US20110065189A1 - Lacritin-Syndecan Interactions - Google Patents
Lacritin-Syndecan Interactions Download PDFInfo
- Publication number
- US20110065189A1 US20110065189A1 US12/948,199 US94819910A US2011065189A1 US 20110065189 A1 US20110065189 A1 US 20110065189A1 US 94819910 A US94819910 A US 94819910A US 2011065189 A1 US2011065189 A1 US 2011065189A1
- Authority
- US
- United States
- Prior art keywords
- lacritin
- sdc1
- syndecan
- heparanase
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003993 interaction Effects 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 56
- 108050006774 Syndecan Proteins 0.000 claims abstract description 27
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims abstract description 24
- 102000019361 Syndecan Human genes 0.000 claims abstract description 6
- 102100024025 Heparanase Human genes 0.000 claims description 81
- 108010037536 heparanase Proteins 0.000 claims description 56
- 230000004048 modification Effects 0.000 claims description 16
- 238000012986 modification Methods 0.000 claims description 16
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical group OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 8
- 101001090521 Homo sapiens Extracellular glycoprotein lacritin Proteins 0.000 abstract description 195
- 102100034719 Extracellular glycoprotein lacritin Human genes 0.000 abstract description 192
- 239000000203 mixture Substances 0.000 abstract description 89
- 230000001105 regulatory effect Effects 0.000 abstract description 21
- 230000004083 survival effect Effects 0.000 abstract description 14
- 230000004054 inflammatory process Effects 0.000 abstract description 11
- 206010061218 Inflammation Diseases 0.000 abstract description 9
- 230000033228 biological regulation Effects 0.000 abstract description 7
- 208000027418 Wounds and injury Diseases 0.000 abstract description 5
- 230000019491 signal transduction Effects 0.000 abstract description 5
- 208000014674 injury Diseases 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract description 4
- 230000006378 damage Effects 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract description 3
- 230000037314 wound repair Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 150
- 102100035721 Syndecan-1 Human genes 0.000 description 143
- 108090000058 Syndecan-1 Proteins 0.000 description 122
- 108090000765 processed proteins & peptides Proteins 0.000 description 105
- 235000001014 amino acid Nutrition 0.000 description 78
- 229940024606 amino acid Drugs 0.000 description 76
- 150000001413 amino acids Chemical class 0.000 description 73
- 229920002971 Heparan sulfate Polymers 0.000 description 72
- 102000004196 processed proteins & peptides Human genes 0.000 description 59
- 238000009739 binding Methods 0.000 description 54
- 230000027455 binding Effects 0.000 description 53
- 108090000623 proteins and genes Proteins 0.000 description 47
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 43
- 108010083213 heparitinsulfate lyase Proteins 0.000 description 40
- 239000011324 bead Substances 0.000 description 39
- 150000001875 compounds Chemical class 0.000 description 38
- 108020004459 Small interfering RNA Proteins 0.000 description 35
- 239000012634 fragment Substances 0.000 description 35
- 229920001184 polypeptide Polymers 0.000 description 35
- 101710132601 Capsid protein Proteins 0.000 description 33
- 239000006166 lysate Substances 0.000 description 33
- 150000007523 nucleic acids Chemical class 0.000 description 33
- 101000874179 Homo sapiens Syndecan-1 Proteins 0.000 description 32
- 102000050954 human SDC1 Human genes 0.000 description 32
- 230000000694 effects Effects 0.000 description 29
- 230000014509 gene expression Effects 0.000 description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 28
- 238000009472 formulation Methods 0.000 description 28
- 101001047819 Homo sapiens Heparanase Proteins 0.000 description 26
- 101000692109 Homo sapiens Syndecan-2 Proteins 0.000 description 26
- 102000039446 nucleic acids Human genes 0.000 description 25
- 108020004707 nucleic acids Proteins 0.000 description 25
- 239000004480 active ingredient Substances 0.000 description 23
- 239000008194 pharmaceutical composition Substances 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 23
- -1 amides) Chemical class 0.000 description 21
- 230000002297 mitogenic effect Effects 0.000 description 21
- 102100026087 Syndecan-2 Human genes 0.000 description 20
- 239000002773 nucleotide Substances 0.000 description 20
- 125000003729 nucleotide group Chemical group 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 239000011780 sodium chloride Substances 0.000 description 19
- 125000003275 alpha amino acid group Chemical group 0.000 description 18
- 210000004899 c-terminal region Anatomy 0.000 description 18
- 230000001419 dependent effect Effects 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 18
- 230000011664 signaling Effects 0.000 description 18
- 201000010099 disease Diseases 0.000 description 16
- 102000037716 Chondroitin-sulfate-ABC endolyases Human genes 0.000 description 15
- 108090000819 Chondroitin-sulfate-ABC endolyases Proteins 0.000 description 15
- 101000740519 Homo sapiens Syndecan-4 Proteins 0.000 description 15
- 230000000903 blocking effect Effects 0.000 description 15
- 108020001507 fusion proteins Proteins 0.000 description 15
- 102000037865 fusion proteins Human genes 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 108091028043 Nucleic acid sequence Proteins 0.000 description 14
- 150000002148 esters Chemical group 0.000 description 14
- 239000008188 pellet Substances 0.000 description 14
- 230000035755 proliferation Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 102000016611 Proteoglycans Human genes 0.000 description 12
- 108010067787 Proteoglycans Proteins 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 102100035290 Fibroblast growth factor 13 Human genes 0.000 description 11
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 11
- 125000000539 amino acid group Chemical group 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000007613 environmental effect Effects 0.000 description 11
- 239000004615 ingredient Substances 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- 102000017904 ADRA2C Human genes 0.000 description 10
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 10
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 10
- 101000720032 Homo sapiens Alpha-2C adrenergic receptor Proteins 0.000 description 10
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 10
- 102100037220 Syndecan-4 Human genes 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 230000029087 digestion Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 239000003755 preservative agent Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 9
- 238000000787 affinity precipitation Methods 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 239000003550 marker Substances 0.000 description 9
- 238000010647 peptide synthesis reaction Methods 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 201000011510 cancer Diseases 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 230000002708 enhancing effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 8
- 239000007790 solid phase Substances 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 102000011413 Chondroitinases and Chondroitin Lyases Human genes 0.000 description 7
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 description 7
- 206010013774 Dry eye Diseases 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000030833 cell death Effects 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 210000002919 epithelial cell Anatomy 0.000 description 7
- 229960002897 heparin Drugs 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000003226 mitogen Substances 0.000 description 7
- 238000007911 parenteral administration Methods 0.000 description 7
- 230000036961 partial effect Effects 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 238000003757 reverse transcription PCR Methods 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 102000035025 signaling receptors Human genes 0.000 description 7
- 108091005475 signaling receptors Proteins 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 101001047811 Homo sapiens Inactive heparanase-2 Proteins 0.000 description 6
- 102100024022 Inactive heparanase-2 Human genes 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 239000000607 artificial tear Substances 0.000 description 6
- 239000013592 cell lysate Substances 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 229920000669 heparin Polymers 0.000 description 6
- 102000050970 human SDC2 Human genes 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000375 suspending agent Substances 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 229920002101 Chitin Polymers 0.000 description 5
- 150000008574 D-amino acids Chemical class 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 229920002684 Sepharose Polymers 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 102000043973 human SDC4 Human genes 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 206010023332 keratitis Diseases 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- 239000008158 vegetable oil Substances 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 239000000080 wetting agent Substances 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 108091033380 Coding strand Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 229920002683 Glycosaminoglycan Polymers 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102000002673 NFATC Transcription Factors Human genes 0.000 description 4
- 108010018525 NFATC Transcription Factors Proteins 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 4
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 239000004599 antimicrobial Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 4
- 239000012148 binding buffer Substances 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000006196 drop Substances 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 238000001641 gel filtration chromatography Methods 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 102000006495 integrins Human genes 0.000 description 4
- 108010044426 integrins Proteins 0.000 description 4
- 210000004561 lacrimal apparatus Anatomy 0.000 description 4
- 239000006194 liquid suspension Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 230000002807 pro-secretory effect Effects 0.000 description 4
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 108091093088 Amplicon Proteins 0.000 description 3
- 235000003911 Arachis Nutrition 0.000 description 3
- 244000105624 Arachis hypogaea Species 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 101150021185 FGF gene Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 150000008575 L-amino acids Chemical class 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 240000007817 Olea europaea Species 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108010081690 Pertussis Toxin Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102100033930 Stearoyl-CoA desaturase 5 Human genes 0.000 description 3
- 206010046851 Uveitis Diseases 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 238000001261 affinity purification Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000008135 aqueous vehicle Substances 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000001516 cell proliferation assay Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000017730 intein-mediated protein splicing Effects 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 210000004897 n-terminal region Anatomy 0.000 description 3
- 125000001151 peptidyl group Chemical group 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000770 proinflammatory effect Effects 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000003079 salivary gland Anatomy 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 235000010199 sorbic acid Nutrition 0.000 description 3
- 239000004334 sorbic acid Substances 0.000 description 3
- 229940075582 sorbic acid Drugs 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 229940036266 tears naturale Drugs 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 238000011200 topical administration Methods 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- UHPQFNXOFFPHJW-UHFFFAOYSA-N (4-methylphenyl)-phenylmethanamine Chemical compound C1=CC(C)=CC=C1C(N)C1=CC=CC=C1 UHPQFNXOFFPHJW-UHFFFAOYSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 235000006491 Acacia senegal Nutrition 0.000 description 2
- 235000019489 Almond oil Nutrition 0.000 description 2
- 102100025983 Alpha-2C adrenergic receptor Human genes 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 2
- 102000004631 Calcineurin Human genes 0.000 description 2
- 108010042955 Calcineurin Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 102000030782 GTP binding Human genes 0.000 description 2
- 108091000058 GTP-Binding Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 2
- 208000009889 Herpes Simplex Diseases 0.000 description 2
- 101000725401 Homo sapiens Cytochrome c oxidase subunit 2 Proteins 0.000 description 2
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 2
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 2
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 2
- 101100309604 Homo sapiens SCD5 gene Proteins 0.000 description 2
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 2
- 235000003332 Ilex aquifolium Nutrition 0.000 description 2
- 235000002296 Ilex sandwicensis Nutrition 0.000 description 2
- 235000002294 Ilex volkensiana Nutrition 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 101150002135 SDC1 gene Proteins 0.000 description 2
- 101150048283 SULF1 gene Proteins 0.000 description 2
- 101100101423 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBI4 gene Proteins 0.000 description 2
- 101150042597 Scd2 gene Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 244000000231 Sesamum indicum Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 208000002847 Surgical Wound Diseases 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 241000288667 Tupaia glis Species 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- QYPPJABKJHAVHS-UHFFFAOYSA-N agmatine Chemical compound NCCCCNC(N)=N QYPPJABKJHAVHS-UHFFFAOYSA-N 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 239000008168 almond oil Substances 0.000 description 2
- 108020004101 alpha-2 Adrenergic Receptor Proteins 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000005441 aurora Substances 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000007783 downstream signaling Effects 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000009786 epithelial differentiation Effects 0.000 description 2
- 230000008202 epithelial morphogenesis Effects 0.000 description 2
- 230000008508 epithelial proliferation Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 238000002875 fluorescence polarization Methods 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000000762 glandular Effects 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 102000057443 human LACRT Human genes 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 210000000554 iris Anatomy 0.000 description 2
- 201000004614 iritis Diseases 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- HEGSGKPQLMEBJL-UHFFFAOYSA-N n-octyl beta-D-glucopyranoside Natural products CCCCCCCCOC1OC(CO)C(O)C(O)C1O HEGSGKPQLMEBJL-UHFFFAOYSA-N 0.000 description 2
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229940067107 phenylethyl alcohol Drugs 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229960003415 propylparaben Drugs 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IYKLZBIWFXPUCS-VIFPVBQESA-N (2s)-2-(naphthalen-1-ylamino)propanoic acid Chemical compound C1=CC=C2C(N[C@@H](C)C(O)=O)=CC=CC2=C1 IYKLZBIWFXPUCS-VIFPVBQESA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- 0 *C([H])(C)C(=O)O.N Chemical compound *C([H])(C)C(=O)O.N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- ITZMJCSORYKOSI-AJNGGQMLSA-N APGPR Enterostatin Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N1[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 ITZMJCSORYKOSI-AJNGGQMLSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 102000016904 Armadillo Domain Proteins Human genes 0.000 description 1
- 108010014223 Armadillo Domain Proteins Proteins 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- ZEOWTGPWHLSLOG-UHFFFAOYSA-N Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F Chemical compound Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F ZEOWTGPWHLSLOG-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 101710104316 Cell surface-binding protein Proteins 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 208000029147 Collagen-vascular disease Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010061788 Corneal infection Diseases 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 102000003849 Cytochrome P450 Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229930182847 D-glutamic acid Natural products 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000289632 Dasypodidae Species 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 101000876610 Dictyostelium discoideum Extracellular signal-regulated kinase 2 Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014982 Epidermal and dermal conditions Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 1
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 102100021223 Glucosidase 2 subunit beta Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000010956 Glypican Human genes 0.000 description 1
- 108050001154 Glypican Proteins 0.000 description 1
- 108050007238 Glypican-1 Proteins 0.000 description 1
- 244000060234 Gmelina philippensis Species 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 101001040875 Homo sapiens Glucosidase 2 subunit beta Proteins 0.000 description 1
- 101001052493 Homo sapiens Mitogen-activated protein kinase 1 Proteins 0.000 description 1
- 101000730665 Homo sapiens Phospholipase D1 Proteins 0.000 description 1
- 101001051777 Homo sapiens Protein kinase C alpha type Proteins 0.000 description 1
- 101000639987 Homo sapiens Stearoyl-CoA desaturase 5 Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 102000006835 Lamins Human genes 0.000 description 1
- 108010047294 Lamins Proteins 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 101000964266 Loxosceles laeta Dermonecrotic toxin Proteins 0.000 description 1
- 108040008097 MAP kinase activity proteins Proteins 0.000 description 1
- 102000019149 MAP kinase activity proteins Human genes 0.000 description 1
- 102000004318 Matrilysin Human genes 0.000 description 1
- 108090000855 Matrilysin Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001364432 Microbates Species 0.000 description 1
- 102000016776 Midkine Human genes 0.000 description 1
- 108010092801 Midkine Proteins 0.000 description 1
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 1
- 208000012192 Mucous membrane pemphigoid Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100476928 Mus musculus Sdc1 gene Proteins 0.000 description 1
- 101100365096 Mus musculus Sdc4 gene Proteins 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- NMLMACJWHPHKGR-NCOIDOBVSA-N P(1),P(4)-bis(uridin-5'-yl) tetraphosphate Chemical compound N1([C@@H]2O[C@@H]([C@H]([C@H]2O)O)COP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@H]([C@@H](O2)N2C(NC(=O)C=C2)=O)O)O)C=CC(=O)NC1=O NMLMACJWHPHKGR-NCOIDOBVSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010034277 Pemphigoid Diseases 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920002675 Polyoxyl Polymers 0.000 description 1
- 229920002669 Polyoxyl 20 Cetostearyl Ether Polymers 0.000 description 1
- 229920002690 Polyoxyl 40 HydrogenatedCastorOil Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 101710109947 Protein kinase C alpha type Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000773293 Rappaport Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241001303601 Rosacea Species 0.000 description 1
- 101150025323 SCLT1 gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241001508012 Sorex cinereus Species 0.000 description 1
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 102000004094 Stromal Interaction Molecule 1 Human genes 0.000 description 1
- 108090000532 Stromal Interaction Molecule 1 Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- KHSLHYAUZSPBIU-UHFFFAOYSA-M benzododecinium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 KHSLHYAUZSPBIU-UHFFFAOYSA-M 0.000 description 1
- 229940073464 benzododecinium bromide Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 229940035183 bion tears Drugs 0.000 description 1
- 108091006004 biotinylated proteins Proteins 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000015861 cell surface binding Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- WDRFFJWBUDTUCA-UHFFFAOYSA-N chlorhexidine acetate Chemical compound CC(O)=O.CC(O)=O.C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 WDRFFJWBUDTUCA-UHFFFAOYSA-N 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 201000010002 cicatricial pemphigoid Diseases 0.000 description 1
- 210000004240 ciliary body Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229950003529 diquafosol Drugs 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229940124274 edetate disodium Drugs 0.000 description 1
- 230000002774 effect on peptide Effects 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000002514 epidermal stem cell Anatomy 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 230000007275 epithelial homeostasis Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 201000005619 esophageal carcinoma Diseases 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000001279 glycosylating effect Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000010005 growth-factor like effect Effects 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 238000004896 high resolution mass spectrometry Methods 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000005053 lamin Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 230000001002 morphogenetic effect Effects 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 102000045246 noggin Human genes 0.000 description 1
- 108700007229 noggin Proteins 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008789 oxidative DNA damage Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- RARSHUDCJQSEFJ-UHFFFAOYSA-N p-Hydroxypropiophenone Chemical compound CCC(=O)C1=CC=C(O)C=C1 RARSHUDCJQSEFJ-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 239000012660 pharmacological inhibitor Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical group OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 230000001686 pro-survival effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000010379 pull-down assay Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 210000002265 sensory receptor cell Anatomy 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000007727 signaling mechanism Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- JJGWLCLUQNFDIS-GTSONSFRSA-M sodium;1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 JJGWLCLUQNFDIS-GTSONSFRSA-M 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 108010019783 tear proteins Proteins 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/47—Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
Definitions
- Cell surface proteoglycans are key players in epithelial morphogenesis. They form gradients that immobilize mitogens in proximity to signaling receptors (Wang and Erasmus, 2004; Hacker et al., 2005; Radtke and Clevers, 2005), contribute to cellular adhesion by ligating the extracellular matrix (ECM) and at least in one case participate in integrin coupling (Beauvais et al., 2004; McQuade et al., 2006).
- Cell surface proteoglycans consist of a core protein and associated glycosaminoglycan chains, mainly heparan sulfate (HS).
- HS chains are generated by a complement of Golgi polymerases, epimerase, and sulphotransferases during post-translational modification. Each is thought to vary in relative activity by cell or tissue type (Perrimon and Bernfield, 2000). Thus within a given epithelium or endothelium, a structurally similar HS chain can be attached to genetically distinct core protein (Zako et al., 2003).
- HS cleavage by heparanase generates soluble fragments of HS that form complexes of FGF-HS and trigger cellular proliferation, migration, and angiogenesis (Kato et al., 1998).
- matrix metalloproteinase-7-dependent shedding of the entire syndecan ectodomain promotes cancer-associated upregulation of glypican-1 and tumor growth (Ding et al., 2005).
- Lacritin signals to STIM1, mTOR and NFATC1 via rapid PKC ⁇ dephosphorylation and PLD activation (Wang et al., 2006) to potentially regulate differentiation, renewal and secretion by the non-germative exocrine epithelia that it preferentially targets.
- PKC ⁇ dephosphorylation and PLD activation (Wang et al., 2006) to potentially regulate differentiation, renewal and secretion by the non-germative exocrine epithelia that it preferentially targets.
- pancreatic ⁇ -cells Dor et al., 2004
- Lacritin deletion analysis identified a C-terminal mitogenic domain with amphipathic alpha-helical structure (Wang et al., 2006) common to many ligand-receptor or ligand-ligand binding sites (Barden et al, 1997; Sieffle et al., 1998).
- lacritin's C-terminus targets the SDC1 core protein as a prerequisite for mitogenesis.
- a second and novel prerequisite is prior modification or removal of HS from the syndecan by heparanase-1.
- heparanase-1 We postulate that the localized action of heparanase converts a widely expressed cell surface proteoglycan into a localized lacritin-binding protein that is required for mitogenic signaling.
- the present invention is based on the discovery that lacritin interacts with syndecan, as well as novel regulation of syndecan.
- the present invention is directed to the regulation of lacritin-syndecan interactions and the associated signal transduction pathway and events and processes regulated by this pathway.
- regulation of the pathway is useful to promote ocular cell survival, and more particularly to promote ocular cell survival in the presence of an environmental insult.
- the invention is also directed to the use of lacritin to prevent and treat corneal infections and inflammation.
- the invention is further directed to the use of lacritin to promote corneal wound repair following environmental insult or surgical procedures of the cornea.
- the invention is also directed to the use of lacritin as a mitogen for only specific epithelial cells.
- the invention encompasses a composition for treating or preventing a disease, disorder, or condition which is regulated or effected by lacritin via a lacritin-syndecan interaction and signaling pathway as described herein.
- the signaling pathways are PKC- ⁇ -dependent NFAT and mTOR pathways.
- the compounds comprise siRNA.
- Lacritin is a selective mitogen for only certain epithelial cells.
- the invention provides a method of inducing proliferation of epithelial cells which are sensitive to induction of proliferation by lacritin and fragments, derivatives, and homologs thereof.
- proliferation can be inhibited or blocked using methods to inhibit lacritin, to inhibit lacritin-syndecan interaction, and by inhibiting the downstream signaling pathway induced by lacritin-syndecan interactions (for example, with siRNA).
- proliferation can be stimulated by stimulating or enhancing lacritin, lacritin-syndecan interaction, syndecan modification, and by stimulating the downstream signaling pathway induced by lacritin-syndecan interactions.
- the present invention provides methods and compositions for regulating or modifying syndecan to modulate its interaction and binding with lacritin.
- the invention provides methods and compositions for heparanase modification of syndecan.
- the entire heparan sulfate moiety is removed.
- the invention provides methods and compositions for deglycanating syndecan.
- One aspect provides a fusion protein comprising syndecan-1 and lacritin.
- syndecan-1 only the N-terminal portion of syndecan-1 is present in a fusion protein with lacritin, for example, amino acids 1-51 of syndecan (the fusion protein is prepared by methods available to those of skill in the art (including recombinant techniques), as an example, the preparation of a fusion protein is outlined in FIG. 16 ).
- lacritin for example, amino acids 1-51 of syndecan
- This fusion protein can be used in any of the methods described herein including epithelial proliferation, protection against inflammation and aid in wound healing after an injury or an insult to the eye (e.g., laser eye surgery including lasik surgery and photorefractive keratectomy (PRK)) or in preventing injury or insult to the eye (e.g., prior to eye surgery).
- epithelial proliferation e.g., epithelial proliferation, protection against inflammation and aid in wound healing after an injury or an insult to the eye (e.g., laser eye surgery including lasik surgery and photorefractive keratectomy (PRK)) or in preventing injury or insult to the eye (e.g., prior to eye surgery).
- PRK photorefractive keratectomy
- compositions useful for regulating heparanase are encompassed within the invention.
- the present invention provides methods and compositions for targeting the binding/interaction regions of lacritin and syndecan as described herein.
- the domain on lacritin is at about amino acid residues 100 and 109.
- the invention provides a method of treating or preventing diseases, disorders, or conditions in a subject in need thereof by methods and compositions encompassed within the present invention.
- the invention further provides a kit for administering the compositions of the invention.
- FIG. 1 Lacritin affinity purification of cell surface SDC1.
- Detergent lysates of surface biotinylated HSG cells were incubated overnight in detergent and physiological salt with intein-chitin columns either lacking (A) or containing (B) lacritin. After extensive washing in the same buffer, the columns were eluted with 1 M NaCl and eluted proteins were identified by blotting with streptavidin-peroxidase.
- a predominant 190 kDa biotinylated protein eluting from the lacritin column was identified by mass spectrometry as human SDC1.
- FIG. 2 Lacritin binding to SDC1 is independent of complete HS/CS glycosaminoglycans.
- A Lacritin affinity precipitation of human SDC1 multimers stably expressed by HEK293T cells. Lacritin-intein beads were incubated with cell lysates, washed extensively, and treated with heparitinase I/chondroitinase ABC. Pellet (P) and supernatant (S) from the centrifuged digest were then blotted with mAb B-B4 for SDC1 core protein.
- (B) Lacritin-intein, lacritin-GST, FGF2-GST, intein and GST beads were incubated with lysates from the same HEK293T cells stably expressing human SDC1. Precipitates were washed, treated, centrifuged and blotted identically as above.
- (C) Lacritin-intein and FGF2-GST beads were incubated with lysate of HEK293T cells stably expressing human SDC2 or lysate of another HEK293T cell line stably expressing human SDC4. Beads were washed, treated and centrifuged identically as above.
- Blots were detected with anti-SDC2 mAb L-18 or anti-SDC4 mAb N-19 respectively.
- A shows both 190 and 80 kDa bands.
- B shows the 80 kDa band which is more predominant in HEK293T transfectants.
- FIG. 3 Lacritin's C-terminus binds SDC1.
- A Schematic diagram of lacritin with dotted lines indicating N- and C-terminal truncations. All lacritin truncations were expressed as intein fusion proteins for affinity precipitation. Asterisk indicates mitogenic domain (Wang et al, submitted), and boxes represent PSIPRED-predicted alpha helices.
- B Lacritin-, C-5-, C-10-, C-15-, C-25- and C-59-intein beads were incubated with lysates from HEK293T cells stably expressing human SDC1. Beads were washed and treated with heparitinase I/chondroitinase ABC.
- FIG. 4 Lacritin-SDC1 binding is inhibited by soluble hS1ED, lacritin and N-24, but not by C-25, C-59, HS, CS, SDC2 or SDC4.
- FIG. 5 SDC1 is required for lacritin-dependent mitogenesis and COX2 expression.
- A Proliferation assay in which HSG cells were grown for 24 h in serum-free media containing 10 nM lacritin, 10 nM C-25 lacritin or FBS in the absence or presence of increasing amounts of soluble hS1ED.
- B Identically performed proliferation assay in which HSG cells were treated with 10 nM lacritin or FBS 48 h after being mock transfected, or transfected with 10 nM of Ambion's negative control siRNA #1 (neg), 1-100 nM SDC1 siRNA, or 10 nM SDC2 siRNA.
- RT-PCR and Western blotting of mock vs SDC1 siRNA (10 nM)-treated cells are for SDC1 and SDC2 mRNAs. Blotting is with mAb B-B4 for SDC1 core protein, or with anti-GAPDH.
- RT-PCR for SDC2 mRNA in mock transfected cells or cells transfected with 10 nM SCD2 siRNA are examples of RT-PCR of COX2 expression by HSG cells without ( ⁇ ) or with (+) 10 nM lacritin stimulation. 48 h earlier the cells were mock transfected or transfected with 10 nM SDC1, 10 nM SDC2 or 1 nM heparanase-1 (HPSE-1) siRNAs. At bottom is GAPDH expression.
- FIG. 6 Lacritin and FGF2 bind different forms of cell surface SDC1.
- A Sequential affinity precipitation assays. Lanes 1-3, lysate from human SDC1 stably expressing HEK293T cells was sequentially incubated with three rounds of fresh FGF2-GST beads. Half of the final depleted lysate was then incubated with lacritin-intein beads (lane 4) and the other half was methanol precipitated (lane 9). Similarly in lanes 5-7, a different aliquot of lysate from the same cells was sequentially incubated with three rounds of fresh lacritin-intein beads.
- HEK293T cells stably expressing human SDC1 were either lysed as usual, or first briefly trypsinized ( ⁇ 5 min; 0.05%) then treated with serum to inactivate trypsin, washed and lysed. Both lysates were incubated with lacritin-intein beads. Beads were washed, treated with heparitinase I/chondroitinase ABC. The digests were centrifuged, and pellets (P) and supernatants (S) blotted with mAb B-B4 for SDC1 core protein.
- C Lysates from HEK293T cells stably expressing human SDC1 were incubated with lacritin-intein beads.
- FIG. 7 Bacterial heparitinase digestion exposes FGF2-bindable SDC1 to lacritin-binding via a domain in SDC1's N-terminal 50 amino acids.
- Human SDC1, SDC2 and SDC4 from stably expressing HEK293T cells were individually purified on FGF2-GST, eluted (0.5 and 1 M NaCl, respectively lanes 1 and 2 [SDC1], lanes 3 and 4 [SDC2], lanes 5 and 6 [SDC4]), then treated with heparitinase I/chondroitinase ABC (2 h) and incubated with lacritin-intein beads.
- Blotting is respectively with mAb B-B4 for SDC1, polyclonal antibody L-18 for SDC2 or polyclonal N-19 for SDC4—all core protein specific.
- B Schematic diagram of human SDC1 with the dotted line indicating truncation sites in the ectodomain forming deletion constructs: ‘del 1-51’, ‘del 51-252’, and ‘del 51-310’. Boxes represent PSIPRED-predicted alpha helices. Wavy lines represent HS and CS. TM, transmembrane domain.
- FIG. 8 Heparanase is expressed by HEK293T and HSG cells and is required for lacritin-dependent mitogenesis.
- A Lysates of HSG cells (lane 1) and HEK293T cells stably expressing human SDC1 (lanes 2), versus 2 M NaCl eluant of each after incubation with HiTrap heparin affinity columns (respectively lanes 3, 4). Blotting is with polyclonal anti-human heparanase-1 (HPSE1) antibody.
- B Lysates from HSG cells that had been mock transfected, or transfected with 1 nM heparanase-1 siRNA.
- Blotting is with polyclonal anti-human HPSE1 or anti-tubulin antibodies.
- C Proliferation assay in which HSG cells were treated with 10 nM lacritin or 1 nM EGF 48 h after being mock transfected, or transfected with 10 nM of Ambion's negative control siRNA #1 (neg), 1-100 nM HPSE1 siRNA, or 1 nM HPSE2 siRNA.
- HPSE1 siRNA cells were lacritin treated for 24 h in the presence of 1 ⁇ g of heparanase-enriched eluant (A, above) from HEK293T cells stably expressing SDC1 (‘1 nM+HPSE’) or 0.0001 U of bacterial heparitinase.
- D Sepharose CL-6B gel filtration chromatography of HS from lacritin and FGF2 affinity enriched SDC1 isolated from normal or HPSE1 depleted HSG cells. Lysates from cells labeled with 50 ⁇ Ci/ml Na 2 35 SO 4 in DMEM for 48 h were affinity precipitated with FGF2-GST or lacritin-intein.
- Equal microgram amounts of SDC1 bound to beads was digested with chondroitin ABC lyase to remove CS, eluted with 2 M NaCl and then subjected to NaBH4 eliminative cleavage. Released HS was neutralized by drop wise addition of 1 M HCl and then subjected to Sepharose CL-6B gel filtration chromatography to compare relative size of HS chains. V0, void volume (dextran blue); Vt, total volume (sodium dichromate).
- FIG. 9 Proposed model of epithelial cell targeting by lacritin.
- Deglycanated core protein of SDC1 targets the epithelial selective prosecretory mitogen lacritin.
- Binding requires prior partial or complete removal of HS chains by endogenous HPSE1.
- Binding is mutually specified by lacritin's C-terminal mitogenic domain and SDC1's N-terminus.
- FIG. 10 Size heterogeneity of native SDC1 is attributable to its HS and CS chains. Lysates of HSG and HEK293T cells stably expressing human SDC1 either without ( ⁇ ) or with (+) heparitinase I/chondroitinase ABC digestion. Blotting is with mAb B-B4 for SDC1 core protein.
- FIG. 11 Heparanase and heparitinase alone are not mitogenic for HSG cells. Mitogenic assay in which HPSE1-depleted HSG cells were incubated for 24 h with 1 ⁇ g of heparanase (enriched fraction from HEK293T) or with 0.0001 U of bacterial heparitinase in the presence of 3H-thymidine. FBS serves as a positive control.
- FIG. 12 Heparanase-dependent signaling. Removal of heparan sulfate chain(s) from syndecan-1 unblocks a lacritin binding site on an N-terminal domain of the core protein of syndecan-1 (Ma et al, '06). Syndecan-1 binding may improve lacritin's affinity for its G-protein coupled receptor (possibly ADRA2C; Ma and Why, unpublished), thereby activating calcineurin and mTOR signaling towards ocular surface wetting and renewal.
- B Equal protein loads of human tears from normal and dry eye patients blotted for heparanase.
- HSG human salivary ductal
- FIG. 13 Competition binding assay of lacritin, C-25 and N-24 for cloned GPCRs against radiolabeled agonist.
- N-24 inhibits 64% of 125I-iodoclonidine binding to the alpha-2C-adrenergic receptor (‘Alpha2C’ or ‘ADRA2C’). Significant inhibition is considered >50% (red dashed line). Determinations were repeated four times. Assay descriptions are available to an art worker and at http://pdsp.med.unc.edu/.
- the lacritin receptor is expected to be a GPCR because lacritin signaling is pertussis toxin sensitive (Wang et al, '06).
- ADRA2C couples to pertussis toxin sensitive G-proteins.
- FIG. 14 LEFT, Lacritin-dependent mitogenesis by mock or lamin siRNA (negative control; ‘neg’) transfected cells contrasts with the full or partial inhibitory effect of transfecting with ADRA2C siRNA. D1-4 pool is most effective, followed by D1-3, D3 and D2 (asterisks). D1 and D4 have minimal effect. Cells were transfected with 10 nM pooled and individual siRNAs as described for PKC ⁇ in FIG. 4 of Wang et al ('06). RIGHT, RT-PCR of ADRA2C at 0, 24 and 48 hrs after siRNA transfection with 10 nM D1-4.
- FIG. 15 LEFT, new N-terminal lacritin deletions (N-24 previously tested) with full length lacritin and negative control C-25.
- a signaling receptor binding site (‘GPCR?’) is hypothetically suggested by loss of activity with removal of six N-amino acids (KSIVEK) from N-65.
- Black box indicates region of syndecan-1 (SDC1) binding.
- RIGHT proliferation of subconfluent HCE-T cells treated with 10 nM of each deletion construct in serum-free medium (Wang and Laurie, unpublished). EGF serves as a positive control. Proliferation was determined by 3H-thymidine uptake (Wang et al, '06; Ma et al, '06). Absolute fold-increase values between FIGS. 14 and 15 are not comparable because lacritin preps differ.
- FIG. 15 An example of a preparation of a lacritin/syndecan fusion protein.
- FACS fluorescence activated cell sorter
- HCE human corneal epithelial
- HS means heparan sulfate
- HSG human salivary gland
- IRB means institutional review board
- SDC1 means syndecan-1
- an element means one element or more than one element.
- amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table:
- amino acid as used herein is meant to include both natural and synthetic amino acids, and both D and L amino acids.
- Standard amino acid means any of the twenty standard L-amino acids commonly found in naturally occurring peptides.
- Nonstandard amino acid residue means any amino acid, other than the standard amino acids, regardless of whether it is prepared synthetically or derived from a natural source.
- synthetic amino acid also encompasses chemically modified amino acids, including but not limited to salts, amino acid derivatives (such as amides), and substitutions.
- Amino acids contained within the peptides of the present invention, and particularly at the carboxy- or amino-terminus, can be modified by methylation, amidation, acetylation or substitution with other chemical groups which can change the peptide's circulating half-life without adversely affecting their activity. Additionally, a disulfide linkage may be present or absent in the peptides of the invention.
- amino acid is used interchangeably with “amino acid residue,” and may refer to a free amino acid and to an amino acid residue of a peptide. It will be apparent from the context in which the term is used whether it refers to a free amino acid or a residue of a peptide.
- Amino acids have the following general structure:
- Amino acids may be classified into seven groups on the basis of the side chain R: (1) aliphatic side chains, (2) side chains containing a hydroxylic (OH) group, (3) side chains containing sulfur atoms, (4) side chains containing an acidic or amide group, (5) side chains containing a basic group, (6) side chains containing an aromatic ring, and (7) proline, an imino acid in which the side chain is fused to the amino group.
- side chain R (1) aliphatic side chains, (2) side chains containing a hydroxylic (OH) group, (3) side chains containing sulfur atoms, (4) side chains containing an acidic or amide group, (5) side chains containing a basic group, (6) side chains containing an aromatic ring, and (7) proline, an imino acid in which the side chain is fused to the amino group.
- basic or “positively charged” amino acid refers to amino acids in which the R groups have a net positive charge at pH 7.0, and include, but are not limited to, the standard amino acids lysine, arginine, and histidine.
- antibody refers to an immunoglobulin molecule which is able to specifically bind to a specific epitope on an antigen.
- Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins.
- Antibodies are typically tetramers of immunoglobulin molecules.
- the antibodies in the present invention may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies, Fv, Fab and F(ab) 2 , as well as single chain antibodies and humanized antibodies.
- Antimicrobial agent refers to any compound which impedes the growth of any microbes, or kills such microbes.
- antisense oligonucleotide or antisense nucleic acid means a nucleic acid polymer, at least a portion of which is complementary to a nucleic acid which is present in a normal cell or in an affected cell.
- Antisense refers particularly to the nucleic acid sequence of the non-coding strand of a double stranded DNA molecule encoding a protein, or to a sequence which is substantially homologous to the non-coding strand.
- an antisense sequence is complementary to the sequence of a double stranded DNA molecule encoding a protein. It is not necessary that the antisense sequence be complementary solely to the coding portion of the coding strand of the DNA molecule.
- the antisense sequence may be complementary to regulatory sequences specified on the coding strand of a DNA molecule encoding a protein, which regulatory sequences control expression of the coding sequences.
- the antisense oligonucleotides of the invention include, but are not limited to, phosphorothioate oligonucleotides and other modifications of oligonucleotides.
- the terms “complementary” or “complementarity” are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence “A-G-T,” is complementary to the sequence “T-C-A.”
- a “detectable marker” or a “reporter molecule” is an atom or a molecule that permits the specific detection of a compound comprising the marker in the presence of similar compounds without a marker.
- Detectable markers or reporter molecules include, e.g., radioactive isotopes, antigenic determinants, enzymes, nucleic acids available for hybridization, chromophores, fluorophores, chemiluminescent molecules, electrochemically detectable molecules, and molecules that provide for altered fluorescence polarization or altered light scattering.
- An “enhancer” is a DNA regulatory element that can increase the efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.
- Enhancing survival refers to decreasing the amount of death, or the rate of death, in a cell population. Enhancing survival can be due to preventing cell death alone (e.g., cell death in conjunction with apoptosis), or decreasing the rate of cell death. The decrease in cell death can also result from indirect effects such as inducing proliferation of some cells, such indirect effect effectively replenishing at least some or all of a population of cells as they die. Enhancing survival of cells can also be accomplished by a combination of inducing proliferation and decreasing cell death, or the rate of cell death. “Promoting survival” and “enhancing survivability” are used interchangeably with “enhancing survival” herein.
- a “fragment” or “segment” is a portion of an amino acid sequence, comprising at least one amino acid, or a portion of a nucleic acid sequence comprising at least one nucleotide.
- the terms “fragment” and “segment” are used interchangeably herein.
- a fragment of a lacritin peptide which is used herein as part of a composition for use in a treatment or to elicit a lacritin effect is presumed to be a biologically active fragment for the response to be elicited.
- a “functional” biological molecule is a biological molecule in a form in which it exhibits a property or activity by which it is characterized.
- a functional enzyme for example, is one which exhibits the characteristic catalytic activity by which the enzyme is characterized.
- a “gene” refers to the nucleic acid coding sequence as well as the regulatory elements necessary for the DNA sequence to be transcribed into messenger RNA (mRNA) and then translated into a sequence of amino acids characteristic of a specific polypeptide.
- mRNA messenger RNA
- “Homologous” as used herein refers to the subunit sequence similarity between two polymeric molecules, e.g., between two nucleic acid molecules, e.g., two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position.
- the homology between two sequences is a direct function of the number of matching or homologous positions, e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two compound sequences are homologous then the two sequences are 50% homologous, if 90% of the positions, e.g., 9 of 10, are matched or homologous, the two sequences share 90% homology.
- the DNA sequences 3′ATTGCC5′ and 3′TATGGC share 50% homology.
- the determination of percent identity between two nucleotide or amino acid sequences can be accomplished using a mathematical algorithm.
- a mathematical algorithm useful for comparing two sequences is the algorithm of Karlin and Altschul (1990, Proc. Natl. Acad. Sci. USA 87:2264-2268), modified as in Karlin and Altschul (1993, Proc. Natl. Acad. Sci. USA 90:5873-5877). This algorithm is incorporated into the NBLAST and)(BLAST programs of Altschul, et al. (1990, J. Mol. Biol. 215:403-410), and can be accessed, for example at the National Center for Biotechnology Information (NCBI) world wide web site.
- NCBI National Center for Biotechnology Information
- BLAST protein searches can be performed with the XBLAST program (designated “blastn” at the NCBI web site) or the NCBI “blastp” program, using the following parameters: expectation value 10.0, BLOSUM62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein.
- Gapped BLAST can be utilized as described in Altschul et al. (1997, Nucleic Acids Res. 25:3389-3402).
- PSI-Blast or PHI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.) and relationships between molecules which share a common pattern.
- the default parameters of the respective programs e.g., XBLAST and NBLAST.
- the percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically exact matches are counted.
- insult refers to contact with a substance or environmental change that results in an alteration of normal cellular metabolism in a cell or population of cells.
- Environmental insults may include, but are not limited to, chemicals, environmental pollutants, heavy metals, viral or bacterial infections, changes in temperature, changes in pH, as well as agents producing oxidative damage, DNA damage, or pathogenesis.
- environmental insult may include, but are not limited to, chemicals, environmental pollutants, heavy metals, viral or bacterial infections, changes in temperature, changes in pH, as well as agents producing oxidative damage, DNA damage, or pathogenesis.
- isolated nucleic acid refers to a nucleic acid segment or fragment which has been separated from sequences which flank it in a naturally occurring to state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs.
- the term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins, which naturally accompany it in the cell.
- the term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.
- lacritin polypeptide and like terms refers to peptides comprising the amino acid sequence of SEQ ID NO: 4 and biologically active fragments, derivatives, and homologs thereof.
- biologically active fragments or “bioactive fragment” of a lacritin polypeptide encompasses natural or synthetic portions of the amino acid sequence
- syndecan-1 refers to peptides comprising the amino acid sequence of SEQ ID NO:12 and biologically active fragments, derivatives, and homologs thereof.
- biologically active fragments or “bioactive fragment” of a syndecan-1 polypeptide encompasses natural or synthetic portions of the amino acid sequence
- heparanase refers to peptides comprising the amino acid sequence of SEQ ID NO:13 and biologically active fragments, derivatives, and homologs thereof.
- biologically active fragments or “bioactive fragment” of a heparanase polypeptide encompasses natural or synthetic portions of the amino acid sequence
- a “ligand” is a compound that specifically binds to a target compound.
- a ligand e.g., an antibody
- a ligand “specifically binds to” or “is specifically immunoreactive with” a compound when the ligand functions in a binding reaction which is determinative of the presence of the compound in a sample of heterogeneous compounds.
- the ligand binds preferentially to a particular compound and does not bind to a significant extent to other compounds present in the sample.
- an antibody specifically binds under immunoassay conditions to an antigen bearing an epitope against which the antibody was raised.
- immunoassay formats may be used to select antibodies specifically immunoreactive with a particular antigen.
- solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with an antigen. See Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.
- linkage refers to a connection between two groups.
- the connection can be either covalent or non-covalent, including but not limited to ionic bonds, hydrogen bonding, and hydrophobic/hydrophilic interactions.
- linker refers to a molecule that joins two other molecules either covalently or noncovalently, e.g., through ionic or hydrogen bonds or van der Waals interactions.
- Opt surface refers to the surface of the eye, particularly the corneal surface.
- ocular surface-associated disease, disorder, or condition refers to any disease, disorder or condition which directly or indirectly causes, or can cause, any of the problems or symptoms described herein regarding disease, disorders, or conditions of the ocular surface.
- operably linked refers to a juxtaposition wherein the components are configured so as to perform their usual function.
- control sequences or promoters operably linked to a coding sequence are capable of effecting the expression of the coding sequence.
- a “marker” is an atom or molecule that permits the specific detection of a molecule comprising that marker in the presence of similar molecules without such a marker. Markers include, for example radioactive isotopes, antigenic determinants, nucleic acids available for hybridization, chromophors, fluorophors, chemiluminescent molecules, electrochemically detectable molecules, molecules that provide for altered fluorescence-polarization or altered light-scattering and molecules that allow for enhanced survival of an cell or organism (i.e. a selectable marker).
- a reporter gene is a gene that encodes for a marker.
- a “polylinker” is a nucleic acid sequence that comprises a series of three or more different restriction endonuclease recognitions sequences closely spaced to one another (i.e. less than 10 nucleotides between each site).
- promoter/regulatory sequence means a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulator sequence.
- this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product.
- the promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
- a “constitutive promoter” is a promoter which drives expression of a gene to which it is operably linked, in a constant manner in a cell.
- promoters which drive expression of cellular housekeeping genes are considered to be constitutive promoters.
- an “inducible” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only when an inducer which corresponds to the promoter is present in the cell.
- tissue-specific promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.
- nucleic acid As used herein, “nucleic acid,” “DNA,” and similar terms also include nucleic acid analogs, i.e. analogs having other than a phosphodiester backbone.
- nucleic acid analogs i.e. analogs having other than a phosphodiester backbone.
- peptide nucleic acids which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention.
- fragment as applied to a nucleic acid, may ordinarily be at least about 20 nucleotides in length, typically, at least about 50 nucleotides, more typically, from about 50 to about 100 nucleotides, preferably, at least about 100 to about 200 nucleotides, even more preferably, at least about 200 nucleotides to about 300 nucleotides, yet even more preferably, at least about 300 to about 350, even more preferably, at least about 350 nucleotides to about 500 nucleotides, yet even more preferably, at least about 500 to about 600, even more preferably, at least about 600 nucleotides to about 620 nucleotides, yet even more preferably, at least about 620 to about 650, and most preferably, the nucleic acid fragment will be greater than about 650 nucleotides in length.
- nucleotide sequence encoding an amino acid sequence includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.
- peptide encompasses a sequence of 3 or more amino acids wherein the amino acids are naturally occurring or synthetic (non-naturally occurring) amino acids.
- Peptide mimetics include peptides having one or more of the following modifications:
- N-terminus is derivatized to a —NRR1 group, to a NRC(O)R group, to a —NRC(O)OR group, to a —NRS(O) 2 R group, to a —NHC(O)NHR group where R and R1 are hydrogen or C 1 -C 4 alkyl with the proviso that R and R1 are not both hydrogen;
- Synthetic or non-naturally occurring amino acids refer to amino acids which do not naturally occur in vivo but which, nevertheless, can be incorporated into the peptide structures described herein.
- the resulting “synthetic peptide” contain amino acids other than the 20 naturally occurring, genetically encoded amino acids at one, two, or more positions of the peptides. For instance, naphthylalanine can be substituted for tryptophan to facilitate synthesis.
- Other synthetic amino acids that can be substituted into peptides include L-hydroxypropyl, L-3,4-dihydroxyphenylalanyl, alpha-amino acids such as L-alpha-hydroxylysyl and D-alpha-methylalanyl, L-alpha.-methylalanyl, beta.-amino acids, and isoquinolyl.
- D amino acids and non-naturally occurring synthetic amino acids can also be incorporated into the peptides.
- Other derivatives include replacement of the naturally occurring side chains of the 20 genetically encoded amino acids (or any L or D amino acid) with other side chains.
- fusion polypeptide refers to a chimeric protein containing a reference protein (e.g., lacritin) joined at the N- and/or C-terminus to one or more heterologous sequences (e.g., a non lacritin polypeptide, such as syndecan).
- Polypeptide molecules are said to have an “amino terminus” (N terminus) and a “carboxy terminus” (C terminus) because peptide linkages occur between the backbone amino group of a first amino acid residue and the backbone carboxyl group of a second amino acid residue.
- N terminal and C terminal in reference to polypeptide sequences refer to regions of polypeptides including portions of the N terminal and C terminal regions of the polypeptide, respectively.
- a sequence that includes a portion of the N terminal region of polypeptide includes amino acids predominantly from the N terminal half of the polypeptide chain, but is not limited to such sequences.
- an N terminal sequence may include an interior portion of the polypeptide sequence including bases from both the N terminal and C terminal halves of the polypeptide.
- C terminal regions may, but need not, include the amino acid defining the ultimate N terminus and C terminus of the polypeptide, respectively.
- the fusion proteins of the invention may be prepared by recombinant methods or by solid phase chemical peptide synthesis methods. Such methods have been known in the art since the early 1960's (Merrifield, 1963) (See also Stewart et al., Solid Phase Peptide Synthesis, 2 ed., Pierce Chemical Co., Rockford, Ill., pp. 11-12)) and have recently been employed in commercially available laboratory peptide design and synthesis kits (Cambridge Research Biochemicals). Such commercially available laboratory kits have generally utilized the teachings of Geysen et al. (1984) and provide for synthesizing peptides upon the tips of a multitude of “rods” or “pins” all of which are connected to a single plate.
- a plate of rods or pins is inverted and inserted into a second plate of corresponding wells or reservoirs, which contain solutions for attaching or anchoring an appropriate amino acid to the pin's or rod's tips.
- a process step e.g., inverting and inserting the rod's and pin's tips into appropriate solutions, amino acids are built into desired peptides.
- FMOC peptide synthesis systems are available. For example, assembly of a polypeptide or fragment can be carried out on a solid support using an Applied Biosystems, Inc. Model 431A automated peptide synthesizer. Such equipment provides ready access to the peptides of the invention, either by direct synthesis or by synthesis of a series of fragments that can be coupled using other known techniques.
- the invention also includes a stable cell line that expresses a lacritin/syndecan-1 fusion protein, as well as an expression cassette comprising a nucleic acid molecule encoding the lacritin/syndecan-1 fusion protein, and a vector capable of expressing the nucleic acid molecule of the invention in a host cell.
- the expression cassette comprises a promoter, e.g., a constitutive or regulatable promoter, operably linked to the nucleic acid sequence.
- the expression cassette contains an inducible promoter.
- a host cell e.g., a prokaryotic cell or an eukaryotic cell such as a plant or vertebrate cell, e.g., a mammalian cell, including but not limited to a human, non-human primate, canine, feline, bovine, equine, ovine or rodent (e.g., rabbit, rat, ferret or mouse) cell, which comprises the expression cassette or vector of the invention, and a kit which comprises the nucleic acid molecule, expression cassette, vector, host cell or lacritin/syndecan-1 fusion protein.
- a prokaryotic cell or an eukaryotic cell such as a plant or vertebrate cell, e.g., a mammalian cell, including but not limited to a human, non-human primate, canine, feline, bovine, equine, ovine or rodent (e.g., rabbit, rat, ferret or mouse) cell, which comprises the expression cassette or vector
- the term “pharmaceutically acceptable carrier” includes any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents.
- the term also encompasses any of the agents approved by a regulatory agency of the US Federal government or listed in the US Pharmacopeia for use in animals, including humans.
- a “promoter” is a DNA sequence that directs the transcription of a DNA sequence, such as the nucleic acid coding sequence of a gene.
- a promoter is located in the 5′ region of a gene, proximal to the transcriptional start site of a structural gene. Promoters can be inducible (the rate of transcription changes in response to a specific agent), tissue specific (expressed only in some tissues), temporal specific (expressed only at certain times) or constitutive (expressed in all tissues and at a constant rate of transcription).
- a “core promoter” contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that enhance the activity or confer tissue specific activity.
- purified and like terms relate to the isolation of a molecule or compound in a form that is substantially free of contaminants normally associated with the molecule or compound in a native or natural environment.
- purified does not necessarily indicate that complete purity of the particular molecule has been achieved during the process.
- a “highly purified” compound as used herein refers to a compound that is greater than 90% pure.
- a “subject” of experimentation, diagnosis or treatment is an animal, including a human.
- substantially pure describes a compound, e.g., a protein or polypeptide which has been separated from components which naturally accompany it.
- a compound is substantially pure when at least 10%, more preferably at least 20%, more preferably at least 50%, more preferably at least 60%, more preferably at least 75%, more preferably at least 90%, and most preferably at least 99% of the total material (by volume, by wet or dry weight, or by mole percent or mole fraction) in a sample is the compound of interest. Purity can be measured by any appropriate method, e.g., in the case of polypeptides by column chromatography, gel electrophoresis, or HPLC analysis.
- a compound, e.g., a protein is also substantially purified when it is essentially free of naturally associated components or when it is separated from the native contaminants which accompany it in its natural state.
- a “substantially pure nucleic acid”, as used herein, refers to a nucleic acid sequence, segment, or fragment which has been purified from the sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs.
- the term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins which naturally accompany it in the cell.
- a “therapeutic” treatment is a treatment administered to a subject who exhibits signs of pathology for the purpose of diminishing or eliminating those signs.
- a “therapeutically effective amount” of a compound is that amount of compound which is sufficient to provide a beneficial effect to the subject to which the compound is administered.
- the term “treating” includes prophylaxis of the specific disorder or condition, or alleviation of the symptoms associated with a specific disorder or condition and/or preventing or eliminating said symptoms.
- a “prophylactic” treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs of the disease for the purpose of decreasing the risk of developing pathology associated with the disease.
- the term “treating” includes alleviating the symptoms associated with a specific disease, disorder or condition and/or preventing or eliminating said symptoms.
- a “vector” is also meant to include a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell.
- vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses.
- the term “vector” includes an autonomously replicating plasmid or a virus.
- the term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, polylysine compounds, liposomes, and the like.
- viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, plasmids, cosmids, lambda phage vectors, and the like.
- “Expression vector” refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed.
- An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system.
- Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses that incorporate the recombinant polynucleotide.
- wound relates to a physical tear or rupture to a tissue or cell layer.
- a wound may occur by any physical insult, including a surgical procedure.
- the present invention is directed to uses of a human growth factor-like molecule, “lacritin,” and compositions comprising lacritin, or fragments, derivatives, or homologs thereof, and to its interaction with syndecan, and regulation of the pathways effected by such interaction.
- lacritin a human growth factor-like molecule
- compositions comprising lacritin, or fragments, derivatives, or homologs thereof, and to its interaction with syndecan, and regulation of the pathways effected by such interaction.
- the invention also encompasses regulation and treatment of diseases, disorders, and conditions by regulating lacritin, lacritin-syndecan interactions, syndecan, and the pathways downstream from lacritin-syndecan interactions.
- the invention also encompasses use of nucleic acid sequences encoding lacritin, as well as the nucleic acid regulatory elements controlling the expression of lacritin.
- the full length ‘lacritin’ cDNA was previously cloned from a human lacrimal gland library, and the corresponding genomic gene has been cloned and sequenced, including 5.2 kb of upstream and 2.8 kb of downstream genomic sequence.
- the present invention is directed to use of a purified polypeptide comprising the amino acid sequence of SEQ ID NOs: 4, 12 or 13, a bioactive fragment of SEQ ID NOs: 4, 12 or 13, or an amino acid sequence that differs from SEQ ID NOs: 4, 12 or 13 by one or more conservative amino acid substitutions.
- the purified polypeptide comprises an amino acid sequence that differs from SEQ ID NOs: 4, 12 or 13 by 20 or less conservative amino acid substitutions, and more preferably by 10 or less conservative amino acid substitutions.
- the polypeptide may comprise an amino acid sequence that differs from SEQ ID NOs: 4, 12 or 13 by 1 to 5 alterations, wherein the alterations are independently selected from a single amino acid deletion, insertion, or substitution.
- the polypeptide comprises an amino acid sequence that is at about 85%, 90%, 95% or 99% identical to SEQ ID NOs: 4, 12 or 13.
- a composition comprising a polypeptide, selected from the group consisting of SEQ ID NOs: 4, 12 or 13 and a pharmaceutically acceptable carrier.
- the polypeptide or fragments thereof are of the mature processed lacritin selected from the group of fragments with up to 25 amino acids deleted from the C-terminus. In another embodiment, up to 25 amino acids are deleted from the N-terminus of SEQ ID NO:4, the full length lacritin.
- lacritin is also a survival factor, i.e., longevity in cell culture was promoted by the addition of physiological amounts of lacritin.
- Methods for measuring wound healing are known in the art (reviewed in Woo et al., Experimental Eye Research, 80:633-642, 2000). Methods for measuring cell survival are known in the art and include various cellular, molecular, biochemical, and histological techniques.
- Lacritin is naturally produced in moderately large quantities by the lacrimal gland for release into the corneal tear film.
- the therapeutic potential of lacritin, and therefore the lacritin-syndecan interactions in promoting the health of the ocular surface is therefore considerable, particularly as environmental exposure to pollutants and UV exposure increases, and as the proportion of the population, suffering from Dry Eye expands.
- the cornea is the main refracting surface of the eye and is vulnerable to environmental hazards or insult including exposure (direct trauma, drying, radiant and ionizing energy), infectious agents (bacteria, viruses—notably herpes simplex and herpes zoster—fungi, and parasites), and inflammation, sometimes in association with systemic dermatologic disorders such as atopic dermatitis, cicatricial pemphigoid, rosacea, and erythema multiforme (Stevens-Johnson syndrome). Bacteria include pseudomonas. Keratitis is an inflammation or infection of the cornea. It is often associated with inflammation of the iris (iritis) or of the uveal tract—the iris, ciliary body, and choroid (uveitis).
- Keratitis combined with uveitis or ulcerative colitis is seen commonly in Reiter's disease and occasionally Behcet's disease. Keratitis and uveitis may also occur with herpes simplex infection, in sarcoidosis, and in collagen vascular diseases.
- any method for enhancing lacritin-syndecan interactions and the signals resulting therefrom is useful as an antagonist to inflammatory processes such as those induced or supplemented by proinflammatory agents such as proinflammatory cytokines.
- a method of reducing or preventing ocular cell death in a mammalian species after contact with an environmental insult, or in response to an ocular-associated disease, disorder, or condition comprises the steps of contacting the cells that have been exposed to the environmental insult to a composition comprising lacritin, or a fragment, derivative, or homolog thereof, as well as methods to enhance lacritin-syndecan interaction.
- cells that are “exposed” to the environmental insult include those cells that have been directly contacted by the environmental insult, as well as those cells that suffer indirectly as a result of direct contact of other cells with the environmental insult.
- the ocular cells comprise the corneal epithelial cells.
- the exposed cells are contacted with a topically administered ophthalmic formulation comprising a lacritin polypeptide, or a derivative, fragment, or homolog thereof, as well as compounds to enhance lacritin-syndecan interactions.
- the lacritin comprising compositions or compositions comprising compounds which enhance lacritin-syndecan interaction of the present invention can be administered prophylactically to promote corneal epithelial cell survival in the presence of common environmental insults such as exposure to UV exposure or pollutants, particularly for those individuals that face excessive exposure to such elements.
- the lacritin comprising compositions of the present invention are used to regulate an immune response to inflammation and/or bacterial infection.
- a lacritin comprising composition can be administered to aid in the healing process following a surgical procedure to the eye, such as cataract or other vision-corrective surgical procedures.
- the invention encompasses all surgical procedures of the eye, including laser procedures.
- a method for treating infections of the eye.
- the method comprises the step of topically administering a composition comprising a lacritin polypeptide to the eye.
- the composition further comprises an anti-microbial agent.
- Suitable ophthalmic anti-microbial agents are known to those skilled in the art and include those described in U.S. Pat. Nos. 5,300,296, 6,316,669, 6,365,636 and 6,592,907, the disclosures of which are incorporated herein.
- anti-microbial agents suitable for use in accordance with the present invention include benzalkonium chloride, benzethonium chloride, benzyl alcohol, chlorobutanol, chlorhexidine digluconate or diacetate, methyl and propyl hydroxybenzoate (parabens), phenylethyl alcohol, phenylmercuric acetate or nitrate, sorbic acid, and thimerosal.
- Tear reconstitution is also attempted by providing one or more components of the tear film such as phospholipids and oils. Examples of these treatment approaches are disclosed in U.S. Pat. No. 4,131,651 (Shah et al.), U.S. Pat. No. 4,370,325 (Packman), U.S. Pat. No. 4,409,205 (Shively), U.S. Pat. Nos.
- compositions comprising lacritin are used to enhance corneal wound healing, and/or treat patients having deficient tear output.
- the lacritin compositions of the present invention can be formulated using standard ophthalmic components, and preferably, the compositions are formulated as solutions, suspensions, and other dosage forms for topical administration.
- Aqueous solutions are generally preferred, based on ease of formulation, biological compatibility (especially in view of the malady to be treated, e.g., dry eye-type diseases and disorders), as well as a patient's ability to easily administer such compositions by means of instilling one to two drops of the solutions in the affected eyes.
- the compositions may also be suspensions, viscous or semi-viscous gels, or other types of solid or semi-solid compositions.
- compositions of the present invention may include surfactants, preservative agents, antioxidants, tonicity agents, buffers, preservatives, co-solvents and viscosity building agents.
- Various surfactants useful in topical ophthalmic formulations may be employed in the present compositions. These surfactants may aid in preventing chemical degradation of lacritin and also prevent the lacritin from binding to the containers in which the compositions are packaged. Examples of surfactants include, but are not limited to: Cremophor® EL, polyoxyl 20 ceto stearyl ether, polyoxyl 40 hydrogenated castor oil, polyoxyl 23 lauryl ether and poloxamer 407 may be used in the compositions.
- Antioxidants may be added to compositions of the present invention to protect the lacritin polypeptide from oxidation during storage.
- antioxidants include, but are not limited to, vitamin E and analogs thereof, ascorbic acid and derivatives, and butylated hydroxyanisole (BHA).
- Existing artificial tears formulations can also be used as pharmaceutically acceptable carriers for the lacritin active agent.
- lacritin is used to improve existing artificial tear products for Dry Eye syndromes, as well as develop products to aid corneal wound healing.
- artificial tears compositions useful as carriers include, but are not limited to, commercial products, such as Tears Naturale®, Tears Naturale II®, Tears Naturale Free®, and Bion Tears® (Alcon Laboratories, Inc., Fort Worth, Tex.).
- Examples of other phospholipid carrier formulations include those disclosed in U.S. Pat. No. 4,804,539 (Guo et al.), U.S. Pat. No. 4,883,658 (Holly), U.S. Pat. No.
- compositions of the present invention may also be added to the ophthalmic compositions of the present invention to increase the viscosity of the carrier.
- viscosity enhancing agents include, but are not limited to: polysaccharides, such as hyaluronic acid and its salts, chondroitin sulfate and its salts, dextrans, various polymers of the cellulose family; vinyl polymers; and acrylic acid polymers.
- the phospholipid carrier or artificial tears carrier compositions will exhibit a viscosity of 1 to 400 centipoises (“cps”).
- Topical ophthalmic products are typically packaged in multidose form. Preservatives are thus required to prevent microbial contamination during use. Suitable preservatives include: benzalkonium chloride, chlorobutanol, benzododecinium bromide, methyl paraben, propyl paraben, phenylethyl alcohol, edetate disodium, sorbic acid, polyquaternium-1, or other agents known to those skilled in the art. Such preservatives are typically employed at a level of from 0.001 to 1.0% w/v. Unit dose compositions of the present invention will be sterile, but typically unpreserved. Such compositions, therefore, generally will not contain preservatives.
- the gene promoter regulating lacritin gene expression is the most specific of any previously described lacrimal gland gene, the regulatory elements of this gene could be used to express other gene products in the eye.
- the lacritin gene promoter can be operably linked to a wide variety of exogenous genes to regulate the expression of the gene products to the lacrimal gland and/or used as gene therapy to treat Dry Eye syndromes.
- the peptides of the present invention may be readily prepared by standard, well-established techniques, such as solid-phase peptide synthesis (SPPS) as described by Stewart et al. in Solid Phase Peptide Synthesis, 2nd Edition, 1984, Pierce Chemical Company, Rockford, Ill.; and as described by Bodanszky and Bodanszky in The Practice of Peptide Synthesis, 1984, Springer-Verlag, New York.
- SPPS solid-phase peptide synthesis
- a suitably protected amino acid residue is attached through its carboxyl group to a derivatized, insoluble polymeric support, such as cross-linked polystyrene or polyamide resin.
- “Suitably protected” refers to the presence of protecting groups on both the ⁇ -amino group of the amino acid, and on any side chain functional groups. Side chain protecting groups are generally stable to the solvents, reagents and reaction conditions used throughout the synthesis, and are removable under conditions which will not affect the final peptide product. Stepwise synthesis of the oligopeptide is carried out by the removal of the N-protecting group from the initial amino acid, and couple thereto of the carboxyl end of the next amino acid in the sequence of the desired peptide. This amino acid is also suitably protected.
- the carboxyl of the incoming amino acid can be activated to react with the N-terminus of the support-bound amino acid by formation into a reactive group such as formation into a carbodiimide, a symmetric acid anhydride or an “active ester” group such as hydroxybenzotriazole or pentafluorophenly esters.
- solid phase peptide synthesis methods include the BOC method which utilized tert-butyloxcarbonyl as the ⁇ -amino protecting group, and the FMOC method which utilizes 9-fluorenylmethyloxcarbonyl to protect the ⁇ -amino of the amino acid residues, both methods of which are well known by those of skill in the art.
- N- and/or C-blocking groups can also be achieved using protocols conventional to solid phase peptide synthesis methods.
- C-terminal blocking groups for example, synthesis of the desired peptide is typically performed using, as solid phase, a supporting resin that has been chemically modified so that cleavage from the resin results in a peptide having the desired C-terminal blocking group.
- a supporting resin that has been chemically modified so that cleavage from the resin results in a peptide having the desired C-terminal blocking group.
- synthesis is performed using a p-methylbenzhydrylamine (MBHA) resin so that, when peptide synthesis is completed, treatment with hydrofluoric acid releases the desired C-terminally amidated peptide.
- MBHA p-methylbenzhydrylamine
- N-methylaminoethyl-derivatized DVB resin, which upon HF treatment releases a peptide bearing an N-methylamidated C-terminus.
- Blockage of the C-terminus by esterification can also be achieved using conventional procedures. This entails use of resin/blocking group combination that permits release of side-chain peptide from the resin, to allow for subsequent reaction with the desired alcohol, to form the ester function.
- FMOC protecting group in combination with DVB resin derivatized with methoxyalkoxybenzyl alcohol or equivalent linker, can be used for this purpose, with cleavage from the support being effected by TFA in dicholoromethane. Esterification of the suitably activated carboxyl function e.g. with DCC, can then proceed by addition of the desired alcohol, followed by deprotection and isolation of the esterified peptide product.
- N-terminal blocking groups can be achieved while the synthesized peptide is still attached to the resin, for instance by treatment with a suitable anhydride and nitrile.
- a suitable anhydride and nitrile for instance, the resin-coupled peptide can be treated with 20% acetic anhydride in acetonitrile. The N-blocked peptide product can then be cleaved from the resin, deprotected and subsequently isolated.
- amino acid composition analysis may be conducted using high-resolution mass spectrometry to determine the molecular weight of the peptide.
- amino acid content of the peptide can be confirmed by hydrolyzing the peptide in aqueous acid, and separating, identifying and quantifying the components of the mixture using HPLC, or an amino acid analyzer. Protein sequenators, which sequentially degrade the peptide and identify the amino acids in order, may also be used to determine definitely the sequence of the peptide.
- the peptide Prior to its use, the peptide is purified to remove contaminants. In this regard, it will be appreciated that the peptide will be purified to meet the standards set out by the appropriate regulatory agencies. Any one of a number of a conventional purification procedures may be used to attain the required level of purity including, for example, reversed-phase high-pressure liquid chromatography (HPLC) using an alkylated silica column such as C4-, C8- or C18-silica. A gradient mobile phase of increasing organic content is generally used to achieve purification, for example, acetonitrile in an aqueous buffer, usually containing a small amount of trifluoroacetic acid. Ion-exchange chromatography can be also used to separate peptides based on their charge.
- HPLC reversed-phase high-pressure liquid chromatography
- the peptides or antibodies, derivatives, or fragments thereof may incorporate amino acid residues which are modified without affecting activity.
- the termini may be derivatized to include blocking groups, i.e. chemical substituents suitable to protect and/or stabilize the N- and C-termini from “undesirable degradation”, a term meant to encompass any type of enzymatic, chemical or biochemical breakdown of the compound at its termini which is likely to affect the function of the compound, i.e. sequential degradation of the compound at a terminal end thereof.
- Blocking groups include protecting groups conventionally used in the art of peptide chemistry which will not adversely affect the in vivo activities of the peptide.
- suitable N-terminal blocking groups can be introduced by alkylation or acylation of the N-terminus.
- suitable N-terminal blocking groups include C 1 -C 5 branched or unbranched alkyl groups, acyl groups such as formyl and acetyl groups, as well as substituted forms thereof, such as the acetamidomethyl (Acm) group.
- Desamino analogs of amino acids are also useful N-terminal blocking groups, and can either be coupled to the N-terminus of the peptide or used in place of the N-terminal reside.
- Suitable C-terminal blocking groups include esters, ketones or amides.
- Ester or ketone-forming alkyl groups particularly lower alkyl groups such as methyl, ethyl and propyl, and amide-forming amino groups such as primary amines (—NH 2 ), and mono- and di-alkylamino groups such as methylamino, ethylamino, dimethylamino, diethylamino, methylethylamino and the like are examples of C-terminal blocking groups.
- Descarboxylated amino acid analogues such as agmatine are also useful C-terminal blocking groups and can be either coupled to the peptide's C-terminal residue or used in place of it. Further, it will be appreciated that the free amino and carboxyl groups at the termini can be removed altogether from the peptide to yield desamino and descarboxylated forms thereof without affect on peptide activity.
- the peptide may include one or more D-amino acid resides, or may comprise amino acids which are all in the D-form.
- Retro-inverso forms of peptides in accordance with the present invention are also contemplated, for example, inverted peptides in which all amino acids are substituted with D-amino acid forms.
- Acid addition salts of the present invention are also contemplated as functional equivalents.
- an inorganic acid such as hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, and the like
- an organic acid such as an acetic, propionic, glycolic, pyruvic, oxalic
- Analogs can differ from naturally occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both.
- conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function. To that end, 10 or more conservative amino acid changes typically have no effect on peptide function.
- Conservative amino acid substitutions typically include substitutions within the following groups:
- valine isoleucine, leucine
- Modifications include in vivo, or in vitro chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are sequences which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.
- polypeptides or antibody fragments which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent.
- Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids.
- the peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.
- Substantially pure protein obtained as described herein may be purified by following known procedures for protein purification, wherein an immunological, enzymatic or other assay is used to monitor purification at each stage in the procedure.
- Protein purification methods are well known in the art, and are described, for example in Deutscher et al. (ed., 1990, Guide to Protein Purification , Harcourt Brace Jovanovich, San Diego).
- the invention also includes a kit comprising the composition of the invention and an instructional material which describes administering the composition to a subject.
- this kit comprises a (preferably sterile) solvent suitable for dissolving or suspending the composition of the invention prior to administering the composition.
- physiologically acceptable ester or salt means an ester or salt form of the active ingredient which is compatible with any other ingredients of the pharmaceutical composition, which is not deleterious to the subject to which the composition is to be administered.
- compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology.
- preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit.
- compositions are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, and dogs, and to birds including commercially relevant birds such as chickens, ducks, geese, and turkeys.
- compositions that are useful in the methods of the invention may be prepared, packaged, or sold in formulations suitable for oral, rectal, vaginal, parenteral, intravenous, topical, pulmonary, intranasal, buccal, ophthalmic, intrathecal or another route of administration.
- Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
- a pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses.
- a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
- the amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- compositions of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered.
- the composition may comprise between 0.1% and 100% (w/w) active ingredient.
- a pharmaceutical composition of the invention may further comprise one or more additional pharmaceutically active agents.
- additional agents include anti-emetics and scavengers such as cyanide and cyanate scavengers.
- Controlled- or sustained-release formulations of a pharmaceutical composition of the invention may be made using conventional technology.
- a formulation of a pharmaceutical composition of the invention suitable for oral administration may be prepared, packaged, or sold in the form of a discrete solid dose unit including, but not limited to, a tablet, a hard or soft capsule, a cachet, a troche, or a lozenge, each containing a predetermined amount of the active ingredient.
- Other formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, or an emulsion.
- an “oily” liquid is one which comprises a carbon-containing liquid molecule and which exhibits a less polar character than water.
- Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.
- Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle.
- Aqueous vehicles include, for example, water and isotonic saline.
- Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
- Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents.
- Oily suspensions may further comprise a thickening agent.
- suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose.
- Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.g. polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively).
- Known emulsifying agents include, but are not limited to, lecithin and acacia.
- Known preservatives include, but to are not limited to, methyl, ethyl, or n-propyl-para-hydroxybenzoates, ascorbic acid, and sorbic acid.
- Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin.
- Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol.
- Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent.
- Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent.
- Aqueous solvents include, for example, water and isotonic saline.
- Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
- a pharmaceutical composition of the invention may also be prepared, packaged, or sold in the form of oil-in-water emulsion or a water-in-oil emulsion.
- the oily phase may be a vegetable oil such as olive or arachis oil, a mineral oil such as liquid paraffin, or a combination of these.
- compositions may further comprise one or more emulsifying agents such as naturally occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soybean or lecithin phosphatide, esters or partial esters derived from combinations of fatty acids and hexitol anhydrides such as sorbitan monooleate, and condensation products of such partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate.
- emulsions may also contain additional ingredients including, for example, sweetening or flavoring agents.
- parenteral administration of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue.
- Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like.
- parenteral administration is contemplated to include, but is not limited to, subcutaneous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.
- Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents.
- the active ingredient is provided in dry (i.e. powder or granular) form for reconstitution with a suitable vehicle (e.g. sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.
- a suitable vehicle e.g. sterile pyrogen-free water
- compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution.
- This suspension or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein.
- Such sterile injectable formulations may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3-butane diol, for example.
- Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides.
- compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.
- Formulations suitable for topical administration include, but are not limited to, liquid or semi-liquid preparations such as liniments, lotions, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes, and solutions or suspensions.
- Topically-administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent.
- Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
- a pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for ophthalmic administration.
- Such formulations may, for example, be in the form of eye drops including, for example, a 0.1-1.0% (w/w) solution or suspension of the active ingredient in an aqueous or oily liquid carrier.
- Such drops may further comprise buffering agents, salts, or one or more other of the additional ingredients described herein.
- Other opthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form or in a liposomal preparation.
- additional ingredients include, but are not limited to, one or more of the following: excipients; surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; sweetening agents; flavoring agents; coloring agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; emulsifying agents; antioxidants; antibiotics; antifungal agents; stabilizing agents; and pharmaceutically acceptable polymeric or hydrophobic materials.
- compositions of the invention are known in the art and described, for example in Genaro, ed., 1985, Remington's Pharmaceutical Sciences , Mack Publishing Co., Easton, Pa., which is incorporated herein by reference.
- dosages of the compound of the invention which may be administered to a subject, preferably a human, range in amount from 1 ⁇ g to about 100 g per kilogram of body weight of the subject. While the precise dosage administered will vary depending upon any number of factors, including but not limited to, the type of subject and type of disease state being treated, the age of the subject and the route of administration. Preferably, the dosage of the compound will vary from about 1 mg to about 10 g per kilogram of body weight of the subject. More preferably, the dosage will vary from about 10 mg to about 1 g per kilogram of body weight of the subject
- the compound may be administered to a subject as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even lees frequently, such as once every several months or even once a year or less.
- the frequency of the dose will be readily apparent to the skilled artisan and will depend upon any number of factors, such as, but not limited to, the type and severity of the disease being treated, the type and age of the subject, etc.
- the invention also includes a kit comprising the composition of the invention and an instructional material which describes adventitially administering the composition to a cell or a tissue of a subject.
- this kit comprises a (preferably sterile) solvent suitable for dissolving or suspending the composition of the invention prior to administering the compound to the subject.
- an “instructional material” includes a publication, a recording, a diagram, or any other medium of expression which can be used to communicate the usefulness of the peptide of the invention in the kit for effecting alleviation of the various diseases or disorders recited herein.
- the instructional material may describe one or more methods of alleviation the diseases or disorders in a cell or a tissue of a subject.
- the instructional material of the kit of the invention may, for example, be affixed to a container which contains the peptide of the invention or be shipped together with a container which contains the peptide. Alternatively, the instructional material may be shipped separately from the container with the intention that the instructional material and the compound be used cooperatively by the recipient.
- HSG human salivary gland ductal cell line
- NSDCR National salivary gland ductal ductal ductal ductal .
- HSG cells were cultured in DMEM/F12 with 10% FBS. Cells were assayed between passage 10 and 20. Some HSG cells were transfected with a SMARTpool of four human SDC1 (Ambion Inc, Austin Tx) or heparanase-1 or heparanase-2 specific siRNAs at different doses (Dharmacon Inc, Lafayette Colo.). Other cells were transfected with individual siRNAs also at different doses.
- siRNAs sequences are as follows: (i) SDC1 siRNAs, CGACAAUAAACGGUACUUGTT, GGAGGAAUUCUAUGCCUGA, GGACUUCACCUUUGAAACCTT, and GGUAAGUUAAGUAAGUUGATT (gene bank accession no: NM — 002997); SDC2 siRNAs, GGAGUUUUAUGCGUAAAACTT, GGAUGUAGAGAGUCCAGAGTT, and GGAGUGUAUCCUAUUGAUGTT (gene bank accession no: NM — 002998); heparanase-1 siRNAs, GCAAUGAACCUAACAGUUUUU, GAUCAAACCUUGCCACCUUU, GGACUGGACUUGAUCUUUGUU, and GAACAGCACCUACUCAAGAUU (gene bank accession no: NM — 006665).
- Heparanase-2 siRNA sequences from Dharmacon were not made publicly available. Also utilized was Ambion's negative control siRNA #1 (catalogue no. 4611). Silencing efficiency was evaluated by protein blotting and RT-PCR.
- HEK293T cells were purchased from and propagated as suggested by ATCC (Manassas Va.). HEK293T cells were transfected with a Bgl II linearized expression vector coding for human SDC1 (hS1-pcDNA3) using LipofectamineTM 2000 reagent (Invitrogen Life Technologies, Carlsbad Calif.). Stable populations expressing SDC1 were selected in culture medium containing 400 ng/ml G418.
- a human SDC1 deletion construct lacking 51 amino acids from the N-terminus (‘del 1-51’) was generated from hS1-pcDNA3 by long range reverse PCR using forward primer 5′-GGTGGTGGATCCACGCAGCTCCTGACGGCTATTCCC-3′ and reverse primer 5′-GGTGGTGGATCCCAGGCTCAGCGCCAGCGCACAG-3′ containing BamH1 sites. Amplicons were cut using BamH1, ligated as plasmid.
- Human SDC1 ‘del 51-252’ (only N-terminal 50 amino acids of ectodomain linked to the transmembrane and cytoplasmic domains) was similarly generated from hS1-pcDNA3 using forward primer 5′-CTAGCTAGCTTGCAAAGCACCTGCACCTG-3′ and reverse primer 5′-CTAGCTAGCGAGGTG CTGGGAGGGGTC-3′. This introduced NheI sites 5′ of the codon for Ala51 and 3′ of the codon for Glu252 (most C-terminal ectodomain amino acid). Amplicons were digested with NheI and ligated as plasmid.
- Human SDC1 ‘del 51-310’ (only N-terminal 50 amino acids of ectodomain) N-50 amino acids only was PCR amplified from hS1-pcDNA3 using forward primer 5′-CTATAGGGAGACCCAAGCTTGGTACCGAG-3′ and reverse primer 5′-CCGGAATTCAGCACCTGCACCTGAG-3′ containing HindIII and EcoR1 sites. Amplicons were digested with HindIII and EcoR1 to create cohesive ends, subsequently purified and ligated into the HindIII/EcoR1 site of the pcDNA vector. All constructs were confirmed by DNA sequencing. Plasmids were transfected into HEK293T cells, and stable or transient transfectants generated.
- a lacritin-GST construct was prepared by subcloning lacritin cDNA into pGEX4T-2 (Amersham Biosciences, Piscataway N.J.) using Sap1 and NdeI, in-frame with GST. Recombinant plasmids were transformed into E. coli strain BL21. Bacterial cultures were expanded and fusion protein purified on Glutathione-Sepharose 4B (Amersham Biosciences, Piscataway N.J.). A human SDC1 ectodomain-GST construct was generated from pGEX-2T hS1 ED and similarly purified.
- the pellet was twice resuspended in 25 ml PBS-glycine, and incubated for 30 min in 1 ml lysis buffer (50 mM Tris HCl, pH 7.4, 100 mM NaCl, 5 mM MnCl 2 , 2 mM PMSF, 200 mM n-octyl- ⁇ -D-glucopyranoside, and protease inhibitors (Roche Diagnostics, Penzberg Germany)).
- 1 lysis buffer 50 mM Tris HCl, pH 7.4, 100 mM NaCl, 5 mM MnCl 2 , 2 mM PMSF, 200 mM n-octyl- ⁇ -D-glucopyranoside, and protease inhibitors (Roche Diagnostics, Penzberg Germany)).
- Lysate was centrifuged for 15 min at 4° C., and the supernatant applied to a 1 ml pre-column then washed through with 1 ml of binding buffer (50 mM Tris HCl, pH 7.4, 100 mM NaCl, 5 mM MnCl 2 , 2 mM PMSF, 50 mM n-octyl- ⁇ -D-glucopyranoside) and collected.
- Half was applied to a lacritin-intein column in which lacritin was coupled to chitin beads via chitin-binding intein, and the other half to a negative control column that included an approximately equivalent molar amount of intein-chitin only.
- Human SDC1, SDC2, or SDC4 stably-expressing HEK293T cells were harvested on ice into 1 ml of the same lysis buffer used for affinity chromatography. Lysates were cleared by centrifugation (20,000 ⁇ g) at 4° C., and protein concentration of supernatant was estimated by the BCA assay (Pierce, Rockford Ill.). Lacritin-intein or lacritin-GST (5 ⁇ g) and FGF2-GST fusion proteins were respectively bound to chitin beads (New England Biolabs, Ipswich Mass.) or glutathione-Sepharose beads (Amersham Biosciences, Piscataway N.J.).
- lysates ⁇ 200 ⁇ g of SDC1 stably expressing HEK293T cells
- binding buffer as above (each wash three times the bead volume).
- SDC1 lysates were mixed with increasing amounts of soluble lacritin, HS, HS plus CS (Seikagaku America, Falmouth Mass.), bacterially expressed human SDC1 ectodomain (hS1 ED), native SDC2, native SDC4, N-24 or C-25. Mixtures were then applied to lacritin immobilized beads, and further studied as described below.
- cell lysates were sequentially affinity precipitated with FGF2-GST or lacritin-intein.
- FGF2-GST depletion of all available FGF-bindable SDC1 one-half was precipitated with lacritin-intein. The other half was methanol precipitated overnight and resuspended in heparitinase buffer.
- lacritin-intein depletion of all available lacritin-bindable SDC1 one-half was precipitated with FGF2-GST and the other half precipitated by methanol overnight, then resuspended in heparitinase buffer.
- the reactions were separated by SDS-PAGE, and blotted using anti-SDC1 mAb B-B4 (Serotec, Oxford UK) or anti-SDC2 polyclonal antibody L-18 or anti-SDC4 polyclonal antibody N-19 (Santa Cruz Biotechnology, Santa Cruz Calif.) followed by ECL detection (Pierce, Rockford Ill.).
- beads were digested with heparitinase I (Seikagaku America, Falmouth Mass.) and chondroitin ABC lyase (MP Biochemicals, Aurora Ohio) since native syndecans migrate as a heterodisperse smear in SDS-PAGE. Briefly, beads were resuspended in heparitinase buffer (50 mM Hepes, pH 6.5, 50 mM NaOAc, 150 mM NaCl, 5 mM CaCl 2 ) with 0.0001 units heparitinase and 0.005 units chondroitin ABC lyase for 2 h at 37° C.
- heparitinase buffer 50 mM Hepes, pH 6.5, 50 mM NaOAc, 150 mM NaCl, 5 mM CaCl 2
- mAb B-B4 diluted in blocking buffer was incubated with blots for 2 h at RT, washed five times with 10 mM Tris, 150 mM NaCl, pH 7.4 containing 0.1% Tween-20 and detected with alkaline-phosphatase conjugated secondary antibody (Amersham Biosciences, Piscataway N.J.) using ECL.
- heparanase was enriched by HiTrap heparin affinity purification (Amersham Biosciences, Piscataway N.J.). Briefly, HSG or HEK293 lysates were dialyzed overnight against binding buffer (10 mM sodium phosphate, pH 7) and applied to the column. After washing with 10 column volumes of binding buffer, heparanase was eluted using 5 column volumes of elution buffer (10 mM sodium phosphate, 2 M NaCl, pH 7). Protein concentration was determined by BCA and analyzed by 10% SDS-PAGE.
- Heparanase-1 was detected with rabbit polyclonal antibodies directed against human heparanase (kindly provided by Israel Vlodaysky, Rappaport Faculty of Medicine, Haifa, Israel) followed by HRP-conjugated secondary antibody and ECL.
- HSG cells in serum-containing media were seeded in 24-well plates at a density of 0.5 ⁇ 10 5 cells/well. After 24 h, the medium was changed to Minimum Essential Medium Alpha Modification with washes for 24 h, then lacritin was added for 24 h to a final concentration of 10 nM in the same medium containing [3H]-thymidine (2 ⁇ Ci/ml). Cells were incubated alone with lacritin or together with increasing amount of bacterial-expressed human SDC1 ectodomain (hS1 ED) as a soluble inhibitor. Cells depleted of heparanase-1 or SDC1 were treated with lacritin in [3H]-thymidine 48 h after siRNA transfection.
- hS1 ED human SDC1 ectodomain
- heparanase depleted cells To rescue heparanase depleted cells, ⁇ 1 ⁇ g heparanase enriched from HSG or HEK293 cells using heparin affinity column or 0.0001 units bacterial heparitinase (Seikagaku America) was added together with lacritin and [3H]-thymidine for 24 h. [3H]-thymidine incorporation was stopped by placing on ice. Cultures were washed twice with ice-cold PBS, fixed with cold and then RT TCA (10%) for 10 min each, washed twice with RT PBS, collected in 1 N NaOH, neutralized with 1 N HCl, and then transferred to liquid scintillation vials for measurement.
- SDC1 bound to beads was digested with chondroitin ABC lyase (MP Biochemicals, Aurora Ohio) for 3 h at 37° C., eluted with 2 M NaCl and then subjected to eliminative cleavage and reduction of HS by adjusting to 100 mM NaOH/1 M NaBH 4 for 24 h at 37° C. Released HS was neutralized by drop wise addition of 1M HCl and subjected to Sepharose CL-6B column (1 ⁇ 57 cm) gel filtration chromatography in PBS at a flow rate 16 ml/h. Radioactivity was measured by liquid scintillation counting. The void volume (V0, fraction 26) and total column volume (Vt, fraction 62) were respectively determined using dextran blue and sodium dichromate as markers.
- chondroitin ABC lyase MP Biochemicals, Aurora Ohio
- Lacritin promotes epithelial proliferation at low nanomolar levels, suggesting a cell surface binding K d in the nanomolar range sufficient for affinity purification of its receptor.
- An apparent 190 kDa cell surface protein eluted from lacritin, but not control, columns after incubation with detergent lysates of surface biotinylated human salivary ductal (HSG) cells in buffer containing physiological levels of salt FIG. 1 ).
- Sequencing identified the 190 kDa protein as a multimer of human SDC1, a transmembrane proteoglycan that acts as a co-receptor for mitogenic signaling by binding heparin-binding growth factors such as FGFs, HGFs, Wnts, Hhs, and HGFs via its HS glycosaminoglycan chains (Alexander et al., 2000; Esko and Selleck, 2002).
- heparin-binding growth factors such as FGFs, HGFs, Wnts, Hhs, and HGFs via its HS glycosaminoglycan chains
- Lacritin-bound SDC1 was consistently detected in the pellet, implying that the ligation was not solubilized by heparitinase/chondroitinase digestion and therefore may involve the core protein. In keeping with this possibility, lacritin did not target SDC2 or SDC4 ( FIG. 2C ) that share HS chains but only 27-28% ectodomain identity with SDC1. FGF2 as expected bound all three syndecans via heparitinase cleavable HS ( FIG. 2B , C).
- heparanase-sensitive HS sterically blocks lacritin binding to a latent core protein site in native SDC1. If this is true, heparitinase digestion of native SDC1 should promote lacritin binding (FIG. 7 A).
- SDC1 from cell lysates was purified on FGF2-GST, washed, salt eluted, heparitinase digested, and then incubated with lacritin-intein (lane 1, 0.5 M NaCl eluate; lane 2, 1.0 M NaCl eluate).
- SDC2 and SDC4 from cell lysates were individually purified on FGF2-GST, washed, salt eluted, heparitinase digested, and then also incubated with lacritin-intein (SCD2: lane 3, 0.5 M NaCl eluate; lane 4, 1.0 M NaCl eluate; and SCD4: lane 5, 0.5 M NaCl eluate; lane 6, 1.0 M NaCl eluate).
- lacritin-intein SCD2: lane 3, 0.5 M NaCl eluate; lane 4, 1.0 M NaCl eluate; and SCD4: lane 5, 0.5 M NaCl eluate; lane 6, 1.0 M NaCl eluate.
- Affinity precipitates were heparitinase/chondroitinase (+) treated prior to SDS-PAGE and blotting for SDC1, SDC2 or SDC4.
- FGF2-purified SDC1 but not FGF2-purified SDC2 or SDC4
- SDC4 can indeed bind lacritin after heparitinase treatment ( FIG. 7A , lanes 1, 2), presumably by exposing a hidden site.
- Heparanase-1 is abundantly expressed and when knocked-down reduced lacritin-dependent proliferation to background in a dose dependent manner. Importantly, the lowest effective doses did not affect EGF-dependent mitogenesis and depleted cells were rescued by addition of exogenous heparanase or heparitinase ( FIG. 8C ). In depleted cells without lacritin, neither had any effect (FIG. S2), thus eliminating the possibility that rescue was instead from heparanase signaling (Gingis-Velitsky et al., 2004). Heparanase-2 siRNA also had no effect ( FIG.
- each pool was isolated by affinity precipitation from 35 SO 4 -labeled cell lysates. After chondroitinase digestion, and then elution with salt, HS was cleaved from the core protein with NaBH4 and analyzed by CL-6B gel filtration chromatography ( FIG. 8D ).
- HS from the lacritin pool was bimodal with most 35 SO 4 eluting with a Kav of 0.75-0.8. This corresponds to approximately 4-5 kDa. Both estimates are based on Waterson's standard curve (Waterson, 1971). Interestingly, lower molecular weight HS was eliminated by heparanase-1 depletion ( FIG. 8D ). Taken together, these data suggest a mechanism whereby SDC1's HS-rich N-terminus is partially deglycanated by heparanase-1 to facilitate lacritin binding and signaling to mitogenic COX-2.
- mice Sdc4 contains a high affinity cell-binding domain proximal to HS attachment sites (McFall and Rapraeger, 1997, 1998).
- the ectodomains of syndecan core proteins mediate a number of morphogenetic and homeostatic events.
- Lactitin's preference for heparanase-deglycanated SDC1 core protein is an interesting cell targeting strategy that successfully appropriates a ubiquitous proteoglycan for a role as a restrictive cell surface binding protein. That this is feasible is a reflection of the rarity of SDC1 as a part-time or hypoglycosylated proteoglycan and the lack of general ectodomain sequence conservation among syndecans. Focal heparanase release may regulate lacritin's mitogenic and prosecretory activity with unusual accuracy.
- Focal heparanase degradation of cell surface and extracellular matrix HS is implicated in glandular morphogenesis (Zcharia et al., 2004), stem cell migration (Zcharia et al., 2005) and cell survival (Cohen et al., 2005). It also plays a central role in inflammation and cancer (Reiland et al., 2004). Activated endothelial (Chen et al., 2004) and T cells secrete heparanase during inflammation (Fridman et al., 1987).
- Sdc1 is required for Wnt-dependent breast cancer in mice (Alexander et al., 2000), and in human cancers is upregulated in some but not others coincident with a role in early proliferative events (Ding et al., 2005). Thus, lacritin, heparanase, and SDC1 together potentially offer a new paradigm for some human breast cancers.
- proximal signaling elements As G ⁇ i or G ⁇ o/PKC ⁇ -PLC/Ca2+/calcineurin/NFATC1/COX-2 and G ⁇ i or G ⁇ o/PKC ⁇ -PLC/PLD1/mTOR (Wang et al., submitted). Both are ERK1 and ERK2-independent and thus contrast with SDC1 cytoskeletal signaling.
- Lacritin signaling may thus involve a G-protein coupled receptor or G-protein dependent ion channel that gains ligand affinity as a consequence of lacritin immobilization on SDC1.
- Heparanase is an ‘on’ switch for lacritin binding to syndecan-1 ( FIG. 12A ; Ma et al, '06) that in turn appears to facilitate activation of a receptor.
- the receptor has the signaling characteristics of a G ⁇ i or G ⁇ o coupled receptor (GPCR; Wang et al, '06).
- GPCR G ⁇ i or G ⁇ o coupled receptor
- the Inspire Pharmaceutical product INS365 for dry eye is a UTP analogue.
- Latent heparanase is constitutively expressed by all layers of the normal corneal epithelium in mice (Berk et al, '04). Heparanase has been implicated in glandular morphogenesis, epidermal stem cell migration and cell survival.
- Lacritin N-24 Partially Inhibits 125I-Iodoclonidine Binding to the Alpha-2C Adrenergic Receptor.
- FGF2 displays low affinity binding to FGFR1 with affinity enhanced by coincident binding to syndecan-1, heparin or heparan sulfate. If we are correct that syndecan-1 increases lacritin's affinity for a G-protein coupled receptor (GPCR), possibly some low affinity GPCR binding can be detected without syndecan-1 in low salt.
- GPCR G-protein coupled receptor
- a low salt screen of 31 immobilized human GPCRs in which 10 nM lacritin, N-24 or C-25 were asked to compete with 125I-receptor ligand for receptor binding. Cutoff is 50% inhibition.
- ADRA2C is G ⁇ i or G ⁇ o coupled (pertussis toxin sensitive) and expressed by normal human conjunctival (Diebold et al, '05) and corneal (Huang et al, '95) epithelia. ADRA2C is best known as a neural receptor involved in the regulation of sympathetic neurotransmitter release. Little is known of its role on epithelial cells.
- Lacritin N-Terminal Deletion Analysis Suggests a Putative Signaling Receptor Binding Site. Syndecan-1 binds lacritin's C-terminus (Ma et al, '06). Where might the hypothetical signaling receptor bind? A series of lacritin N-terminal deletion mutants were developed, expressed and purified by our JMU collaborators. Subconfluent HCE-T cells in serum-free medium were treated with each in our standard 3H-thymidine mitogenesis assay. N-24, N-35, N-45, N-55, N-65 and lacritin are all mitogenic. Activity is lost when the amino acids KSIVEK are removed from N-65.
- lacritin-b lacks the sequence SIVEKSILLTE (Ma et al, '07), and alternative splice form ‘lacritin-c’ has a completely novel C-terminus, lacking both this site and the syndecan-1 binding site. This suggests that lacritin-b and -c would be inactive.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
- This application claims priority from U.S. Provisional Application Ser. No. 60/994,090, filed Sep. 17, 2007, titled Lacritin-Syndecan Interactions, which application is herein incorporated in its entirety by reference.
- This application is also related to U.S. Pat. No. 7,320,870; U.S. application Ser. No. 10/468,372 which published as 20040081984 on Apr. 29, 2004; U.S. application Ser. No. 11/596,506 which published as 20070207522 on Sep. 6, 2007 and WO 2008/033477, which patent, applications and publications are herein incorporated in their entirety by referenced.
- This invention was made with United States Government support under Grant No. RO1 EY13143, awarded by National Institutes of Health. The United States Government may have certain rights in the invention.
- Cell surface proteoglycans are key players in epithelial morphogenesis. They form gradients that immobilize mitogens in proximity to signaling receptors (Wang and Laurie, 2004; Hacker et al., 2005; Radtke and Clevers, 2005), contribute to cellular adhesion by ligating the extracellular matrix (ECM) and at least in one case participate in integrin coupling (Beauvais et al., 2004; McQuade et al., 2006). Cell surface proteoglycans consist of a core protein and associated glycosaminoglycan chains, mainly heparan sulfate (HS). Current dogma states that mitogen, cytokine and ECM binding is largely the domain of the anionic HS chains (Couchman 2003; Hacker et al., 2005). HS chains are generated by a complement of Golgi polymerases, epimerase, and sulphotransferases during post-translational modification. Each is thought to vary in relative activity by cell or tissue type (Perrimon and Bernfield, 2000). Thus within a given epithelium or endothelium, a structurally similar HS chain can be attached to genetically distinct core protein (Zako et al., 2003).
- New work has shed light on how HS proteoglycan specificity is generated in development and disease. Most involve extracellular enzymes that affect cell surface HS proteoglycans in unexpected ways. Removal of certain HS 6-O-sulfates by endo-6-O-sulfatases Sulf1 and Sulf2 disrupts the binding of the BMP inhibitor Noggin, leading to its dispersal and establishment of BMP signaling (Viviano et al., 2004). In contrast, this same HS modification diminishes FGF binding and assembly with its signaling receptor (Dai et al., 2005). In another extracellular modification mechanism, HS cleavage by heparanase generates soluble fragments of HS that form complexes of FGF-HS and trigger cellular proliferation, migration, and angiogenesis (Kato et al., 1998). In another mechanism, matrix metalloproteinase-7-dependent shedding of the entire syndecan ectodomain promotes cancer-associated upregulation of glypican-1 and tumor growth (Ding et al., 2005).
- In addition to its HS-dependent signaling mechanisms, recent work has shown that the syndecan core proteins themselves participate as cell surface receptors. Their extracellular protein domains regulate the activation of integrins (Beauvais et al. 2003; Beauvais et al., 2004; McQuade et al. 2006), bind growth factors, including Wnt, midkine and pleitrophin (Capurro et al, 2005; Deepa et al. 2004), and disrupt carcinoma activity when added as recombinant competitors, presumably by disrupting their assembly with other signaling receptors at the cell surface.
- There is a long felt need in the art for methods and compositions to identify and regulate the signaling pathways of lacritin and syndecan. The present invention satisfies these needs.
- Here we report on a novel mechanism of syndecan-1 (SDC1) signaling that relies on a direct binding interaction of the extracellular core protein domain of the syndecan and modification of the proteoglycan by HS-modifying enzyme. The mechanism involves the partially characterized prosecretory mitogen lacritin discovered as a consequence of a search for epithelial differentiation factors (Sanghi et al., 2001). Lacritin is a small (12.3 kDa) epithelial-selective human glycoprotein secreted in tear protein (accession Q9GZZ8). Lacritin signals to STIM1, mTOR and NFATC1 via rapid PKCα dephosphorylation and PLD activation (Wang et al., 2006) to potentially regulate differentiation, renewal and secretion by the non-germative exocrine epithelia that it preferentially targets. With the exception of pancreatic β-cells (Dor et al., 2004), mechanisms of non-germative epithelial differentiation and renewal are poorly understood. Lacritin deletion analysis identified a C-terminal mitogenic domain with amphipathic alpha-helical structure (Wang et al., 2006) common to many ligand-receptor or ligand-ligand binding sites (Barden et al, 1997; Siemeister et al., 1998). We report here that lacritin's C-terminus targets the SDC1 core protein as a prerequisite for mitogenesis. A second and novel prerequisite is prior modification or removal of HS from the syndecan by heparanase-1. We postulate that the localized action of heparanase converts a widely expressed cell surface proteoglycan into a localized lacritin-binding protein that is required for mitogenic signaling.
- The present invention is based on the discovery that lacritin interacts with syndecan, as well as novel regulation of syndecan. The present invention is directed to the regulation of lacritin-syndecan interactions and the associated signal transduction pathway and events and processes regulated by this pathway. In one aspect, regulation of the pathway is useful to promote ocular cell survival, and more particularly to promote ocular cell survival in the presence of an environmental insult. The invention is also directed to the use of lacritin to prevent and treat corneal infections and inflammation. The invention is further directed to the use of lacritin to promote corneal wound repair following environmental insult or surgical procedures of the cornea. The invention is also directed to the use of lacritin as a mitogen for only specific epithelial cells.
- In one aspect, the invention encompasses a composition for treating or preventing a disease, disorder, or condition which is regulated or effected by lacritin via a lacritin-syndecan interaction and signaling pathway as described herein. In one aspect, the signaling pathways are PKC-α-dependent NFAT and mTOR pathways. In one aspect, the compounds comprise siRNA.
- Lacritin is a selective mitogen for only certain epithelial cells. In one embodiment, the invention provides a method of inducing proliferation of epithelial cells which are sensitive to induction of proliferation by lacritin and fragments, derivatives, and homologs thereof.
- In one aspect, proliferation can be inhibited or blocked using methods to inhibit lacritin, to inhibit lacritin-syndecan interaction, and by inhibiting the downstream signaling pathway induced by lacritin-syndecan interactions (for example, with siRNA).
- In one aspect, proliferation can be stimulated by stimulating or enhancing lacritin, lacritin-syndecan interaction, syndecan modification, and by stimulating the downstream signaling pathway induced by lacritin-syndecan interactions.
- In one embodiment, the present invention provides methods and compositions for regulating or modifying syndecan to modulate its interaction and binding with lacritin. In one aspect, the invention provides methods and compositions for heparanase modification of syndecan. In one aspect, the entire heparan sulfate moiety is removed. In another aspect, the invention provides methods and compositions for deglycanating syndecan.
- One aspect provides a fusion protein comprising syndecan-1 and lacritin. In one embodiment only the N-terminal portion of syndecan-1 is present in a fusion protein with lacritin, for example, amino acids 1-51 of syndecan (the fusion protein is prepared by methods available to those of skill in the art (including recombinant techniques), as an example, the preparation of a fusion protein is outlined in
FIG. 16 ). Thus, heparanase or other factors would not be needed for the interaction of lacritin and syndecan. This fusion protein can be used in any of the methods described herein including epithelial proliferation, protection against inflammation and aid in wound healing after an injury or an insult to the eye (e.g., laser eye surgery including lasik surgery and photorefractive keratectomy (PRK)) or in preventing injury or insult to the eye (e.g., prior to eye surgery). - In one embodiment, methods and compositions useful for regulating heparanase are encompassed within the invention.
- In one embodiment, the present invention provides methods and compositions for targeting the binding/interaction regions of lacritin and syndecan as described herein. In one aspect, the domain on lacritin is at about
amino acid residues 100 and 109. - In another embodiment, the invention provides a method of treating or preventing diseases, disorders, or conditions in a subject in need thereof by methods and compositions encompassed within the present invention.
- The invention further provides a kit for administering the compositions of the invention.
- Various aspects and embodiments of the invention are described in further detail below.
-
FIG. 1 . Lacritin affinity purification of cell surface SDC1. Detergent lysates of surface biotinylated HSG cells were incubated overnight in detergent and physiological salt with intein-chitin columns either lacking (A) or containing (B) lacritin. After extensive washing in the same buffer, the columns were eluted with 1 M NaCl and eluted proteins were identified by blotting with streptavidin-peroxidase. A predominant 190 kDa biotinylated protein eluting from the lacritin column was identified by mass spectrometry as human SDC1. -
FIG. 2 . Lacritin binding to SDC1 is independent of complete HS/CS glycosaminoglycans. (A) Lacritin affinity precipitation of human SDC1 multimers stably expressed by HEK293T cells. Lacritin-intein beads were incubated with cell lysates, washed extensively, and treated with heparitinase I/chondroitinase ABC. Pellet (P) and supernatant (S) from the centrifuged digest were then blotted with mAb B-B4 for SDC1 core protein. (B) Lacritin-intein, lacritin-GST, FGF2-GST, intein and GST beads were incubated with lysates from the same HEK293T cells stably expressing human SDC1. Precipitates were washed, treated, centrifuged and blotted identically as above. (C) Lacritin-intein and FGF2-GST beads were incubated with lysate of HEK293T cells stably expressing human SDC2 or lysate of another HEK293T cell line stably expressing human SDC4. Beads were washed, treated and centrifuged identically as above. Blots were detected with anti-SDC2 mAb L-18 or anti-SDC4 mAb N-19 respectively. (A) shows both 190 and 80 kDa bands. (B) and (C), and all subsequent figures show the 80 kDa band which is more predominant in HEK293T transfectants. -
FIG. 3 . Lacritin's C-terminus binds SDC1. (A) Schematic diagram of lacritin with dotted lines indicating N- and C-terminal truncations. All lacritin truncations were expressed as intein fusion proteins for affinity precipitation. Asterisk indicates mitogenic domain (Wang et al, submitted), and boxes represent PSIPRED-predicted alpha helices. (B) Lacritin-, C-5-, C-10-, C-15-, C-25- and C-59-intein beads were incubated with lysates from HEK293T cells stably expressing human SDC1. Beads were washed and treated with heparitinase I/chondroitinase ABC. The digests were centrifuged, and pellets (P) and supernatants (S) blotted with mAb B-B4 for SDC1 core protein, all as inFIG. 2 . (C) Incubation of lacritin-, N-15- and N-24-intein beads with the same human SDC1 lysates was followed with identical washing, heparitinase I/chondroitinase ABC digestion, centrifugation and B-B4 mAb blotting. Lys, lysate. -
FIG. 4 . Lacritin-SDC1 binding is inhibited by soluble hS1ED, lacritin and N-24, but not by C-25, C-59, HS, CS, SDC2 or SDC4. (A) Top row, lacritin-intein beads were incubated with human SDC1 lysates from stably expressing HEK293T cells in the presence of increasing amounts of soluble HS (70-700 μg), HS (700 μg) plus CS (700 μg), lacritin (14-700 μg) or no inhibitor (−). Quantity of soluble inhibitor was calibrated relative to the approximately 7-8 μg of human SDC1 elutable from lacritin-intein beads with 1 M NaCl. After incubation, beads were washed extensively and treated with heparitinase I/chondroitinase ABC. The digests were centrifuged, and pellets blotted with mAb B-B4 for SDC1 core protein, as inFIG. 2 . Bottom row, lacritin-intein beads were incubated with human SDC1 lysates in the presence of soluble N-24, C-25, C-59 (14 μg of each), increasing amounts of bacterially expressed human SDC1 ectodomain (hS1ED; 35-700 n), or with HEK293T cell-expressed native SDC2 or native SDC4 (70 μg of each). Beads were washed and treated identically as above. (B) Quantification of inhibition binding. -
FIG. 5 . SDC1 is required for lacritin-dependent mitogenesis and COX2 expression. (A) Proliferation assay in which HSG cells were grown for 24 h in serum-free media containing 10 nM lacritin, 10 nM C-25 lacritin or FBS in the absence or presence of increasing amounts of soluble hS1ED. (B) Identically performed proliferation assay in which HSG cells were treated with 10 nM lacritin orFBS 48 h after being mock transfected, or transfected with 10 nM of Ambion's negative control siRNA #1 (neg), 1-100 nM SDC1 siRNA, or 10 nM SDC2 siRNA. (C) Above, RT-PCR and Western blotting of mock vs SDC1 siRNA (10 nM)-treated cells. RT-PCR is for SDC1 and SDC2 mRNAs. Blotting is with mAb B-B4 for SDC1 core protein, or with anti-GAPDH. Below, RT-PCR for SDC2 mRNA in mock transfected cells or cells transfected with 10 nM SCD2 siRNA. (D) RT-PCR of COX2 expression by HSG cells without (−) or with (+) 10 nM lacritin stimulation. 48 h earlier the cells were mock transfected or transfected with 10 nM SDC1, 10 nM SDC2 or 1 nM heparanase-1 (HPSE-1) siRNAs. At bottom is GAPDH expression. -
FIG. 6 . Lacritin and FGF2 bind different forms of cell surface SDC1. (A) Sequential affinity precipitation assays. Lanes 1-3, lysate from human SDC1 stably expressing HEK293T cells was sequentially incubated with three rounds of fresh FGF2-GST beads. Half of the final depleted lysate was then incubated with lacritin-intein beads (lane 4) and the other half was methanol precipitated (lane 9). Similarly in lanes 5-7, a different aliquot of lysate from the same cells was sequentially incubated with three rounds of fresh lacritin-intein beads. Half of the final depleted lysate was then incubated with FGF2-GST beads (lane 8) and the other half was methanol precipitated (lane 10). Beads were washed and treated with heparitinase I/chondroitinase ABC. The digests were centrifuged, and pellets (P) and supernatants (S) blotted with mAb B-B4 for SDC1 core protein. Respectively shown are digest supernatants (lanes 1-3 and 8) and pellets (lanes 4-7) as per heparitinase release of FGF2-bound or resistance of lacritin-bound SDC1. (B) HEK293T cells stably expressing human SDC1 were either lysed as usual, or first briefly trypsinized (<5 min; 0.05%) then treated with serum to inactivate trypsin, washed and lysed. Both lysates were incubated with lacritin-intein beads. Beads were washed, treated with heparitinase I/chondroitinase ABC. The digests were centrifuged, and pellets (P) and supernatants (S) blotted with mAb B-B4 for SDC1 core protein. (C) Lysates from HEK293T cells stably expressing human SDC1 were incubated with lacritin-intein beads. Beads were washed and either left untreated (lane 1) or treated with heparitinase I/chondroitinase ABC (lanes 2, 3). The treated sample was centrifuged. Pellet (P; lane 2), supernatant (S; lane 3), untreated precipitate (lane 1), starting lysate (lane 4) and lacritin-intein solubilized from fresh lacritin-intein beads were blotted with mAb 3G10 for desaturated uronates in SDC1. -
FIG. 7 . Bacterial heparitinase digestion exposes FGF2-bindable SDC1 to lacritin-binding via a domain in SDC1's N-terminal 50 amino acids. (A) Human SDC1, SDC2 and SDC4 from stably expressing HEK293T cells were individually purified on FGF2-GST, eluted (0.5 and 1 M NaCl, respectivelylanes 1 and 2 [SDC1],lanes 3 and 4 [SDC2],lanes 5 and 6 [SDC4]), then treated with heparitinase I/chondroitinase ABC (2 h) and incubated with lacritin-intein beads. Blotting is respectively with mAb B-B4 for SDC1, polyclonal antibody L-18 for SDC2 or polyclonal N-19 for SDC4—all core protein specific. (B) Schematic diagram of human SDC1 with the dotted line indicating truncation sites in the ectodomain forming deletion constructs: ‘del 1-51’, ‘del 51-252’, and ‘del 51-310’. Boxes represent PSIPRED-predicted alpha helices. Wavy lines represent HS and CS. TM, transmembrane domain. (C) Comparative incubation of FGF2-GST and lacritin-intein beads with human SDC1 or human SDC1 ‘del 1-51’ lysates from stably expressing HEK293T cells. After incubation, beads were washed extensively, then either treated with heparitinase I/chondroitinase ABC (+) or left untreated (−). Beads were centrifuged, and pellets (P) and supernatants (S) blotted with mAb B-B4 for SDC1 core protein. Lysate from HEK293T cells stably expressing SDC1 ‘del 1-51’ is blotted inlanes -
FIG. 8 . Heparanase is expressed by HEK293T and HSG cells and is required for lacritin-dependent mitogenesis. (A) Lysates of HSG cells (lane 1) and HEK293T cells stably expressing human SDC1 (lanes 2), versus 2 M NaCl eluant of each after incubation with HiTrap heparin affinity columns (respectivelylanes 3, 4). Blotting is with polyclonal anti-human heparanase-1 (HPSE1) antibody. (B) Lysates from HSG cells that had been mock transfected, or transfected with 1 nM heparanase-1 siRNA. Blotting is with polyclonal anti-human HPSE1 or anti-tubulin antibodies. (C) Proliferation assay in which HSG cells were treated with 10 nM lacritin or 1nM EGF 48 h after being mock transfected, or transfected with 10 nM of Ambion's negative control siRNA #1 (neg), 1-100 nM HPSE1 siRNA, or 1 nM HPSE2 siRNA. Some HPSE1 siRNA cells were lacritin treated for 24 h in the presence of 1 μg of heparanase-enriched eluant (A, above) from HEK293T cells stably expressing SDC1 (‘1 nM+HPSE’) or 0.0001 U of bacterial heparitinase. (D) Sepharose CL-6B gel filtration chromatography of HS from lacritin and FGF2 affinity enriched SDC1 isolated from normal or HPSE1 depleted HSG cells. Lysates from cells labeled with 50 μCi/ml Na2 35SO4 in DMEM for 48 h were affinity precipitated with FGF2-GST or lacritin-intein. Equal microgram amounts of SDC1 bound to beads was digested with chondroitin ABC lyase to remove CS, eluted with 2 M NaCl and then subjected to NaBH4 eliminative cleavage. Released HS was neutralized by drop wise addition of 1 M HCl and then subjected to Sepharose CL-6B gel filtration chromatography to compare relative size of HS chains. V0, void volume (dextran blue); Vt, total volume (sodium dichromate). -
FIG. 9 . Proposed model of epithelial cell targeting by lacritin. Deglycanated core protein of SDC1 targets the epithelial selective prosecretory mitogen lacritin. (i) Binding requires prior partial or complete removal of HS chains by endogenous HPSE1. (ii) Binding is mutually specified by lacritin's C-terminal mitogenic domain and SDC1's N-terminus. -
FIG. 10 . Size heterogeneity of native SDC1 is attributable to its HS and CS chains. Lysates of HSG and HEK293T cells stably expressing human SDC1 either without (−) or with (+) heparitinase I/chondroitinase ABC digestion. Blotting is with mAb B-B4 for SDC1 core protein. -
FIG. 11 . Heparanase and heparitinase alone are not mitogenic for HSG cells. Mitogenic assay in which HPSE1-depleted HSG cells were incubated for 24 h with 1 μg of heparanase (enriched fraction from HEK293T) or with 0.0001 U of bacterial heparitinase in the presence of 3H-thymidine. FBS serves as a positive control. -
FIG. 12 . A, Heparanase-dependent signaling. Removal of heparan sulfate chain(s) from syndecan-1 unblocks a lacritin binding site on an N-terminal domain of the core protein of syndecan-1 (Ma et al, '06). Syndecan-1 binding may improve lacritin's affinity for its G-protein coupled receptor (possibly ADRA2C; Ma and Laurie, unpublished), thereby activating calcineurin and mTOR signaling towards ocular surface wetting and renewal. B, Equal protein loads of human tears from normal and dry eye patients blotted for heparanase. C, Detection of heparanase released into the medium of HSG (human salivary ductal) cells after stimulation for 2 hr with 10 μM ATP, 10 μM UTP or 10 nM lacritin. HCE-T cells are also responsive (not shown). -
FIG. 13 . Competition binding assay of lacritin, C-25 and N-24 for cloned GPCRs against radiolabeled agonist. N-24 inhibits 64% of 125I-iodoclonidine binding to the alpha-2C-adrenergic receptor (‘Alpha2C’ or ‘ADRA2C’). Significant inhibition is considered >50% (red dashed line). Determinations were repeated four times. Assay descriptions are available to an art worker and at http://pdsp.med.unc.edu/. The lacritin receptor is expected to be a GPCR because lacritin signaling is pertussis toxin sensitive (Wang et al, '06). ADRA2C couples to pertussis toxin sensitive G-proteins. -
FIG. 14 . LEFT, Lacritin-dependent mitogenesis by mock or lamin siRNA (negative control; ‘neg’) transfected cells contrasts with the full or partial inhibitory effect of transfecting with ADRA2C siRNA. D1-4 pool is most effective, followed by D1-3, D3 and D2 (asterisks). D1 and D4 have minimal effect. Cells were transfected with 10 nM pooled and individual siRNAs as described for PKC□ inFIG. 4 of Wang et al ('06). RIGHT, RT-PCR of ADRA2C at 0, 24 and 48 hrs after siRNA transfection with 10 nM D1-4. -
FIG. 15 . LEFT, new N-terminal lacritin deletions (N-24 previously tested) with full length lacritin and negative control C-25. A signaling receptor binding site (‘GPCR?’) is hypothetically suggested by loss of activity with removal of six N-amino acids (KSIVEK) from N-65. Black box indicates region of syndecan-1 (SDC1) binding. RIGHT, proliferation of subconfluent HCE-T cells treated with 10 nM of each deletion construct in serum-free medium (Wang and Laurie, unpublished). EGF serves as a positive control. Proliferation was determined by 3H-thymidine uptake (Wang et al, '06; Ma et al, '06). Absolute fold-increase values betweenFIGS. 14 and 15 are not comparable because lacritin preps differ. -
FIG. 15 . An example of a preparation of a lacritin/syndecan fusion protein. - FACS means fluorescence activated cell sorter
- HCE means human corneal epithelial
- HS means heparan sulfate
- HSG means human salivary gland
- IRB means institutional review board
- SDC1 means syndecan-1
- In describing and claiming the invention, the following terminology will be used in accordance with the definitions set forth below.
- The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
- As used herein, amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table:
-
Full Name Three-Letter Code One-Letter Code Aspartic Acid Asp D Glutamic Acid Glu E Lysine Lys K Arginine Arg R Histidine His H Tyrosine Tyr Y Cysteine Cys C Asparagine Asn N Glutamine Gln Q Serine Ser S Threonine Thr T Glycine Gly G Alanine Ala A Valine Val V Leucine Leu L Isoleucine Ile I Methionine Met M Proline Pro P Phenylalanine Phe F Tryptophan Trp W - The expression “amino acid” as used herein is meant to include both natural and synthetic amino acids, and both D and L amino acids. “Standard amino acid” means any of the twenty standard L-amino acids commonly found in naturally occurring peptides. “Nonstandard amino acid residue” means any amino acid, other than the standard amino acids, regardless of whether it is prepared synthetically or derived from a natural source. As used herein, “synthetic amino acid” also encompasses chemically modified amino acids, including but not limited to salts, amino acid derivatives (such as amides), and substitutions. Amino acids contained within the peptides of the present invention, and particularly at the carboxy- or amino-terminus, can be modified by methylation, amidation, acetylation or substitution with other chemical groups which can change the peptide's circulating half-life without adversely affecting their activity. Additionally, a disulfide linkage may be present or absent in the peptides of the invention.
- The term “amino acid” is used interchangeably with “amino acid residue,” and may refer to a free amino acid and to an amino acid residue of a peptide. It will be apparent from the context in which the term is used whether it refers to a free amino acid or a residue of a peptide.
- Amino acids have the following general structure:
- Amino acids may be classified into seven groups on the basis of the side chain R: (1) aliphatic side chains, (2) side chains containing a hydroxylic (OH) group, (3) side chains containing sulfur atoms, (4) side chains containing an acidic or amide group, (5) side chains containing a basic group, (6) side chains containing an aromatic ring, and (7) proline, an imino acid in which the side chain is fused to the amino group.
- The nomenclature used to describe the peptide compounds of the present invention follows the conventional practice wherein the amino group is presented to the left and the carboxy group to the right of each amino acid residue. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxy-terminal groups, although not specifically shown, will be understood to be in the form they would assume at physiologic pH values, unless otherwise specified.
- The term “basic” or “positively charged” amino acid as used herein, refers to amino acids in which the R groups have a net positive charge at pH 7.0, and include, but are not limited to, the standard amino acids lysine, arginine, and histidine.
- The term “antibody,” as used herein, refers to an immunoglobulin molecule which is able to specifically bind to a specific epitope on an antigen. Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins. Antibodies are typically tetramers of immunoglobulin molecules. The antibodies in the present invention may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies, Fv, Fab and F(ab)2, as well as single chain antibodies and humanized antibodies.
- “Antimicrobial agent,” as used herein, refers to any compound which impedes the growth of any microbes, or kills such microbes.
- As used herein, the term “antisense oligonucleotide” or antisense nucleic acid means a nucleic acid polymer, at least a portion of which is complementary to a nucleic acid which is present in a normal cell or in an affected cell. “Antisense” refers particularly to the nucleic acid sequence of the non-coding strand of a double stranded DNA molecule encoding a protein, or to a sequence which is substantially homologous to the non-coding strand. As defined herein, an antisense sequence is complementary to the sequence of a double stranded DNA molecule encoding a protein. It is not necessary that the antisense sequence be complementary solely to the coding portion of the coding strand of the DNA molecule. The antisense sequence may be complementary to regulatory sequences specified on the coding strand of a DNA molecule encoding a protein, which regulatory sequences control expression of the coding sequences. The antisense oligonucleotides of the invention include, but are not limited to, phosphorothioate oligonucleotides and other modifications of oligonucleotides.
- As used herein, the terms “complementary” or “complementarity” are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence “A-G-T,” is complementary to the sequence “T-C-A.”
- The terms “detect” and “identify” are used interchangeably herein.
- As used herein, a “detectable marker” or a “reporter molecule” is an atom or a molecule that permits the specific detection of a compound comprising the marker in the presence of similar compounds without a marker. Detectable markers or reporter molecules include, e.g., radioactive isotopes, antigenic determinants, enzymes, nucleic acids available for hybridization, chromophores, fluorophores, chemiluminescent molecules, electrochemically detectable molecules, and molecules that provide for altered fluorescence polarization or altered light scattering.
- An “enhancer” is a DNA regulatory element that can increase the efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.
- As used herein, the phrase “enhancing survival” refers to decreasing the amount of death, or the rate of death, in a cell population. Enhancing survival can be due to preventing cell death alone (e.g., cell death in conjunction with apoptosis), or decreasing the rate of cell death. The decrease in cell death can also result from indirect effects such as inducing proliferation of some cells, such indirect effect effectively replenishing at least some or all of a population of cells as they die. Enhancing survival of cells can also be accomplished by a combination of inducing proliferation and decreasing cell death, or the rate of cell death. “Promoting survival” and “enhancing survivability” are used interchangeably with “enhancing survival” herein.
- A “fragment” or “segment” is a portion of an amino acid sequence, comprising at least one amino acid, or a portion of a nucleic acid sequence comprising at least one nucleotide. The terms “fragment” and “segment” are used interchangeably herein. A fragment of a lacritin peptide which is used herein as part of a composition for use in a treatment or to elicit a lacritin effect, is presumed to be a biologically active fragment for the response to be elicited.
- As used herein, a “functional” biological molecule is a biological molecule in a form in which it exhibits a property or activity by which it is characterized. A functional enzyme, for example, is one which exhibits the characteristic catalytic activity by which the enzyme is characterized.
- As used herein, a “gene” refers to the nucleic acid coding sequence as well as the regulatory elements necessary for the DNA sequence to be transcribed into messenger RNA (mRNA) and then translated into a sequence of amino acids characteristic of a specific polypeptide.
- “Homologous” as used herein, refers to the subunit sequence similarity between two polymeric molecules, e.g., between two nucleic acid molecules, e.g., two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position. The homology between two sequences is a direct function of the number of matching or homologous positions, e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two compound sequences are homologous then the two sequences are 50% homologous, if 90% of the positions, e.g., 9 of 10, are matched or homologous, the two sequences share 90% homology. By way of example, the
DNA sequences 3′ATTGCC5′ and 3′TATGGC share 50% homology. - As used herein, “homology” is used synonymously with “identity.”
- The determination of percent identity between two nucleotide or amino acid sequences can be accomplished using a mathematical algorithm. For example, a mathematical algorithm useful for comparing two sequences is the algorithm of Karlin and Altschul (1990, Proc. Natl. Acad. Sci. USA 87:2264-2268), modified as in Karlin and Altschul (1993, Proc. Natl. Acad. Sci. USA 90:5873-5877). This algorithm is incorporated into the NBLAST and)(BLAST programs of Altschul, et al. (1990, J. Mol. Biol. 215:403-410), and can be accessed, for example at the National Center for Biotechnology Information (NCBI) world wide web site. BLAST nucleotide searches can be performed with the NBLAST program (designated “blastn” at the NCBI web site), using the following parameters: gap penalty=5; gap extension penalty=2; mismatch penalty=3; match reward=1; expectation value 10.0; and word size=11 to obtain nucleotide sequences homologous to a nucleic acid described herein. BLAST protein searches can be performed with the XBLAST program (designated “blastn” at the NCBI web site) or the NCBI “blastp” program, using the following parameters: expectation value 10.0, BLOSUM62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997, Nucleic Acids Res. 25:3389-3402). Alternatively, PSI-Blast or PHI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.) and relationships between molecules which share a common pattern. When utilizing BLAST, Gapped BLAST, PSI-Blast, and PHI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.
- The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically exact matches are counted.
- As used herein, the term “insult” refers to contact with a substance or environmental change that results in an alteration of normal cellular metabolism in a cell or population of cells. Environmental insults may include, but are not limited to, chemicals, environmental pollutants, heavy metals, viral or bacterial infections, changes in temperature, changes in pH, as well as agents producing oxidative damage, DNA damage, or pathogenesis. The term “insult” is used interchangeably with “environmental insult” herein.
- An “isolated nucleic acid” refers to a nucleic acid segment or fragment which has been separated from sequences which flank it in a naturally occurring to state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins, which naturally accompany it in the cell. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.
- As used herein, the term “lacritin polypeptide” and like terms refers to peptides comprising the amino acid sequence of SEQ ID NO: 4 and biologically active fragments, derivatives, and homologs thereof. As used herein, the term “biologically active fragments” or “bioactive fragment” of a lacritin polypeptide encompasses natural or synthetic portions of the amino acid sequence
-
(SEQ ID NO: 4) MKFTTLLFLAAVAGALVYAEDASSDSTGADPAQEAGTSKPNEEISGPA EPASPPETTTTAQETSAAAVQGTAKVTSSRQELNPLKSIVEKSILLTE QALAKAGKGMHGGVPGGKQFIENGSEFAQKLLKKFSLLKPWA. - As used herein, the term “syndecan-1” refers to peptides comprising the amino acid sequence of SEQ ID NO:12 and biologically active fragments, derivatives, and homologs thereof. As used herein, the term “biologically active fragments” or “bioactive fragment” of a syndecan-1 polypeptide encompasses natural or synthetic portions of the amino acid sequence
-
(SEQ ID NO: 12) MRRAALWLWLCALALSLQPALPQIVATNLPPEDQDGSGDDSDNFSGSG AGALQDITLSQQTPSTWKDTQLLTAIPTSPEPTGLEATAASTSTLPAG EGPKEGEAVVLPEVEPGLTAREQEATPRPRETTQLPTTHQASTTTATT AQEPATSHPHRDMQPGHHETSTPAGPSQADLHTPHTEDGGPSATERAA EDGASSQLPAAEGSGEQDFTFETSGENTAVVAVEPDRRNQSPVDQGAT GASQGLLDRKEVLGGVIAGGLVGLIFAVCLVGFMLYRMKKKDEGSYSL EEPKQANGGAYQKPTKQEEFYA. - As used herein, the term “heparanase” refers to peptides comprising the amino acid sequence of SEQ ID NO:13 and biologically active fragments, derivatives, and homologs thereof. As used herein, the term “biologically active fragments” or “bioactive fragment” of a heparanase polypeptide encompasses natural or synthetic portions of the amino acid sequence
-
(SEQ ID NO: 13) MLLRSKPALPPPLMLLLLGPLGPLSPGALPRPAQAQDVVDLDFFTQEP LHLVSPSFLSVTIDANLATDPRFLILLGSPKLRTLARGLSPAYLRFGG TKTDFLIFDPKKESTFEERSYWQSQVNQDICKYGSIPPDVEEKLRLEW PYQEQLLLREHYQKKFKNSTYSRSSVDVLYTFANCSGLDLIFGLNALL RTADLQWNSSNAQLLLDYCSSKGYNISWELGNEPNSFLKKADIFINGS QLGEDFIQLHKLLRKSTFKNAKLYGPDVGQPRRKTAKMLKSFLKAGGE VIDSVTWHHYYLNGRTATKEDFLNPDVLDIFISSVQKVFQVVESTRPG KKVWLGETSSAYGGGAPLLSDTFAAGFMWLDKLGLSARMGIEVVMRQV FFGAGNYHLVDENFDPLPDYWLSLLFKKLVGTKVLMASVQGSKRRKLR VYLHCTNTDNPRYKEGDLTLYAINLHNVTKYLRLPYPFSNKQVDKYLL RPLGPHGLLSKSVQLNGLTLKMVDDQTLPPLMEKPLRPGSSLGLPAFS YSFFVIRNAKVAACI. - As used herein, a “ligand” is a compound that specifically binds to a target compound. A ligand (e.g., an antibody) “specifically binds to” or “is specifically immunoreactive with” a compound when the ligand functions in a binding reaction which is determinative of the presence of the compound in a sample of heterogeneous compounds. Thus, under designated assay (e.g., immunoassay) conditions, the ligand binds preferentially to a particular compound and does not bind to a significant extent to other compounds present in the sample. For example, an antibody specifically binds under immunoassay conditions to an antigen bearing an epitope against which the antibody was raised. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular antigen. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with an antigen. See Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.
- As used herein, the term “linkage” refers to a connection between two groups. The connection can be either covalent or non-covalent, including but not limited to ionic bonds, hydrogen bonding, and hydrophobic/hydrophilic interactions.
- As used herein, the term “linker” refers to a molecule that joins two other molecules either covalently or noncovalently, e.g., through ionic or hydrogen bonds or van der Waals interactions.
- “Ocular surface,” as used herein, refers to the surface of the eye, particularly the corneal surface.
- The phrase “ocular surface-associated disease, disorder, or condition,” as used herein, refers to any disease, disorder or condition which directly or indirectly causes, or can cause, any of the problems or symptoms described herein regarding disease, disorders, or conditions of the ocular surface.
- “Operably linked” refers to a juxtaposition wherein the components are configured so as to perform their usual function. Thus, control sequences or promoters operably linked to a coding sequence are capable of effecting the expression of the coding sequence.
- A “marker” is an atom or molecule that permits the specific detection of a molecule comprising that marker in the presence of similar molecules without such a marker. Markers include, for example radioactive isotopes, antigenic determinants, nucleic acids available for hybridization, chromophors, fluorophors, chemiluminescent molecules, electrochemically detectable molecules, molecules that provide for altered fluorescence-polarization or altered light-scattering and molecules that allow for enhanced survival of an cell or organism (i.e. a selectable marker). A reporter gene is a gene that encodes for a marker.
- A “polylinker” is a nucleic acid sequence that comprises a series of three or more different restriction endonuclease recognitions sequences closely spaced to one another (i.e. less than 10 nucleotides between each site).
- As used herein, the term “promoter/regulatory sequence” means a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulator sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
- A “constitutive promoter is a promoter which drives expression of a gene to which it is operably linked, in a constant manner in a cell. By way of example, promoters which drive expression of cellular housekeeping genes are considered to be constitutive promoters.
- An “inducible” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only when an inducer which corresponds to the promoter is present in the cell.
- A “tissue-specific” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.
- As used herein, “nucleic acid,” “DNA,” and similar terms also include nucleic acid analogs, i.e. analogs having other than a phosphodiester backbone. For example, the so-called “peptide nucleic acids,” which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention.
- As used herein, the term “fragment” as applied to a nucleic acid, may ordinarily be at least about 20 nucleotides in length, typically, at least about 50 nucleotides, more typically, from about 50 to about 100 nucleotides, preferably, at least about 100 to about 200 nucleotides, even more preferably, at least about 200 nucleotides to about 300 nucleotides, yet even more preferably, at least about 300 to about 350, even more preferably, at least about 350 nucleotides to about 500 nucleotides, yet even more preferably, at least about 500 to about 600, even more preferably, at least about 600 nucleotides to about 620 nucleotides, yet even more preferably, at least about 620 to about 650, and most preferably, the nucleic acid fragment will be greater than about 650 nucleotides in length.
- Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.
- The term “peptide” encompasses a sequence of 3 or more amino acids wherein the amino acids are naturally occurring or synthetic (non-naturally occurring) amino acids. Peptide mimetics include peptides having one or more of the following modifications:
- 1. peptides wherein one or more of the peptidyl —C(O)NR— linkages (bonds) have been replaced by a non-peptidyl linkage such as a —CH2-carbamate linkage
- (—CH2OC(O)NR—), a phosphonate linkage, a —CH2-sulfonamide (—CH 2-S(O)2NR—) linkage, a urea (—NHC(O)NH—) linkage, a —CH2-secondary amine linkage, or with an alkylated peptidyl linkage (—C(O)NR—) wherein R is C1-C4 alkyl;
- 2. peptides wherein the N-terminus is derivatized to a —NRR1 group, to a NRC(O)R group, to a —NRC(O)OR group, to a —NRS(O)2R group, to a —NHC(O)NHR group where R and R1 are hydrogen or C1-C4 alkyl with the proviso that R and R1 are not both hydrogen;
- 3. peptides wherein the C terminus is derivatized to —C(O)R2 where
R 2 is selected from the group consisting of C1-C4 alkoxy, and —NR3R4 where R3 and R4 are independently selected from the group consisting of hydrogen and C1-C4 alkyl. - Synthetic or non-naturally occurring amino acids refer to amino acids which do not naturally occur in vivo but which, nevertheless, can be incorporated into the peptide structures described herein. The resulting “synthetic peptide” contain amino acids other than the 20 naturally occurring, genetically encoded amino acids at one, two, or more positions of the peptides. For instance, naphthylalanine can be substituted for tryptophan to facilitate synthesis. Other synthetic amino acids that can be substituted into peptides include L-hydroxypropyl, L-3,4-dihydroxyphenylalanyl, alpha-amino acids such as L-alpha-hydroxylysyl and D-alpha-methylalanyl, L-alpha.-methylalanyl, beta.-amino acids, and isoquinolyl. D amino acids and non-naturally occurring synthetic amino acids can also be incorporated into the peptides. Other derivatives include replacement of the naturally occurring side chains of the 20 genetically encoded amino acids (or any L or D amino acid) with other side chains.
- The term “fusion polypeptide” or “fusion protein” refers to a chimeric protein containing a reference protein (e.g., lacritin) joined at the N- and/or C-terminus to one or more heterologous sequences (e.g., a non lacritin polypeptide, such as syndecan). Polypeptide molecules are said to have an “amino terminus” (N terminus) and a “carboxy terminus” (C terminus) because peptide linkages occur between the backbone amino group of a first amino acid residue and the backbone carboxyl group of a second amino acid residue. The terms “N terminal” and “C terminal” in reference to polypeptide sequences refer to regions of polypeptides including portions of the N terminal and C terminal regions of the polypeptide, respectively. A sequence that includes a portion of the N terminal region of polypeptide includes amino acids predominantly from the N terminal half of the polypeptide chain, but is not limited to such sequences. For example, an N terminal sequence may include an interior portion of the polypeptide sequence including bases from both the N terminal and C terminal halves of the polypeptide. The same applies to C terminal regions. N terminal and C terminal regions may, but need not, include the amino acid defining the ultimate N terminus and C terminus of the polypeptide, respectively.
- The fusion proteins of the invention may be prepared by recombinant methods or by solid phase chemical peptide synthesis methods. Such methods have been known in the art since the early 1960's (Merrifield, 1963) (See also Stewart et al., Solid Phase Peptide Synthesis, 2 ed., Pierce Chemical Co., Rockford, Ill., pp. 11-12)) and have recently been employed in commercially available laboratory peptide design and synthesis kits (Cambridge Research Biochemicals). Such commercially available laboratory kits have generally utilized the teachings of Geysen et al. (1984) and provide for synthesizing peptides upon the tips of a multitude of “rods” or “pins” all of which are connected to a single plate. When such a system is utilized, a plate of rods or pins is inverted and inserted into a second plate of corresponding wells or reservoirs, which contain solutions for attaching or anchoring an appropriate amino acid to the pin's or rod's tips. By repeating such a process step, e.g., inverting and inserting the rod's and pin's tips into appropriate solutions, amino acids are built into desired peptides. In addition, a number of available FMOC peptide synthesis systems are available. For example, assembly of a polypeptide or fragment can be carried out on a solid support using an Applied Biosystems, Inc. Model 431A automated peptide synthesizer. Such equipment provides ready access to the peptides of the invention, either by direct synthesis or by synthesis of a series of fragments that can be coupled using other known techniques.
- The invention also includes a stable cell line that expresses a lacritin/syndecan-1 fusion protein, as well as an expression cassette comprising a nucleic acid molecule encoding the lacritin/syndecan-1 fusion protein, and a vector capable of expressing the nucleic acid molecule of the invention in a host cell. Preferably, the expression cassette comprises a promoter, e.g., a constitutive or regulatable promoter, operably linked to the nucleic acid sequence. In one embodiment, the expression cassette contains an inducible promoter. Also provided is a host cell, e.g., a prokaryotic cell or an eukaryotic cell such as a plant or vertebrate cell, e.g., a mammalian cell, including but not limited to a human, non-human primate, canine, feline, bovine, equine, ovine or rodent (e.g., rabbit, rat, ferret or mouse) cell, which comprises the expression cassette or vector of the invention, and a kit which comprises the nucleic acid molecule, expression cassette, vector, host cell or lacritin/syndecan-1 fusion protein.
- As used herein, the term “pharmaceutically acceptable carrier” includes any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents. The term also encompasses any of the agents approved by a regulatory agency of the US Federal government or listed in the US Pharmacopeia for use in animals, including humans.
- A “promoter” is a DNA sequence that directs the transcription of a DNA sequence, such as the nucleic acid coding sequence of a gene. Typically, a promoter is located in the 5′ region of a gene, proximal to the transcriptional start site of a structural gene. Promoters can be inducible (the rate of transcription changes in response to a specific agent), tissue specific (expressed only in some tissues), temporal specific (expressed only at certain times) or constitutive (expressed in all tissues and at a constant rate of transcription).
- A “core promoter” contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that enhance the activity or confer tissue specific activity.
- As used herein, the term “purified” and like terms relate to the isolation of a molecule or compound in a form that is substantially free of contaminants normally associated with the molecule or compound in a native or natural environment. The term “purified” does not necessarily indicate that complete purity of the particular molecule has been achieved during the process. A “highly purified” compound as used herein refers to a compound that is greater than 90% pure.
- A “subject” of experimentation, diagnosis or treatment is an animal, including a human.
- The term “substantially pure” describes a compound, e.g., a protein or polypeptide which has been separated from components which naturally accompany it. Typically, a compound is substantially pure when at least 10%, more preferably at least 20%, more preferably at least 50%, more preferably at least 60%, more preferably at least 75%, more preferably at least 90%, and most preferably at least 99% of the total material (by volume, by wet or dry weight, or by mole percent or mole fraction) in a sample is the compound of interest. Purity can be measured by any appropriate method, e.g., in the case of polypeptides by column chromatography, gel electrophoresis, or HPLC analysis. A compound, e.g., a protein, is also substantially purified when it is essentially free of naturally associated components or when it is separated from the native contaminants which accompany it in its natural state.
- A “substantially pure nucleic acid”, as used herein, refers to a nucleic acid sequence, segment, or fragment which has been purified from the sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins which naturally accompany it in the cell.
- A “therapeutic” treatment is a treatment administered to a subject who exhibits signs of pathology for the purpose of diminishing or eliminating those signs.
- A “therapeutically effective amount” of a compound is that amount of compound which is sufficient to provide a beneficial effect to the subject to which the compound is administered.
- As used herein, the term “treating” includes prophylaxis of the specific disorder or condition, or alleviation of the symptoms associated with a specific disorder or condition and/or preventing or eliminating said symptoms. A “prophylactic” treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs of the disease for the purpose of decreasing the risk of developing pathology associated with the disease. As used herein, the term “treating” includes alleviating the symptoms associated with a specific disease, disorder or condition and/or preventing or eliminating said symptoms.
- A “vector” is also meant to include a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “vector” includes an autonomously replicating plasmid or a virus. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, polylysine compounds, liposomes, and the like. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, plasmids, cosmids, lambda phage vectors, and the like.
- “Expression vector” refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses that incorporate the recombinant polynucleotide.
- As used herein, the term “wound” relates to a physical tear or rupture to a tissue or cell layer. A wound may occur by any physical insult, including a surgical procedure.
- The present invention is directed to uses of a human growth factor-like molecule, “lacritin,” and compositions comprising lacritin, or fragments, derivatives, or homologs thereof, and to its interaction with syndecan, and regulation of the pathways effected by such interaction. The invention also encompasses regulation and treatment of diseases, disorders, and conditions by regulating lacritin, lacritin-syndecan interactions, syndecan, and the pathways downstream from lacritin-syndecan interactions. The invention also encompasses use of nucleic acid sequences encoding lacritin, as well as the nucleic acid regulatory elements controlling the expression of lacritin.
- The full length ‘lacritin’ cDNA was previously cloned from a human lacrimal gland library, and the corresponding genomic gene has been cloned and sequenced, including 5.2 kb of upstream and 2.8 kb of downstream genomic sequence.
- In one embodiment, the present invention is directed to use of a purified polypeptide comprising the amino acid sequence of SEQ ID NOs: 4, 12 or 13, a bioactive fragment of SEQ ID NOs: 4, 12 or 13, or an amino acid sequence that differs from SEQ ID NOs: 4, 12 or 13 by one or more conservative amino acid substitutions. More preferably, the purified polypeptide comprises an amino acid sequence that differs from SEQ ID NOs: 4, 12 or 13 by 20 or less conservative amino acid substitutions, and more preferably by 10 or less conservative amino acid substitutions. Alternatively, the polypeptide may comprise an amino acid sequence that differs from SEQ ID NOs: 4, 12 or 13 by 1 to 5 alterations, wherein the alterations are independently selected from a single amino acid deletion, insertion, or substitution. Alternatively, the polypeptide comprises an amino acid sequence that is at about 85%, 90%, 95% or 99% identical to SEQ ID NOs: 4, 12 or 13. In one preferred embodiment a composition is provided comprising a polypeptide, selected from the group consisting of SEQ ID NOs: 4, 12 or 13 and a pharmaceutically acceptable carrier. In another preferred embodiment, the polypeptide or fragments thereof are of the mature processed lacritin selected from the group of fragments with up to 25 amino acids deleted from the C-terminus. In another embodiment, up to 25 amino acids are deleted from the N-terminus of SEQ ID NO:4, the full length lacritin.
- Physiological experiments recently performed using recombinant lacritin generated by E. coli suggests that lacritin is also a survival factor, i.e., longevity in cell culture was promoted by the addition of physiological amounts of lacritin. Methods for measuring wound healing are known in the art (reviewed in Woo et al., Experimental Eye Research, 80:633-642, 2000). Methods for measuring cell survival are known in the art and include various cellular, molecular, biochemical, and histological techniques.
- Lacritin is naturally produced in moderately large quantities by the lacrimal gland for release into the corneal tear film. The therapeutic potential of lacritin, and therefore the lacritin-syndecan interactions in promoting the health of the ocular surface is therefore considerable, particularly as environmental exposure to pollutants and UV exposure increases, and as the proportion of the population, suffering from Dry Eye expands.
- The cornea is the main refracting surface of the eye and is vulnerable to environmental hazards or insult including exposure (direct trauma, drying, radiant and ionizing energy), infectious agents (bacteria, viruses—notably herpes simplex and herpes zoster—fungi, and parasites), and inflammation, sometimes in association with systemic dermatologic disorders such as atopic dermatitis, cicatricial pemphigoid, rosacea, and erythema multiforme (Stevens-Johnson syndrome). Bacteria include pseudomonas. Keratitis is an inflammation or infection of the cornea. It is often associated with inflammation of the iris (iritis) or of the uveal tract—the iris, ciliary body, and choroid (uveitis). Keratitis combined with uveitis or iritis is seen commonly in Reiter's disease and occasionally Behcet's disease. Keratitis and uveitis may also occur with herpes simplex infection, in sarcoidosis, and in collagen vascular diseases.
- As described above, a host of mediators are implicated in the development and progression of corneal inflammation, such as the proinflammatory cytokines TNF-α, IL-1β, IL-6, and the chemokine IL-8. Also involved are the arachidonic acid-derived eicosanoids which are produced by the activity of cyclooxygenases (primarily PGE2), lipooxygenases (12 (s)-HETE) and cytochrome P450 (12 (r)-HETE). Therefore, in one embodiment of the invention, any method for enhancing lacritin-syndecan interactions and the signals resulting therefrom is useful as an antagonist to inflammatory processes such as those induced or supplemented by proinflammatory agents such as proinflammatory cytokines.
- In accordance with one embodiment, a method of reducing or preventing ocular cell death in a mammalian species after contact with an environmental insult, or in response to an ocular-associated disease, disorder, or condition is provided. The method comprises the steps of contacting the cells that have been exposed to the environmental insult to a composition comprising lacritin, or a fragment, derivative, or homolog thereof, as well as methods to enhance lacritin-syndecan interaction. As used herein, cells that are “exposed” to the environmental insult include those cells that have been directly contacted by the environmental insult, as well as those cells that suffer indirectly as a result of direct contact of other cells with the environmental insult. In one embodiment, the ocular cells comprise the corneal epithelial cells. In one embodiment, the exposed cells are contacted with a topically administered ophthalmic formulation comprising a lacritin polypeptide, or a derivative, fragment, or homolog thereof, as well as compounds to enhance lacritin-syndecan interactions.
- The lacritin comprising compositions or compositions comprising compounds which enhance lacritin-syndecan interaction of the present invention can be administered prophylactically to promote corneal epithelial cell survival in the presence of common environmental insults such as exposure to UV exposure or pollutants, particularly for those individuals that face excessive exposure to such elements. In another embodiment, the lacritin comprising compositions of the present invention are used to regulate an immune response to inflammation and/or bacterial infection. In another embodiment, a lacritin comprising composition can be administered to aid in the healing process following a surgical procedure to the eye, such as cataract or other vision-corrective surgical procedures. The invention encompasses all surgical procedures of the eye, including laser procedures.
- In accordance with one embodiment, a method is provided for treating infections of the eye. The method comprises the step of topically administering a composition comprising a lacritin polypeptide to the eye. In one embodiment, the composition further comprises an anti-microbial agent. Suitable ophthalmic anti-microbial agents are known to those skilled in the art and include those described in U.S. Pat. Nos. 5,300,296, 6,316,669, 6,365,636 and 6,592,907, the disclosures of which are incorporated herein. Examples of anti-microbial agents suitable for use in accordance with the present invention include benzalkonium chloride, benzethonium chloride, benzyl alcohol, chlorobutanol, chlorhexidine digluconate or diacetate, methyl and propyl hydroxybenzoate (parabens), phenylethyl alcohol, phenylmercuric acetate or nitrate, sorbic acid, and thimerosal.
- Current tear supplements are not popular with patients, in part because the relief obtained from such products is very brief (less than 15 min). Examples of the tear substitution approach include the use of buffered, isotonic saline solutions, aqueous solutions containing water soluble polymers that render the solutions more viscous and thus less easily shed by the eye. Tear reconstitution is also attempted by providing one or more components of the tear film such as phospholipids and oils. Examples of these treatment approaches are disclosed in U.S. Pat. No. 4,131,651 (Shah et al.), U.S. Pat. No. 4,370,325 (Packman), U.S. Pat. No. 4,409,205 (Shively), U.S. Pat. Nos. 4,744,980 and 4,883,658 (Holly), U.S. Pat. No. 4,914,088 (Glonek), U.S. Pat. No. 5,075,104 (Gressel et al.) and U.S. Pat. No. 5,294,607 (Glonek et al.) the disclosures of which are incorporated herein. Existing ophthalmic formulations may also include TGF-beta, corticosteroids, or androgens. All are non-specific for the eye and have systemic effects. In contrast, lacritin is highly restricted to the eye and is a natural constituent of human tears and the tear film.
- An ophthalmic formulation comprising lacritin, or fragments, homologs, or derivatives thereof (for example, an artificial tear fluids containing lacritin), is highly desirable due to the activity of lacritin and its localized effects. In accordance with one embodiment of the invention, compositions comprising lacritin are used to enhance corneal wound healing, and/or treat patients having deficient tear output. The lacritin compositions of the present invention can be formulated using standard ophthalmic components, and preferably, the compositions are formulated as solutions, suspensions, and other dosage forms for topical administration. Aqueous solutions are generally preferred, based on ease of formulation, biological compatibility (especially in view of the malady to be treated, e.g., dry eye-type diseases and disorders), as well as a patient's ability to easily administer such compositions by means of instilling one to two drops of the solutions in the affected eyes. However, the compositions may also be suspensions, viscous or semi-viscous gels, or other types of solid or semi-solid compositions.
- The compositions of the present invention may include surfactants, preservative agents, antioxidants, tonicity agents, buffers, preservatives, co-solvents and viscosity building agents. Various surfactants useful in topical ophthalmic formulations may be employed in the present compositions. These surfactants may aid in preventing chemical degradation of lacritin and also prevent the lacritin from binding to the containers in which the compositions are packaged. Examples of surfactants include, but are not limited to: Cremophor® EL, polyoxyl 20 ceto stearyl ether, polyoxyl 40 hydrogenated castor oil, polyoxyl 23 lauryl ether and poloxamer 407 may be used in the compositions. Antioxidants may be added to compositions of the present invention to protect the lacritin polypeptide from oxidation during storage. Examples of such antioxidants include, but are not limited to, vitamin E and analogs thereof, ascorbic acid and derivatives, and butylated hydroxyanisole (BHA).
- Existing artificial tears formulations can also be used as pharmaceutically acceptable carriers for the lacritin active agent. Thus in one embodiment, lacritin is used to improve existing artificial tear products for Dry Eye syndromes, as well as develop products to aid corneal wound healing. Examples of artificial tears compositions useful as carriers include, but are not limited to, commercial products, such as Tears Naturale®, Tears Naturale II®, Tears Naturale Free®, and Bion Tears® (Alcon Laboratories, Inc., Fort Worth, Tex.). Examples of other phospholipid carrier formulations include those disclosed in U.S. Pat. No. 4,804,539 (Guo et al.), U.S. Pat. No. 4,883,658 (Holly), U.S. Pat. No. 4,914,088 (Glonek), U.S. Pat. No. 5,075,104 (Gressel et al.), U.S. Pat. No. 5,278,151 (Korb et al.), U.S. Pat. No. 5,294,607 (Glonek et al.), U.S. Pat. No. 5,371,108 (Korb et al.), U.S. Pat. No. 5,578,586 (Glonek et al.); the foregoing patents are incorporated herein by reference to the extent they disclose phospholipid compositions useful as phospholipid carriers of the present invention.
- Other compounds may also be added to the ophthalmic compositions of the present invention to increase the viscosity of the carrier. Examples of viscosity enhancing agents include, but are not limited to: polysaccharides, such as hyaluronic acid and its salts, chondroitin sulfate and its salts, dextrans, various polymers of the cellulose family; vinyl polymers; and acrylic acid polymers. In general, the phospholipid carrier or artificial tears carrier compositions will exhibit a viscosity of 1 to 400 centipoises (“cps”). Preferred compositions containing artificial tears or phospholipid carriers and will exhibit a viscosity of about 25 cps.
- Topical ophthalmic products are typically packaged in multidose form. Preservatives are thus required to prevent microbial contamination during use. Suitable preservatives include: benzalkonium chloride, chlorobutanol, benzododecinium bromide, methyl paraben, propyl paraben, phenylethyl alcohol, edetate disodium, sorbic acid, polyquaternium-1, or other agents known to those skilled in the art. Such preservatives are typically employed at a level of from 0.001 to 1.0% w/v. Unit dose compositions of the present invention will be sterile, but typically unpreserved. Such compositions, therefore, generally will not contain preservatives.
- Because the gene promoter regulating lacritin gene expression is the most specific of any previously described lacrimal gland gene, the regulatory elements of this gene could be used to express other gene products in the eye. In particular, the lacritin gene promoter can be operably linked to a wide variety of exogenous genes to regulate the expression of the gene products to the lacrimal gland and/or used as gene therapy to treat Dry Eye syndromes.
- The peptides of the present invention may be readily prepared by standard, well-established techniques, such as solid-phase peptide synthesis (SPPS) as described by Stewart et al. in Solid Phase Peptide Synthesis, 2nd Edition, 1984, Pierce Chemical Company, Rockford, Ill.; and as described by Bodanszky and Bodanszky in The Practice of Peptide Synthesis, 1984, Springer-Verlag, New York. At the outset, a suitably protected amino acid residue is attached through its carboxyl group to a derivatized, insoluble polymeric support, such as cross-linked polystyrene or polyamide resin. “Suitably protected” refers to the presence of protecting groups on both the α-amino group of the amino acid, and on any side chain functional groups. Side chain protecting groups are generally stable to the solvents, reagents and reaction conditions used throughout the synthesis, and are removable under conditions which will not affect the final peptide product. Stepwise synthesis of the oligopeptide is carried out by the removal of the N-protecting group from the initial amino acid, and couple thereto of the carboxyl end of the next amino acid in the sequence of the desired peptide. This amino acid is also suitably protected. The carboxyl of the incoming amino acid can be activated to react with the N-terminus of the support-bound amino acid by formation into a reactive group such as formation into a carbodiimide, a symmetric acid anhydride or an “active ester” group such as hydroxybenzotriazole or pentafluorophenly esters.
- Examples of solid phase peptide synthesis methods include the BOC method which utilized tert-butyloxcarbonyl as the α-amino protecting group, and the FMOC method which utilizes 9-fluorenylmethyloxcarbonyl to protect the α-amino of the amino acid residues, both methods of which are well known by those of skill in the art.
- Incorporation of N- and/or C-blocking groups can also be achieved using protocols conventional to solid phase peptide synthesis methods. For incorporation of C-terminal blocking groups, for example, synthesis of the desired peptide is typically performed using, as solid phase, a supporting resin that has been chemically modified so that cleavage from the resin results in a peptide having the desired C-terminal blocking group. To provide peptides in which the C-terminus bears a primary amino blocking group, for instance, synthesis is performed using a p-methylbenzhydrylamine (MBHA) resin so that, when peptide synthesis is completed, treatment with hydrofluoric acid releases the desired C-terminally amidated peptide. Similarly, incorporation of an N-methylamine blocking group at the C-terminus is achieved using N-methylaminoethyl-derivatized DVB, resin, which upon HF treatment releases a peptide bearing an N-methylamidated C-terminus. Blockage of the C-terminus by esterification can also be achieved using conventional procedures. This entails use of resin/blocking group combination that permits release of side-chain peptide from the resin, to allow for subsequent reaction with the desired alcohol, to form the ester function. FMOC protecting group, in combination with DVB resin derivatized with methoxyalkoxybenzyl alcohol or equivalent linker, can be used for this purpose, with cleavage from the support being effected by TFA in dicholoromethane. Esterification of the suitably activated carboxyl function e.g. with DCC, can then proceed by addition of the desired alcohol, followed by deprotection and isolation of the esterified peptide product.
- Incorporation of N-terminal blocking groups can be achieved while the synthesized peptide is still attached to the resin, for instance by treatment with a suitable anhydride and nitrile. To incorporate an acetyl-blocking group at the N-terminus, for instance, the resin-coupled peptide can be treated with 20% acetic anhydride in acetonitrile. The N-blocked peptide product can then be cleaved from the resin, deprotected and subsequently isolated.
- To ensure that the peptide obtained from either chemical or biological synthetic techniques is the desired peptide, analysis of the peptide composition should be conducted. Such amino acid composition analysis may be conducted using high-resolution mass spectrometry to determine the molecular weight of the peptide. Alternatively, or additionally, the amino acid content of the peptide can be confirmed by hydrolyzing the peptide in aqueous acid, and separating, identifying and quantifying the components of the mixture using HPLC, or an amino acid analyzer. Protein sequenators, which sequentially degrade the peptide and identify the amino acids in order, may also be used to determine definitely the sequence of the peptide.
- Prior to its use, the peptide is purified to remove contaminants. In this regard, it will be appreciated that the peptide will be purified to meet the standards set out by the appropriate regulatory agencies. Any one of a number of a conventional purification procedures may be used to attain the required level of purity including, for example, reversed-phase high-pressure liquid chromatography (HPLC) using an alkylated silica column such as C4-, C8- or C18-silica. A gradient mobile phase of increasing organic content is generally used to achieve purification, for example, acetonitrile in an aqueous buffer, usually containing a small amount of trifluoroacetic acid. Ion-exchange chromatography can be also used to separate peptides based on their charge.
- It will be appreciated, of course, that the peptides or antibodies, derivatives, or fragments thereof may incorporate amino acid residues which are modified without affecting activity. For example, the termini may be derivatized to include blocking groups, i.e. chemical substituents suitable to protect and/or stabilize the N- and C-termini from “undesirable degradation”, a term meant to encompass any type of enzymatic, chemical or biochemical breakdown of the compound at its termini which is likely to affect the function of the compound, i.e. sequential degradation of the compound at a terminal end thereof.
- Blocking groups include protecting groups conventionally used in the art of peptide chemistry which will not adversely affect the in vivo activities of the peptide. For example, suitable N-terminal blocking groups can be introduced by alkylation or acylation of the N-terminus. Examples of suitable N-terminal blocking groups include C1-C5 branched or unbranched alkyl groups, acyl groups such as formyl and acetyl groups, as well as substituted forms thereof, such as the acetamidomethyl (Acm) group. Desamino analogs of amino acids are also useful N-terminal blocking groups, and can either be coupled to the N-terminus of the peptide or used in place of the N-terminal reside. Suitable C-terminal blocking groups, in which the carboxyl group of the C-terminus is either incorporated or not, include esters, ketones or amides. Ester or ketone-forming alkyl groups, particularly lower alkyl groups such as methyl, ethyl and propyl, and amide-forming amino groups such as primary amines (—NH2), and mono- and di-alkylamino groups such as methylamino, ethylamino, dimethylamino, diethylamino, methylethylamino and the like are examples of C-terminal blocking groups. Descarboxylated amino acid analogues such as agmatine are also useful C-terminal blocking groups and can be either coupled to the peptide's C-terminal residue or used in place of it. Further, it will be appreciated that the free amino and carboxyl groups at the termini can be removed altogether from the peptide to yield desamino and descarboxylated forms thereof without affect on peptide activity.
- Other modifications can also be incorporated without adversely affecting the activity and these include, but are not limited to, substitution of one or more of the amino acids in the natural L-isomeric form with amino acids in the D-isomeric form. Thus, the peptide may include one or more D-amino acid resides, or may comprise amino acids which are all in the D-form. Retro-inverso forms of peptides in accordance with the present invention are also contemplated, for example, inverted peptides in which all amino acids are substituted with D-amino acid forms.
- Acid addition salts of the present invention are also contemplated as functional equivalents. Thus, a peptide in accordance with the present invention treated with an inorganic acid such as hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, and the like, or an organic acid such as an acetic, propionic, glycolic, pyruvic, oxalic, malic, malonic, succinic, maleic, fumaric, tataric, citric, benzoic, cinnamie, mandelic, methanesulfonic, ethanesulfonic, p-toluenesulfonic, salicyclic and the like, to provide a water soluble salt of the peptide is suitable for use in the invention.
- The present invention also provides for analogs of proteins. Analogs can differ from naturally occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both.
- For example, conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function. To that end, 10 or more conservative amino acid changes typically have no effect on peptide function. Conservative amino acid substitutions typically include substitutions within the following groups:
- glycine, alanine;
- valine, isoleucine, leucine;
- aspartic acid, glutamic acid;
- asparagine, glutamine;
- serine, threonine;
- lysine, arginine;
- phenylalanine, tyrosine.
- Modifications (which do not normally alter primary sequence) include in vivo, or in vitro chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are sequences which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.
- Also included are polypeptides or antibody fragments which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent. Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids. The peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.
- Substantially pure protein obtained as described herein may be purified by following known procedures for protein purification, wherein an immunological, enzymatic or other assay is used to monitor purification at each stage in the procedure. Protein purification methods are well known in the art, and are described, for example in Deutscher et al. (ed., 1990, Guide to Protein Purification, Harcourt Brace Jovanovich, San Diego).
- The invention also includes a kit comprising the composition of the invention and an instructional material which describes administering the composition to a subject. In another embodiment, this kit comprises a (preferably sterile) solvent suitable for dissolving or suspending the composition of the invention prior to administering the composition.
- As used herein, the term “physiologically acceptable” ester or salt means an ester or salt form of the active ingredient which is compatible with any other ingredients of the pharmaceutical composition, which is not deleterious to the subject to which the composition is to be administered.
- The formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit.
- Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, and dogs, and to birds including commercially relevant birds such as chickens, ducks, geese, and turkeys.
- Pharmaceutical compositions that are useful in the methods of the invention may be prepared, packaged, or sold in formulations suitable for oral, rectal, vaginal, parenteral, intravenous, topical, pulmonary, intranasal, buccal, ophthalmic, intrathecal or another route of administration. Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
- A pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- The relative amounts of the active ingredient, the pharmaceutically acceptable carrier, and any additional ingredients in a pharmaceutical composition of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100% (w/w) active ingredient.
- In addition to the active ingredient, a pharmaceutical composition of the invention may further comprise one or more additional pharmaceutically active agents. Particularly contemplated additional agents include anti-emetics and scavengers such as cyanide and cyanate scavengers.
- Controlled- or sustained-release formulations of a pharmaceutical composition of the invention may be made using conventional technology.
- A formulation of a pharmaceutical composition of the invention suitable for oral administration may be prepared, packaged, or sold in the form of a discrete solid dose unit including, but not limited to, a tablet, a hard or soft capsule, a cachet, a troche, or a lozenge, each containing a predetermined amount of the active ingredient. Other formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, or an emulsion.
- As used herein, an “oily” liquid is one which comprises a carbon-containing liquid molecule and which exhibits a less polar character than water.
- Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.
- Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle. Aqueous vehicles include, for example, water and isotonic saline. Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin. Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents. Oily suspensions may further comprise a thickening agent. Known suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose.
- Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.g. polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively). Known emulsifying agents include, but are not limited to, lecithin and acacia. Known preservatives include, but to are not limited to, methyl, ethyl, or n-propyl-para-hydroxybenzoates, ascorbic acid, and sorbic acid. Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin. Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol.
- Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent. Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent. Aqueous solvents include, for example, water and isotonic saline. Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
- A pharmaceutical composition of the invention may also be prepared, packaged, or sold in the form of oil-in-water emulsion or a water-in-oil emulsion. The oily phase may be a vegetable oil such as olive or arachis oil, a mineral oil such as liquid paraffin, or a combination of these. Such compositions may further comprise one or more emulsifying agents such as naturally occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soybean or lecithin phosphatide, esters or partial esters derived from combinations of fatty acids and hexitol anhydrides such as sorbitan monooleate, and condensation products of such partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. These emulsions may also contain additional ingredients including, for example, sweetening or flavoring agents.
- As used herein, “parenteral administration” of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue. Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like. In particular, parenteral administration is contemplated to include, but is not limited to, subcutaneous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.
- Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents. In one embodiment of a formulation for parenteral administration, the active ingredient is provided in dry (i.e. powder or granular) form for reconstitution with a suitable vehicle (e.g. sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.
- The pharmaceutical compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution. This suspension or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein. Such sterile injectable formulations may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3-butane diol, for example. Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides. Other parentally-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form, in a liposomal preparation, or as a component of a biodegradable polymer systems. Compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.
- Formulations suitable for topical administration include, but are not limited to, liquid or semi-liquid preparations such as liniments, lotions, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes, and solutions or suspensions. Topically-administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent. Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
- A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for ophthalmic administration. Such formulations may, for example, be in the form of eye drops including, for example, a 0.1-1.0% (w/w) solution or suspension of the active ingredient in an aqueous or oily liquid carrier. Such drops may further comprise buffering agents, salts, or one or more other of the additional ingredients described herein. Other opthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form or in a liposomal preparation.
- As used herein, “additional ingredients” include, but are not limited to, one or more of the following: excipients; surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; sweetening agents; flavoring agents; coloring agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; emulsifying agents; antioxidants; antibiotics; antifungal agents; stabilizing agents; and pharmaceutically acceptable polymeric or hydrophobic materials. Other “additional ingredients” which may be included in the pharmaceutical compositions of the invention are known in the art and described, for example in Genaro, ed., 1985, Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., which is incorporated herein by reference.
- Typically, dosages of the compound of the invention which may be administered to a subject, preferably a human, range in amount from 1 μg to about 100 g per kilogram of body weight of the subject. While the precise dosage administered will vary depending upon any number of factors, including but not limited to, the type of subject and type of disease state being treated, the age of the subject and the route of administration. Preferably, the dosage of the compound will vary from about 1 mg to about 10 g per kilogram of body weight of the subject. More preferably, the dosage will vary from about 10 mg to about 1 g per kilogram of body weight of the subject
- The compound may be administered to a subject as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even lees frequently, such as once every several months or even once a year or less. The frequency of the dose will be readily apparent to the skilled artisan and will depend upon any number of factors, such as, but not limited to, the type and severity of the disease being treated, the type and age of the subject, etc.
- The invention also includes a kit comprising the composition of the invention and an instructional material which describes adventitially administering the composition to a cell or a tissue of a subject. In another embodiment, this kit comprises a (preferably sterile) solvent suitable for dissolving or suspending the composition of the invention prior to administering the compound to the subject.
- As used herein, an “instructional material” includes a publication, a recording, a diagram, or any other medium of expression which can be used to communicate the usefulness of the peptide of the invention in the kit for effecting alleviation of the various diseases or disorders recited herein. Optionally, or alternately, the instructional material may describe one or more methods of alleviation the diseases or disorders in a cell or a tissue of a subject. The instructional material of the kit of the invention may, for example, be affixed to a container which contains the peptide of the invention or be shipped together with a container which contains the peptide. Alternatively, the instructional material may be shipped separately from the container with the intention that the instructional material and the compound be used cooperatively by the recipient.
- Cell Culture, Plasmid Constructs and Transfection
- The human salivary gland ductal (HSG) cell line was provided by Matthew Hoffman (NIDCR, Bethesda Md.). HSG cells were cultured in DMEM/F12 with 10% FBS. Cells were assayed between
passage primer 5′-GGTGGTGGATCCACGCAGCTCCTGACGGCTATTCCC-3′ andreverse primer 5′-GGTGGTGGATCCCAGGCTCAGCGCCAGCGCGCACAG-3′ containing BamH1 sites. Amplicons were cut using BamH1, ligated as plasmid. Human SDC1 ‘del 51-252’ (only N-terminal 50 amino acids of ectodomain linked to the transmembrane and cytoplasmic domains) was similarly generated from hS1-pcDNA3 using forwardprimer 5′-CTAGCTAGCTTGCAAAGCACCTGCACCTG-3′ andreverse primer 5′-CTAGCTAGCGAGGTG CTGGGAGGGGTC-3′. This introducedNheI sites 5′ of the codon for Ala51 and 3′ of the codon for Glu252 (most C-terminal ectodomain amino acid). Amplicons were digested with NheI and ligated as plasmid. Human SDC1 ‘del 51-310’ (only N-terminal 50 amino acids of ectodomain) N-50 amino acids only was PCR amplified from hS1-pcDNA3 using forwardprimer 5′-CTATAGGGAGACCCAAGCTTGGTACCGAG-3′ andreverse primer 5′-CCGGAATTCAGCACCTGCACCTGAG-3′ containing HindIII and EcoR1 sites. Amplicons were digested with HindIII and EcoR1 to create cohesive ends, subsequently purified and ligated into the HindIII/EcoR1 site of the pcDNA vector. All constructs were confirmed by DNA sequencing. Plasmids were transfected into HEK293T cells, and stable or transient transfectants generated. Generation of HEK293T cells stably transfected with human SDC2 or SDC4 was previously described (Utani et al., 2001). Development of lacritin-intein constructs and purification are described elsewhere (Wang et al., submitted). A lacritin-GST construct was prepared by subcloning lacritin cDNA into pGEX4T-2 (Amersham Biosciences, Piscataway N.J.) using Sap1 and NdeI, in-frame with GST. Recombinant plasmids were transformed into E. coli strain BL21. Bacterial cultures were expanded and fusion protein purified on Glutathione-Sepharose 4B (Amersham Biosciences, Piscataway N.J.). A human SDC1 ectodomain-GST construct was generated from pGEX-2T hS1 ED and similarly purified. - Lacritin Affinity Chromatography
- Cell surface biotinylation, and affinity chromatography followed the method of Chen et al (1997). Briefly, six 150 mm culture dishes of 80% confluent HSG cells were washed twice on ice with ice-cold PBS and incubated for 30 min with EZ-Link Sulfo-NHS-LC Biotin (Pierce, Rockford Ill.). Cells were then washed twice with PBS-glycine, gently loosened with a cell scraper, and pelleted at 4° C. The pellet was twice resuspended in 25 ml PBS-glycine, and incubated for 30 min in 1 ml lysis buffer (50 mM Tris HCl, pH 7.4, 100 mM NaCl, 5 mM MnCl2, 2 mM PMSF, 200 mM n-octyl-β-D-glucopyranoside, and protease inhibitors (Roche Diagnostics, Penzberg Germany)). Lysate was centrifuged for 15 min at 4° C., and the supernatant applied to a 1 ml pre-column then washed through with 1 ml of binding buffer (50 mM Tris HCl, pH 7.4, 100 mM NaCl, 5 mM MnCl2, 2 mM PMSF, 50 mM n-octyl-β-D-glucopyranoside) and collected. Half was applied to a lacritin-intein column in which lacritin was coupled to chitin beads via chitin-binding intein, and the other half to a negative control column that included an approximately equivalent molar amount of intein-chitin only. Columns were rotated end-to-end overnight at 4° C., then each was washed with 20 column volumes of affinity column buffer and eluted with the same buffer containing 1 M NaCl. Twenty 100 μL fractions were collected per column. Fractions were run on 8% SDS-PAGE gels, and silver stained or transferred to nitrocellulose for blotting with streptavidin peroxidase. For the latter, blots were blocked with PBS containing 0.1% Tween-20 and 2.5% milk for 1 h at 37° C., washed three times with PBS/0.1% Tween-20, incubated in 50 ml of 1:1000 streptavidin-horseradish peroxidase conjugate (Amersham Biosciences, Piscataway N.J.) in PBS/0.1% Tween-20, washed five times with the same buffer and then detected using ECL reagent (Pierce, Rockford Ill.). Bands of interest were excised and sequenced by mass spectroscopy (Biomolecular Research Facility, University of Virginia).
- Affinity Precipitation Binding
- Human SDC1, SDC2, or SDC4 stably-expressing HEK293T cells were harvested on ice into 1 ml of the same lysis buffer used for affinity chromatography. Lysates were cleared by centrifugation (20,000×g) at 4° C., and protein concentration of supernatant was estimated by the BCA assay (Pierce, Rockford Ill.). Lacritin-intein or lacritin-GST (5 μg) and FGF2-GST fusion proteins were respectively bound to chitin beads (New England Biolabs, Ipswich Mass.) or glutathione-Sepharose beads (Amersham Biosciences, Piscataway N.J.). Beads were incubated with lysates (˜200 μg of SDC1 stably expressing HEK293T cells) overnight at 4□C., and washed three times with binding buffer as above (each wash three times the bead volume). In competition assays, SDC1 lysates were mixed with increasing amounts of soluble lacritin, HS, HS plus CS (Seikagaku America, Falmouth Mass.), bacterially expressed human SDC1 ectodomain (hS1 ED), native SDC2, native SDC4, N-24 or C-25. Mixtures were then applied to lacritin immobilized beads, and further studied as described below. For sequential pull down assays, cell lysates were sequentially affinity precipitated with FGF2-GST or lacritin-intein. After FGF2-GST depletion of all available FGF-bindable SDC1, one-half was precipitated with lacritin-intein. The other half was methanol precipitated overnight and resuspended in heparitinase buffer. Similarly, after lacritin-intein depletion of all available lacritin-bindable SDC1, one-half was precipitated with FGF2-GST and the other half precipitated by methanol overnight, then resuspended in heparitinase buffer. The reactions were separated by SDS-PAGE, and blotted using anti-SDC1 mAb B-B4 (Serotec, Oxford UK) or anti-SDC2 polyclonal antibody L-18 or anti-SDC4 polyclonal antibody N-19 (Santa Cruz Biotechnology, Santa Cruz Calif.) followed by ECL detection (Pierce, Rockford Ill.).
- For SDS-PAGE and immunoblotting, beads were digested with heparitinase I (Seikagaku America, Falmouth Mass.) and chondroitin ABC lyase (MP Biochemicals, Aurora Ohio) since native syndecans migrate as a heterodisperse smear in SDS-PAGE. Briefly, beads were resuspended in heparitinase buffer (50 mM Hepes, pH 6.5, 50 mM NaOAc, 150 mM NaCl, 5 mM CaCl2) with 0.0001 units heparitinase and 0.005 units chondroitin ABC lyase for 2 h at 37° C. A second aliquot of each enzymes was added for an additional 2 h. Samples were diluted with 2× sample buffer, separated by 10% SDS-PAGE, transferred to Immobilon-P PVDF (Millipore, Billerica, Mass.) for 4 h at 300 mA, fixed for 30 min in PBS containing 0.05% glutaraldehyde (Sigma, Saint Louis Mo.), and blocked overnight at 4° C. in TBS (10 mM Tris, 150 mM NaCl, pH 7.4) with 3% BSA. mAb B-B4 diluted in blocking buffer was incubated with blots for 2 h at RT, washed five times with 10 mM Tris, 150 mM NaCl, pH 7.4 containing 0.1% Tween-20 and detected with alkaline-phosphatase conjugated secondary antibody (Amersham Biosciences, Piscataway N.J.) using ECL.
- Heparanase Detection
- For analysis, cellular heparanase was enriched by HiTrap heparin affinity purification (Amersham Biosciences, Piscataway N.J.). Briefly, HSG or HEK293 lysates were dialyzed overnight against binding buffer (10 mM sodium phosphate, pH 7) and applied to the column. After washing with 10 column volumes of binding buffer, heparanase was eluted using 5 column volumes of elution buffer (10 mM sodium phosphate, 2 M NaCl, pH 7). Protein concentration was determined by BCA and analyzed by 10% SDS-PAGE. Heparanase-1 was detected with rabbit polyclonal antibodies directed against human heparanase (kindly provided by Israel Vlodaysky, Rappaport Faculty of Medicine, Haifa, Israel) followed by HRP-conjugated secondary antibody and ECL.
- Mitogenesis Assay
- HSG cells in serum-containing media were seeded in 24-well plates at a density of 0.5×105 cells/well. After 24 h, the medium was changed to Minimum Essential Medium Alpha Modification with washes for 24 h, then lacritin was added for 24 h to a final concentration of 10 nM in the same medium containing [3H]-thymidine (2 μCi/ml). Cells were incubated alone with lacritin or together with increasing amount of bacterial-expressed human SDC1 ectodomain (hS1 ED) as a soluble inhibitor. Cells depleted of heparanase-1 or SDC1 were treated with lacritin in [3H]-
thymidine 48 h after siRNA transfection. To rescue heparanase depleted cells, ˜1 μg heparanase enriched from HSG or HEK293 cells using heparin affinity column or 0.0001 units bacterial heparitinase (Seikagaku America) was added together with lacritin and [3H]-thymidine for 24 h. [3H]-thymidine incorporation was stopped by placing on ice. Cultures were washed twice with ice-cold PBS, fixed with cold and then RT TCA (10%) for 10 min each, washed twice with RT PBS, collected in 1 N NaOH, neutralized with 1 N HCl, and then transferred to liquid scintillation vials for measurement. - HS Chain Analysis
- 50% confluent HSG cell cultures in 150-mm culture dishes were metabolically labeled with 50 μCi/ml Na235SO4 (1494 Ci/mmol; PerkinElmer, Boston Mass.) in DMEM for 48 h as described by Zako et al. (2003). Both normal and heparanase-1 depleted cells were labeled. After washing three times with PBS, cell lysates were collected and affinity precipitated with FGF2-GST or lacritin-intein overnight at 4° C. SDC1 bound to beads was digested with chondroitin ABC lyase (MP Biochemicals, Aurora Ohio) for 3 h at 37° C., eluted with 2 M NaCl and then subjected to eliminative cleavage and reduction of HS by adjusting to 100 mM NaOH/1 M NaBH4 for 24 h at 37° C. Released HS was neutralized by drop wise addition of 1M HCl and subjected to Sepharose CL-6B column (1×57 cm) gel filtration chromatography in PBS at a
flow rate 16 ml/h. Radioactivity was measured by liquid scintillation counting. The void volume (V0, fraction 26) and total column volume (Vt, fraction 62) were respectively determined using dextran blue and sodium dichromate as markers. - Other Methods—Other methods useful in the present invention are described in PCT Publication PCT/US0225/016112 (WO 2005/119899) and in U.S. patent application Ser. No. 10/468,372.
- Results:
- Lacritin Targets Cell Surface SDC1
- Lacritin promotes epithelial proliferation at low nanomolar levels, suggesting a cell surface binding Kd in the nanomolar range sufficient for affinity purification of its receptor. An apparent 190 kDa cell surface protein eluted from lacritin, but not control, columns after incubation with detergent lysates of surface biotinylated human salivary ductal (HSG) cells in buffer containing physiological levels of salt (
FIG. 1 ). Sequencing identified the 190 kDa protein as a multimer of human SDC1, a transmembrane proteoglycan that acts as a co-receptor for mitogenic signaling by binding heparin-binding growth factors such as FGFs, HGFs, Wnts, Hhs, and HGFs via its HS glycosaminoglycan chains (Alexander et al., 2000; Esko and Selleck, 2002). - To assess this interaction by affinity precipitation, we created a 293T cell line stably expressing human SDC1, and treated lacritin or positive control FGF2 precipitates with bacterial heparitinase and chondroitinase to remove the large and heterogenous glycosaminoglycan chains. The supernatant and pellet of the digest were then separately blotted for SDC1 using mAb B-B4 directed against the core protein. This revealed 190 and 80 kDa bands, confirming the multimeric nature of the 190 kDa SDC1 band (
FIG. 2A ). Lacritin-bound SDC1 was consistently detected in the pellet, implying that the ligation was not solubilized by heparitinase/chondroitinase digestion and therefore may involve the core protein. In keeping with this possibility, lacritin did not target SDC2 or SDC4 (FIG. 2C ) that share HS chains but only 27-28% ectodomain identity with SDC1. FGF2 as expected bound all three syndecans via heparitinase cleavable HS (FIG. 2B , C). - SDC1 Binding Via a Lacritin C-Terminal Domain
- Lacritin truncation analysis recently identified a C-terminal mitogenic domain capable of forming an amphipathic alpha helix as per the receptor binding domain of PTHLP (Wang et al., 2006). Could SDC1 binding and mitogenic sites be shared? SDC1 binding was unaffected by deletion (
FIG. 3A ) of five and ten amino acids from the C-terminus (FIG. 3B ), or fifteen and twenty-four amino acids from the N-terminus (FIG. 3C ) of lacritin. However, affinity was substantially diminished after five more C-terminal amino acids were deleted (C-15) and completely abolished from C-25 and C-49 lacritin (FIG. 3B ). These data point to a binding site betweenamino acids 100 and 109 of mature lacritin that mirrors the mitogenic domain. To validate and further probe this observation, lacritin-SDC1 affinity precipitations were competitively challenged with the truncated lacritin mutants (FIG. 4 ). Soluble lacritin and N-24, but not C-25 and C-59 inhibited binding. Also inhibitory was recombinant human SDC1 core protein (hS1 ED) expressed in E. coli, but not HS, CS nor human SDC2 or SDC4. Taken together, these data suggest that ligation of SDC1 is specified by a region within lacritin's C-terminus that appears to show affinity for SDC1's core protein but not HS or CS. - SDC1 is Required for Lacritin Mitogenesis
- Since mitogenic (Wang et al, submitted) and SDC1 binding domains map to the same ten amino acid region, we questioned whether competition with recombinant hS1ED would disrupt lacritin-dependent mitogenesis. Soluble hS1 ED inhibited proliferation of lacritin-stimulated HSG cells in a dose-dependent manner. The same inhibitory doses had no effect on C-25 treated cells nor on FBS stimulated proliferation (
FIG. 5A ). To approach this question differently, HSG cells were depleted of SDC1 by siRNA (FIG. 5C ). Dose-dependent depletion of SDC1, but not depletion of SDC2 (FIG. 5C ), completely abrogated lacritin mitogenic responsiveness (FIG. 5B ). Lacritin signals through Gαi or Gαo/PKCα-PLC/Ca2+/calineurin/NFATC1/COX-2 toward mitogenesis (Wang et al, submitted). We therefore examined COX-2 expression in SDC1 and SDC2 depleted cells. In SDC1, but not SDC2, knockdown cells lacritin-dependent COX-2 expression was absent (FIG. 5D ). Ligation of SDC1 thus appears to be a required upstream step in lacritin mitogenic signaling. - Lacritin and FGF2 Target Different Forms of SDC1
- We noted how biotinylated SDC1 from surface-labeled HSG cells was selectively purified on lacritin affinity columns and that it migrated as a relatively distinct band (
FIG. 1 ) without prior heparitinase/chondroitinase to excise the heterogenous HS and CS chains. In contrast, native SDC1 without digestion presents as a broad smear (FIG. 10 ). Also, lacritin affinity precipitated SDC1 was retained in the pellet after heparitinase/chondroitinase digestion. Could the sharply defined 190 and 80 kDa bands represent a minor deglycanated or hypoglycosylated form preferentially enriched because of lacritin's apparent core protein-related affinity? To explore this possibility, we sequentially depleted either FGF2- or lacritin-bindable SDC1 from lysates then challenged the depleted lysates respectively with lacritin or FGF2 affinity precipitation (FIG. 6 ). Affinity precipitates were treated with heparitinase/chondroitinase prior to SDS-PAGE to simplify mAb B-B4 detection of the core protein in the digest supernatant (FGF2) or pellet (lacritin). Successive pull-down with FGF2-GST depleted all FGF2-bindable SDC1 (FIG. 6A , lanes 1-3). Interestingly, the amount of SDC1 available to interact with lacritin-intein was unaffected (FIG. 6A ,lane 4 versuslanes 1 and 9). Similarly, depletion of SDC1 with lacritin-intein slightly but not substantially diminished SDC1 binding to FGF2-GST (FIG. 6A , lanes 5-7 versuslanes 8 and 10). This implies that two pools of SDC1 may be available. One is apparently native SDC1, to which lacritin appears to lack affinity. The other may be an HS-free or partially deglycanated form of SDC1. Could the latter be an immature intracellular form? This appears not to be the case. When cells were gently trypsinized prior to lysis, no lacritin-bindable SDC1 was detected (FIG. 6B ) in keeping with the original purification of labeled SDC1 from surface biotinylated cells (FIG. 1 ). Also ruled out was bacterial heparitinase contamination of recombinant lacritin. - We took advantage of 3G10 mAb directed against a desaturated uronate epitope generated by heparitinase digestion (David et al., 1992) and could detect lacritin-bound SDC1 only after treatment with exogenous heparitinase (
FIG. 6C ). That heparitinase can create the 3G10 epitope is revealing, for it points to the presence of HS or HS stubs on the core protein that is recognized by lacritin. HS stubs could be generated by heparanase, a eukaryotic endo-β-D-glucuronidase that cleaves the entire HS chains between GlcUA and GlcNAc linkages. Taken together these data suggest that lacritin and FGF2 target different forms of cell surface SDC1. SDC1 bound by lacritin is less heterogenous, suggesting that although it is decorated with sufficient HS to be recognized by heparitinase, much of its HS has been removed. - Heparanase-Dependent Lacritin Mitogenesis
- One hypothesis to explain these data is that heparanase-sensitive HS sterically blocks lacritin binding to a latent core protein site in native SDC1. If this is true, heparitinase digestion of native SDC1 should promote lacritin binding (FIG. 7A). To study this possibility, SDC1 from cell lysates was purified on FGF2-GST, washed, salt eluted, heparitinase digested, and then incubated with lacritin-intein (
lane 1, 0.5 M NaCl eluate;lane 2, 1.0 M NaCl eluate). As controls, SDC2 and SDC4 from cell lysates were individually purified on FGF2-GST, washed, salt eluted, heparitinase digested, and then also incubated with lacritin-intein (SCD2:lane 3, 0.5 M NaCl eluate;lane 4, 1.0 M NaCl eluate; and SCD4:lane 5, 0.5 M NaCl eluate;lane 6, 1.0 M NaCl eluate). Affinity precipitates were heparitinase/chondroitinase (+) treated prior to SDS-PAGE and blotting for SDC1, SDC2 or SDC4. We observe that FGF2-purified SDC1, but not FGF2-purified SDC2 or SDC4, can indeed bind lacritin after heparitinase treatment (FIG. 7A ,lanes 1, 2), presumably by exposing a hidden site. - Where does lacritin bind? Steric hindrance by the N-terminal HS chains suggests that lacritin may bind SDC1's N-terminus. However binding might occur elsewhere when consideration is given to HS chain length and core protein folding. To examine these possibilities, we generated cell lines stably or transiently expressing human SDC1 lacking 51 N-terminal amino acids (‘del 1-51’), or lacking amino acids 51-252 of the ectodomain (‘del 51-252’), or retaining only the N-
terminal 50 amino acids as a secreted form (‘del 51-310’) (FIG. 7B ). Del 51-252 and del 51-310 both bound lacritin, but not del 1-51 (FIG. 7C , D), suggesting that SDC1's N-terminus is recognized by lacritin. - Although most heparanase is associated with endocytic compartments, the argument for an active cell surface role is compelling. Evidence includes heparanase secretion by activated endothelial (Chen et al., 2004) and T cells during inflammation (Fridman et al., 1987), antisense-inhibited cancer dissemination (Uno et al., 2001), and overexpression-associated migration of hair stem cell progeny (Zcharia et al., 2005). Is heparanase required for lacritin mitogenic binding of SDC1? Blotting for heparanase-1 detected the active 50 kDa form that was enrichable on a HiTrap heparin column from both HSG and HEK293/SDC1 lysates (
FIG. 8A ), in keeping with the known affinity of heparanase for heparin. The presence of heparanase in these fractions was confirmed in preliminary activity assays showing digestion of 35SO4-labeled matrix (not shown). To assess whether heparanase-1 or -2 is required for lacritin-dependent proliferation, we treated HSG cells with siRNAs for each (FIG. 8B , C). Heparanase-1 is abundantly expressed and when knocked-down reduced lacritin-dependent proliferation to background in a dose dependent manner. Importantly, the lowest effective doses did not affect EGF-dependent mitogenesis and depleted cells were rescued by addition of exogenous heparanase or heparitinase (FIG. 8C ). In depleted cells without lacritin, neither had any effect (FIG. S2), thus eliminating the possibility that rescue was instead from heparanase signaling (Gingis-Velitsky et al., 2004). Heparanase-2 siRNA also had no effect (FIG. 8C ) but standard RT-PCR failed to detect heparanase-2 expression in untreated cells (not shown) in keeping with real time PCR detection of <15 mRNA copies/ng cDNA in human salivary gland (McKenzie et al., 2000). Above we noted that lacritin mitogenic signaling promotes COX-2 expression downstream of NFATC1 (Wang et al, submitted), and that siRNA depletion of SDC1, but not SDC2, abrogates lacritin-dependent COX-2 expression (FIG. 5D ). If heparanase-1 is functionally linked with SDC1 in lacritin mitogenic signaling, then depletion of heparanase-1 should have a similar effect. We observe inFIG. 5D that this is indeed the case. Lacritin has no effect on COX-2 expression in cells lacking heparanase-1. - Thus, it is apparent that two pools of SDC1 are available, and that the lacritin-bindable pool is likely generated by heparanase. If this is true, the distribution of HS chain sizes in the FGF2-bindable vs lacritin-bindable pools should differ. To explore this possibility, each pool was isolated by affinity precipitation from 35SO4-labeled cell lysates. After chondroitinase digestion, and then elution with salt, HS was cleaved from the core protein with NaBH4 and analyzed by CL-6B gel filtration chromatography (
FIG. 8D ). In contrast to unimodal HS from the FGF2 pool (Kav=0.3-0.33; ˜40 kDa), HS from the lacritin pool was bimodal with most 35SO4 eluting with a Kav of 0.75-0.8. This corresponds to approximately 4-5 kDa. Both estimates are based on Waterson's standard curve (Waterson, 1971). Interestingly, lower molecular weight HS was eliminated by heparanase-1 depletion (FIG. 8D ). Taken together, these data suggest a mechanism whereby SDC1's HS-rich N-terminus is partially deglycanated by heparanase-1 to facilitate lacritin binding and signaling to mitogenic COX-2. - How cell surface proteoglycans specify regions of epithelial morphogenesis, homeostasis or secretion is a central question in developmental biology. We report a new mechanism in which the N-terminal deglycanated core protein of SDC1 and not complete HS/CS chains nor SDC2 or SDC4, appears to target the epithelial selective prosecretory mitogen lacritin. An important and novel step in this approach is that binding necessitates prior complete or partial removal of HS chains by endogenous heparanase. Limiting lacritin activity to specific sites of secreted heparanase thus transforms widely expressed SDC1 into a regulated surface binding protein.
- Recent studies emphasize a growing appreciation for an interaction role of syndecan core proteins beyond the binding accomplished by their HS chains. Sdc1 regulates the activation of the αvβ3 and αvβ5 integrins in several cell types, an interaction that depends on functional coupling between an extracellular active site in the syndecan core protein and the integrins (Beauvais and Rapraeger, 2003; Beauvais et al., 2004; McQuade et al, 2006). HS plus a short extracellular hydrophobic region near the transmembrane domain of mouse Sdc1 inhibits ARH-77 human B lymphoid cell invasion into collagen I (Langford et al., 2005). Recombinant human SDC2 core protein from E. coli mediates adhesion and proliferation of colon carcinoma cells (Park et al., 2002), and mouse Sdc4 contains a high affinity cell-binding domain proximal to HS attachment sites (McFall and Rapraeger, 1997, 1998). Thus, the ectodomains of syndecan core proteins mediate a number of morphogenetic and homeostatic events.
- Lactitin's preference for heparanase-deglycanated SDC1 core protein is an interesting cell targeting strategy that successfully appropriates a ubiquitous proteoglycan for a role as a restrictive cell surface binding protein. That this is feasible is a reflection of the rarity of SDC1 as a part-time or hypoglycosylated proteoglycan and the lack of general ectodomain sequence conservation among syndecans. Focal heparanase release may regulate lacritin's mitogenic and prosecretory activity with unusual accuracy. Focal heparanase degradation of cell surface and extracellular matrix HS is implicated in glandular morphogenesis (Zcharia et al., 2004), stem cell migration (Zcharia et al., 2005) and cell survival (Cohen et al., 2005). It also plays a central role in inflammation and cancer (Reiland et al., 2004). Activated endothelial (Chen et al., 2004) and T cells secrete heparanase during inflammation (Fridman et al., 1987). Up-regulation of heparanase mRNA is correlated with reduced HS in invasive esophageal carcinomas (Mikami et al., 2001), whereas the opposite is linked to an increase in overall HS in differentiating myoblasts (Barbosa et al., 2005). Our studies did not address whether SDC2 and SDC4 are functional targets of heparanase. Neither bound lacritin with or without prior heparitinase treatment. Nonetheless, exploration of other ligands may reveal a similar capacity for latency in these and other HS proteoglycans.
- Heparanase-regulated proliferation has previously been attributed to the release of HS-bound FGFs in metastatic breast cancer (Kato et al., 1998). Notably, the first lacritin EST in GenBank derives from a subtracted breast cancer library and evidence has been presented for lacritin gene amplification in some metastatic breast cancers (Porter et al., 2003). Others have proposed that lacritin is the second most frequent SAGE marker for circulating breast cancer cells (Bosma et al., 2002). Sdc1 is required for Wnt-dependent breast cancer in mice (Alexander et al., 2000), and in human cancers is upregulated in some but not others coincident with a role in early proliferative events (Ding et al., 2005). Thus, lacritin, heparanase, and SDC1 together potentially offer a new paradigm for some human breast cancers.
- Although the sequencing data did not expose lacritin's putative signaling receptor, use of pharmacological inhibitors and siRNA have identified proximal signaling elements as Gαi or Gαo/PKCα-PLC/Ca2+/calcineurin/NFATC1/COX-2 and Gαi or Gαo/PKCα-PLC/PLD1/mTOR (Wang et al., submitted). Both are ERK1 and ERK2-independent and thus contrast with SDC1 cytoskeletal signaling. Lacritin signaling may thus involve a G-protein coupled receptor or G-protein dependent ion channel that gains ligand affinity as a consequence of lacritin immobilization on SDC1. Possibly core protein binding may be stabilized by interaction with HS stubs detected in the lower molecular weight heparanase-dependent peak (
FIG. 8D ). Interestingly, since lacritin- and FGF2-bindable SDC1 pools share some HS chains of similar size, not all HS on lacritin-bound SDC1 seem to be cleaved. Lack of complete competition of soluble lacritin for SDC1 in lacritin affinity precipitation assays vs N-24 might hypothetically result from folding of lacritin's more negatively charged N-terminus onto its positively charge C-terminus. Cleavage of HS by heparanase to generate lacritin-dependent mitogenic activity offers a novel mechanism of epithelial renewal with important implications to the physiology of human exocrine glands. - Taken together, these observations contribute to the growing appreciation of mechanisms by which extracellular enzymes regulate proteoglycan activity in unexpected ways. Recently described Sulf1 and Sulf2 modify the character of HS chains by selectively removing certain 6-O-sulfate groups thus altering growth factor signaling and tumor growth (Dai et al., 2005). Heparanase cleavage of HS promotes angiogenesis by solubilizing HS-bound growth factors (Sanderson et al., 2004). This new discovery that heparanase removal of HS chains removes a block to mitogenic signaling offers a new regulatory paradigm.
- Heparanase is an ‘on’ switch for lacritin binding to syndecan-1 (
FIG. 12A ; Ma et al, '06) that in turn appears to facilitate activation of a receptor. The receptor has the signaling characteristics of a Gαi or Gαo coupled receptor (GPCR; Wang et al, '06). For heparanase to play such a central role in lacritin cell targeting, one might expect heparanase to be a normal constituent of human tears. To the best of our knowledge heparanase has not been reported in tears. Collaborator Leslie Olsakovsky (UVa Ophthalmology) collected tears from normals and patients suffering from dry eye (mostly non-Sjögren's). Western blots of equal protein loads of 30 tear samples from normals vs dry eye patients suggest that heparanase is a normal tear constituent (see example blotFIG. 12B ) and is substantially reduced in dry eye tears. Interestingly lacritin, UTP and ATP stimulate heparanase release (FIG. 12C ). The 65 kDa form detected is the latent pro-survival form. Heparanase becomes active upon processing to 50 kDa, a form that can be detected with this antibody (Ma et al, '06). We suspect that availability of active heparanase is transient, as per the lacritin ‘off/on’ switch mechanism. The Inspire Pharmaceutical product INS365 for dry eye is a UTP analogue. Latent heparanase is constitutively expressed by all layers of the normal corneal epithelium in mice (Berk et al, '04). Heparanase has been implicated in glandular morphogenesis, epidermal stem cell migration and cell survival. - Lacritin N-24 Partially Inhibits 125I-Iodoclonidine Binding to the Alpha-2C Adrenergic Receptor. FGF2 displays low affinity binding to FGFR1 with affinity enhanced by coincident binding to syndecan-1, heparin or heparan sulfate. If we are correct that syndecan-1 increases lacritin's affinity for a G-protein coupled receptor (GPCR), possibly some low affinity GPCR binding can be detected without syndecan-1 in low salt. To ask this question, a low salt screen of 31 immobilized human GPCRs in which 10 nM lacritin, N-24 or C-25 were asked to compete with 125I-receptor ligand for receptor binding. Cutoff is 50% inhibition. N-24 lacritin (64%), but not intact lacritin (29%) or inactive C-25 (15%), competed for binding to the alpha-2C-adrenergic (ADRA2C) receptor with an equilibrium dissociation constant (Ki) of 1289±121 nM in repeated assays (
FIG. 13 ). Although preliminary, this compares to 1698 nM for native agonist epinephrine. Possibly N-24's lack of seven negatively charged residues may improve binding in the absence of syndecan-1. - We depleted ADRA2C by transfecting with 10 nM pooled or individual siRNAs to ADRA2C (
FIG. 14 ). Pooled siRNAs D1-D4 reduced lacritin responsiveness below baseline. We then transfected individual or D1-3 pooled siRNAs. D3 and D1-3 reduced the lacritin-dependent mitogenesis by almost 50%, whereas D1 and D4 were less effective. Individual siRNAs had no effect on FBS-stimulated mitogenesis (not shown). ADRA2C is Gαi or Gαo coupled (pertussis toxin sensitive) and expressed by normal human conjunctival (Diebold et al, '05) and corneal (Huang et al, '95) epithelia. ADRA2C is best known as a neural receptor involved in the regulation of sympathetic neurotransmitter release. Little is known of its role on epithelial cells. - Lacritin N-Terminal Deletion Analysis Suggests a Putative Signaling Receptor Binding Site. Syndecan-1 binds lacritin's C-terminus (Ma et al, '06). Where might the hypothetical signaling receptor bind? A series of lacritin N-terminal deletion mutants were developed, expressed and purified by our JMU collaborators. Subconfluent HCE-T cells in serum-free medium were treated with each in our standard 3H-thymidine mitogenesis assay. N-24, N-35, N-45, N-55, N-65 and lacritin are all mitogenic. Activity is lost when the amino acids KSIVEK are removed from N-65. PeptideStructure and HelicalWheel analyses implicate this region as another amphipathic α-helix. Interestingly, the lacritin alternative splice form ‘lacritin-b’ lacks the sequence SIVEKSILLTE (Ma et al, '07), and alternative splice form ‘lacritin-c’ has a completely novel C-terminus, lacking both this site and the syndecan-1 binding site. This suggests that lacritin-b and -c would be inactive.
- Discovery of Lacritins in Lower Species: Conservation of Two Binding Motifs. New public genomic sequencing (Sanger Institute Ensembl website) has recently revealed a number of novel lower species lacritins. Putative lacritin orthologues were detected in armadillo, domestic cat, lesser hedgehog, microbat, tree shrew and common shrew. We expect this list to expand as more species are sequenced to completion. We extracted each sequence then constructed a Phylogram using GrowTree (not shown). Chimp and tree shrew lacritins are respectively the most and least identical to human lacritin. We also aligned each using ClustralW+. Interesting regions of conservation include KSIVEK and the C-terminal syndecan-1 binding site (not shown). We performed helical wheel analysis on sequences from the latter. The putative amphipathic α-helix (Wang et al, '06) appears to be conserved in all species and thus most may be capable of binding syndecan-1, as per human lacritin (Ma et al, '06).
- Headings are included herein for reference and to aid in locating certain sections. These headings are not intended to limit the scope of the concepts described therein under, and these concepts may have applicability in other sections throughout the entire specification.
- The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety.
- While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention.
-
- Alexander, 2000, Nat. Genet. 25: 329-332.
- Barbosa, 2005, J. Cell Sci. 118: 253-264.
- Barden, 1997, J. Biol. Chem. 272: 29572-29578.
- Beauvais, 2003, Exp. Cell Res. 286:219-232.
- Beauvais, 2004, J. Cell. Biol. 167:171-181.
- Bosma, 2002, Clin. Cancer. Res. 8: 1871-1877.
- Capurro, 2005, Cancer. Res. 65: 6245-6254.
- Chen, 2004, Biochem. 43: 4971-4977.
- Chen, 1997, Am. J. Physiol. 272: 494-503.
- Cohen, 2006, Int. J. Cancer 118: 1609-1617.
- Couchman, 2003, Nat. Rev. Mol. Cell. Biol. 4: 926-937.
- Da, 2005, J. Biol. Chem. 280:40066-40073.
- David, 1992, J. Cell Biol. 119:961-975.
- Deepa, (2004), J. Biol. Chem. 279:37368-37376.
- Ding, 2005, J. Cell Biol. 171:729-738.
- Dor, 2004, Nature. 429: 41-46.
- Esko, 200, Ann. Rev. Biochem. 71: 435-471.
- Fridman, 1987, J. Cell Physiol. 130:85-92.
- Gingis-Velitski, 2004, J. Biol. Chem. 279:23536-23541.
- Hacker, 2005, Nat. Rev. Mol. Cell. Biol. 6: 530-541.
- Kato, 1998, Nat. Med. 4: 691-697.
- Langford, 2005, J. Biol. Chem. 280: 3467-3473.
- McFall, 1997, J. Biol. Chem. 272: 12901-12904.
- McFall, 1998, J. Biol. Chem. 273: 28270-28276.
- McKenzie, 2000, Biochem. Biophys. Res. Commun. 276: 1170-1177.
- McQuade, (2006), J. Cell Sci., in press.
- Mikami, 2001, Jpn. J. Cancer Res. 92:1062-73.
- Park, 2002, J. Biol. Chem. 277: 29730-29736.
- Perrimon, 2000, Nature 404:725-728.
- Porter, 2003, Proc. Natl. Acad. Sci. USA. 100:10931-10936.
- Radtke, F, and H. Clevers. 2005. Science. 307: 1904-1909.
- Reiland, 2004. J. Biol. Chem. 279:8047-8055.
- Sanderson, 2004. Matrix Biol. 23:341-352.
- Sanghi, 2001. J. Mol. Biol. 310: 127-139.
- Siemeister J. Biol. Chem. 273: 11115-11120.
- Uno 2001. Cancer Res. 61: 7855-7860.
- Utani 2001. J. Biol. Chem. 276:28779-28788.
- Viviano 2004 J. Biol. Chem. 279:5604-5611.
- Wang 2004, Dev. Biol. 273:1-22.
- Wang, 2006, J Cell Biol, online publication, Aug. 21, 2006, 10.1083/jcb.200605140.
- Wasteson, A. 1971, J. Chromatogr. 59:87-97.
- Zako, J. Biol. Chem. 278: 13561-13569.
- Zcharia, 2004, FASEB J. 18: 252-263.
- Zcharia, 2005, Am. J. Pathol. 166: 999-1008.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/948,199 US20110065189A1 (en) | 2007-09-17 | 2010-11-17 | Lacritin-Syndecan Interactions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99409007P | 2007-09-17 | 2007-09-17 | |
US12/212,517 US7932227B1 (en) | 2007-09-17 | 2008-09-17 | Lacritin-syndecan fusion proteins |
US12/948,199 US20110065189A1 (en) | 2007-09-17 | 2010-11-17 | Lacritin-Syndecan Interactions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/212,517 Division US7932227B1 (en) | 2007-09-17 | 2008-09-17 | Lacritin-syndecan fusion proteins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110065189A1 true US20110065189A1 (en) | 2011-03-17 |
Family
ID=43730963
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/212,517 Active 2029-07-17 US7932227B1 (en) | 2007-09-17 | 2008-09-17 | Lacritin-syndecan fusion proteins |
US12/948,199 Abandoned US20110065189A1 (en) | 2007-09-17 | 2010-11-17 | Lacritin-Syndecan Interactions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/212,517 Active 2029-07-17 US7932227B1 (en) | 2007-09-17 | 2008-09-17 | Lacritin-syndecan fusion proteins |
Country Status (1)
Country | Link |
---|---|
US (2) | US7932227B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013016578A2 (en) * | 2011-07-26 | 2013-01-31 | University Of Southern California | Controlled release of ocular biopharmaceuticals using bioresponsive protein polymers |
WO2015138604A1 (en) * | 2014-03-12 | 2015-09-17 | University Of Virginia Patent Foundation | Compositions and methods for treating eye infections and disease |
US12064469B2 (en) | 2017-02-21 | 2024-08-20 | Tearsolutions, Inc. | Stable peptide compositions |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998027205A2 (en) | 1996-12-18 | 1998-06-25 | Genetics Institute, Inc. | Secreted proteins and polynucleotides encoding them |
DE19704728A1 (en) | 1997-02-08 | 1998-08-13 | Pact Inf Tech Gmbh | Method for self-synchronization of configurable elements of a programmable module |
US7053190B2 (en) | 1997-03-07 | 2006-05-30 | Human Genome Sciences, Inc. | Secreted protein HRGDF73 |
AU784469B2 (en) | 1999-12-08 | 2006-04-06 | Serono Genetics Institute S.A. | Full-length human cDNAs encoding potentially secreted proteins |
DE60232967D1 (en) | 2001-02-20 | 2009-08-27 | Univ Virginia | OKULAR TISSUE GROWTH FACTOR-SIMILAR PROTEIN |
EP1560540A4 (en) | 2002-10-18 | 2008-03-19 | Molichem Medicines Inc | Methods of treating dry eye disease with lantibiotics |
CA2566607C (en) | 2004-05-13 | 2014-04-15 | University Of Virginia Patent Foundation | Use of lacritin in promoting ocular cell survival |
-
2008
- 2008-09-17 US US12/212,517 patent/US7932227B1/en active Active
-
2010
- 2010-11-17 US US12/948,199 patent/US20110065189A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013016578A2 (en) * | 2011-07-26 | 2013-01-31 | University Of Southern California | Controlled release of ocular biopharmaceuticals using bioresponsive protein polymers |
WO2013016578A3 (en) * | 2011-07-26 | 2013-05-10 | University Of Southern California | Controlled release of ocular biopharmaceuticals using bioresponsive protein polymers |
WO2015138604A1 (en) * | 2014-03-12 | 2015-09-17 | University Of Virginia Patent Foundation | Compositions and methods for treating eye infections and disease |
JP2017516072A (en) * | 2014-03-12 | 2017-06-15 | ユニバーシテイ・オブ・バージニア・パテント・フアウンデーシヨン | Compositions and methods for treating ocular infections and diseases |
US20170176457A1 (en) * | 2014-03-12 | 2017-06-22 | University Of Virginia Patent Foundation | Compositions and methods for treating eye infections and disease |
US10302658B2 (en) * | 2014-03-12 | 2019-05-28 | University Of Virginia Patent Foundation | Compositions and methods for treating eye infections and disease |
US10393755B2 (en) | 2014-03-12 | 2019-08-27 | University Of Virginia Patent Foundation | Compositions and methods for treating eye infections and disease |
JP2020038211A (en) * | 2014-03-12 | 2020-03-12 | ユニバーシテイ・オブ・バージニア・パテント・フアウンデーシヨン | Composition and method for treating ocular infection and disease |
AU2015229452B2 (en) * | 2014-03-12 | 2021-07-15 | University Of Virginia Patent Foundation | Compositions and methods for treating eye infections and disease |
JP2021121805A (en) * | 2014-03-12 | 2021-08-26 | ユニバーシテイ・オブ・バージニア・パテント・フアウンデーシヨン | Compositions and methods for treating eye infections and disease |
JP7374953B2 (en) | 2014-03-12 | 2023-11-07 | ユニバーシテイ・オブ・バージニア・パテント・フアウンデーシヨン | Compositions and methods for treating ocular infections and diseases |
US12064469B2 (en) | 2017-02-21 | 2024-08-20 | Tearsolutions, Inc. | Stable peptide compositions |
Also Published As
Publication number | Publication date |
---|---|
US7932227B1 (en) | 2011-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5122278B2 (en) | Use of lacritin in promoting ocular cell survival | |
JP7374953B2 (en) | Compositions and methods for treating ocular infections and diseases | |
US20170080053A1 (en) | Regulation of sodium channels by plunc proteins | |
US7932227B1 (en) | Lacritin-syndecan fusion proteins | |
SK287523B6 (en) | Use of a CC chemokine mutant, pharmaceutical composition containing the chemokine mutant, truncated and mutated human RANTES and method for producing the same | |
US20170253646A1 (en) | Functional Peptide Analogs of PEDF | |
WO2020109864A1 (en) | Dpep-1 binding agents and methods of use | |
US20090312252A1 (en) | Antimicrobial Activity in Variants of Lacritin | |
AU2006278282A1 (en) | Methods and compositions for inhibition of vascular permeablility | |
EP1231270A1 (en) | Novel protein and dna thereof | |
KR20200039621A (en) | Compositions and methods for the treatment of myelin disorder | |
US20070185020A1 (en) | Methods and compositions for treating disorders of the extracellular matrix | |
US6329500B1 (en) | Transforming growth factor-β binding site | |
US20190282616A1 (en) | Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF VIRGINIA PATENT FOUNDATION;REEL/FRAME:025411/0434 Effective date: 20101119 |
|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAURIE, GORDON W.;MA, PEISONG;SIGNING DATES FROM 20101120 TO 20101130;REEL/FRAME:025460/0222 |
|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:025825/0575 Effective date: 20110113 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |