US20110037217A1 - Office machine - Google Patents

Office machine Download PDF

Info

Publication number
US20110037217A1
US20110037217A1 US12/850,592 US85059210A US2011037217A1 US 20110037217 A1 US20110037217 A1 US 20110037217A1 US 85059210 A US85059210 A US 85059210A US 2011037217 A1 US2011037217 A1 US 2011037217A1
Authority
US
United States
Prior art keywords
point
restraining
office machine
acting
roller assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/850,592
Inventor
Tsan-Yao Hung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qisda Corp
Original Assignee
Qisda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qisda Corp filed Critical Qisda Corp
Assigned to QISDA CORPORATION reassignment QISDA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNG, TSAN-YAO
Publication of US20110037217A1 publication Critical patent/US20110037217A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/121Feeding arrangements
    • H04N1/1215Feeding using one or more cylindrical platens or rollers in the immediate vicinity of the main scanning line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00909Cleaning arrangements or preventing or counter-acting contamination from dust or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/121Feeding arrangements
    • H04N1/1225Means for maintaining contact between the sheet and the image sensor, e.g. pressing means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/121Feeding arrangements
    • H04N1/123Using a dedicated sheet guide element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/126Arrangements for the main scanning
    • H04N1/128Arrangements for the main scanning using a scanning head arranged for linear reciprocating motion

Definitions

  • the invention relates to an office machine and, more particularly, to an office machine capable of preventing a sheet member from vibrating while the sheet member is being transported.
  • an office machine is equipped with feeding-in/out rollers for feeding in/out a sheet member.
  • a recording module such as image sensor, print head, etc.
  • preset function such as scanning, printing, etc.
  • Vibration usually occurs when the sheet member is fed out of a nip point of a feeding-in roller or fed in a nip point of a feeding-out roller.
  • the recording module is executing preset function on the sheet member, the image quality of the sheet member will be affected by vibration, and kick noise is generated.
  • the sheet member is thicker, such as photo paper, the influence of vibration is more obvious.
  • the recording module is usually desired to be away from the sheet member to avoid dirtying the recording module due to dust on the sheet member. Therefore, when the sheet member is being transported by the office machine, there is always a gap between the sheet member and the recording module. If vibration occurs in the gap between the sheet member and the recording module, the image printing or scanning quality may be affected.
  • an objective of the invention is to provide an office machine utilizing special structure design for effectively preventing a sheet member from vibrating while the sheet member is being transported, so as to solve the aforesaid problem.
  • an office machine of the invention comprises a housing, a support member, a first restraining member and a first roller assembly.
  • the housing has an acting surface with a first end point.
  • the support member is disposed at one side opposite to the acting surface of the housing, and an acting point is defined on the support member.
  • the first restraining member is disposed at a first side of the housing and close to the first end point of the acting surface, and the first restraining member has a first restraining point and a second restraining point.
  • the first roller assembly is also disposed at the first side of the housing and close to the first restraining point of the first restraining member, and the first roller assembly has a first nip point.
  • the second restraining point is not lower than the first end point along a direction perpendicular to the acting surface, the acting point is located between the first endpoint and the first restraining point along the direction perpendicular to the acting surface, and the first restraining point is located between the acting point and the first nip point along the direction perpendicular to the acting surface.
  • the office machine further comprises a second restraining member and a second roller assembly besides the aforesaid components.
  • the aforesaid acting surface has a second end point opposite to the first end point.
  • the second restraining member is disposed at a second side of the housing and close to the second endpoint of the acting surface, and the second restraining member has a third restraining point.
  • the second roller assembly is also disposed at the second side of the housing and close to the third restraining point of the second restraining member, and the second roller assembly has a second nip point.
  • the acting point is located between the second endpoint and the third restraining point
  • the third restraining point is located between the acting point and the second nip point.
  • a sheet member may be fed in the office machine by the first roller assembly and fed out of the office machine by the second roller assembly, or a sheet member may be fed in the office machine by the second roller assembly and fed out of the office machine by the first roller assembly.
  • FIG. 1 is a cross-sectional schematic diagram illustrating the office machine of the first embodiment according to the invention.
  • FIG. 2 is a cross-sectional schematic diagram illustrating the office machine of the second embodiment according to the invention.
  • FIG. 1 is a cross-sectional schematic diagram illustrating an office machine 1 according to a first embodiment of the invention.
  • the office machine 1 comprises a housing 10 , a recording module 12 , a support member 14 , a first restraining member 16 , a second restraining member 18 , a first roller assembly 20 and a second roller assembly 22 .
  • the office machine 1 can be, but not limited to, a scanner or a printer, and the recording module 12 can be an image sensor or a print head correspondingly.
  • the first roller assembly 20 can be used to feed a sheet member 3 in the office machine 1 .
  • the sheet member 3 can be a photo paper, a film, a slide film, etc. in different embodiments.
  • the second roller assembly 22 can be used to feed the sheet member 3 out of the office machine 1 .
  • the second roller assembly 22 can also be used to feed the sheet member 3 in the office machine 1
  • the first roller assembly 20 can be used to feed the sheet member 3 out of the office machine 1 .
  • the sheet member 3 can be a document paper, a photo paper, or any paper for purposes of scanning, printing, etc.
  • the housing 10 comprises an acting platform 11 having an acting surface 100 and a side surface 110 , wherein the side surface 110 is an incline.
  • the support member 14 is disposed at one side opposite to the acting surface 100 of the housing 10 .
  • an acting point 140 is defined on the support member 14 , and the recording module 12 is disposed in the housing 10 and located at one side opposite to the acting point 140 .
  • the acting point 140 represents a position where the recording module 12 scans the sheet member 3 after the sheet member 3 is fed in the office machine 1
  • the acting platform 11 can be a glass protective layer.
  • the acting point 140 represents a position where the recording module 12 prints the sheet member 3 after the sheet member 3 is fed in the office machine 1
  • the acting platform 11 can be a printing platform.
  • the recording module 12 can print the sheet member 3 via the acting platform 11 while the sheet member 3 passes through the acting platform 11 .
  • the acting surface 100 has a first end point 102 and a second end point 104 opposite to the first end point 102 .
  • the first restraining member 16 is disposed at a first side S 1 of the housing 10 and close to the first end point 102 of the acting surface 100 .
  • the first restraining member 16 has a first restraining point 160 , a second restraining point 162 and a first guiding surface 164 located between the first restraining point 160 and the second restraining point 162 .
  • the side surface 110 is close to the second restraining point 162 .
  • the second restraining member 18 is disposed at a second side S 2 of the housing 10 and close to the second end point 104 of the acting surface 100 .
  • the second restraining member 18 has a third restraining point 180 , a fourth restraining point 182 and a second guiding surface 184 located between the third restraining point 180 and the fourth restraining point 182 .
  • the first roller assembly 20 is disposed at the first side S 1 of the housing 10 and close to the first restraining point 160 of the first restraining member 16 , and the first roller assembly 20 has a first nip point 200 .
  • the second roller assembly 22 is disposed at the second side S 2 of the housing 10 and close to the third restraining point 180 of the second restraining member 18 , and the second roller assembly 22 has a second nip point 220 .
  • the acting surface 100 is parallel to an X-axis direction, and a Y-axis direction is defined perpendicular to the acting surface 100 , as shown in FIG. 1 .
  • the first end point 102 is located between the first restraining point 160 and the second restraining point 162 in the Y-axis direction
  • the acting point 140 is located between the first end point 102 and the first restraining point 160 in the Y-axis direction
  • the first restraining point 160 is located between the acting point 140 and the first nip point 200 in the Y-axis direction.
  • the second end point 104 is located between the third restraining point 180 and the fourth restraining point 182 in the Y-axis direction
  • the acting point 140 is located between the second endpoint 104 and the second restraining point 180 in the Y-axis direction
  • the third restraining point 180 is located between the acting point 140 and the second nip point 220 in the Y-axis direction.
  • the advantage of the aforesaid structure is that when stiffness of the sheet member 3 is larger, it is more stable for the sheet member 3 moving along the curved path due to the restraining effect of the first restraining point 160 and the third restraining point 180 . Therefore, the recording module 12 can accurately execute preset function (such as scanning or printing) to obtain good image quality when the sheet member 3 passes through the acting point 140 .
  • the first end point 102 is higher than the second retraining point 162 (i.e. there is a height difference between the first end point 102 and the second retraining point 162 )
  • vibration will occur due to the height difference when the tail end 32 of the sheet member 3 leaves the second restraining point 162 .
  • the position of the first end point 102 can not be higher than the second retraining point 162 . Therefore, the first end point 102 and the second restraining point 162 can be located at an identical altitude.
  • the recording module 12 had executed the preset function on the sheet member 3 when the tail end 32 of the sheet member 3 passes through the acting point 140 .
  • the second end point 104 can also be located at an identical altitude to that of the fourth restraining point 182 or can be higher than the fourth restraining point 182 .
  • the office machine 1 may further comprise a first loading member 24 and a second loading member 26 .
  • the first loading member 24 is disposed between the support member 14 and the first roller assembly 20
  • the second loading member 26 is disposed between the support member 14 and the second roller assembly 22 .
  • the first loading member 24 and the second loading member 26 can support the sheet member 3 and provide the sheet member 3 a moving path.
  • the first loading member 24 has a first incline 240 .
  • the first incline 240 comprises a first loading point 242 and a second loading point 244 .
  • the first loading point 242 is close to the first nip point 200
  • the second loading point 244 is close to the acting point 140 .
  • the second loading member 26 has a second incline 260 .
  • the second incline 260 comprises a third loading point 262 and a fourth loading point 264 .
  • the third loading point 262 is close to the second nip point 220
  • the fourth loading point 264 is close to the acting point 140 .
  • the operation of the invention is described as below.
  • a user wants to use the office machine 1 to execute preset function (such as scanning, printing, etc.) on the sheet member 3 , he or she needs to feed the head end 30 of the sheet member 3 in the first nip point 200 of the first roller assembly 20 .
  • the rolling first roller assembly 20 transports the sheet member 3 forward.
  • the head end 30 of the sheet member 3 moves slightly upward along the space between the first guiding surface 164 and the first loading member 24 after passing through the first restraining point 160 , and the first restraining point 160 of first restraining member 16 abuts against the sheet member 3 during movement.
  • an extending line 5 which extends from the first nip point 200 and the first restraining point 160 , intersects the acting surface 100 at a node 50 located between the first end point 102 and the second end point 104 .
  • the side surface 110 of the acting platform 11 can be, but not limited to, an incline.
  • the first restraining point 160 abuts against the sheet member 3 to limit vibration of the tail end 32 of the sheet member 3 to the extent that the tail end 32 is not higher than the first restraining point 160 , such that the sheet member 3 can pass through the acting point 140 steadily relative to the acting surface 100 without generating vibration.
  • the tail end 32 of the sheet member 3 moves forward along the first guiding surface 164 continuously.
  • the tail end 32 of the sheet member 3 is guided by the first guiding surface 164 to pass through the first end point 102 of the acting surface 100 steadily without generating vibration.
  • the structural design of the first restraining member 16 prevents the sheet member 3 from generating kick noise at the acting point 140 relative to the acting surface 100 .
  • the head end 30 of the sheet member 3 After the head end 30 of the sheet member 3 passes through the second end point 104 along the acting surface 100 , the head end 30 of the sheet member 3 is guided by the second guiding surface 184 of the second restraining member 18 . The head end 30 of the sheet member 3 is continuously fed in slightly downward along the second guiding surface 184 . When the head end 30 of the sheet member 3 passes through the third restraining point 180 of the second restraining member 18 , the third restraining point 180 abuts against the sheet member 3 .
  • the third restraining point 180 abuts against the sheet member 3 to limit vibration of the head end 30 of the sheet member 3 to the extent that the head end 30 is not higher than the third restraining point 180 , such that the sheet member 3 can pass through the acting point 140 steadily relative to the acting surface 100 without generating vibration.
  • the structural design of the second restraining member 18 prevents the sheet member 3 from generating kick noise at the acting point 140 relative to the acting surface 100 .
  • FIG. 2 is a cross-sectional schematic diagram illustrating an office machine 1 ′ according to a second embodiment of the invention.
  • the major difference between the office machine 1 ′ and the aforesaid office machine 1 is that the support member 14 , the first loading member 24 and the second loading member 26 are formed integrally in the office machine 1 ′. It should be noticed that the structure and principle of the components with identical labels in FIG. 1 and FIG. 2 are the same, so it will not be depicted herein.
  • the invention utilizes structural design and position arrangement of the first restraining member and the second restraining member to effectively prevent a sheet member from vibrating while being transported. Accordingly, when the sheet member is fed out of the nip point of the feeding-in roller or fed in the nip point of the feeding-out roller, the recording module can execute the preset function on the sheet member steadily while the sheet member is passing through the acting point, such that image quality can be enhanced without kick noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Facsimiles In General (AREA)
  • Handling Of Continuous Sheets Of Paper (AREA)

Abstract

An office machine includes a housing, a support member, a first restraining member and a first roller assembly. The housing has an acting surface with a first end point. An acting point is defined on the support member. The first restraining member has a first restraining point and a second restraining point. The first roller assembly has a first nip point. The second restraining point is not lower than the first end point. The acting point is located between the first end point and the first restraining point. Furthermore, the first restraining point is located between the acting point and the first nip point.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to an office machine and, more particularly, to an office machine capable of preventing a sheet member from vibrating while the sheet member is being transported.
  • 2. Description of the Prior Art
  • Generally speaking, an office machine is equipped with feeding-in/out rollers for feeding in/out a sheet member. When a sheet member is being transported by an office machine, a recording module (such as image sensor, print head, etc.) of the office machine continuously executes preset function (such as scanning, printing, etc.) on the sheet member. There are drawbacks in conventional office machine listed as below. Vibration usually occurs when the sheet member is fed out of a nip point of a feeding-in roller or fed in a nip point of a feeding-out roller. At this time, since the recording module is executing preset function on the sheet member, the image quality of the sheet member will be affected by vibration, and kick noise is generated. When the sheet member is thicker, such as photo paper, the influence of vibration is more obvious.
  • Besides, when the office machine executes scanning or printing function, the recording module is usually desired to be away from the sheet member to avoid dirtying the recording module due to dust on the sheet member. Therefore, when the sheet member is being transported by the office machine, there is always a gap between the sheet member and the recording module. If vibration occurs in the gap between the sheet member and the recording module, the image printing or scanning quality may be affected.
  • SUMMARY OF THE INVENTION
  • Therefore, an objective of the invention is to provide an office machine utilizing special structure design for effectively preventing a sheet member from vibrating while the sheet member is being transported, so as to solve the aforesaid problem.
  • According to one embodiment, an office machine of the invention comprises a housing, a support member, a first restraining member and a first roller assembly. The housing has an acting surface with a first end point. The support member is disposed at one side opposite to the acting surface of the housing, and an acting point is defined on the support member. The first restraining member is disposed at a first side of the housing and close to the first end point of the acting surface, and the first restraining member has a first restraining point and a second restraining point. The first roller assembly is also disposed at the first side of the housing and close to the first restraining point of the first restraining member, and the first roller assembly has a first nip point. In this embodiment, the second restraining point is not lower than the first end point along a direction perpendicular to the acting surface, the acting point is located between the first endpoint and the first restraining point along the direction perpendicular to the acting surface, and the first restraining point is located between the acting point and the first nip point along the direction perpendicular to the acting surface.
  • According to another embodiment, the office machine further comprises a second restraining member and a second roller assembly besides the aforesaid components. Furthermore, the aforesaid acting surface has a second end point opposite to the first end point. The second restraining member is disposed at a second side of the housing and close to the second endpoint of the acting surface, and the second restraining member has a third restraining point. The second roller assembly is also disposed at the second side of the housing and close to the third restraining point of the second restraining member, and the second roller assembly has a second nip point. In this embodiment, the acting point is located between the second endpoint and the third restraining point, and the third restraining point is located between the acting point and the second nip point. In practical application, a sheet member may be fed in the office machine by the first roller assembly and fed out of the office machine by the second roller assembly, or a sheet member may be fed in the office machine by the second roller assembly and fed out of the office machine by the first roller assembly.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional schematic diagram illustrating the office machine of the first embodiment according to the invention.
  • FIG. 2 is a cross-sectional schematic diagram illustrating the office machine of the second embodiment according to the invention.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, FIG. 1 is a cross-sectional schematic diagram illustrating an office machine 1 according to a first embodiment of the invention. As shown in FIG. 1, the office machine 1 comprises a housing 10, a recording module 12, a support member 14, a first restraining member 16, a second restraining member 18, a first roller assembly 20 and a second roller assembly 22. In this embodiment, the office machine 1 can be, but not limited to, a scanner or a printer, and the recording module 12 can be an image sensor or a print head correspondingly. The first roller assembly 20 can be used to feed a sheet member 3 in the office machine 1. It should be noticed that the sheet member 3 can be a photo paper, a film, a slide film, etc. in different embodiments. The second roller assembly 22 can be used to feed the sheet member 3 out of the office machine 1. On the other hand, the second roller assembly 22 can also be used to feed the sheet member 3 in the office machine 1, and the first roller assembly 20 can be used to feed the sheet member 3 out of the office machine 1. The sheet member 3 can be a document paper, a photo paper, or any paper for purposes of scanning, printing, etc.
  • The housing 10 comprises an acting platform 11 having an acting surface 100 and a side surface 110, wherein the side surface 110 is an incline. The support member 14 is disposed at one side opposite to the acting surface 100 of the housing 10. Besides, an acting point 140 is defined on the support member 14, and the recording module 12 is disposed in the housing 10 and located at one side opposite to the acting point 140. There is a gap between the acting surface 100 and the acting point 140. For example, if the office machine 1 is a scanner, the acting point 140 represents a position where the recording module 12 scans the sheet member 3 after the sheet member 3 is fed in the office machine 1, and the acting platform 11 can be a glass protective layer. If the office machine 1 is a printer, the acting point 140 represents a position where the recording module 12 prints the sheet member 3 after the sheet member 3 is fed in the office machine 1, and the acting platform 11 can be a printing platform. In other words, the recording module 12 can print the sheet member 3 via the acting platform 11 while the sheet member 3 passes through the acting platform 11.
  • The acting surface 100 has a first end point 102 and a second end point 104 opposite to the first end point 102. The first restraining member 16 is disposed at a first side S1 of the housing 10 and close to the first end point 102 of the acting surface 100. The first restraining member 16 has a first restraining point 160, a second restraining point 162 and a first guiding surface 164 located between the first restraining point 160 and the second restraining point 162. The side surface 110 is close to the second restraining point 162. The second restraining member 18 is disposed at a second side S2 of the housing 10 and close to the second end point 104 of the acting surface 100. The second restraining member 18 has a third restraining point 180, a fourth restraining point 182 and a second guiding surface 184 located between the third restraining point 180 and the fourth restraining point 182. The first roller assembly 20 is disposed at the first side S1 of the housing 10 and close to the first restraining point 160 of the first restraining member 16, and the first roller assembly 20 has a first nip point 200. The second roller assembly 22 is disposed at the second side S2 of the housing 10 and close to the third restraining point 180 of the second restraining member 18, and the second roller assembly 22 has a second nip point 220.
  • In this embodiment, the acting surface 100 is parallel to an X-axis direction, and a Y-axis direction is defined perpendicular to the acting surface 100, as shown in FIG. 1. The first end point 102 is located between the first restraining point 160 and the second restraining point 162 in the Y-axis direction, the acting point 140 is located between the first end point 102 and the first restraining point 160 in the Y-axis direction, and the first restraining point 160 is located between the acting point 140 and the first nip point 200 in the Y-axis direction. Besides, the second end point 104 is located between the third restraining point 180 and the fourth restraining point 182 in the Y-axis direction, the acting point 140 is located between the second endpoint 104 and the second restraining point 180 in the Y-axis direction, and the third restraining point 180 is located between the acting point 140 and the second nip point 220 in the Y-axis direction. Based on the structural design mentioned above, the sheet member 3 moves along a curved path after being fed in the office machine 1. When a tail end 32 and a head end 30 of the sheet member 3 are nipped by the first roller assembly 20 and the second roller assembly 22 respectively, the sheet member 3 does not contact the acting surface 100, as shown in FIG. 1. The advantage of the aforesaid structure is that when stiffness of the sheet member 3 is larger, it is more stable for the sheet member 3 moving along the curved path due to the restraining effect of the first restraining point 160 and the third restraining point 180. Therefore, the recording module 12 can accurately execute preset function (such as scanning or printing) to obtain good image quality when the sheet member 3 passes through the acting point 140.
  • It should be noticed that if the first end point 102 is higher than the second retraining point 162 (i.e. there is a height difference between the first end point 102 and the second retraining point 162), vibration will occur due to the height difference when the tail end 32 of the sheet member 3 leaves the second restraining point 162. In other words, the position of the first end point 102 can not be higher than the second retraining point 162. Therefore, the first end point 102 and the second restraining point 162 can be located at an identical altitude. Furthermore, the recording module 12 had executed the preset function on the sheet member 3 when the tail end 32 of the sheet member 3 passes through the acting point 140. At this time, no matter whether the sheet member 3 vibrates or not, the image quality will not be affected. Therefore, the second end point 104 can also be located at an identical altitude to that of the fourth restraining point 182 or can be higher than the fourth restraining point 182.
  • In this embodiment, the office machine 1 may further comprise a first loading member 24 and a second loading member 26. As shown in FIG. 1, the first loading member 24 is disposed between the support member 14 and the first roller assembly 20, and the second loading member 26 is disposed between the support member 14 and the second roller assembly 22. The first loading member 24 and the second loading member 26 can support the sheet member 3 and provide the sheet member 3 a moving path. The first loading member 24 has a first incline 240. The first incline 240 comprises a first loading point 242 and a second loading point 244. The first loading point 242 is close to the first nip point 200, and the second loading point 244 is close to the acting point 140. The second loading member 26 has a second incline 260. The second incline 260 comprises a third loading point 262 and a fourth loading point 264. The third loading point 262 is close to the second nip point 220, and the fourth loading point 264 is close to the acting point 140.
  • By using the first roller assembly 20 as a feeding-in roller, using the second roller assembly 22 as a feeding-out roller, and using a photo paper with specific stiffness as the sheet member 3, the operation of the invention is described as below. When a user wants to use the office machine 1 to execute preset function (such as scanning, printing, etc.) on the sheet member 3, he or she needs to feed the head end 30 of the sheet member 3 in the first nip point 200 of the first roller assembly 20. At this time, the rolling first roller assembly 20 transports the sheet member 3 forward. The head end 30 of the sheet member 3 moves slightly upward along the space between the first guiding surface 164 and the first loading member 24 after passing through the first restraining point 160, and the first restraining point 160 of first restraining member 16 abuts against the sheet member 3 during movement. As shown in FIG. 1, in this embodiment, an extending line 5, which extends from the first nip point 200 and the first restraining point 160, intersects the acting surface 100 at a node 50 located between the first end point 102 and the second end point 104. Furthermore, in this embodiment, the side surface 110 of the acting platform 11 can be, but not limited to, an incline. By using the design mentioned in the above, the head end 30 of the sheet member 3 can move smoothly along the first guiding surface 164 to the acting surface 100 and will not get stuck before arriving in the first end point 102. Accordingly, a jam of paper is avoidable.
  • When the tail end 32 of the sheet member 3 passes through the first nip point 200, the first restraining point 160 abuts against the sheet member 3 to limit vibration of the tail end 32 of the sheet member 3 to the extent that the tail end 32 is not higher than the first restraining point 160, such that the sheet member 3 can pass through the acting point 140 steadily relative to the acting surface 100 without generating vibration. Afterward, the tail end 32 of the sheet member 3 moves forward along the first guiding surface 164 continuously. Because the first end point 102 is located between the first restraining point 160 and the second restraining point 162 along the Y-axis direction, the tail end 32 of the sheet member 3 is guided by the first guiding surface 164 to pass through the first end point 102 of the acting surface 100 steadily without generating vibration. In other words, after the tail end 32 of the sheet member 3 passes through the first nip point 200 of the first roller assembly 20, the structural design of the first restraining member 16 prevents the sheet member 3 from generating kick noise at the acting point 140 relative to the acting surface 100.
  • After the head end 30 of the sheet member 3 passes through the second end point 104 along the acting surface 100, the head end 30 of the sheet member 3 is guided by the second guiding surface 184 of the second restraining member 18. The head end 30 of the sheet member 3 is continuously fed in slightly downward along the second guiding surface 184. When the head end 30 of the sheet member 3 passes through the third restraining point 180 of the second restraining member 18, the third restraining point 180 abuts against the sheet member 3. When the head end 30 of the sheet member 3 passes through the second nip point 220 of the second roller assembly 22, the third restraining point 180 abuts against the sheet member 3 to limit vibration of the head end 30 of the sheet member 3 to the extent that the head end 30 is not higher than the third restraining point 180, such that the sheet member 3 can pass through the acting point 140 steadily relative to the acting surface 100 without generating vibration. In other words, after the head end 30 of the sheet member 3 passes through the second nip point 220 of the second roller assembly 22, the structural design of the second restraining member 18 prevents the sheet member 3 from generating kick noise at the acting point 140 relative to the acting surface 100.
  • It should be noticed that the sheet member 3 does not contact the acting surface 100 after the head end 30 of the sheet member 3 passes through the second nip point 220 of the second roller assembly 22 and before the tail end 32 of the sheet member 3 leaves the first nip point 200 of the first roller assembly 20, as shown in FIG. 1. Accordingly, it can avoid dirtying the recording module 12 due to dust on the sheet member 3. Referring to FIG. 2, FIG. 2 is a cross-sectional schematic diagram illustrating an office machine 1′ according to a second embodiment of the invention. The major difference between the office machine 1′ and the aforesaid office machine 1 is that the support member 14, the first loading member 24 and the second loading member 26 are formed integrally in the office machine 1′. It should be noticed that the structure and principle of the components with identical labels in FIG. 1 and FIG. 2 are the same, so it will not be depicted herein.
  • Compared to the prior art, the invention utilizes structural design and position arrangement of the first restraining member and the second restraining member to effectively prevent a sheet member from vibrating while being transported. Accordingly, when the sheet member is fed out of the nip point of the feeding-in roller or fed in the nip point of the feeding-out roller, the recording module can execute the preset function on the sheet member steadily while the sheet member is passing through the acting point, such that image quality can be enhanced without kick noise.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.

Claims (21)

1. An office machine comprising:
a housing having an acting surface with a first end point;
a support member disposed at one side opposite to the acting surface of the housing, an acting point being defined on the support member, wherein a gap is located between the acting surface and the acting point;
a first restraining member disposed at a first side of the housing and close to the first end point of the acting surface, the first restraining member having a first restraining point and a second restraining point; and
a first roller assembly disposed at the first side of the housing and close to the first restraining point of the first restraining member, the first roller assembly having a first nip point;
wherein the second restraining point is not lower than the first end point along a direction perpendicular to the acting surface, the acting point is located between the first end point and the first restraining point along the direction perpendicular to the acting surface, and the first restraining point is located between the acting point and the first nip point along the direction perpendicular to the acting surface.
2. The office machine of claim 1, wherein the first restraining member further comprises a first guiding surface located between the first restraining point and the second restraining point.
3. The office machine of claim 2, wherein the first end point is located between the first restraining point and the second restraining point.
4. The office machine of claim 2, wherein the first end point and the second restraining point are located at an identical altitude.
5. The office machine of claim 1, further comprising a first loading member disposed between the support member and the first roller assembly, wherein the first loading member has a first incline, the first incline comprises a first loading point and a second loading point, and the first loading point is close to the first nip point and the second loading point is close to the acting point.
6. The office machine of claim 5, wherein the support member and the first loading member are formed integrally.
7. The office machine of claim 1, wherein the acting surface has a second end point opposite to the first endpoint, the office machine further comprises:
a second restraining member disposed at a second side of the housing and closed to the second end point of the acting surface, the second restraining member having a third restraining point; and
a second roller assembly disposed at the second side of the housing and close to the third restraining point of the second restraining member, the second roller assembly having a second nip point;
wherein the acting point is located between the second end point and the third restraining point along the direction perpendicular to the acting surface, and the third restraining point is located between the acting point and the second nip point along the direction perpendicular to the acting surface.
8. The office machine of claim 7, wherein the second restraining member further comprises a fourth restraining point and a second guiding surface, and the second guiding surface is located between the third restraining point and the fourth restraining point.
9. The office machine of claim 8, wherein the second end point is located between the third restraining point and the fourth restraining point.
10. The office machine of claim 8, wherein the second end point and the fourth restraining point are located at an identical altitude.
11. The office machine of claim 7, wherein a sheet member is fed in the office machine by the first roller assembly and fed out of the office machine by the second roller assembly.
12. The office machine of claim 11, wherein when both ends of the sheet member are nipped by the first roller assembly and the second roller assembly respectively, the sheet member is away from the acting surface.
13. The office machine of claim 7, wherein a sheet member is fed in the office machine by the second roller assembly and fed out of the office machine by the first roller assembly.
14. The office machine of claim 13, wherein when both ends of the sheet member are nipped by the first roller assembly and the second roller assembly respectively, the sheet member is away from the acting surface.
15. The office machine of claim 1, further comprising a second loading member disposed between the support member and the second roller assembly, wherein the second loading member has a second incline, the second incline comprises a third loading point and a fourth loading point, the third loading point is close to the second nip point, and the fourth loading point is close to the acting point.
16. The office machine of claim 15, wherein the support member and the second loading member are formed integrally.
17. The office machine of claim 1, further comprising a recording module disposed in the housing and located at one side opposite to the acting point.
18. The office machine of claim 17, wherein the recording module is an image sensor.
19. The office machine of claim 17, wherein the recording module is a print head.
20. The office machine of claim 1, wherein the housing further comprises an acting platform and the acting platform provides the acting surface.
21. The office machine of claim 20, wherein the acting platform comprises a side surface with an incline and the side surface is close to the second restraining point.
US12/850,592 2009-08-13 2010-08-04 Office machine Abandoned US20110037217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910166211.1 2009-08-13
CN2009101662111A CN101631182B (en) 2009-08-13 2009-08-13 Business machine

Publications (1)

Publication Number Publication Date
US20110037217A1 true US20110037217A1 (en) 2011-02-17

Family

ID=41576108

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/850,592 Abandoned US20110037217A1 (en) 2009-08-13 2010-08-04 Office machine

Country Status (2)

Country Link
US (1) US20110037217A1 (en)
CN (1) CN101631182B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725267B2 (en) * 2014-07-04 2017-08-08 Fuji Xerox Co., Ltd. Conveyance path forming body and conveying machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267058A (en) * 1989-08-04 1993-11-30 Canon Kabushiki Kaisha Original feeding and reading apparatus in which the original is pressed against the image sensor
US6995880B2 (en) * 2000-09-25 2006-02-07 Nisca Corporation Image reading apparatus
US20080180763A1 (en) * 2007-01-31 2008-07-31 Nisca Corporation Image reading apparatus
US7478809B2 (en) * 2003-04-09 2009-01-20 Minolta Company, Ltd. Apparatus for transporting a sheet into a reading position
US7561314B2 (en) * 2004-09-08 2009-07-14 Konica Minolta Business Technologies, Inc. Document reader and image forming apparatus capable of reducing line-shaped noise
US7764409B2 (en) * 2003-04-28 2010-07-27 Hiroaki Tsuchiya Manuscript conveyer guide used for a manuscript reader unit
US7802786B2 (en) * 2007-01-30 2010-09-28 Lite-On Technology Corp. Duplex automatic document feeder and duplex document scanning method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2359744Y (en) * 1998-07-02 2000-01-19 欣弘科技股份有限公司 Improved scanner driving mechanism
CN2497342Y (en) * 2001-09-06 2002-06-26 陈振华 Printing paper exposure transferring device for laser digital printer
JP2004097987A (en) * 2002-09-11 2004-04-02 Alps Electric Co Ltd Vibrator for conveying recording paper
JP4476135B2 (en) * 2005-02-24 2010-06-09 京セラミタ株式会社 Paper cassette

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267058A (en) * 1989-08-04 1993-11-30 Canon Kabushiki Kaisha Original feeding and reading apparatus in which the original is pressed against the image sensor
US6995880B2 (en) * 2000-09-25 2006-02-07 Nisca Corporation Image reading apparatus
US7478809B2 (en) * 2003-04-09 2009-01-20 Minolta Company, Ltd. Apparatus for transporting a sheet into a reading position
US7764409B2 (en) * 2003-04-28 2010-07-27 Hiroaki Tsuchiya Manuscript conveyer guide used for a manuscript reader unit
US7561314B2 (en) * 2004-09-08 2009-07-14 Konica Minolta Business Technologies, Inc. Document reader and image forming apparatus capable of reducing line-shaped noise
US7802786B2 (en) * 2007-01-30 2010-09-28 Lite-On Technology Corp. Duplex automatic document feeder and duplex document scanning method using the same
US20080180763A1 (en) * 2007-01-31 2008-07-31 Nisca Corporation Image reading apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725267B2 (en) * 2014-07-04 2017-08-08 Fuji Xerox Co., Ltd. Conveyance path forming body and conveying machine

Also Published As

Publication number Publication date
CN101631182A (en) 2010-01-20
CN101631182B (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US20050152723A1 (en) Document feeding apparatus, image reading apparatus and image forming apparatus
JP2008247495A (en) Sheet conveying device and double-sided recording device
JP4764073B2 (en) Sheet feeding apparatus and recording apparatus
US9994411B2 (en) Sheet tray, conveyance unit and image recording apparatus
JP4115268B2 (en) Image reading and recording device
US11130645B2 (en) Medium transporting device, image reading apparatus, and recording apparatus
JP2006036518A (en) Recording device
JP4847556B2 (en) Paper conveying apparatus, image reading apparatus, and image forming apparatus
KR100898191B1 (en) Sheet feeding apparatus and image forming apparatus
US8730537B2 (en) Duplex scanning apparatus with elastic pressing member disposed between two scan positions
US20200223234A1 (en) Recording apparatus
JP2008179479A (en) Sheet feeding device
JP4324017B2 (en) Recording device
US20110037217A1 (en) Office machine
EP3562133B1 (en) Medium feed device and image reading apparatus
JP4194536B2 (en) Image processing device
JP2005089008A (en) Paper delivery mechanism, paper feeding device, and image formation device
US9493318B2 (en) Conveying device
JP5950787B2 (en) Sheet pressing mechanism, sheet conveying apparatus, image processing apparatus
JP2004203511A (en) Image reading/recording device
US20230348217A1 (en) Image forming apparatus that increases rotation speed of transport roller pair, for predetermined period after detecting arrival of recording medium at predetermined detecting position
JP2008213993A (en) Recorder
JP2008290793A (en) Image forming device
JP2006013654A (en) Image processor
US20110012302A1 (en) Office machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: QISDA CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUNG, TSAN-YAO;REEL/FRAME:024791/0174

Effective date: 20100802

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION