US20110041883A1 - Reusable self-inflating umbrella - Google Patents

Reusable self-inflating umbrella Download PDF

Info

Publication number
US20110041883A1
US20110041883A1 US12/664,629 US66462908A US2011041883A1 US 20110041883 A1 US20110041883 A1 US 20110041883A1 US 66462908 A US66462908 A US 66462908A US 2011041883 A1 US2011041883 A1 US 2011041883A1
Authority
US
United States
Prior art keywords
inflating
envelope
self
inflation mechanism
inflatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/664,629
Inventor
Rolf Vaitl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20110041883A1 publication Critical patent/US20110041883A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B19/00Special folding or telescoping of umbrellas
    • A45B19/02Inflatable umbrellas; Umbrellas without ribs
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • A45C11/20Lunch or picnic boxes or the like
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C7/00Collapsible or extensible purses, luggage, bags or the like
    • A45C7/0059Flexible luggage; Hand bags
    • A45C7/0077Flexible luggage; Hand bags collapsible to a minimal configuration, e.g. for storage purposes
    • A45C7/0081Flexible luggage; Hand bags collapsible to a minimal configuration, e.g. for storage purposes inflatable and deflatable

Definitions

  • the present invention relates to a reusable, self-inflating umbrella comprising an inflatable envelope and an inflation mechanism.
  • an umbrella in a number of documents, it has therefore been proposed to configure an umbrella as an inflatable umbrella that is inflated for use and can otherwise be transported in a practicable manner in a folded-together form.
  • a gas-filled envelope replaces the screening material commonly tensioned by metal struts, thus ensuring the necessary stiffness.
  • Document DE 20 2004 002 172 U1 describes an umbrella or sunshade which is provided with an inflatable umbrella- or disk-shaped air chamber coupled to a compressed air cartridge.
  • a valve which can be actuated by a push-button, it is possible to control the supply of air from the cartridge to the air chamber.
  • the umbrella or sunshade is no longer needed, the air is released from the air chamber by means of the valve and the umbrella or sunshade is folded together and stowed in a case.
  • a compact, self-inflating umbrella for once-only use is proposed.
  • the umbrella is provided with a case, the bottom portion of which serves as a handle when using the umbrella.
  • a pressure vessel filled with a pressurised boiling liquid is disposed inside the case, near the bottom thereof.
  • the inflatable shielding screen is stowed away in a folded state inside the case.
  • a closure element of the pressure vessel is broken away by external mechanical action so that the liquid escapes through the opening thus produced, expands thereby and is guided as a gaseous substance into the inflatable chambers of the screening shield.
  • the screening shield is pressed out of the upper part of the case and unfolds to its full size.
  • the umbrella is thrown away after one use.
  • the proposed umbrellas include bulky elements such as handle members, cases or gas production devices, with the result that, in the unopened state, they are still too bulky and require too much space.
  • a decisive technical advance compared to standard telescoping pocket umbrellas cannot be achieved with such approaches.
  • the gas production devices provided in them for inflating the screening shield are too complex in design and too expensive to produce, with the consequence that inflatable umbrellas produced in this manner, especially those for once-only use, can not be offered at an attractive price.
  • the object of the present invention is therefore to specify a self-inflating umbrella which is space-saving when not in use and which can also be produced with less production effort. More particularly, the object of the present invention is to define a reusable, self-inflating umbrella which essentially no longer contains any bulky elements.
  • a self-inflating umbrella according to the present invention comprises an inflatable envelope made of flexible material and an inflation mechanism, wherein a gaseous substance with which the inflatable envelope can be inflated can be produced inside the inflation mechanism by means of a chemical reaction.
  • the present invention thus proceeds from the basic realisation that the devices proposed in the published prior art for providing or producing a gas for inflating the shielding envelope are invariably too voluminous in design and therefore too bulky, since the medium to be used for inflation must be enclosed in a pressure-tight container when not in use, be it in the form of a compressed air cartridge or a pressurised boiling liquid enclosed in a container.
  • One essential idea of the present invention is therefore to provide the gaseous substance for inflating the umbrella in some other manner that obviates the need to use bulky containers. This is made possible by the present invention.
  • the inventive idea provides the basis for storing certain starting substances, with the aid of which the gaseous substance is to be produced, without using rigid pressure vessels as storage. More particularly, two or more chemical substances are disposed, as starting substances for the chemical reaction, spatially separate from each other inside the inflation mechanism, and the chemical reaction can be triggered, when the object is used, by the chemical starting substances coming into contact with each other. This basically obviates the need for the chemical starting substances to be accommodated in rigid, pressure-tight containers. It is not even necessary, in essence, for them to be accommodated in containers at all when in their initial state.
  • one exemplary and advantageous embodiment provides that at least one of the two chemical substances is accommodated in a container which can be opened externally by the effect of pressure, such that the chemical substance contained therein is released and can come into contact with the respective other chemical substance.
  • the container is disposed at a defined position inside the inflation mechanism, and that a marking is applied at a location on the outer wall of the inflation mechanism which is closest to said position. The marking serves to indicate to the user that the marked place be pressed in case of use, thus opening the container by the effect of pressure.
  • the container may be provided, for example, with a flexible outer skin, so that the container can be made to rupture by pressure being applied to it, and the chemical substance contained therein can escape.
  • the inflation mechanism can be connected to the inflatable envelope by means of a valve, and separated from it again after inflation has been carried out. This permits the gaseous substance produced by the chemical reaction to flow into the inflatable envelope and to remain in the envelope after the inflation mechanism has been detached.
  • the inflation mechanism can be connected to the inflatable envelope without using a valve, in which case the inflation mechanism remains connected to the inflated envelope after inflation in order to prevent the gaseous substance from escaping from the inflated envelope.
  • a first chemical substance may contain or consist of a solid, and a second chemical substance may contain or consist of a liquid, and when the substances come into contact, the chemical reaction may consist in the solid being dissolved by the liquid, with the gaseous substance being one of the reaction products.
  • the solid may contain or consist of sodium carbonate (washing soda) or sodium bicarbonate (baking soda), and the second chemical substance may contain an acid.
  • washing soda sodium carbonate
  • baking soda sodium bicarbonate
  • the second chemical substance may contain an acid.
  • gaseous CO 2 is produced as the reaction product.
  • Citric acid practicably as an ingredient of lemon juice, or malic acid may be used as the acid.
  • a different solid which can be dissolved in a liquid may be chosen for the first chemical substance such that a gaseous substance such as CO 2 or O 2 is released when the solid is dissolved in the liquid.
  • the solid may also be provided by a kind of effervescent powder, and the liquid in the simplest case by water, so that the desired result of a chemical reaction, with the formation of a gaseous substance, can likewise be achieved.
  • the solid should preferably be present in the form of a powder or granulate, so that it has as much free surface exposed to the liquid as possible.
  • a handle member in the form of a flexible loop may also be provided at a position on the outer wall of the envelope.
  • the self-inflating umbrella it is possible for the self-inflating umbrella to be folded together in its initial state to a very space-saving size, or for storing it when not in use, since it no longer has any bulky, space-consuming parts.
  • the folded-together form In the folded-together form, it can be carried easily in a jacket or trouser pocket. When needed, it can be activated by applying pressure to the marking on the outer skin of the inflation mechanism so that the chemical reaction is initiated inside it. Due to the vacuum inside the envelope or inside the chambers to be inflated, when in the initial state, the gaseous substance produced by the chemical reaction flows very rapidly into the envelope or chambers and inflates these very quickly, with the result that the umbrella is available within a very short time.
  • FIG. 1 shows a perspective view (seen at an angle from above) of a first embodiment of a self-inflating umbrella in the inflated state;
  • FIG. 2 shows a perspective view (from below) of the first embodiment as shown in FIG. 1 ,
  • FIG. 3 shows a cross-sectional view of a preferred embodiment of the envelope of the self-inflating umbrella
  • FIG. 4 shows a cross-section through the inflation mechanism in one preferred embodiment
  • FIG. 5 shows a perspective view (seen at an angle from above) of another embodiment of a self-inflating umbrella according to the invention.
  • FIG. 1 shows a perspective view from above of a first embodiment of a self-inflating umbrella according to the invention
  • the self-inflating umbrella 10 essentially comprises an inflatable envelope 11 made of a flexible material, for example of a suitable plastic material such as polypropylene or the like.
  • a suitable film material may also be used, as an alternative.
  • envelope 11 When not in use, i.e. prior to inflation or after releasing the gaseous substance, there is a vacuum inside envelope 11 , so the envelope can be folded together into a very small space.
  • Envelope 11 is produced in such a way that, when inflated, it adopts the shape of a dome as shown in FIG. 1 , which can be held above one's head as a protection against rain.
  • a loop 13 made of a flexible material is attached to a central portion on the concave side of the dome, through which loop a hand can be placed when in use, so that the umbrella 10 can be held securely and reliably above the carrier's head.
  • the umbrella 10 can be produced in different sizes. In the smallest embodiment, the diameter of the dome is just large enough for the head of the user to be covered. In somewhat larger embodiments, the dome can have a diameter of such size that the shoulder area of the user is covered as well.
  • An inflation mechanism 12 which in a plan view can have a circular or rectangular form, can be mounted on envelope 11 . Production of the gaseous substance for activating and inflating umbrella 10 occurs in the inflation mechanism 12 .
  • FIG. 3 shows a cross-section through a preferred embodiment of envelope 11 .
  • the inflation mechanism 12 can be mounted on connecting piece 14 .
  • connecting piece 14 contains a valve which prevent the gaseous substance from escaping from the inflated envelope after removal of inflation mechanism 12 .
  • connecting piece 14 is mainly used only for establishing the detachable connection to inflation mechanism 12 , for example by means of a screw connection, and that the inflation mechanism remains connected to the envelope as long as the gaseous substance is to stay in the envelope.
  • Connecting piece 14 need not be located on the top side of the umbrella, as shown in FIG. 3 , but may also be mounted centrally on the underside of the umbrella, or on the edge of the umbrella, for example.
  • FIG. 4 shows one embodiment of inflation mechanism 12 in cross-section.
  • a container 12 . 2 containing citric acid or lemon juice is located inside a chamber or envelope. Laterally adjacent to container 12 . 2 , a granulate or powder 12 . 3 consisting of washing soda (sodium carbonate) or baking soda (sodium bicarbonate) is disposed.
  • a marking is applied to the outer side of the chamber or envelope. The outer wall of the envelope or chamber can be pressed in at this marking as far as container 12 . 2 , such that container 12 . 2 can be compressed and made to rupture.
  • marking 12 . 4 the outer skin of the envelope or chamber may be either wholly transparent, or transparent only in the region of container 12 . 2 , so that the user can visually perceive container 12 . 2 and can also observe the gas production process after container 12 . 2 has been forced to rupture.
  • Container 12 . 2 may consist of a small envelope or bag which is shaped out of plastic and filled with citric acid or lemon juice, and which is square in shape and welded together at one or more of its lateral boundaries. When compressed, the envelope preferably tears at one or several of these seams. As is shown in FIG. 4 , suitable precautions can be taken so that container 12 . 2 ruptures on one side only, and hence that its contents escape in one direction only, namely in the direction of the granulate 12 . 3 . As shown, container 12 . 2 may be additionally reinforced at three lateral boundaries. When compressed, container 12 . 2 thus ruptures on the left side only. A production-related seam may be located there, or a predetermined breaking point, such as a perforation or the like, may be alternatively or additionally provided in the outer skin of container 12 . 2 .
  • the inflation mechanism 12 has a connecting piece 12 . 1 with which a connection can be established with envelope 11 , so that the gas released by the reaction can flow out of the inflation mechanism into envelope 11 .
  • connecting piece 12 . 1 is provided with a membrane 12 . 4 .
  • Said membrane 12 . 4 consists of a material which is permeable to the gaseous substance produced by the chemical reaction, i.e. gaseous CO 2 in the present embodiment, or it is provided alternatively with a dense network of pores through which only the gaseous substance can pass.
  • Membrane 12 . 4 is simultaneously impermeable to both the liquid and the granulate.
  • the liquid may, for example, have a surface tension which ensures that it cannot pass through the pores of membrane 12 . 4 .
  • the granulate consists of washing soda, i.e. sodium carbonate with the chemical formula Na 2 CO 3 , or of baking soda, i.e. sodium bicarbonate with the chemical formula NaHCO 3 .
  • the acid used to dissolve the sodium (bi)carbonate granulate is citric acid with the chemical formula C 6 H 8 O 7 .
  • Lemon juice contains 5-7% citric acid, so it is possible in the simplest case for container 12 . 2 to contain lemon juice. Gaseous CO 2 is produced as a reaction product when the sodium (bi)carbonate granulate is dissolved in citric acid.
  • the equation for this chemical reaction is the following:
  • the gaseous CO 2 thus produced escapes very rapidly through the pores of membrane 12 . 4 , via the connection comprising connection pieces 12 . 1 and 14 , into the interior of envelope 11 , thus inflating envelope 11 .
  • the base portion of envelope 11 may have a slightly greater thickness in the region around loop 13 than the rest of the outer skin of envelope 11 , in order to ensure the requisite stability and strength in said region.
  • loop 13 made of flexible material is externally attached to said base portion. Loop 13 preferably consists of a thin, space-saving layer of a suitable plastic material such as polypropylene.
  • the outer edge of envelope 11 is also shown in FIG. 3 . As can be seen, an upper envelope portion 11 .
  • the gaseous substance may be released again from the interior of envelope 11 by opening the valve in connecting piece 14 , or by disconnecting the envelope and the inflation mechanism.
  • envelope 11 can be folded together again, for example to form a square package. Folding is done in such a way that connecting piece 14 remains accessible in the folded state.
  • a new inflation mechanism can be attached to connecting piece 14 either immediately or the next time the umbrella is used, in order to re-inflate the umbrella.
  • the inflation mechanisms are disposable items that can be disposed of after they have been used once.
  • the pack which may be square-shaped, and the trigger mechanism are so small that they can easily be carried in a pocket of an article of clothing. If desired, however, the square pack can be kept with the trigger mechanism in an adapted case, in particular to avoid the umbrella being unintentionally triggered.
  • FIG. 5 shows a perspective view, seen at an angle from above, of a second embodiment of a self-inflating umbrella according to the invention.
  • the self-inflating umbrella 20 has an envelope 21 which is provided with a number of inflatable channels 21 . 1 projecting radially from a central chamber 22 , between which channels single-layered regions 21 . 2 not shaped as envelopes extend.
  • an umbrella 20 of this kind is somewhat more complicated to manufacture, it can be inflated more quickly when used, because only channels 21 . 1 and hence less volume need to be filled with the gaseous substance that is produced.
  • more channels or less channels for example only two or three channels, may also be used.
  • connecting piece 14 (not shown in FIG. 5 ) for connecting to the inflation mechanism can be centrally mounted on the top side or underside of the umbrella. However, it is also possible to attach the connecting piece to the end of one of channels 21 . 1 .
  • the invention relates also to an inflatable balloon in which the same principle is applied as in the umbrella described above, and in which all the other details and features can be applied as described above in connection with the umbrella.
  • the balloon Before it is used, the balloon may have a vacuum inside it.
  • the balloon can have a connecting piece 14 , as described in the foregoing, located anywhere thereon. With the aid of said connecting piece, the balloon can be connected to the inflation mechanism or inflation device 12 and then be inflated automatically by means of the gaseous substance produced therein.
  • a simple toy balloon in particular in the form of a foil balloon, may be used, for example.
  • the balloon can consist of two parts, in particular foils, which are welded to each other at their respective circumferential rums and thus form a closed envelope.
  • the two foils may be congruent with each other, i.e. they can be laid on top of each other in a perfect overlap.
  • the foils can also produce a figure such as an animal or the like.
  • a variety of shapes for the inflated balloon are conceivable.
  • the foils can also be circular in shape, so that the inflated balloon is shaped substantially like a ball or globe.
  • the balloon can also be used as an advertising medium by printing an advertising message on the outer surface of the envelope.
  • the invention also relates to any other kind of inflatable object that can be inflated with the aid of the inflation mechanism or inflation device 12 .
  • They can have a connecting piece 14 as described above located anywhere thereon, with the aid of which the balloon can be connected to the inflation mechanism or inflation device 12 and then inflated by the gaseous substance produced therein.
  • the object may be inflatable packaging, for example. It may or may not be preformed.
  • the packaging can self-inflate and wrap or be wrapped around an item to be packaged.
  • the object can also be an inflatable tire for a motor vehicle. It can likewise be an inflatable lifejacket or inflatable life buoy, and each of these objects can be maintenance-free. Other aids for emergency situations, particularly outdoors, can also be realised.
  • the object can be a large, inflatable article of clothing (jackets, coats, gloves, shoes, etc.), a protective tent or a sleeping bag as protection against the cold in the event of temperature drops or accidents in remote areas in winter.
  • Such utensils can also be deployed when people must unexpectedly or undesignedly sleep outdoors, particularly in cold weather conditions.
  • the gaseous substance used to inflate the object is a good thermal insulator, namely. This effect can be reinforced if the envelope of the object is coated with at least one thermally insulating material.
  • a coating with metal, e.g. with anodised aluminium, would be one possibility, for example.
  • the object can be an inflatable beach ball, water-polo ball or some other shape-retaining or non-shape-retaining bathing accessory, such as an airbed. It can also be an inflatable swimming pool or inflatable pool. Other applications in homes and gardens are likewise conceivable.
  • the object could be a mattress, a cushion, or the like. Such an object can be provided for guests and stored away in a space-saving manner whenever there are no guests in the house. Owing to the thermal insulation effect of the gaseous substance used for inflating, as mentioned above, applications that exploit this effect in particular are also conceivable.
  • the object can be an inflatable cool box, an inflatable cooler bag, an inflatable thermal bag, etc., wherein the efficiency of the thermal insulation can be increased for its part by means of a metal coating, e.g. an eloxal coating.
  • a metal coating e.g. an eloxal coating.
  • a spontaneous purchase of deep-frozen goods or ice-cream is thus made possible even at higher ambient temperatures, without having to carry around a space-consuming utensil such as a conventional cool box.
  • a thermal bag or Thermos flask can also replace a conventional Thermos can if warm or cold beverages, etc. are to be taken along.
  • the object can also be used as fire protection, in that the gaseous substance used for inflating the object can function as an extinguishing gas. This effect can be reinforced if the envelope of the object consists of a fire-retardant or fire-resistant material.

Abstract

A reusable, self-inflating umbrella comprising an inflatable envelope (11) made of a flexible material and an inflation mechanism (12). The interior of the envelope (11) can be connected to the inflation mechanism (12), in which a gaseous substance with which the interior of the envelope (11) is inflated can be generated by a chemical reaction. The chemical reaction may consist in dissolving a sodium (bi)carbonate granulate in citric acid. The citric acid may be accommodated in a container which is made to rupture by pressure being applied externally to the inflation mechanism (12) by a user, thus triggering the chemical reaction.

Description

  • The present invention relates to a reusable, self-inflating umbrella comprising an inflatable envelope and an inflation mechanism.
  • Conventional umbrellas in everyday use are generally relatively bulky devices that are often inconvenient to handle. They are annoying particularly when they are not being used, i.e. as long as the anticipated rain has not yet started, or when it has stopped raining. In addition, they are often left behind or forgotten, due to the very fact that they are not easily transportable. This, in turn, often leads to them not being taken when no rain is expected. If it starts to rain after all, one is largely unprotected, or tries to protect oneself against the rain in a makeshift manner by holding items such as bags, or articles of clothing such as jackets and the like, over one's head, but with the consequence that these items and clothing articles are damaged.
  • Since this basic problem has long been known, partly telescoping umbrellas were designed a long time ago that require substantially less space when closed than is the case with conventional umbrellas, but which are still relatively large and bulky. Although it is possible to accommodate these in a bag or the like that one is carrying, the considerable weight of such umbrellas is annoyingly noticeable. If there is no intention to carry a bag, umbrellas of the latter kind are likewise impracticable to transport.
  • The problems outlined in the foregoing are further exacerbated by the fact that changes in global climate conditions could lead to local weather conditions changing more quickly from one extreme to the other. Within a few hours or an even shorter period of time, the weather situation and particularly the likelihood of rain can therefore change in a fundamental way. This gives rise to a need to be able to protect oneself against sudden rain showers in effectively any outdoor situation.
  • It can be seen from the published prior art that one aim in improving the ease of handling of umbrellas is to reduce their bulkiness, i.e. to decrease the number and/or size of bulky parts in umbrellas. The bulkiness of conventional umbrellas is due, in particular, to the handle member, the central support rod and the radial struts which tension the screening material. One aim of further developments must therefore be to replace these elements with other elements that functionally are approximately equivalent.
  • In a number of documents, it has therefore been proposed to configure an umbrella as an inflatable umbrella that is inflated for use and can otherwise be transported in a practicable manner in a folded-together form. A gas-filled envelope replaces the screening material commonly tensioned by metal struts, thus ensuring the necessary stiffness.
  • Document DE 20 2004 002 172 U1 describes an umbrella or sunshade which is provided with an inflatable umbrella- or disk-shaped air chamber coupled to a compressed air cartridge. By means of a valve which can be actuated by a push-button, it is possible to control the supply of air from the cartridge to the air chamber. When the umbrella or sunshade is no longer needed, the air is released from the air chamber by means of the valve and the umbrella or sunshade is folded together and stowed in a case.
  • In document U.S. Pat. No. 3,889,700, a compact, self-inflating umbrella for once-only use is proposed. The umbrella is provided with a case, the bottom portion of which serves as a handle when using the umbrella. Inside the case, near the bottom thereof, a pressure vessel filled with a pressurised boiling liquid is disposed. Above said vessel, the inflatable shielding screen is stowed away in a folded state inside the case. When in use, a closure element of the pressure vessel is broken away by external mechanical action so that the liquid escapes through the opening thus produced, expands thereby and is guided as a gaseous substance into the inflatable chambers of the screening shield. As a result of the air chambers being inflated, the screening shield is pressed out of the upper part of the case and unfolds to its full size. The umbrella is thrown away after one use.
  • US patent specification 1,200,616 teaches the use of chemical substances in the context of designing life vests, and DE 198 13 579 A1 teaches the use of chemical substances to inflate a balloon. In U.S. Pat. No. 3,889,700, a propellant unit is located inside the envelope of a umbrella.
  • For several reasons, these different approaches to solving the aforementioned problem have not been able to establish themselves by widespread use. Firstly, the proposed umbrellas include bulky elements such as handle members, cases or gas production devices, with the result that, in the unopened state, they are still too bulky and require too much space. In other words, a decisive technical advance compared to standard telescoping pocket umbrellas cannot be achieved with such approaches. Secondly, the gas production devices provided in them for inflating the screening shield are too complex in design and too expensive to produce, with the consequence that inflatable umbrellas produced in this manner, especially those for once-only use, can not be offered at an attractive price.
  • The object of the present invention is therefore to specify a self-inflating umbrella which is space-saving when not in use and which can also be produced with less production effort. More particularly, the object of the present invention is to define a reusable, self-inflating umbrella which essentially no longer contains any bulky elements.
  • This object is achieved by the features of claim 1. Advantageous developments and configurations of the invention are described in subclaims.
  • A self-inflating umbrella according to the present invention comprises an inflatable envelope made of flexible material and an inflation mechanism, wherein a gaseous substance with which the inflatable envelope can be inflated can be produced inside the inflation mechanism by means of a chemical reaction.
  • The present invention thus proceeds from the basic realisation that the devices proposed in the published prior art for providing or producing a gas for inflating the shielding envelope are invariably too voluminous in design and therefore too bulky, since the medium to be used for inflation must be enclosed in a pressure-tight container when not in use, be it in the form of a compressed air cartridge or a pressurised boiling liquid enclosed in a container.
  • One essential idea of the present invention is therefore to provide the gaseous substance for inflating the umbrella in some other manner that obviates the need to use bulky containers. This is made possible by the present invention.
  • The inventive idea provides the basis for storing certain starting substances, with the aid of which the gaseous substance is to be produced, without using rigid pressure vessels as storage. More particularly, two or more chemical substances are disposed, as starting substances for the chemical reaction, spatially separate from each other inside the inflation mechanism, and the chemical reaction can be triggered, when the object is used, by the chemical starting substances coming into contact with each other. This basically obviates the need for the chemical starting substances to be accommodated in rigid, pressure-tight containers. It is not even necessary, in essence, for them to be accommodated in containers at all when in their initial state.
  • However, one exemplary and advantageous embodiment provides that at least one of the two chemical substances is accommodated in a container which can be opened externally by the effect of pressure, such that the chemical substance contained therein is released and can come into contact with the respective other chemical substance. For example, it can then be arranged that the container is disposed at a defined position inside the inflation mechanism, and that a marking is applied at a location on the outer wall of the inflation mechanism which is closest to said position. The marking serves to indicate to the user that the marked place be pressed in case of use, thus opening the container by the effect of pressure. The container may be provided, for example, with a flexible outer skin, so that the container can be made to rupture by pressure being applied to it, and the chemical substance contained therein can escape.
  • In one preferred embodiment, the inflation mechanism can be connected to the inflatable envelope by means of a valve, and separated from it again after inflation has been carried out. This permits the gaseous substance produced by the chemical reaction to flow into the inflatable envelope and to remain in the envelope after the inflation mechanism has been detached.
  • In another embodiment, the inflation mechanism can be connected to the inflatable envelope without using a valve, in which case the inflation mechanism remains connected to the inflated envelope after inflation in order to prevent the gaseous substance from escaping from the inflated envelope.
  • It is possible in both embodiments to release the gaseous substance from the envelope again after using the umbrella, either by opening to valve or by separating the inflation mechanism from the envelope so that the gaseous substance can escape into the surroundings. The inflatable envelope can be folded up until needed again and connected to a new inflation mechanism for its next use.
  • With regard to the starting substances for the chemical reaction, a first chemical substance may contain or consist of a solid, and a second chemical substance may contain or consist of a liquid, and when the substances come into contact, the chemical reaction may consist in the solid being dissolved by the liquid, with the gaseous substance being one of the reaction products. In one practical embodiment, the solid may contain or consist of sodium carbonate (washing soda) or sodium bicarbonate (baking soda), and the second chemical substance may contain an acid. When said solids are dissolved in the acid, gaseous CO2 is produced as the reaction product. Citric acid, practicably as an ingredient of lemon juice, or malic acid may be used as the acid.
  • As an alternative to the choice of material proposed above for the first and second chemical substance, a different solid which can be dissolved in a liquid may be chosen for the first chemical substance such that a gaseous substance such as CO2 or O2 is released when the solid is dissolved in the liquid. For example, the solid may also be provided by a kind of effervescent powder, and the liquid in the simplest case by water, so that the desired result of a chemical reaction, with the formation of a gaseous substance, can likewise be achieved.
  • The solid should preferably be present in the form of a powder or granulate, so that it has as much free surface exposed to the liquid as possible.
  • A handle member in the form of a flexible loop may also be provided at a position on the outer wall of the envelope.
  • With the present invention and, where relevant, with the developments and embodiments specified in the foregoing, it is possible for the self-inflating umbrella to be folded together in its initial state to a very space-saving size, or for storing it when not in use, since it no longer has any bulky, space-consuming parts.
  • In the folded-together form, it can be carried easily in a jacket or trouser pocket. When needed, it can be activated by applying pressure to the marking on the outer skin of the inflation mechanism so that the chemical reaction is initiated inside it. Due to the vacuum inside the envelope or inside the chambers to be inflated, when in the initial state, the gaseous substance produced by the chemical reaction flows very rapidly into the envelope or chambers and inflates these very quickly, with the result that the umbrella is available within a very short time.
  • The invention shall now be described in greater detail with reference to preferred embodiments and to the drawings in the Figures, in which:
  • in which:
  • FIG. 1 shows a perspective view (seen at an angle from above) of a first embodiment of a self-inflating umbrella in the inflated state;
  • FIG. 2 shows a perspective view (from below) of the first embodiment as shown in FIG. 1,
  • FIG. 3 shows a cross-sectional view of a preferred embodiment of the envelope of the self-inflating umbrella;
  • FIG. 4 shows a cross-section through the inflation mechanism in one preferred embodiment; and
  • FIG. 5 shows a perspective view (seen at an angle from above) of another embodiment of a self-inflating umbrella according to the invention.
  • FIG. 1 shows a perspective view from above of a first embodiment of a self-inflating umbrella according to the invention, The self-inflating umbrella 10 essentially comprises an inflatable envelope 11 made of a flexible material, for example of a suitable plastic material such as polypropylene or the like. A suitable film material may also be used, as an alternative. When not in use, i.e. prior to inflation or after releasing the gaseous substance, there is a vacuum inside envelope 11, so the envelope can be folded together into a very small space. Envelope 11 is produced in such a way that, when inflated, it adopts the shape of a dome as shown in FIG. 1, which can be held above one's head as a protection against rain. In the perspective view seen at an angle from below as shown in FIG. 2, it can be seen that a loop 13 made of a flexible material is attached to a central portion on the concave side of the dome, through which loop a hand can be placed when in use, so that the umbrella 10 can be held securely and reliably above the carrier's head. The umbrella 10 can be produced in different sizes. In the smallest embodiment, the diameter of the dome is just large enough for the head of the user to be covered. In somewhat larger embodiments, the dome can have a diameter of such size that the shoulder area of the user is covered as well.
  • An inflation mechanism 12, which in a plan view can have a circular or rectangular form, can be mounted on envelope 11. Production of the gaseous substance for activating and inflating umbrella 10 occurs in the inflation mechanism 12.
  • FIG. 3 shows a cross-section through a preferred embodiment of envelope 11. The inflation mechanism 12 can be mounted on connecting piece 14. In one preferred embodiment of the invention, connecting piece 14 contains a valve which prevent the gaseous substance from escaping from the inflated envelope after removal of inflation mechanism 12. However, it is also conceivable that connecting piece 14 is mainly used only for establishing the detachable connection to inflation mechanism 12, for example by means of a screw connection, and that the inflation mechanism remains connected to the envelope as long as the gaseous substance is to stay in the envelope. Connecting piece 14 need not be located on the top side of the umbrella, as shown in FIG. 3, but may also be mounted centrally on the underside of the umbrella, or on the edge of the umbrella, for example.
  • FIG. 4 shows one embodiment of inflation mechanism 12 in cross-section. A container 12.2 containing citric acid or lemon juice is located inside a chamber or envelope. Laterally adjacent to container 12.2, a granulate or powder 12.3 consisting of washing soda (sodium carbonate) or baking soda (sodium bicarbonate) is disposed. A marking is applied to the outer side of the chamber or envelope. The outer wall of the envelope or chamber can be pressed in at this marking as far as container 12.2, such that container 12.2 can be compressed and made to rupture. As an alternative to marking 12.4, the outer skin of the envelope or chamber may be either wholly transparent, or transparent only in the region of container 12.2, so that the user can visually perceive container 12.2 and can also observe the gas production process after container 12.2 has been forced to rupture.
  • Container 12.2 may consist of a small envelope or bag which is shaped out of plastic and filled with citric acid or lemon juice, and which is square in shape and welded together at one or more of its lateral boundaries. When compressed, the envelope preferably tears at one or several of these seams. As is shown in FIG. 4, suitable precautions can be taken so that container 12.2 ruptures on one side only, and hence that its contents escape in one direction only, namely in the direction of the granulate 12.3. As shown, container 12.2 may be additionally reinforced at three lateral boundaries. When compressed, container 12.2 thus ruptures on the left side only. A production-related seam may be located there, or a predetermined breaking point, such as a perforation or the like, may be alternatively or additionally provided in the outer skin of container 12.2.
  • After container 12.2 has ruptured, the liquid contained therein escapes rapidly because of the vacuum inside inflation mechanism 12. However, it is essential to ensure that the lemon juice flows over granulate 12.3 in a directed manner and as completely as possible in order to bring about the chemical reaction, i.e. the dissolution of the sodium (bi)carbonate granulate 12.3. The inflation mechanism 12 has a connecting piece 12.1 with which a connection can be established with envelope 11, so that the gas released by the reaction can flow out of the inflation mechanism into envelope 11. However, to prevent the liquid and/or granulate 12.3 escaping from container 12.2 from getting inside envelope 11, connecting piece 12.1 is provided with a membrane 12.4. Said membrane 12.4 consists of a material which is permeable to the gaseous substance produced by the chemical reaction, i.e. gaseous CO2 in the present embodiment, or it is provided alternatively with a dense network of pores through which only the gaseous substance can pass. Membrane 12.4 is simultaneously impermeable to both the liquid and the granulate. To this end, the liquid may, for example, have a surface tension which ensures that it cannot pass through the pores of membrane 12.4.
  • In the chosen embodiment, the granulate consists of washing soda, i.e. sodium carbonate with the chemical formula Na2CO3, or of baking soda, i.e. sodium bicarbonate with the chemical formula NaHCO3. In the present embodiment, the acid used to dissolve the sodium (bi)carbonate granulate is citric acid with the chemical formula C6H8O7. Lemon juice contains 5-7% citric acid, so it is possible in the simplest case for container 12.2 to contain lemon juice. Gaseous CO2 is produced as a reaction product when the sodium (bi)carbonate granulate is dissolved in citric acid. The equation for this chemical reaction is the following:

  • 3Na2CO3+2C6H8O7==>3H2O+3CO2+2C6H5O7−3+6Na+
  • or, expressed in words:

  • Sodium carbonate+citric acid==>water+carbon dioxide+sodium citrate
  • However, it is also possible for a different acid, for example acetic acid, to be used to dissolve the granulate.
  • The gaseous CO2 thus produced escapes very rapidly through the pores of membrane 12.4, via the connection comprising connection pieces 12.1 and 14, into the interior of envelope 11, thus inflating envelope 11. The base portion of envelope 11 may have a slightly greater thickness in the region around loop 13 than the rest of the outer skin of envelope 11, in order to ensure the requisite stability and strength in said region. As shown in FIG. 3, loop 13 made of flexible material is externally attached to said base portion. Loop 13 preferably consists of a thin, space-saving layer of a suitable plastic material such as polypropylene. The outer edge of envelope 11 is also shown in FIG. 3. As can be seen, an upper envelope portion 11.1 can be welded together in this region with a lower envelope portion 11.2 along a circumferential seam 11.3. For a person skilled in the art, it is self-evident that respective welding seams and connecting pieces 12.1 and 14 must be embodied in such a way that they essentially permit no gaseous substance to escape.
  • After using the umbrella, the gaseous substance may be released again from the interior of envelope 11 by opening the valve in connecting piece 14, or by disconnecting the envelope and the inflation mechanism. When the filling gas has been let out, envelope 11 can be folded together again, for example to form a square package. Folding is done in such a way that connecting piece 14 remains accessible in the folded state. A new inflation mechanism can be attached to connecting piece 14 either immediately or the next time the umbrella is used, in order to re-inflate the umbrella. The inflation mechanisms are disposable items that can be disposed of after they have been used once. The pack, which may be square-shaped, and the trigger mechanism are so small that they can easily be carried in a pocket of an article of clothing. If desired, however, the square pack can be kept with the trigger mechanism in an adapted case, in particular to avoid the umbrella being unintentionally triggered.
  • FIG. 5 shows a perspective view, seen at an angle from above, of a second embodiment of a self-inflating umbrella according to the invention. Unlike the first embodiment shown in FIG. 1, the self-inflating umbrella 20 has an envelope 21 which is provided with a number of inflatable channels 21.1 projecting radially from a central chamber 22, between which channels single-layered regions 21.2 not shaped as envelopes extend. Although an umbrella 20 of this kind is somewhat more complicated to manufacture, it can be inflated more quickly when used, because only channels 21.1 and hence less volume need to be filled with the gaseous substance that is produced. Instead of seven channels 21.1, as shown in FIG. 5, more channels or less channels, for example only two or three channels, may also be used. As in the previously described embodiment, connecting piece 14 (not shown in FIG. 5) for connecting to the inflation mechanism can be centrally mounted on the top side or underside of the umbrella. However, it is also possible to attach the connecting piece to the end of one of channels 21.1.
  • The invention relates also to an inflatable balloon in which the same principle is applied as in the umbrella described above, and in which all the other details and features can be applied as described above in connection with the umbrella. Before it is used, the balloon may have a vacuum inside it. The balloon can have a connecting piece 14, as described in the foregoing, located anywhere thereon. With the aid of said connecting piece, the balloon can be connected to the inflation mechanism or inflation device 12 and then be inflated automatically by means of the gaseous substance produced therein. A simple toy balloon, in particular in the form of a foil balloon, may be used, for example.
  • In its simplest embodiment, the balloon can consist of two parts, in particular foils, which are welded to each other at their respective circumferential rums and thus form a closed envelope. The two foils may be congruent with each other, i.e. they can be laid on top of each other in a perfect overlap. When inflated, the foils can also produce a figure such as an animal or the like. A variety of shapes for the inflated balloon are conceivable. In the simple case, the foils can also be circular in shape, so that the inflated balloon is shaped substantially like a ball or globe. The balloon can also be used as an advertising medium by printing an advertising message on the outer surface of the envelope.
  • In addition to the embodiments described in the foregoing, the invention also relates to any other kind of inflatable object that can be inflated with the aid of the inflation mechanism or inflation device 12. They can have a connecting piece 14 as described above located anywhere thereon, with the aid of which the balloon can be connected to the inflation mechanism or inflation device 12 and then inflated by the gaseous substance produced therein. Some sample applications and examples of such objects shall now be described, although the description merely provides examples and is not to be interpreted as limiting the invention. An inflated object may essentially take any shape whatsoever.
  • The object may be inflatable packaging, for example. It may or may not be preformed. The packaging can self-inflate and wrap or be wrapped around an item to be packaged. The object can also be an inflatable tire for a motor vehicle. It can likewise be an inflatable lifejacket or inflatable life buoy, and each of these objects can be maintenance-free. Other aids for emergency situations, particularly outdoors, can also be realised. For example, the object can be a large, inflatable article of clothing (jackets, coats, gloves, shoes, etc.), a protective tent or a sleeping bag as protection against the cold in the event of temperature drops or accidents in remote areas in winter. Such utensils can also be deployed when people must unexpectedly or undesignedly sleep outdoors, particularly in cold weather conditions. The gaseous substance used to inflate the object is a good thermal insulator, namely. This effect can be reinforced if the envelope of the object is coated with at least one thermally insulating material. A coating with metal, e.g. with anodised aluminium, would be one possibility, for example.
  • The object can be an inflatable beach ball, water-polo ball or some other shape-retaining or non-shape-retaining bathing accessory, such as an airbed. It can also be an inflatable swimming pool or inflatable pool. Other applications in homes and gardens are likewise conceivable. For example, the object could be a mattress, a cushion, or the like. Such an object can be provided for guests and stored away in a space-saving manner whenever there are no guests in the house. Owing to the thermal insulation effect of the gaseous substance used for inflating, as mentioned above, applications that exploit this effect in particular are also conceivable. For example, the object can be an inflatable cool box, an inflatable cooler bag, an inflatable thermal bag, etc., wherein the efficiency of the thermal insulation can be increased for its part by means of a metal coating, e.g. an eloxal coating. A spontaneous purchase of deep-frozen goods or ice-cream is thus made possible even at higher ambient temperatures, without having to carry around a space-consuming utensil such as a conventional cool box. A thermal bag or Thermos flask can also replace a conventional Thermos can if warm or cold beverages, etc. are to be taken along. Many other applications of the invention are conceivable. For example, the object can also be used as fire protection, in that the gaseous substance used for inflating the object can function as an extinguishing gas. This effect can be reinforced if the envelope of the object consists of a fire-retardant or fire-resistant material.
  • The solutions described above are technically simple, cost-efficient, reliable and maintenance-free. They permit space-saving storage of inflatable objects when these are not in use, and they are highly efficient. In addition, different pressures can be produced by means of different dosages of the chemical substances used to produce the gas, thus making it possible to realise objects with very high form stability or also of less high form stability.

Claims (15)

1. A self-inflating umbrella comprising an inflatable envelope (11) made of flexible material and an inflation mechanism (12) which can be connected detachably and gas-tight to the inflatable envelope (11), wherein two or more chemical substances are disposed spatially separate from each other inside the inflation mechanism (12) which trigger a chemical reaction when they come into contact with each other, thus generating a gaseous substance for inflating the inflatable envelope (11), and wherein at least one of the two chemical substances is accommodated in a container (12.2) having a flexible outer skin which can be opened by the effect of pressure.
2. A self-inflating umbrella according to claim 1, wherein the inflation mechanism (12) can be connected to the inflatable envelope (11) via a valve and removed again after inflation without any of the gaseous substance escaping from the inflated envelope.
3. A self-inflating umbrella according to claim 1, wherein the inflation mechanism (12) can be connected to the inflatable envelope (11) without a valve therebetween and remains connected to the envelope after inflation until the gaseous substance is to escape again from the inflated envelope.
4. A self-inflating object according to claim 1, wherein a first chemical substance of the inflation mechanism contains or consists of a solid, and a second chemical substance contains or consists of a liquid, and the solid is dissolved by the liquid, wherein the gaseous substance is one of the resultant reaction products.
5. A self-inflating object according to claim 1, wherein the first chemical substance is sodium carbonate or sodium bicarbonate and the second chemical substance contains an acid, such that the reaction product resulting from the chemical reaction is gaseous CO2.
6. A self-inflating umbrella according to claim 1, wherein the second chemical substance contains or consists of citric acid.
7. A self-inflating umbrella according to claim 1, wherein the second chemical substance contains or consists of lemon juice.
8. A self-inflating object according to claim 1, wherein the container (12.2) is disposed at a defined position inside the inflation mechanism, and a marking is applied at a location on the outer wall of the inflation mechanism which is closest to said position.
9. A self-inflating umbrella according to claim 1, wherein the inflation mechanism can be mounted centrally on the top side of the inflatable envelope.
10. A self-inflating umbrella according to claim 1, wherein the inflation mechanism can be mounted centrally on the underside of the inflatable envelope.
11. A self-inflating umbrella according to claim 1, wherein the inflation mechanism can be mounted on the lateral edge of the inflatable envelope.
12. A self-inflating object according to claim 1, wherein a handle member (13) in the form of a flexible loop is attached at a position on the outer wall of the envelope (11).
13. An inflation mechanism for inflating an inflatable object, wherein said inflation mechanism can be connected detachably and gas-tight to an inflatable envelope (11) of the inflatable object,
wherein two or more chemical substances are disposed spatially separate from each other inside the inflation mechanism (12) which trigger a chemical reaction when they come into contact with each other, thus generating a gaseous substance for inflating the inflatable envelope (11), and
wherein at least one of the two chemical substances is accommodated in a container (12.2) which has a flexible outer skin and which can be opened by the effect of pressure.
14. A self-inflating object according to claim 13, wherein the inflatable object is an umbrella.
15. The use of an inflation mechanism according to claim 13 when inflating an inflatable object.
US12/664,629 2007-06-13 2008-06-13 Reusable self-inflating umbrella Abandoned US20110041883A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007027107.9 2007-06-13
DE102007027107A DE102007027107A1 (en) 2007-06-13 2007-06-13 Reusable self-inflating umbrella
PCT/EP2008/004788 WO2008151827A1 (en) 2007-06-13 2008-06-13 Reusable self-inflating umbrella

Publications (1)

Publication Number Publication Date
US20110041883A1 true US20110041883A1 (en) 2011-02-24

Family

ID=39739843

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/664,629 Abandoned US20110041883A1 (en) 2007-06-13 2008-06-13 Reusable self-inflating umbrella

Country Status (5)

Country Link
US (1) US20110041883A1 (en)
EP (1) EP2157880A1 (en)
CN (1) CN101765382A (en)
DE (1) DE102007027107A1 (en)
WO (1) WO2008151827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD822368S1 (en) * 2016-12-21 2018-07-10 Ching-Chuan You Two layers umbrella
USD822369S1 (en) * 2016-12-21 2018-07-10 Aijuan Hong Inverted umbrella

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054584B (en) * 2016-12-24 2019-02-26 河南科技学院 A kind of life-buoy for life

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698496A (en) * 1949-03-19 1955-01-04 Miller Gustave Self-inflating stable plastic figure
US2827909A (en) * 1956-09-17 1958-03-25 Platzke Emil Inflatable umbrella
US3889700A (en) * 1973-02-20 1975-06-17 Joseph F Kirley Self-inflatable pocket disposable umbrella
US4370994A (en) * 1981-02-19 1983-02-01 Pittman Benny R Inflatable umbrella and method of fabricating the same
US4643210A (en) * 1985-08-12 1987-02-17 Oscar Feld Inflatable umbrella
US4781645A (en) * 1985-05-24 1988-11-01 Tadashi Sakuma Inflatable bag with inner and intermediate containers and gas generation substances within inner container
US5040555A (en) * 1987-09-15 1991-08-20 Cheng Chung Wang Inflatable umbrella
US5103848A (en) * 1990-04-23 1992-04-14 Parsons Gerald W Sunshade umbrella
US5464034A (en) * 1994-09-27 1995-11-07 Kestin; Hesh Pocket-portable rain covering
US5480339A (en) * 1995-01-03 1996-01-02 Chieh Chang Co., Ltd. Automatically inflatable toy
US5924463A (en) * 1997-12-29 1999-07-20 Hsu; Chung Yeh Portable emergency instant inflation device
US5941752A (en) * 1997-10-30 1999-08-24 Liebermann; Ron B. Inflatable enclosure having discrete chambers therein
US6318390B1 (en) * 2000-06-16 2001-11-20 Erik V. Innis Inflatable umbrella
US6354314B1 (en) * 2000-03-29 2002-03-12 Edoardo Iurincich Inflatable umbrella
US20040045593A1 (en) * 2002-09-09 2004-03-11 Yuan-Fu Chang Inflatable umbrella
US20040099296A1 (en) * 2002-11-27 2004-05-27 Yuan-Fu Chang Inflatable umbrella

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1200616A (en) 1916-03-24 1916-10-10 Rupert William Nichols Life-saving device.
DE3227306A1 (en) 1982-07-19 1984-01-19 Klaus Kortstock Mini rescue device for swimmers and water sportsmen
DE19813579A1 (en) 1998-03-27 1999-09-30 Markert Gerhard Lifejacket with signal device
DE20215236U1 (en) * 2002-10-04 2003-04-24 Aumaier Karl Heinz Miniaturized life-saving apparatus for water sport comprises buoyancy body integrated in arm band and worn on body- wrist
DE202004002172U1 (en) 2004-02-12 2005-03-31 Merlaku Kastriot Rain and sun shield with no umbrella arrangement including an air pressure cartridge (sic), inflatable air chamber/air pad, and valve for controlling the air supply to the cartridge generally useful for protection against rain and the sun

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698496A (en) * 1949-03-19 1955-01-04 Miller Gustave Self-inflating stable plastic figure
US2827909A (en) * 1956-09-17 1958-03-25 Platzke Emil Inflatable umbrella
US3889700A (en) * 1973-02-20 1975-06-17 Joseph F Kirley Self-inflatable pocket disposable umbrella
US4370994A (en) * 1981-02-19 1983-02-01 Pittman Benny R Inflatable umbrella and method of fabricating the same
US4781645A (en) * 1985-05-24 1988-11-01 Tadashi Sakuma Inflatable bag with inner and intermediate containers and gas generation substances within inner container
US4643210A (en) * 1985-08-12 1987-02-17 Oscar Feld Inflatable umbrella
US5040555A (en) * 1987-09-15 1991-08-20 Cheng Chung Wang Inflatable umbrella
US5103848A (en) * 1990-04-23 1992-04-14 Parsons Gerald W Sunshade umbrella
US5464034A (en) * 1994-09-27 1995-11-07 Kestin; Hesh Pocket-portable rain covering
US5480339A (en) * 1995-01-03 1996-01-02 Chieh Chang Co., Ltd. Automatically inflatable toy
US5941752A (en) * 1997-10-30 1999-08-24 Liebermann; Ron B. Inflatable enclosure having discrete chambers therein
US5924463A (en) * 1997-12-29 1999-07-20 Hsu; Chung Yeh Portable emergency instant inflation device
US6354314B1 (en) * 2000-03-29 2002-03-12 Edoardo Iurincich Inflatable umbrella
US6318390B1 (en) * 2000-06-16 2001-11-20 Erik V. Innis Inflatable umbrella
US20040045593A1 (en) * 2002-09-09 2004-03-11 Yuan-Fu Chang Inflatable umbrella
US20040099296A1 (en) * 2002-11-27 2004-05-27 Yuan-Fu Chang Inflatable umbrella

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD822368S1 (en) * 2016-12-21 2018-07-10 Ching-Chuan You Two layers umbrella
USD822369S1 (en) * 2016-12-21 2018-07-10 Aijuan Hong Inverted umbrella

Also Published As

Publication number Publication date
EP2157880A1 (en) 2010-03-03
DE102007027107A1 (en) 2008-12-18
WO2008151827A1 (en) 2008-12-18
CN101765382A (en) 2010-06-30

Similar Documents

Publication Publication Date Title
TW574494B (en) A collapsible container
US4929214A (en) Inflatable enclosure and means to inflate same
ES2557877T3 (en) Container with a tilting upper part with push button
US20120103378A1 (en) Self-inflating screening shield, in particular umbrella
US20100299837A1 (en) Vacuum packed inflatable stretcher with frangible overwrap and method of deploying same
CN107364558B (en) A kind of portable automatic inflation type lifebuoy
US8016627B2 (en) Personal water safety device
US20110041883A1 (en) Reusable self-inflating umbrella
US6368174B1 (en) Visible floatation device
US7931402B1 (en) Inflatable gift wrap in the shape of a cake
KR20140037785A (en) Inflatable umbrella
US5522181A (en) Devices for the rapid deployment of igloos
WO2010058205A2 (en) Inflatable life raft
JP2013043540A (en) Capsule for life saving
CN106143836B (en) The standby lifeboat of family
US9162737B1 (en) Lifesaving tote bag
US6223682B1 (en) Locating device for avalanche victims
US4362517A (en) Inflatable liferafts
WO2005095203A1 (en) Safe swim suit
US3031693A (en) Marker buoy
CN212605729U (en) Self-inflating lifesaving cap
CN217754061U (en) Emergency lifesaving location knapsack
US5634427A (en) Emergency signalling device
WO2019106677A1 (en) Emergency flotation device with chemical reaction chamber
US20050045088A1 (en) Signaling Device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION