in the movement range.
  • the thickness of cage web 44 b between two adjacent windows 44 a becomes smaller as the skew angle of the grooves for the inner and outer joint member increases.
  • the applicant of the present application has discovered several effective ways to reduce the ball movements and the size of cage windows in the cross groove joint (preferably, but not necessarily, of the type having eight or more balls) by decreasing the skew angle and also optimizing the shapes of the ball grooves.
  • the present invention has incorporated composite groove patterns (for example, such as a combination of liner and non-linear grooves, or of skewed grooves and non-linear grooves) to the ball grooves of the outer and inner joint members.
  • composite groove patterns for example, such as a combination of liner and non-linear grooves, or of skewed grooves and non-linear grooves
  • the skew angle is minimized and the minimum thickness (least effective thickness) of the outer and inner joint members (and thus, the thickness of the cage web as well) are maximized as compared to the conventional joint described above without any degradation of functions in the joint.
  • a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; and a cage having circumferentially displaced cage windows to accommodate a plurality of balls therein.
  • the groove patterns of the ball grooves can be a combination of skewed grooves and non-linear grooves, a combination of non-linear grooves such as a curved groove or a compositely shaped groove, or a combination of linear grooves and non-linear grooves.
  • a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed
  • a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a continuously curved groove shape; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a continuously curved groove shape, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed
  • a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a continuously curved groove shape, and a second group of grooves, each groove of which having a continuously curved groove shape arranged in direction opposite to the groove of the first group of grooves; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a continuously curved groove shape, and a second group of grooves, each groove of which having a continuously curved groove shape arranged in direction opposite to the groove of the first group of grooves, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and a cage having circumfer
  • a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis
  • FIG. 1( a ) is a view illustrating a conventional cross groove joint with six balls
  • FIG. 1( b ) is a cross-sectional view of the conventional cross groove joint as shown in FIG. 1( a ), taken along line A-A in the figure;
  • FIGS. 2( a )- 2 ( c ) are, respectively, a view of a conventional cross groove joint with six balls, a partial side view thereof for illustrating the shapes of the ball grooves in the outer and inner joint members and movements of the balls in the grooves, and a partial side view for illustrating movements of the balls in the cage;
  • FIG. 3( a ) is a view illustrating a conventional cross groove joint with eight balls
  • FIG. 3( b ) is a cross-sectional view of the conventional cross groove joint as shown in FIG. 3( a ), taken along line B-B in the figure;
  • FIGS. 4( a )- 4 ( c ) are, respectively, a view of a conventional cross groove joint with eight balls, a partial side development (i.e., deployed or radially projected) view thereof for illustrating the shapes of the ball grooves in the outer and inner joint members and movements of the balls in the grooves, and a partial side view for illustrating movements of the balls in the cage;
  • FIGS. 5( a )- 5 ( c ) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to one preferred embodiment of the present invention, a side cross-sectional, development view (i.e., deployed or radially projected on a plane) of the outer joint member thereof, and a side cross-sectional development view of the inner joint member thereof;
  • FIGS. 6( a )- 6 ( c ) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof;
  • FIGS. 7( a )- 7 ( c ) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof;
  • FIGS. 8( a )- 8 ( c ) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof;
  • FIGS. 9( a )- 9 ( c ) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof; and
  • FIGS. 10( a )- 10 ( c ) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof.
  • the present invention will be explained and illustrated below in association with several embodiments to be described later, in particular, the cross groove joint of eight ball type.
  • the present invention is not limited to the eight ball type joint, but is applicable to the cross groove joint of any ball type, for example, having six, eight, ten, or more balls.
  • FIGS. 5-10 of the drawings the cross groove type constant velocity joints of the present invention are described herein in details with several exemplary or preferred embodiments thereof.
  • the following descriptions of such embodiments are intended primarily for illustrating the principles and exemplary constructions of the constant velocity joints of the present invention, and the present invention is not specifically limited to these exemplary embodiments.
  • one skilled in the art can appreciate or recognize that various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention.
  • the cross groove joint includes an outer joint member 31 having a plurality of (i.e., eight) inwardly facing outer ball grooves 31 a - 31 h , and an inner joint member 33 placed inside the outer joint member 31 and having a plurality of (i.e., eight) outwardly facing inner ball grooves 33 a - 33 h .
  • the corresponding outer and inner ball grooves 31 a - 31 h and 33 a - 33 h face each other in pairs with each of the eight balls (not shown in FIG. 5 ) retained between each pair for torque transfer between the inner and outer joint members 31 and 33 .
  • the cross groove joint further includes a cage (not shown in FIG. 5 ) containing eight cage windows (not shown in FIG. 5 ) for retaining the balls therein and to transmit the rotational torque between the outer and inner joint members as is similar to that shown in FIG. 4 .
  • the ball grooves 31 a - 31 h and 33 a - 33 h of the outer and inner joint members have composite or complex shapes as shown in FIGS. 5( b ) and 5 ( c ).
  • the shapes of the ball grooves are differentiated in two groups as illustrated in FIG. 5 .
  • a first group of grooves namely, four ball grooves 31 a , 31 c , 31 e , 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a , 33 c , 33 e , 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a skewed groove with a skew angle ⁇ 1 throughout the length of the groove, but alternately arranged in opposite directions.
  • a second group of grooves namely, the remaining four ball grooves 31 b , 31 d , 31 f , 31 h of the outer joint member 31 and the remaining four ball grooves 33 b , 33 d , 33 f , 33 h of the inner joint member 33 each have a composite groove shape which consists of a straight groove segment ST from the groove center LC to one end of groove and a skewed groove segment SK from the groove center LC to the other end of groove, each with a skew angle ⁇ 2 but arranged alternately in opposite directions.
  • the skew angle ⁇ 2 may be selected to have an angle the same as or less than ⁇ 1 which is in turn selectable depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree.
  • FIG. 6 Another preferred embodiment of the present invention is described below in details.
  • the basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • the ball grooves 31 a - 31 h and 33 a - 33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 6( b ) and 6 ( c ).
  • a first group of grooves namely, four ball grooves 31 a , 31 c , 31 e , 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a , 33 c , 33 e , 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a skewed groove with a skew angle ⁇ 1 throughout the length of the groove, but alternately arranged in opposite directions.
  • a second group of grooves namely, the remaining four ball grooves 31 b , 31 d , 31 f , 31 h of the outer joint member 31 and the remaining four ball grooves 33 b , 33 d , 33 f , 33 h of the inner joint member 33 each have a composite groove shape which consists of a straight groove segment ST at the central area relative to the groove center LC and skewed groove segments SK 1 and SK 2 at the both end regions of the groove, each with a skew angle ⁇ 2 but arranged alternately in opposite directions as shown.
  • the skew angle ⁇ 2 may be selected to have an angle the same as or less than ⁇ 1 which is in turn selectable depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree.
  • the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • FIG. 7 another preferred embodiment of the present invention is described below in details.
  • the basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • the ball grooves 31 a - 31 h and 33 a - 33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 7( b ) and 7 ( c ).
  • a first group of grooves namely, four ball grooves 31 a , 31 c , 31 e , 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a , 33 c , 33 e , 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a skewed groove with a skew angle ⁇ 1 throughout the length of the groove, but alternately arranged in opposite directions.
  • a second group of grooves namely, the remaining four ball grooves 31 b , 31 d , 31 f , 31 h of the outer joint member 31 and the remaining four ball grooves 33 b , 33 d , 33 f , 33 h of the inner joint member 33 each have a curved groove with a skew angle ⁇ 2 with a radius R centered on the normal line relatively to the skew angle line at the center, but arranged alternately in opposite directions as shown.
  • the skew angle ⁇ 2 may be selected to have an angle the same as or less than ⁇ 1 which is in turn selectable depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree.
  • the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4 .
  • the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4 .
  • the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • FIG. 8 another preferred embodiment of the present invention is described below in details.
  • the basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • the ball grooves 31 a - 31 h and 33 a - 33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 8( b ) and 8 ( c ).
  • a first group of grooves namely, four ball grooves 31 a , 31 c , 31 e , 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a , 33 c , 33 e , 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a linear or straight groove with no skew angle.
  • a second group of grooves namely, the remaining four ball grooves 31 b , 31 d , 31 f , 31 h of the outer joint member 31 and the remaining four ball grooves 33 b , 33 d , 33 f , 33 h of the inner joint member 33 each have a curved groove with a skew angle ⁇ with a radius R centered on the normal line relatively to the skew angle line at the center, which are arranged alternately in opposite directions as shown.
  • the skew angle ⁇ may be selected depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree.
  • the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4 .
  • the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4 .
  • the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • FIG. 9 another preferred embodiment of the present invention is described below in details.
  • the basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • the ball grooves 31 a - 31 h and 33 a - 33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 9( b ) and 9 ( c ).
  • four ball grooves 31 a , 31 c , 31 e , 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a , 33 c , 33 e , 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a curved groove with a skew angle ⁇ with a radius R centered on the normal line relatively to the skew angle line at the center.
  • the remaining four ball grooves 31 b , 31 d , 31 f , 31 h of the outer joint member 31 and the remaining four ball grooves 33 b , 33 d , 33 f , 33 h of the inner joint member 33 each have a similarly curved groove with the skew angle ⁇ with a radius R centered on the normal line relatively to the skew angle line at the center, but arranged in direction opposite to the first group of grooves described above.
  • the degree of the skew angle ⁇ is selectable depending on the desired design of the joint system, generally, in the range between 5 degree and 20 degree.
  • the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4 .
  • the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4 .
  • the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • FIG. 10 Another preferred embodiment of the present invention is described below in details.
  • the basic structure of this joint is similar to that described and shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • the ball grooves 31 a - 31 h and 33 a - 33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 10( b ) and 10 ( c ).
  • a first group of grooves namely, four ball grooves 31 a , 31 c , 31 e , 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a , 33 c , 33 e , 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a composite groove shape which consists of a straight groove segment ST from the groove center LC to one end of groove and a skewed groove segment SK from the groove center LC to the other end of groove, each with a skew or inclination angle ⁇ but arranged alternately in opposite directions.
  • a second group of grooves namely, the remaining four ball grooves 31 b , 31 d , 31 f , 31 h of the outer joint member 31 and the remaining four ball grooves 33 b , 33 d , 33 f , 33 h of the inner joint member 33 each have a composite groove shape having a straight portion ST and a skewed portion SK with the same skew angle ⁇ , but arranged in opposite directions with respect to the groove center LC relatively to the above-identified first group of grooves.
  • the degree of the skew angle ⁇ is to be selected depending on the desired design of the joint system, generally, in the range between 5 degree and 20 degree.
  • the minimum thickness (the least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4 .
  • the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4 .
  • the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • the present invention provides a cross groove joint including an outer joint member with a plurality of inwardly facing ball grooves and an inner joint member with a plurality of outwardly facing ball grooves, in which the shapes of the ball grooves of the outer and inner joint member are configured to increase the thickness and also the mechanical strength of the cage web as compared to the conventional cross groove joint, in particular, by applying composite and/or non-linear groove patterns to the ball grooves in various different patterns as illustrated with several embodiments as examples.

Abstract

A constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; and a cage having circumferentially displaced cage windows to accommodate a plurality of balls therein. The groove patterns of the ball grooves can be a combination of skewed grooves and non-linear grooves, a combination of non-linear grooves such as a curved groove or a compositely shaped groove, or a combination of linear grooves and non-linear grooves.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a cross groove type constant velocity joint for use in a drive system, and more particularly, to a cross groove type constant velocity joint having composite groove shapes, typically for use in a drive system of, for example, an automobile for transmitting rotational torque between two rotating shafts thereof.
  • BACKGROUND OF THE INVENTION
  • A cross groove type constant velocity joint (hereinafter to be referred as a “cross groove joint”) is one type of constant velocity universal joints used for transmitting rotational torque between the rotating shafts (i.e., the driving shaft and the driven shaft), typically for the drive system of automobiles. The cross groove joint includes an outer joint member with a plurality of ball grooves formed on the inner surface thereof, and an inner joint member with a plurality of ball grooves formed on the outer surface thereof, in which the corresponding ball grooves of the outer joint member and the inner joint member are configured to pair with each other and slanted in opposite directions with respect to the center or rotating axis of the joint.
  • FIGS. 1-2 illustrate one example of a conventional cross groove type joint which retains six balls in the ball grooves for transmitting the rotational torque between the outer and inner joint members to drive the drive system. This cross groove joint includes an outer joint member 1 with six grooves formed on the inner surface thereof, an inner joint member 3 with six grooves formed on the outer surface thereof, six balls 2 retained in the pared grooves of the outer and inner joint members for torque transfer between the outer and inner joint members 1 and 3, and a cage 4 configured to support the balls 2 to a plane bisecting the angle of articulation between the axes of rotation of the outer and inner joint members 1 and 3.
  • In the structure of the conventional cross groove joint as shown in FIG. 2, the outer joint member 1 has a plurality of (i.e., six) inwardly facing outer ball grooves 1 a alternately skewed with a skew angle δ in opposite directions relative to an axis of rotation of the outer joint member 1. The inner joint member 3 positioned inside the outer joint member 1 has a plurality of (i.e., six) outwardly facing inner ball grooves 3 a alternately skewed with the same skew angle δ in opposite directions relative to an axis of rotation of the inner joint member 3. The outer and inner ball grooves 1 a and 3 a face each other in crossed pairs with each of the balls 2 positioned between each crossed pair for torque transfer between the inner and outer joint members 1 and 3. As the ball 2 is retained in the cage 4, the ball 2 is limited in a ball movement range L2 in the circumferential direction of the joint, and the outer joint member 1 has a minimum thickness L1 on one side of the member. To secure the movement of the balls 2, the cage 4 includes a plurality of (i.e., six) cage windows 4 a with a dimension sufficient to accommodate the ball movement L2. As a result, the width L4 of each cage web 4 b must be designed to have a dimension at least the same or less than the minimum thickness L1 of outer joint member 1.
  • In an attempt to reduce a transmission error and to make the design of the joint more compact, the cross groove joints retaining eight balls have been suggested. The eight-ball type cross groove joint known in the art typically has a basic structure generally the same or similar to that shown in FIGS. 1-2, however, with the number of the balls and the number of the ball grooves of the outer and inner joint members respectively increased from six to eight. FIGS. 3( a) and (b) illustrate a conventional cross groove joint with eight balls. Like the six ball cross groove joint, the eight ball cross groove joint includes an outer joint member 11, an inner joint member 33, balls 22 for torque transfer between the outer and inner joint members, and a cage 44 configured to support the balls to a plane bisecting the angle of articulation between the axes of rotation of the outer and the inner joint member.
  • In the structure of the conventional eight ball type cross groove joint as shown in FIG. 4, the outer joint member 11 has a plurality of inwardly facing outer ball grooves 11 a alternately skewed with a skew angle δ in opposite directions relative to an axis of rotation of the outer joint member. The inner joint member 33 placed inside the outer joint member 11 similarly has a plurality of (i.e., eight) outwardly facing inner ball grooves 33 a alternately skewed with the same skew angle δ, however, oriented in opposite directions relative to an axis of rotation of inner joint member 33. The outer and inner ball grooves 11 a and 33 a face each other in crossed pairs with each of the balls 22 retained between each crossed pair for torque transfer between the inner and outer joint members. As the ball 22 is retained in the cage 44, the ball 22 is limited in a ball movement range L22 in the circumferential direction of the joint, and the outer joint member 11 a minimum (least) thickness L11 on one side of the member. To secure the movement of the balls 22, the cage 44 includes a plurality of (i.e., eight) cage windows 44 a with a dimension sufficient to accommodate the ball movement L22. As a result, the width L44 of each cage web 44 b must be designed to have a dimension the same or less than the minimum thickness L11 of outer joint member 11.
  • As the cross groove joint with higher balls (e.g., eight or more balls) can provide more compact design and secure a smoother and reliable operation as compared to the cross groove joint with six balls, it would be desirable to produce a higher ball (e.g., eight or more balls) type cross groove joint which has the same or equivalent durability as that having six balls. More specifically, if the cross groove joint with eight balls, for example, is designed to have the same pitch circle diameter (PCD) as the joint having six balls, the ball diameter of the eight ball joint can be reduced because the load on each ball groove and the stress onto the cage web 44 b decreases by the increase of the number of the balls. In addition, the size of each cage window 44 a can also be reduced compared to the joint containing six balls.
  • However, the higher ball (e.g., eight ball) type cross groove joint may also include certain shortcomings or disadvantages as described below, for example. Because the eight ball type joint includes more (i.e., eight) cage windows 44 a, the thickness of the cage web 44 b is also reduced, and thus, the stress on the cage web 44 b becomes greater than that of the six ball type. Comparing to the joint with six balls having the same PCD, the increased amount of stress on the cage web (due to the reduction of cage web thickness) exceeds that of the decreased amount of stress owing to the increase of the number of balls. Therefore, the higher ball (e.g., eight ball) type cross groove joint may have a weakened strength and durability in the cage web, and thus, the load bearing capacity of the joint can be deteriorated than that of the conventional six ball type joint.
  • SUMMARY OF THE INVENTION
  • In order to solve the above described and other shortcomings or drawbacks known in the conventional cross groove joints, the present invention provides a cross groove joint (preferably, but not necessarily, of higher ball type) with a compact and durable structure, in particular, with the strength of the cage web enhanced than that of the conventional cross groove joints as described above.
  • In order to provide an enhanced strength to the cage web of the cross groove joint, the present invention provides a cross groove joint including an outer joint member with a plurality of inwardly facing ball grooves and an inner joint member with a plurality of outwardly facing ball grooves, in which the shapes of the ball grooves of the outer and inner joint member are configured to increase the thickness and also the mechanical strength of the cage web as compared to the conventional cross groove joint as described above.
  • The mechanical strength and durability of the cage is influenced by skew angle δ (see FIG. 4, for example). As the skew angle δ of the ball grooves for the outer and inner joint members 11 and 33 increases, the ball movement L22 in circumferential direction increases and the size of cage window 44 a should also be increase to accommodate the ball movement in the movement range. As a consequence, the thickness of cage web 44 b between two adjacent windows 44 a becomes smaller as the skew angle of the grooves for the inner and outer joint member increases. Therefore, considering all the factors described above, the applicant of the present application has discovered several effective ways to reduce the ball movements and the size of cage windows in the cross groove joint (preferably, but not necessarily, of the type having eight or more balls) by decreasing the skew angle and also optimizing the shapes of the ball grooves. In this regard, the present invention has incorporated composite groove patterns (for example, such as a combination of liner and non-linear grooves, or of skewed grooves and non-linear grooves) to the ball grooves of the outer and inner joint members. As a consequence, by applying the inventive design to the cross groove joint, the thickness of the cage web and the mechanical strength of the cage and the joint can be increased over the conventional type joint as shown in FIG. 4, for example.
  • According to the present invention, in particular, as described with the eight ball type joint, for example, in order for the eight ball cross groove joint to secure the strength and durability of the cage to the level similar or equivalent to that of the six ball cross groove joint having the same pitch circle diameter (PCD), the skew angle is minimized and the minimum thickness (least effective thickness) of the outer and inner joint members (and thus, the thickness of the cage web as well) are maximized as compared to the conventional joint described above without any degradation of functions in the joint.
  • According to one aspect of the present invention, a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves and a second group of grooves with composite or non-linear groove pattern, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; and a cage having circumferentially displaced cage windows to accommodate a plurality of balls therein. The groove patterns of the ball grooves can be a combination of skewed grooves and non-linear grooves, a combination of non-linear grooves such as a curved groove or a compositely shaped groove, or a combination of linear grooves and non-linear grooves.
  • According to one preferred embodiment of the invention, a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of inner joint member, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and a cage having circumferentially displaced windows to accommodate the balls therein.
  • According to another preferred embodiment of the invention, a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a continuously curved groove shape; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a continuously curved groove shape, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and a cage having circumferentially displaced windows to accommodate the balls therein.
  • According to another preferred embodiment of the invention, a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a continuously curved groove shape, and a second group of grooves, each groove of which having a continuously curved groove shape arranged in direction opposite to the groove of the first group of grooves; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a continuously curved groove shape, and a second group of grooves, each groove of which having a continuously curved groove shape arranged in direction opposite to the groove of the first group of grooves, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and a cage having circumferentially displaced windows to accommodate the balls therein.
  • According to another preferred embodiment of the invention, a cross groove type constant velocity joint for a drive system comprises: an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member; an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of inner joint member, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair; a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and a cage having circumferentially displaced windows to accommodate the balls therein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above described and other objects, features and advantages of the present invention will be more apparent from the presently preferred embodiments of the invention disclosed in the following description and illustrated in the accompanying drawings, in which:
  • FIG. 1( a) is a view illustrating a conventional cross groove joint with six balls;
  • FIG. 1( b) is a cross-sectional view of the conventional cross groove joint as shown in FIG. 1( a), taken along line A-A in the figure;
  • FIGS. 2( a)-2(c) are, respectively, a view of a conventional cross groove joint with six balls, a partial side view thereof for illustrating the shapes of the ball grooves in the outer and inner joint members and movements of the balls in the grooves, and a partial side view for illustrating movements of the balls in the cage;
  • FIG. 3( a) is a view illustrating a conventional cross groove joint with eight balls;
  • FIG. 3( b) is a cross-sectional view of the conventional cross groove joint as shown in FIG. 3( a), taken along line B-B in the figure;
  • FIGS. 4( a)-4(c) are, respectively, a view of a conventional cross groove joint with eight balls, a partial side development (i.e., deployed or radially projected) view thereof for illustrating the shapes of the ball grooves in the outer and inner joint members and movements of the balls in the grooves, and a partial side view for illustrating movements of the balls in the cage;
  • FIGS. 5( a)-5(c) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to one preferred embodiment of the present invention, a side cross-sectional, development view (i.e., deployed or radially projected on a plane) of the outer joint member thereof, and a side cross-sectional development view of the inner joint member thereof;
  • FIGS. 6( a)-6(c) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof;
  • FIGS. 7( a)-7(c) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof;
  • FIGS. 8( a)-8(c) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof;
  • FIGS. 9( a)-9(c) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof; and
  • FIGS. 10( a)-10(c) are, respectively, a view of the cross groove type constant velocity joint with eight balls, constructed according to another preferred embodiment of the present invention, a side cross-sectional and development view of the outer joint member thereof, and a side cross-sectional and development view of the inner joint member thereof.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will be explained and illustrated below in association with several embodiments to be described later, in particular, the cross groove joint of eight ball type. However, it is noted that the present invention is not limited to the eight ball type joint, but is applicable to the cross groove joint of any ball type, for example, having six, eight, ten, or more balls.
  • Referring to FIGS. 5-10 of the drawings, the cross groove type constant velocity joints of the present invention are described herein in details with several exemplary or preferred embodiments thereof. However, the following descriptions of such embodiments are intended primarily for illustrating the principles and exemplary constructions of the constant velocity joints of the present invention, and the present invention is not specifically limited to these exemplary embodiments. Thus, one skilled in the art can appreciate or recognize that various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention.
  • Throughout the description of the present application, common or similar elements are to be referred with the same or similar reference characters for simplicity purposes.
  • With reference to FIG. 5, one preferred embodiment of the present invention is described below in details. In this embodiment, the cross groove joint includes an outer joint member 31 having a plurality of (i.e., eight) inwardly facing outer ball grooves 31 a-31 h, and an inner joint member 33 placed inside the outer joint member 31 and having a plurality of (i.e., eight) outwardly facing inner ball grooves 33 a-33 h. The corresponding outer and inner ball grooves 31 a-31 h and 33 a-33 h face each other in pairs with each of the eight balls (not shown in FIG. 5) retained between each pair for torque transfer between the inner and outer joint members 31 and 33. The cross groove joint further includes a cage (not shown in FIG. 5) containing eight cage windows (not shown in FIG. 5) for retaining the balls therein and to transmit the rotational torque between the outer and inner joint members as is similar to that shown in FIG. 4. However, unlike the conventional cross groove joint as shown in FIG. 4, having the grooves alternately disposed in opposite directions with the same inclination angle δ, the ball grooves 31 a-31 h and 33 a-33 h of the outer and inner joint members have composite or complex shapes as shown in FIGS. 5( b) and 5(c).
  • More specifically, in the present embodiment the shapes of the ball grooves are differentiated in two groups as illustrated in FIG. 5. In particular, a first group of grooves, namely, four ball grooves 31 a, 31 c, 31 e, 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a, 33 c, 33 e, 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a skewed groove with a skew angle δ1 throughout the length of the groove, but alternately arranged in opposite directions. On the other hand, a second group of grooves, namely, the remaining four ball grooves 31 b, 31 d, 31 f, 31 h of the outer joint member 31 and the remaining four ball grooves 33 b, 33 d, 33 f, 33 h of the inner joint member 33 each have a composite groove shape which consists of a straight groove segment ST from the groove center LC to one end of groove and a skewed groove segment SK from the groove center LC to the other end of groove, each with a skew angle δ2 but arranged alternately in opposite directions. Here, the skew angle δ2 may be selected to have an angle the same as or less than δ1 which is in turn selectable depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree. With such a composite groove configuration, combined with a skewed groove and a groove having the straight groove segments ST and the skewed groove segments SK with appropriate skew angle δ, the minimum thickness (the least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased than that of the conventional cross groove joint as shown in FIG. 4. As a result, the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4. Accordingly, the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • With reference to FIG. 6, another preferred embodiment of the present invention is described below in details. The basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • As is similar to the previous embodiment of FIG. 5, and unlike the conventional cross groove joint as shown in FIG. 4 (which has the grooves alternately disposed in opposite directions with the same inclination angle δ), the ball grooves 31 a-31 h and 33 a-33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 6( b) and 6(c).
  • More specifically, in this embodiment as illustrated in FIG. 6, a first group of grooves, namely, four ball grooves 31 a, 31 c, 31 e, 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a, 33 c, 33 e, 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a skewed groove with a skew angle δ1 throughout the length of the groove, but alternately arranged in opposite directions. On the other hand, a second group of grooves, namely, the remaining four ball grooves 31 b, 31 d, 31 f, 31 h of the outer joint member 31 and the remaining four ball grooves 33 b, 33 d, 33 f, 33 h of the inner joint member 33 each have a composite groove shape which consists of a straight groove segment ST at the central area relative to the groove center LC and skewed groove segments SK1 and SK2 at the both end regions of the groove, each with a skew angle δ2 but arranged alternately in opposite directions as shown. Here, the skew angle δ2 may be selected to have an angle the same as or less than δ1 which is in turn selectable depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree. With such a composite groove configuration as shown, combined with a first group of grooves of alternately-arranged skewed groove and a second group of grooves composed of the straight groove segments ST and the skewed groove segments SK at either or both ends of the groove, the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4. As a result, the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4. Accordingly, the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • With reference to FIG. 7, another preferred embodiment of the present invention is described below in details. The basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • As is similar to the previous embodiments of FIGS. 5-6, and unlike the conventional cross groove joint as shown in FIG. 4 (which has the grooves alternately disposed in opposite directions with the same inclination angle δ), the ball grooves 31 a-31 h and 33 a-33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 7( b) and 7(c).
  • More specifically, in this embodiment as illustrated in FIG. 7, a first group of grooves, namely, four ball grooves 31 a, 31 c, 31 e, 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a, 33 c, 33 e, 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a skewed groove with a skew angle δ1 throughout the length of the groove, but alternately arranged in opposite directions. On the other hand, a second group of grooves, namely, the remaining four ball grooves 31 b, 31 d, 31 f, 31 h of the outer joint member 31 and the remaining four ball grooves 33 b, 33 d, 33 f, 33 h of the inner joint member 33 each have a curved groove with a skew angle δ2 with a radius R centered on the normal line relatively to the skew angle line at the center, but arranged alternately in opposite directions as shown. Here, the skew angle δ2 may be selected to have an angle the same as or less than δ1 which is in turn selectable depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree. With such a composite groove configuration as shown, combined with a first group of grooves of alternately-arranged skewed grooves and a second group of grooves of alternately-arranged curved grooves, the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4. As a result, the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4. Accordingly, the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • With reference to FIG. 8, another preferred embodiment of the present invention is described below in details. The basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • As is similar to the previous embodiments of FIGS. 5-7, and unlike the conventional cross groove joint as shown in FIG. 4 (which has the grooves alternately disposed in opposite directions with the same inclination angle δ), the ball grooves 31 a-31 h and 33 a-33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 8( b) and 8(c).
  • More specifically, in this embodiment as illustrated in FIG. 8, a first group of grooves, namely, four ball grooves 31 a, 31 c, 31 e, 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a, 33 c, 33 e, 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a linear or straight groove with no skew angle. On the other hand, a second group of grooves, namely, the remaining four ball grooves 31 b, 31 d, 31 f, 31 h of the outer joint member 31 and the remaining four ball grooves 33 b, 33 d, 33 f, 33 h of the inner joint member 33 each have a curved groove with a skew angle δ with a radius R centered on the normal line relatively to the skew angle line at the center, which are arranged alternately in opposite directions as shown. Here, the skew angle δ may be selected depending on the desired design of the joint system, and generally, in the range between 5 degree and 20 degree. With such a composite groove configuration as shown, combined with a first group of grooves of linear grooves and a second group of grooves of alternately-arranged curved grooves, the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4. As a result, the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4. Accordingly, the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • With reference to FIG. 9, another preferred embodiment of the present invention is described below in details. The basic structure of this joint is similar to that described shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • As is similar to the previous embodiments of FIGS. 5-8, and unlike the conventional cross groove joint as shown in FIG. 4 (which has the grooves alternately disposed in opposite directions with the same inclination angle δ), the ball grooves 31 a-31 h and 33 a-33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 9( b) and 9(c).
  • More specifically, in this embodiment as illustrated in FIG. 9, four ball grooves 31 a, 31 c, 31 e, 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a, 33 c, 33 e, 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a curved groove with a skew angle δwith a radius R centered on the normal line relatively to the skew angle line at the center. On the other hand, the remaining four ball grooves 31 b, 31 d, 31 f, 31 h of the outer joint member 31 and the remaining four ball grooves 33 b, 33 d, 33 f, 33 h of the inner joint member 33 each have a similarly curved groove with the skew angle δ with a radius R centered on the normal line relatively to the skew angle line at the center, but arranged in direction opposite to the first group of grooves described above. Here, the degree of the skew angle δ is selectable depending on the desired design of the joint system, generally, in the range between 5 degree and 20 degree. With such a composite groove configuration, having the oppositely oriented curved grooves in alternate arrangement and with appropriate skew angle δ, the minimum thickness (least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4. As a result, the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4. Accordingly, the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • With reference to FIG. 10, another preferred embodiment of the present invention is described below in details. The basic structure of this joint is similar to that described and shown in association with FIG. 5 above, and detailed descriptions regarding to the common elements and structure of this embodiment are to be omitted herein for simplicity purposes, and to be referred above.
  • As is similar to the previous embodiment of FIGS. 5-9 and unlike the conventional cross groove joint as shown in FIG. 4 (which has the grooves alternately disposed in opposite directions with the same inclination angle δ), the ball grooves 31 a-31 h and 33 a-33 h of the outer and inner joint members of the present embodiment have composite or complex shapes, in different pattern, as shown in FIGS. 10( b) and 10(c).
  • More specifically, in this embodiment, a first group of grooves, namely, four ball grooves 31 a, 31 c, 31 e, 31 g of the outer joint member 31 (displaced to each other with the phase angle of 90 degree) and four ball grooves 33 a, 33 c, 33 e, 33 g of the inner joint member 33 (displaced to each other with the phase angle of 90 degree) each have a composite groove shape which consists of a straight groove segment ST from the groove center LC to one end of groove and a skewed groove segment SK from the groove center LC to the other end of groove, each with a skew or inclination angle δ but arranged alternately in opposite directions. On the other hand, a second group of grooves, namely, the remaining four ball grooves 31 b, 31 d, 31 f, 31 h of the outer joint member 31 and the remaining four ball grooves 33 b, 33 d, 33 f, 33 h of the inner joint member 33 each have a composite groove shape having a straight portion ST and a skewed portion SK with the same skew angle δ, but arranged in opposite directions with respect to the groove center LC relatively to the above-identified first group of grooves. Here, the degree of the skew angle δ is to be selected depending on the desired design of the joint system, generally, in the range between 5 degree and 20 degree. With such a composite groove configuration having the straight groove segments ST and the skewed groove segments SK with appropriate skew angle δ, the minimum thickness (the least effective thickness) LL of the outer and inner joint members 31 and 33 can be increased to that of the conventional cross groove joint as shown in FIG. 4. As a result, the ball movements in the cross groove joint and the size of cage windows can be reduced, while enlarging the thickness of cage webs as compared to that shown in FIG. 4. Accordingly, the cross groove joint of the present embodiment can enhance the mechanical strength and durability of the joint as compared to the conventional joint.
  • As described above in connection with several exemplary embodiments thereof, in order to provide an enhanced strength to the cage web and the cross groove joint, the present invention provides a cross groove joint including an outer joint member with a plurality of inwardly facing ball grooves and an inner joint member with a plurality of outwardly facing ball grooves, in which the shapes of the ball grooves of the outer and inner joint member are configured to increase the thickness and also the mechanical strength of the cage web as compared to the conventional cross groove joint, in particular, by applying composite and/or non-linear groove patterns to the ball grooves in various different patterns as illustrated with several embodiments as examples.
  • The above disclosed embodiments of the invention are representatives of a presently preferred form of the invention, but are intended to be illustrative rather than definitive thereof. Accordingly, those skilled in the art will appreciate or recognize that various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.

Claims (21)

1. A constant velocity joint for a drive system comprising:
an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member;
an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of inner joint member, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair;
a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and
a cage having circumferentially displaced windows to accommodate the balls therein.
2. The constant velocity joint of claim 1, wherein the first group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree, and the second group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree.
3. The constant velocity joint of claim 1, wherein each groove of the second group of grooves of the outer and inner joint members is formed with two groove segments, one with a straight groove segment having no skew angle, which is formed from the center of the groove to one end of the groove, and the other with a skewed groove segment having a skew angle other than zero, which is formed from the center of the groove to the other end of the groove.
4. The constant velocity joint of claim 1, wherein each groove of the second group of grooves of the outer and inner joint members is formed with three groove segments, a first segment with a straight groove segment having no skew angle, which is formed adjacent to the center of the groove, a second segment with a skewed groove segment having a skew angle other than zero, which is formed adjacent to one end of the groove, and a third segment with a skewed groove segment having a skew angle other than zero, which is formed adjacent to the other end of the groove and in direction opposite to the second segment.
5. The constant velocity joint of claim 1, wherein the number of the torque transfer balls is an even number.
6. A constant velocity joint for a drive system comprising:
an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a continuously curved groove shape;
an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a skewed groove shape with a skew angle other than zero and alternately arranged in opposite directions relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a continuously curved groove shape, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair;
a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and
a cage having circumferentially displaced windows to accommodate the balls therein.
7. The constant velocity joint of claim 6, wherein the continuously curved groove shape of the second group of grooves of the outer and inner joint members is a circular shape with a radius and a skew angle other than zero at the center of the groove.
8. The constant velocity joint of claim 6, wherein the first group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree, and the second group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree.
9. The constant velocity joint of claim 6, wherein the number of the torque transfer balls is an even number.
10. A constant velocity joint for a drive system comprising:
an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a linear or straight groove shape with no skew angle relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a continuously curved groove shape alternately arranged in opposite directions relative to an axis of rotation of outer joint member;
an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a linear or straight groove shape with no skew angle relative to an axis of rotation of inner joint member, and a second group of grooves, each groove of which having a continuously curved groove shape alternately arranged in opposite directions relative to an axis of rotation of inner joint member, each inner ball groove of the second group of grooves of the inner joint member being coupled with a corresponding outer ball groove of the second group of grooves of the outer joint member generally in crossed pair;
a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and
a cage having circumferentially displaced windows to accommodate the balls therein.
11. The constant velocity joint of claim 10, wherein the continuously curved groove shape of the second group of grooves of the outer and inner joint members is a circular shape with a radius and a skew angle other than zero at the center of the groove.
12. The constant velocity joint of claim 10, wherein the first group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree, and the second group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree.
13. The constant velocity joint of claim 10, wherein the number of the torque transfer balls is an even number.
14. A constant velocity joint for a drive system comprising:
an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a continuously curved groove shape, and a second group of grooves, each groove of which having a continuously curved groove shape arranged in direction opposite to the groove of the first group of grooves;
an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a continuously curved groove shape, and a second group of grooves, each groove of which having a continuously curved groove shape arranged in direction opposite to the groove of the first group of grooves, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair;
a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and
a cage having circumferentially displaced windows to accommodate the balls therein.
15. The constant velocity joint of claim 14, wherein the continuously curved groove shape of the first and second group of grooves of the outer and inner joint members is a circular shape with a radius and a skew angle other than zero at the center of the groove.
16. The constant velocity joint of claim 14, wherein the first group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree, and the second group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree.
17. The constant velocity joint of claim 14, wherein the number of the torque transfer balls is an even number.
18. A constant velocity joint for a drive system comprising:
an outer joint member having a plurality of inwardly facing outer ball grooves, the outer ball grooves consisting of a first group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member;
an inner joint member disposed inside the outer joint member and having a plurality of outwardly facing inner ball grooves consisting of a first group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of outer joint member, and a second group of grooves, each groove of which having a non-linear groove shape formed with two or more groove segments having different skew angles relative to an axis of rotation of inner joint member, each inner ball groove of the inner joint member being coupled with a corresponding outer ball groove of the outer joint member generally in crossed pair;
a plurality of torque transfer balls which are guided by the ball groove faces of outer and inner joint member; and
a cage having circumferentially displaced windows to accommodate the balls therein.
19. The constant velocity joint of claim 18, wherein the first group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree, and the second group of grooves of the outer and inner joint members, respectively, consist of four ball grooves displaced to one another with a phase angle of 90 degree.
20. The constant velocity joint of claim 18, wherein each groove of the first and second group of grooves of the outer and inner joint members is formed with two groove segments, one with a straight groove segment having no skew angle, which is formed from the center of the groove to one end of the groove, and the other with a skewed groove segment having a skew angle other than zero, which is formed from the center of the groove to the other end of the groove.
21. The constant velocity joint of claim 18, wherein the number of the torque transfer balls is an even number.
US12/563,029 2009-09-18 2009-09-18 Cross groove type constant velocity joint with composite groove patterns Active 2030-08-04 US8382600B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/563,029 US8382600B2 (en) 2009-09-18 2009-09-18 Cross groove type constant velocity joint with composite groove patterns
US12/702,757 US8500566B2 (en) 2009-09-18 2010-02-09 Cross groove type constant velocity joint
US13/477,186 US8409020B2 (en) 2009-09-18 2012-05-22 Cross groove type constant velocity joint with composite groove patterns
US13/684,832 US20130079163A1 (en) 2009-09-18 2012-11-26 Cross groove type constant velocity joint with composite groove patterns
US13/685,983 US20130085003A1 (en) 2009-09-18 2012-11-27 Cross groove type constant velocity joint with composite groove patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/563,029 US8382600B2 (en) 2009-09-18 2009-09-18 Cross groove type constant velocity joint with composite groove patterns

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/582,602 Continuation-In-Part US8444495B2 (en) 2009-09-18 2009-10-20 Cross groove type constant velocity joint
US13/477,486 Division US8746296B2 (en) 2009-09-18 2012-05-22 Refrigerator appliance with features for assisted dispensing
US13/477,186 Division US8409020B2 (en) 2009-09-18 2012-05-22 Cross groove type constant velocity joint with composite groove patterns

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US12/702,757 Continuation-In-Part US8500566B2 (en) 2009-09-18 2010-02-09 Cross groove type constant velocity joint
US13/477,186 Division US8409020B2 (en) 2009-09-18 2012-05-22 Cross groove type constant velocity joint with composite groove patterns
US13/684,832 Division US20130079163A1 (en) 2009-09-18 2012-11-26 Cross groove type constant velocity joint with composite groove patterns
US13/685,983 Division US20130085003A1 (en) 2009-09-18 2012-11-27 Cross groove type constant velocity joint with composite groove patterns

Publications (2)

Publication Number Publication Date
US20110070955A1 true US20110070955A1 (en) 2011-03-24
US8382600B2 US8382600B2 (en) 2013-02-26

Family

ID=43757094

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/563,029 Active 2030-08-04 US8382600B2 (en) 2009-09-18 2009-09-18 Cross groove type constant velocity joint with composite groove patterns
US13/477,186 Active US8409020B2 (en) 2009-09-18 2012-05-22 Cross groove type constant velocity joint with composite groove patterns
US13/684,832 Abandoned US20130079163A1 (en) 2009-09-18 2012-11-26 Cross groove type constant velocity joint with composite groove patterns
US13/685,983 Abandoned US20130085003A1 (en) 2009-09-18 2012-11-27 Cross groove type constant velocity joint with composite groove patterns

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/477,186 Active US8409020B2 (en) 2009-09-18 2012-05-22 Cross groove type constant velocity joint with composite groove patterns
US13/684,832 Abandoned US20130079163A1 (en) 2009-09-18 2012-11-26 Cross groove type constant velocity joint with composite groove patterns
US13/685,983 Abandoned US20130085003A1 (en) 2009-09-18 2012-11-27 Cross groove type constant velocity joint with composite groove patterns

Country Status (1)

Country Link
US (4) US8382600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266915A1 (en) * 2007-10-25 2011-11-03 Sanyo Electric Co., Ltd. Power generating apparatus
CN105658981A (en) * 2013-11-05 2016-06-08 Ntn株式会社 Stationary constant velocity universal joint
CN112871866A (en) * 2021-03-10 2021-06-01 黑龙江省医院 Cleaning device for plastic and cosmetic surgery instrument

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269604B2 (en) 2014-01-21 2019-04-23 Persimmon Technologies Corporation Substrate transport vacuum platform
US20170138407A1 (en) * 2014-06-26 2017-05-18 Neapco Europe Gmbh Sliding ball joint having crossing raceways having a different angle of inclination and a minimum radial distance
CN107327508B (en) * 2017-07-07 2019-10-11 上海纳铁福传动系统有限公司 Without cage universal joint and the preceding drive and transmission system of vehicle, intermediate transmission system, rear drive and transmission system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322570A (en) * 1941-12-26 1943-06-22 Adiel Y Dodge Universal joint
US3083548A (en) * 1960-06-25 1963-04-02 Rheinmetall Gmbh Universal joint
US3176477A (en) * 1962-05-17 1965-04-06 Dana Corp Universal joint of the constant velocity type
US3934429A (en) * 1973-06-30 1976-01-27 Nissan Motor Company Limited Constant velocity universal joint
US5531643A (en) * 1992-07-07 1996-07-02 Gkn Automotive Ag Constant velocity universal ball joint
US6071195A (en) * 1997-02-08 2000-06-06 Gkn Automotive Ag Constant velocity universal ball joint
US6159103A (en) * 1998-12-17 2000-12-12 Delphi Technologies, Inc. Constant velocity universal joint
US6227979B1 (en) * 1998-02-20 2001-05-08 Toyota Jidosha Kabushiki Kaisha Constant velocity universal joint
US6267682B1 (en) * 1995-12-26 2001-07-31 Ntn Corporation Constant velocity joint
US6431988B1 (en) * 1999-09-17 2002-08-13 Ntn Corporation Fixed type constant velocity joint and assembling method therefor
US6709338B2 (en) * 2000-12-04 2004-03-23 Gkn Automotive Gmbh Constant velocity fixed ball joint as a counter track joint
US6848999B2 (en) * 2002-05-10 2005-02-01 Gkn Automotive Gmbh Counter-track joint having identically orientated opposed pairs of tracks
US7001281B2 (en) * 2000-12-04 2006-02-21 Gkn Automotive Gmbh Constant velocity ball joint as a counter track joint
US7008326B2 (en) * 2003-06-09 2006-03-07 Delphi Technologies, Inc. Constant velocity universal joint
US7112140B2 (en) * 2002-11-15 2006-09-26 Gkn Automotive Gmbh Counter track joint with control angle reversal
US7347786B2 (en) * 2003-12-08 2008-03-25 Delphi Technologies, Inc. Cross-straight groove joint
US7393284B2 (en) * 2003-02-03 2008-07-01 Gkn Driveline International Gmbh Counter track joint
US7396285B2 (en) * 2004-11-02 2008-07-08 Gkn Driveline International Gmbh Counter track joint with track turning point
US7785205B2 (en) * 2005-03-24 2010-08-31 Ntn Corporation Cross groove constant velocity universal joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7717793B2 (en) * 2007-07-10 2010-05-18 Gm Global Technology Operations, Inc. Fixed-center constant velocity joint

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322570A (en) * 1941-12-26 1943-06-22 Adiel Y Dodge Universal joint
US3083548A (en) * 1960-06-25 1963-04-02 Rheinmetall Gmbh Universal joint
US3176477A (en) * 1962-05-17 1965-04-06 Dana Corp Universal joint of the constant velocity type
US3934429A (en) * 1973-06-30 1976-01-27 Nissan Motor Company Limited Constant velocity universal joint
US5531643A (en) * 1992-07-07 1996-07-02 Gkn Automotive Ag Constant velocity universal ball joint
US6267682B1 (en) * 1995-12-26 2001-07-31 Ntn Corporation Constant velocity joint
US6071195A (en) * 1997-02-08 2000-06-06 Gkn Automotive Ag Constant velocity universal ball joint
US6227979B1 (en) * 1998-02-20 2001-05-08 Toyota Jidosha Kabushiki Kaisha Constant velocity universal joint
US6159103A (en) * 1998-12-17 2000-12-12 Delphi Technologies, Inc. Constant velocity universal joint
US6431988B1 (en) * 1999-09-17 2002-08-13 Ntn Corporation Fixed type constant velocity joint and assembling method therefor
US7001281B2 (en) * 2000-12-04 2006-02-21 Gkn Automotive Gmbh Constant velocity ball joint as a counter track joint
US6709338B2 (en) * 2000-12-04 2004-03-23 Gkn Automotive Gmbh Constant velocity fixed ball joint as a counter track joint
US6848999B2 (en) * 2002-05-10 2005-02-01 Gkn Automotive Gmbh Counter-track joint having identically orientated opposed pairs of tracks
US7112140B2 (en) * 2002-11-15 2006-09-26 Gkn Automotive Gmbh Counter track joint with control angle reversal
US7393284B2 (en) * 2003-02-03 2008-07-01 Gkn Driveline International Gmbh Counter track joint
US7008326B2 (en) * 2003-06-09 2006-03-07 Delphi Technologies, Inc. Constant velocity universal joint
US7347786B2 (en) * 2003-12-08 2008-03-25 Delphi Technologies, Inc. Cross-straight groove joint
US7396285B2 (en) * 2004-11-02 2008-07-08 Gkn Driveline International Gmbh Counter track joint with track turning point
US7785205B2 (en) * 2005-03-24 2010-08-31 Ntn Corporation Cross groove constant velocity universal joint

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266915A1 (en) * 2007-10-25 2011-11-03 Sanyo Electric Co., Ltd. Power generating apparatus
US8283834B2 (en) * 2007-10-25 2012-10-09 Sanyo Electric Co., Ltd. Power generating apparatus having ball bearings
CN105658981A (en) * 2013-11-05 2016-06-08 Ntn株式会社 Stationary constant velocity universal joint
US20160252137A1 (en) * 2013-11-05 2016-09-01 Hiroyasu Hirukawa Fixed type constant velocity universal joint
US10208805B2 (en) * 2013-11-05 2019-02-19 Ntn Corporation Fixed type constant velocity universal joint
CN112871866A (en) * 2021-03-10 2021-06-01 黑龙江省医院 Cleaning device for plastic and cosmetic surgery instrument

Also Published As

Publication number Publication date
US20120238370A1 (en) 2012-09-20
US20130085003A1 (en) 2013-04-04
US8409020B2 (en) 2013-04-02
US8382600B2 (en) 2013-02-26
US20130079163A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
US8409020B2 (en) Cross groove type constant velocity joint with composite groove patterns
JP5023081B2 (en) Constant velocity fixed joint
US6299543B1 (en) Plunging type constant velocity joint
EP1252453B1 (en) Tripode constant velocity joint
EP0950824A2 (en) Constant velocity joint and rolling bearing unit for wheel
JP4541203B2 (en) Tripod type constant velocity universal joint
EP1707834B1 (en) Tripod type constant verocity universal joint
JP4904356B2 (en) Counter track joint with limited axial movement
US20060199651A1 (en) Tripod constant velocity universal joint
US20070111806A1 (en) Counter track joint with track turning point
US8616987B2 (en) Cross groove type constant velocity joint
US8096887B2 (en) Fixed type constant velocity joint
JP2006194268A (en) Constant velocity universal joint
US20020028711A1 (en) Tripod type constant velocity universal joint
JP4898811B2 (en) Joint shaft with counter track joint with limited axial travel
US20100216558A1 (en) Fixed type constant velocity joint
US20040254021A1 (en) Constant velocity ball joint with ball pairs whose tracks are located on symmetrical planes
JP4681235B2 (en) Constant velocity joint
EP2609343B1 (en) Fixed type constant velocity joint
KR20050045834A (en) Constant velocity joint having friction reducing web locators
JP5631291B2 (en) Counter track joint with track turning point
US8500566B2 (en) Cross groove type constant velocity joint
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
CN111188844B (en) Constant velocity ball joint with multiple ball boot windows
WO2021246129A1 (en) Tripod-type constant-velocity universal joint

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI WIA CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OH, SEUNG TARK;KIM, TAE HONG;REEL/FRAME:023256/0092

Effective date: 20090918

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8