US20110024345A1 - Hollow fiber membrane module and puller used therefor - Google Patents
Hollow fiber membrane module and puller used therefor Download PDFInfo
- Publication number
- US20110024345A1 US20110024345A1 US12/935,528 US93552809A US2011024345A1 US 20110024345 A1 US20110024345 A1 US 20110024345A1 US 93552809 A US93552809 A US 93552809A US 2011024345 A1 US2011024345 A1 US 2011024345A1
- Authority
- US
- United States
- Prior art keywords
- hollow fiber
- fiber membrane
- membrane module
- lateral side
- header
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 141
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 130
- 239000007788 liquid Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 14
- 238000001914 filtration Methods 0.000 abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 239000012466 permeate Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000003816 axenic effect Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/031—Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/04—Hollow fibre modules comprising multiple hollow fibre assemblies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/21—Specific headers, end caps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49815—Disassembling
- Y10T29/49822—Disassembling by applying force
Definitions
- the present invention relates to a hollow fiber membrane module and a puller used therefor, and more particularly, to a hollow fiber membrane module and a puller used therefor, wherein each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired.
- a separation method using a membrane has lots of advantages over the method based on heating or phase-changing. Among the advantages is high reliability of water treatment since the water purity required can be easily and stably satisfied by adjusting the size of the pores of a membrane. Furthermore, since the separation method using a membrane does not require a heating process, a membrane can be used with microorganism which is useful for separation process but may be adversely affected by heat.
- the membrane employing separation methods is a method using a hollow fiber membrane module which comprises a bundle of hollow fiber membranes.
- the hollow fiber membrane module has been widely used in a microfiltration field for producing axenic water, drinking water, super pure water, and so on.
- the application of the hollow fiber membrane module is being expanded to include sewage and waste water treatment, solid-liquid separation in a septic tank, removal of suspended solid(SS) from industrial wastewater, filtration of river, filtration of industrial water, and filtration of swimming pool water.
- One kind of the hollow fiber membrane modules is a submerged-type hollow fiber membrane module which is submerged into a water tank filled with fluid to be treated. Negative pressure is applied to the inside of the hollow fiber membranes, whereby only fluid passes through the wall of each membrane and solid elements such as impurities and sludge are rejected and accumulate in the tank.
- the plural submerged-type hollow fiber membrane modules are installed in a frame structure.
- a submerged-type hollow fiber membrane module is advantageous in that the manufacturing cost is relatively low and that the installation and maintenance cost may be reduced since a facility for circulating fluid is not required.
- FIG. 1 illustrates one example of a related art submerged-type hollow fiber membrane module.
- a plurality of hollow fiber membranes 120 are arranged in a bundle between two headers 110 . Both ends of the hollow fiber membrane 120 are respectively potted to confronting sides of the two headers 110 by an adhesive of polyurethane.
- a permeate collecting unit (not shown) is formed in each of the headers 110 , wherein the permeate collecting unit is connected with open ends of the hollow fiber membrane 120 so as to collect permeate passing through the hollow fiber membrane 120 .
- a filtering apparatus using the submerged-type hollow fiber membrane module has a structure including a plurality of hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d packed into a frame structure (not shown), wherein the filtering apparatus performs a filtering process while being submerged into a liquid substrate containing impurities.
- the submerged-type hollow fiber membrane module when used to treat wastewater, the solids in the wastewater fouls the membranes causing their permeability to be declined as the water treatment is processed.
- an aeration process has to be performed for stably maintaining the high permeability of the membranes.
- air is jetted from an aeration pipe (not shown) positioned under the hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d during the water treatment, thereby generating rising air bubbles.
- an aeration pipe not shown
- the respective hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d may be intensely shaken or vibrated due to the rising air bubbles from the aeration pipe for the aeration process of the filtering membrane. Furthermore, there is a high possibility that the hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d are damaged by their collision. In order to minimize the damage in the hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d , they have to be maintained for being in close contact with one another, fixedly.
- any one of the hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d has to be replaced or repaired due to the damage thereof, it is necessary to pull out the hollow fiber membrane module to be replaced or repaired from the filtering apparatus.
- each of headers 110 a , 110 b , 110 c , and 110 d in the hollow fiber membrane modules 100 a , 100 b , 100 c , and 100 d is provided with only flat surfaces.
- the present invention has been made in view of the above problems, and it is an object of the present invention to provide a hollow fiber membrane module and a puller used therefor, which is capable of preventing one or more problems of the related art.
- Another object of the present invention is to provide a hollow fiber membrane module and a puller used therefor, wherein each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired.
- a hollow fiber membrane module comprises a hollow fiber membrane; and at least one header to which the hollow fiber membrane is potted, wherein the header includes a first lateral side to which the hollow fiber membrane is potted and a second lateral side opposite to the first lateral side, and wherein an engaging plate is formed at the second lateral side.
- the pulling groove comprises a first groove which is open in a direction perpendicular to the second lateral side; and a second groove which extends from the first groove to the inner part of the header in a direction parallel to the second lateral side, wherein the engaging plate is a part of the second lateral side corresponding to the second groove.
- At this time, at least a part of the first groove may be positioned at the same height as the second groove in a longitudinal direction of the header, or the entire first groove is positioned at a different height from the second groove in a longitudinal direction of the header.
- the engaging plate may protrude from the second lateral side of the header.
- the hooking member is inserted into a gap between the second lateral side and the engaging plate.
- the engaging plate is formed at the center of the second lateral side.
- a plurality of engaging plates are formed at the second lateral side.
- the plurality of engaging plates include at least one pair of engaging plates which are symmetric to each other with respect to a central line of the second lateral side, the central line being parallel to a longitudinal direction of the header.
- the header When the hollow fiber membrane module is submerged into a liquid substrate to be treated, the header is arranged in such a way that the longitudinal direction of the header is perpendicular to a surface of the liquid substrate (that is, the longitudinal direction of the hollow fiber membrane is parallel to the surface of the liquid substrate).
- a puller for pulling out a hollow fiber membrane module from a frame structure, the hollow fiber membrane module including a header having a lateral side provided with an engaging plate, the puller comprising a main body; and a hooking member, extending from an end of the main body, formed in a shape suitable for being caught in the engaging plate.
- the main body is perpendicular to each hooking member.
- a pulling-force transmitting member is combined with the main body, and a plurality of handles are connected with the pulling-force transmitting member so that pulling forces from different directions might be applied to the puller at the same time.
- a hollow fiber membrane module according to the present invention and a puller used therefor has the following advantages.
- Each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired. In this case, even though the plurality of hollow fiber membrane modules are maintained in close contact with one another, the individual hollow fiber membrane module to be replaced or repaired can be easily pulled out from the filtering apparatus without disassembling the filtering apparatus.
- FIG. 1 is a perspective view illustrating a related art hollow fiber membrane module.
- FIG. 2 is a perspective view illustrating a packing structure of related art hollow fiber membrane modules.
- FIG. 3 is a perspective view illustrating a header in a hollow fiber membrane module according to one embodiment of the present invention
- FIG. 4 is a lateral view thereof.
- FIG. 5 is a perspective view illustrating a hollow fiber membrane module according to one embodiment of the present invention.
- FIG. 6 is a perspective view illustrating a packing structure of hollow fiber membrane modules according to one embodiment of the present invention.
- FIG. 7 shows that a hollow fiber membrane module according to one embodiment of the present invention is pulled out from a filtering apparatus by a puller according to one embodiment of the present invention.
- FIG. 8 is a perspective view illustrating a header in a hollow fiber membrane module according to another embodiment of the present invention
- FIG. 9 is a lateral view thereof.
- FIGS. 10 to 13 are lateral views illustrating hollow fiber membrane modules according to other embodiments of the present invention.
- FIG. 14 shows that a hollow fiber membrane module according to another embodiment of the present invention is pulled out from a filtering apparatus by a puller according to another embodiment of the present invention.
- FIG. 3 is a perspective view illustrating a header in a hollow fiber membrane module according to one embodiment of the present invention
- FIG. 4 is a lateral view thereof.
- FIG. 5 is a perspective view illustrating a hollow fiber membrane module according to one embodiment of the present invention.
- FIG. 6 is a perspective view illustrating a packing structure of hollow fiber membrane modules according to one embodiment of the present invention.
- a hollow fiber membrane module 200 includes two headers 210 , wherein a plurality of hollow fiber membranes 220 are arranged in a bundle between the two headers 210 .
- both ends of the hollow fiber membrane 220 are respectively potted to confronting sides of the two headers 210 by an adhesive such as polyurethane.
- a permeate collecting unit (not shown) is formed in each of the two headers 210 , wherein the permeate collecting unit is connected with open ends of the hollow fiber membrane 220 so as to collect permeate passing through the hollow fiber membrane 220 .
- Between the confronting sides of the two headers 210 there are two upper supporting units 231 and two lower supporting units 232 so as to stably maintain an interval between the two headers 210 .
- a filtering apparatus including the plurality of hollow fiber membrane modules 200 a , 200 b , 200 c , and 200 d packed therein is submerged into a liquid substrate, and carries out a filtering process filter the impurities from the liquid substrate.
- the two headers 210 so as to collect permeate from the both ends of the hollow fibber membrane 220 in the hollow fiber membrane module 200 .
- another exemplary case of a hollow fiber membrane module with one header can be made within the spirit or scope of the present invention, wherein one header is used to collect permeate from one end of a hollow fiber membrane.
- the header 210 in the hollow fiber membrane module includes a first lateral side to which the hollow fiber membrane 220 is potted, and a second lateral side opposite to the first lateral side. Also, a pair of engaging plates 213 is provided at the second lateral side. In this case, the pair of engaging plates 213 are symmetric to each other with respect to a center line of the second lateral side, wherein the center line is parallel to a longitudinal direction of the header 210 .
- the pair of engaging plates 213 is made by forming a pair of pulling grooves at the second lateral side of the header 210 .
- Each pulling groove includes a first groove 211 and a second groove 212 , wherein the first groove 211 is open in a direction perpendicular to the second lateral side, and the second groove 212 extends from the first groove 211 to the inner part of the header 210 in a direction parallel to the second lateral side.
- the engaging plate 213 is a part of the second lateral side corresponding to the second groove 212 .
- the pulling groove may be made by partially removing the flat lateral side of the header 210 after firstly forming the header 210 , or may be made simultaneously when forming the header 210 by a molding method.
- FIG. 7 shows that the hollow fiber membrane module 210 according to one embodiment of the present invention is pulled out from the filtering apparatus by a puller 300 according to one embodiment of the present invention.
- the puller 300 includes a main body 310 . Also, the puller 300 further includes a pair of hooking members 320 which respectively extends from both ends of the main body 310 .
- the pair of hooking members 320 is formed in shapes suitable for being caught in the pair of engaging plates 213 formed at the lateral side of the header 210 in the hollow fiber membrane module.
- the pair of hooking members 320 is firstly inserted into the first groove 211 and is then moved in a direction parallel to the second lateral side, whereby the pair of hooking members 320 is inserted into the second groove 212 . Then, according as a pulling force is applied to the puller 300 , the pulling force is transmitted to the engaging plates 213 through the pair of hooking members 320 , to thereby pull out the hollow fiber membrane module 200 .
- the main body 310 is perpendicular to the pair of hooking members 320 so as to maximize the pulling-force transmission efficiency, preferably.
- a pulling-force transmitting member 330 is combined with the main body 310 , and a plurality of handles 340 are connected with the pulling-force transmitting member 330 , so that pulling forces from different directions might be applied to the puller at the same time.
- the shape of the main body, the shape of the hooking member, and the combined shape of the main body and the hooking member in the puller may be changed by the number, shape and position of engaging plates in the headers of the hollow fiber membrane modules according to the various embodiments of the present invention.
- FIG. 8 is a perspective view illustrating a header in a hollow fiber membrane module according to another embodiment of the present invention
- FIG. 9 is a lateral view thereof.
- a pair of engaging plates 413 is formed at a lateral side of a header 410 in a hollow fiber membrane module according to another embodiment of the present invention.
- the pair of engaging plates 413 are symmetric to each other with respect to a center line of the lateral side, wherein the center line is parallel to a longitudinal direction of the header 410 .
- the pair of engaging plates 413 is made by forming a pair of pulling grooves at the lateral side of the header 410 .
- Each pulling groove includes a first groove 411 and a second groove 412 , wherein the first groove 411 is open in a direction perpendicular to the lateral side, and the second groove 412 extends from the first groove 411 to the inner part of the header 410 in a direction parallel to the lateral side.
- the engaging plate 413 is a part of the lateral side corresponding to the second groove 412 .
- FIGS. 3 to 7 which illustrates that a part of the first groove 211 is positioned at the same height as the second groove 212 in the longitudinal direction of the header 210
- this embodiment shown in FIGS. 8 and 9 illustrates that the entire first groove 411 is positioned at the different height from the second groove 412 in the longitudinal direction of the header 410 .
- FIGS. 10 to 13 are lateral views illustrating hollow fiber membrane modules according to other embodiments of the present invention.
- the header of the hollow fiber membrane module according to the present invention may be provided with the engaging plates which are variable in shape or number, wherein the engaging plates are provided at the lateral side of the header.
- an engaging plate 513 a is formed at the center of a lateral side of a header 510 a .
- an entire first groove 511 a is positioned at a different height from a second groove 512 a in a longitudinal direction of the header 510 a.
- two engaging plates 513 b are formed at the center of a lateral side of a header 510 b , wherein the two engaging plates 513 b are provided along a longitudinal direction of the header 510 b .
- an entire first groove 511 b is positioned at a different height from a second groove 512 b in the longitudinal direction of the header 510 b.
- an engaging plate 513 c is formed at the center of a lateral side of a header 510 c .
- an entire first groove 511 c is positioned at the same height as a second groove 512 c in a longitudinal direction of the header 510 c.
- two engaging plates 513 d are formed at the center of a lateral side of a header 510 d , wherein the two engaging plates 513 d are provided along a longitudinal direction of the header 510 d .
- an entire first groove 511 d is positioned at the same height as a second groove 512 d in the longitudinal direction of the header 510 d.
- the pulling groove is formed at the lateral side of the header of the hollow fiber membrane module, whereby a part of the lateral side is used as the engaging plate.
- a part of the lateral side is used as the engaging plate.
- an additional engaging structure may protrude from a lateral side of a header, which will be explained with reference to FIG. 14 .
- FIG. 14 shows that a hollow fiber membrane module according to another embodiment of the present invention is pulled out from a filtering apparatus by a puller according to another embodiment of the present invention.
- a pair of engaging plates 613 protrudes from a lateral side of a header 610 in a hollow fiber membrane module according to another embodiment of the present invention.
- the pair of engaging plates 613 are symmetric to each other with respect to a central line of the lateral side of the header 610 , wherein the central line is parallel to a longitudinal direction of the header 610 .
- the pair of engaging plates 613 may be formed by combining an additional engaging structure with the lateral side of the header manufactured.
- the engaging plates and the header are formed at the same time by molding.
- a pulling force is applied to a puller 700 , whereby the pulling force is transmitted to the engaging plates 613 through the hooking members 720 , thereby pulling out the hollow fiber membrane module.
- the pair of hooking members 720 of the puller 700 used in this embodiment of the present invention is extended from one end of a main body 710 , wherein the respective hooking members 720 extend in opposite directions.
- the main body 710 is perpendicular to the hooking members 720 , preferably.
- a pulling-force transmitting member 730 is combined with the main body 710 , and a plurality of handles 740 are connected with the pulling-force transmitting member 730 , so that pulling forces from different directions might be applied to the puller 700 at the same time.
- the aforementioned embodiments of the present invention relate with a horizontal-type hollow fiber membrane module whose header is arranged in such a way that the longitudinal direction of the header is perpendicular to the surface of the liquid substrate (that is, the longitudinal direction of the hollow fiber membrane is parallel to the surface of the liquid substrate), when the hollow fiber membrane module is submerged into the liquid substrate to be treated.
- the present invention is not limited to the horizontal-type hollow fiber membrane module. That is, the present invention can be applied to a vertical-type hollow fiber membrane module whose header is arranged in such a way that the longitudinal direction of the header is parallel to the surface of the liquid substrate (that is, the longitudinal direction of the hollow fiber membrane module is perpendicular to the surface of the liquid substrate), when the hollow fiber membrane module is submerged into the liquid substrate to be treated.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A hollow fiber membrane module (200) and a puller (300) used therefore is disclosed, wherein each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired. At this time, the hollow fiber membrane module (200) comprises a hollow fiber membrane (220); and at least on header (210) to which the hollow fiber membrane is potted, wherein the header (210) includes a first lateral side to which the hollow fiber membrane is potted and a second lateral side opposite to the first lateral side; and wherein an engaging plate (213) is formed at the second lateral side. Also, the puller (300) comprises a main body (310) and a hooking member (320), extending from an end of the main body, formed in a shape suitable for being caught in the engaging plate (213).
Description
- The present invention relates to a hollow fiber membrane module and a puller used therefor, and more particularly, to a hollow fiber membrane module and a puller used therefor, wherein each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired.
- A separation method using a membrane has lots of advantages over the method based on heating or phase-changing. Among the advantages is high reliability of water treatment since the water purity required can be easily and stably satisfied by adjusting the size of the pores of a membrane. Furthermore, since the separation method using a membrane does not require a heating process, a membrane can be used with microorganism which is useful for separation process but may be adversely affected by heat.
- Among the membrane employing separation methods is a method using a hollow fiber membrane module which comprises a bundle of hollow fiber membranes. Conventionally, the hollow fiber membrane module has been widely used in a microfiltration field for producing axenic water, drinking water, super pure water, and so on. Recently, however, the application of the hollow fiber membrane module is being expanded to include sewage and waste water treatment, solid-liquid separation in a septic tank, removal of suspended solid(SS) from industrial wastewater, filtration of river, filtration of industrial water, and filtration of swimming pool water.
- One kind of the hollow fiber membrane modules is a submerged-type hollow fiber membrane module which is submerged into a water tank filled with fluid to be treated. Negative pressure is applied to the inside of the hollow fiber membranes, whereby only fluid passes through the wall of each membrane and solid elements such as impurities and sludge are rejected and accumulate in the tank. When used for separation, the plural submerged-type hollow fiber membrane modules are installed in a frame structure. A submerged-type hollow fiber membrane module is advantageous in that the manufacturing cost is relatively low and that the installation and maintenance cost may be reduced since a facility for circulating fluid is not required.
-
FIG. 1 illustrates one example of a related art submerged-type hollow fiber membrane module. - In case of the related art submerged-type hollow
fiber membrane module 100 shown inFIG. 1 , a plurality ofhollow fiber membranes 120 are arranged in a bundle between twoheaders 110. Both ends of thehollow fiber membrane 120 are respectively potted to confronting sides of the twoheaders 110 by an adhesive of polyurethane. In this case, a permeate collecting unit (not shown) is formed in each of theheaders 110, wherein the permeate collecting unit is connected with open ends of thehollow fiber membrane 120 so as to collect permeate passing through thehollow fiber membrane 120. - Between the confronting sides of the two
headers 110, there are two upper supportingmembers 131 and two lower supportingmembers 132 so as to stably maintain an interval between the twoheaders 110. - In the meantime, as shown in
FIG. 2 , a filtering apparatus using the submerged-type hollow fiber membrane module has a structure including a plurality of hollowfiber membrane modules - However, when the submerged-type hollow fiber membrane module is used to treat wastewater, the solids in the wastewater fouls the membranes causing their permeability to be declined as the water treatment is processed. Thus, while the water treatment is carried out by the hollow
fiber membrane modules fiber membrane modules - However, the respective hollow
fiber membrane modules fiber membrane modules fiber membrane modules - If any one of the hollow
fiber membrane modules - However, in the filtering apparatus of
FIG. 2 , the hollowfiber membrane modules headers fiber membrane modules fiber membrane module fiber membrane modules fiber membrane module header - Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a hollow fiber membrane module and a puller used therefor, which is capable of preventing one or more problems of the related art.
- Another object of the present invention is to provide a hollow fiber membrane module and a puller used therefor, wherein each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired.
- Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
- To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a hollow fiber membrane module comprises a hollow fiber membrane; and at least one header to which the hollow fiber membrane is potted, wherein the header includes a first lateral side to which the hollow fiber membrane is potted and a second lateral side opposite to the first lateral side, and wherein an engaging plate is formed at the second lateral side.
- The pulling groove comprises a first groove which is open in a direction perpendicular to the second lateral side; and a second groove which extends from the first groove to the inner part of the header in a direction parallel to the second lateral side, wherein the engaging plate is a part of the second lateral side corresponding to the second groove. In this case, when the hollow fiber membrane module is pulled with a puller including a hooking member, the hooking member is firstly inserted into the first groove, and is then moved toward a direction parallel to the second lateral side so that the hooking member is inserted into the second groove.
- At this time, at least a part of the first groove may be positioned at the same height as the second groove in a longitudinal direction of the header, or the entire first groove is positioned at a different height from the second groove in a longitudinal direction of the header.
- Selectively, the engaging plate may protrude from the second lateral side of the header. In this case, when the hollow fiber membrane module is pulled with a puller including a hooking member, the hooking member is inserted into a gap between the second lateral side and the engaging plate.
- The engaging plate is formed at the center of the second lateral side.
- Selectively, a plurality of engaging plates are formed at the second lateral side. At this time, the plurality of engaging plates include at least one pair of engaging plates which are symmetric to each other with respect to a central line of the second lateral side, the central line being parallel to a longitudinal direction of the header.
- When the hollow fiber membrane module is submerged into a liquid substrate to be treated, the header is arranged in such a way that the longitudinal direction of the header is perpendicular to a surface of the liquid substrate (that is, the longitudinal direction of the hollow fiber membrane is parallel to the surface of the liquid substrate).
- In another aspect of the present invention, there is provided a puller for pulling out a hollow fiber membrane module from a frame structure, the hollow fiber membrane module including a header having a lateral side provided with an engaging plate, the puller comprising a main body; and a hooking member, extending from an end of the main body, formed in a shape suitable for being caught in the engaging plate.
- In order to maximize the pulling-force transmission efficiency, the main body is perpendicular to each hooking member.
- In addition, a pulling-force transmitting member is combined with the main body, and a plurality of handles are connected with the pulling-force transmitting member so that pulling forces from different directions might be applied to the puller at the same time.
- A hollow fiber membrane module according to the present invention and a puller used therefor has the following advantages.
- Each individual hollow fiber membrane module can be easily pulled out from a filtering apparatus provided with a plurality of hollow fiber membrane modules if it is required to be replaced or repaired. In this case, even though the plurality of hollow fiber membrane modules are maintained in close contact with one another, the individual hollow fiber membrane module to be replaced or repaired can be easily pulled out from the filtering apparatus without disassembling the filtering apparatus.
-
FIG. 1 is a perspective view illustrating a related art hollow fiber membrane module. -
FIG. 2 is a perspective view illustrating a packing structure of related art hollow fiber membrane modules. -
FIG. 3 is a perspective view illustrating a header in a hollow fiber membrane module according to one embodiment of the present invention, andFIG. 4 is a lateral view thereof. -
FIG. 5 is a perspective view illustrating a hollow fiber membrane module according to one embodiment of the present invention. -
FIG. 6 is a perspective view illustrating a packing structure of hollow fiber membrane modules according to one embodiment of the present invention. -
FIG. 7 shows that a hollow fiber membrane module according to one embodiment of the present invention is pulled out from a filtering apparatus by a puller according to one embodiment of the present invention. -
FIG. 8 is a perspective view illustrating a header in a hollow fiber membrane module according to another embodiment of the present invention, andFIG. 9 is a lateral view thereof. -
FIGS. 10 to 13 are lateral views illustrating hollow fiber membrane modules according to other embodiments of the present invention. -
FIG. 14 shows that a hollow fiber membrane module according to another embodiment of the present invention is pulled out from a filtering apparatus by a puller according to another embodiment of the present invention. - Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- Hereinafter, a hollow fiber membrane module according to the present invention and a puller used therefor will be explained with reference to the accompanying drawings.
-
FIG. 3 is a perspective view illustrating a header in a hollow fiber membrane module according to one embodiment of the present invention, andFIG. 4 is a lateral view thereof.FIG. 5 is a perspective view illustrating a hollow fiber membrane module according to one embodiment of the present invention.FIG. 6 is a perspective view illustrating a packing structure of hollow fiber membrane modules according to one embodiment of the present invention. - As shown in
FIGS. 3 to 6 , a hollowfiber membrane module 200 according to the present invention includes twoheaders 210, wherein a plurality ofhollow fiber membranes 220 are arranged in a bundle between the twoheaders 210. In this case, both ends of thehollow fiber membrane 220 are respectively potted to confronting sides of the twoheaders 210 by an adhesive such as polyurethane. Also, a permeate collecting unit (not shown) is formed in each of the twoheaders 210, wherein the permeate collecting unit is connected with open ends of thehollow fiber membrane 220 so as to collect permeate passing through thehollow fiber membrane 220. Between the confronting sides of the twoheaders 210, there are two upper supportingunits 231 and two lower supportingunits 232 so as to stably maintain an interval between the twoheaders 210. - A filtering apparatus including the plurality of hollow
fiber membrane modules - Herein, there is an exemplary case using the two
headers 210 so as to collect permeate from the both ends of thehollow fibber membrane 220 in the hollowfiber membrane module 200. However, it is not limited to the exemplary case using the twoheaders 210. For example, another exemplary case of a hollow fiber membrane module with one header can be made within the spirit or scope of the present invention, wherein one header is used to collect permeate from one end of a hollow fiber membrane. - As shown in
FIGS. 3 to 6 , theheader 210 in the hollow fiber membrane module according to one embodiment of the present invention includes a first lateral side to which thehollow fiber membrane 220 is potted, and a second lateral side opposite to the first lateral side. Also, a pair of engagingplates 213 is provided at the second lateral side. In this case, the pair of engagingplates 213 are symmetric to each other with respect to a center line of the second lateral side, wherein the center line is parallel to a longitudinal direction of theheader 210. - The pair of engaging
plates 213 is made by forming a pair of pulling grooves at the second lateral side of theheader 210. Each pulling groove includes afirst groove 211 and asecond groove 212, wherein thefirst groove 211 is open in a direction perpendicular to the second lateral side, and thesecond groove 212 extends from thefirst groove 211 to the inner part of theheader 210 in a direction parallel to the second lateral side. Herein, the engagingplate 213 is a part of the second lateral side corresponding to thesecond groove 212. - The pulling groove may be made by partially removing the flat lateral side of the
header 210 after firstly forming theheader 210, or may be made simultaneously when forming theheader 210 by a molding method. -
FIG. 7 shows that the hollowfiber membrane module 210 according to one embodiment of the present invention is pulled out from the filtering apparatus by apuller 300 according to one embodiment of the present invention. - As shown in
FIG. 7 , thepuller 300 according to one embodiment of the present invention includes amain body 310. Also, thepuller 300 further includes a pair of hookingmembers 320 which respectively extends from both ends of themain body 310. The pair of hookingmembers 320 is formed in shapes suitable for being caught in the pair of engagingplates 213 formed at the lateral side of theheader 210 in the hollow fiber membrane module. - In order to pull the hollow
fiber membrane module 200 by thepuller 300 according to the present invention, the pair of hookingmembers 320 is firstly inserted into thefirst groove 211 and is then moved in a direction parallel to the second lateral side, whereby the pair of hookingmembers 320 is inserted into thesecond groove 212. Then, according as a pulling force is applied to thepuller 300, the pulling force is transmitted to the engagingplates 213 through the pair of hookingmembers 320, to thereby pull out the hollowfiber membrane module 200. - At this time, the
main body 310 is perpendicular to the pair of hookingmembers 320 so as to maximize the pulling-force transmission efficiency, preferably. - Also, a pulling-
force transmitting member 330 is combined with themain body 310, and a plurality ofhandles 340 are connected with the pulling-force transmitting member 330, so that pulling forces from different directions might be applied to the puller at the same time. - In the meantime, the shape of the main body, the shape of the hooking member, and the combined shape of the main body and the hooking member in the puller may be changed by the number, shape and position of engaging plates in the headers of the hollow fiber membrane modules according to the various embodiments of the present invention.
-
FIG. 8 is a perspective view illustrating a header in a hollow fiber membrane module according to another embodiment of the present invention, andFIG. 9 is a lateral view thereof. - As shown in
FIGS. 8 and 9 , a pair of engagingplates 413 is formed at a lateral side of aheader 410 in a hollow fiber membrane module according to another embodiment of the present invention. In this case, the pair of engagingplates 413 are symmetric to each other with respect to a center line of the lateral side, wherein the center line is parallel to a longitudinal direction of theheader 410. - The pair of engaging
plates 413 is made by forming a pair of pulling grooves at the lateral side of theheader 410. Each pulling groove includes afirst groove 411 and asecond groove 412, wherein thefirst groove 411 is open in a direction perpendicular to the lateral side, and thesecond groove 412 extends from thefirst groove 411 to the inner part of theheader 410 in a direction parallel to the lateral side. Herein, the engagingplate 413 is a part of the lateral side corresponding to thesecond groove 412. - Unlike the aforementioned embodiment shown in
FIGS. 3 to 7 , which illustrates that a part of thefirst groove 211 is positioned at the same height as thesecond groove 212 in the longitudinal direction of theheader 210, this embodiment shown inFIGS. 8 and 9 illustrates that the entirefirst groove 411 is positioned at the different height from thesecond groove 412 in the longitudinal direction of theheader 410. -
FIGS. 10 to 13 are lateral views illustrating hollow fiber membrane modules according to other embodiments of the present invention. - As explained above, the header of the hollow fiber membrane module according to the present invention may be provided with the engaging plates which are variable in shape or number, wherein the engaging plates are provided at the lateral side of the header.
- In a hollow fiber membrane module of
FIG. 10 , anengaging plate 513 a is formed at the center of a lateral side of aheader 510 a. In this case, an entirefirst groove 511 a is positioned at a different height from asecond groove 512 a in a longitudinal direction of theheader 510 a. - In a hollow fiber membrane module of
FIG. 11 , two engagingplates 513 b are formed at the center of a lateral side of aheader 510 b, wherein the twoengaging plates 513 b are provided along a longitudinal direction of theheader 510 b. In this case, an entirefirst groove 511 b is positioned at a different height from asecond groove 512 b in the longitudinal direction of theheader 510 b. - In a hollow fiber membrane module of
FIG. 12 , anengaging plate 513 c is formed at the center of a lateral side of aheader 510 c. In this case, an entire first groove 511 c is positioned at the same height as asecond groove 512 c in a longitudinal direction of theheader 510 c. - In a hollow fiber membrane module of
FIG. 13 , two engagingplates 513 d are formed at the center of a lateral side of aheader 510 d, wherein the twoengaging plates 513 d are provided along a longitudinal direction of theheader 510 d. In this case, an entirefirst groove 511 d is positioned at the same height as asecond groove 512 d in the longitudinal direction of theheader 510 d. - According to the aforementioned embodiments of
FIGS. 3 to 13 , the pulling groove is formed at the lateral side of the header of the hollow fiber membrane module, whereby a part of the lateral side is used as the engaging plate. However, it is not limited to the exemplary case using a part of the lateral side as the engaging plate. Instead, an additional engaging structure may protrude from a lateral side of a header, which will be explained with reference toFIG. 14 . -
FIG. 14 shows that a hollow fiber membrane module according to another embodiment of the present invention is pulled out from a filtering apparatus by a puller according to another embodiment of the present invention. - As shown in
FIG. 14 , a pair of engagingplates 613 protrudes from a lateral side of aheader 610 in a hollow fiber membrane module according to another embodiment of the present invention. In this case, the pair of engagingplates 613 are symmetric to each other with respect to a central line of the lateral side of theheader 610, wherein the central line is parallel to a longitudinal direction of theheader 610. The pair of engagingplates 613 may be formed by combining an additional engaging structure with the lateral side of the header manufactured. Preferably, the engaging plates and the header are formed at the same time by molding. - After inserting a pair of hooking
members 720 into each gap between the lateral side of theheader 610 and theengaging plate 613, respectively, a pulling force is applied to apuller 700, whereby the pulling force is transmitted to the engagingplates 613 through the hookingmembers 720, thereby pulling out the hollow fiber membrane module. - The pair of hooking
members 720 of thepuller 700 used in this embodiment of the present invention is extended from one end of amain body 710, wherein the respective hookingmembers 720 extend in opposite directions. - In order to maximize the pulling-force transmission efficiency, the
main body 710 is perpendicular to the hookingmembers 720, preferably. - Also, a pulling-
force transmitting member 730 is combined with themain body 710, and a plurality ofhandles 740 are connected with the pulling-force transmitting member 730, so that pulling forces from different directions might be applied to thepuller 700 at the same time. - The aforementioned embodiments of the present invention relate with a horizontal-type hollow fiber membrane module whose header is arranged in such a way that the longitudinal direction of the header is perpendicular to the surface of the liquid substrate (that is, the longitudinal direction of the hollow fiber membrane is parallel to the surface of the liquid substrate), when the hollow fiber membrane module is submerged into the liquid substrate to be treated.
- However, the present invention is not limited to the horizontal-type hollow fiber membrane module. That is, the present invention can be applied to a vertical-type hollow fiber membrane module whose header is arranged in such a way that the longitudinal direction of the header is parallel to the surface of the liquid substrate (that is, the longitudinal direction of the hollow fiber membrane module is perpendicular to the surface of the liquid substrate), when the hollow fiber membrane module is submerged into the liquid substrate to be treated.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (15)
1. A hollow fiber membrane module comprising:
a hollow fiber membrane; and
at least one header to which the hollow fiber membrane is potted,
wherein the header includes a first lateral side to which the hollow fiber membrane is potted and a second lateral side opposite to the first lateral side, and
wherein an engaging plate is formed at the second lateral side.
2. The hollow fiber membrane module of claim 1 , wherein a pulling groove is formed at the second lateral side.
3. The hollow fiber membrane module of claim 2 , wherein the pulling groove comprises:
a first groove which is open in a direction perpendicular to the second lateral side; and
a second groove which extends from the first groove to the inner part of the header in a direction parallel to the second lateral side,
wherein the engaging plate is a part of the second lateral side corresponding to the second groove.
4. The hollow fiber membrane module of claim 3 , wherein, when the hollow fiber membrane module is pulled with a puller including a hooking member, the hooking member is firstly inserted into the first groove, and is then moved toward a direction parallel to the second lateral side so that the hooking member is inserted into the second groove.
5. The hollow fiber membrane module of claim 3 , wherein at least a part of the first groove is positioned at the same height as the second groove in a longitudinal direction of the header.
6. The hollow fiber membrane module of claim 3 , wherein the entire first groove is positioned at a different height from the second groove in a longitudinal direction of the header.
7. The hollow fiber membrane module of claim 1 , wherein, when the hollow fiber membrane module is pulled with a puller including a hooking member, the hooking member is inserted into a gap between the second lateral side and the engaging plate.
8. The hollow fiber membrane module of claim 1 , wherein the engaging plate is formed at the center of the second lateral side.
9. The hollow fiber membrane module of claim 1 , wherein a plurality of engaging plates are formed at the second lateral side.
10. The hollow fiber membrane module of claim 9 , wherein the plurality of engaging plates include at least one pair of engaging plates which are symmetric to each other with respect to a central line of the second lateral side, the central line being parallel to a longitudinal direction of the header.
11. The hollow fiber membrane module of claim 1 , wherein, when the hollow fiber membrane module is submerged into a liquid substrate to be treated, the header is arranged in such a way that the longitudinal direction of the header is perpendicular to a surface of the liquid substrate.
12. A puller for pulling out a hollow fiber membrane module from a frame structure, the hollow fiber membrane module including a header having a lateral side provided with an engaging plate, the puller comprising:
a main body; and
a hooking member, extending from an end of the main body, formed in a shape suitable for being caught in the engaging plate.
13. The puller of claim 12 , wherein the main body is perpendicular to each hooking member.
14. The puller of claim 12 , further comprising a pulling-force transmitting member combined with the main body.
15. The puller of claim 14 , further comprising a plurality of handles connected with the pulling-force transmitting member so that pulling forces from different directions might be applied to the puller at the same time.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0029895 | 2008-03-31 | ||
KR1020080029895A KR101352186B1 (en) | 2008-03-31 | 2008-03-31 | Hollow Fiber Membrane Module and Apparatus for Pulling The Same |
PCT/KR2009/001406 WO2009123403A1 (en) | 2008-03-31 | 2009-03-19 | Hollow fiber membrane module and puller used therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/001406 A-371-Of-International WO2009123403A1 (en) | 2008-03-31 | 2009-03-19 | Hollow fiber membrane module and puller used therefor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/936,894 Division US8623208B2 (en) | 2008-03-31 | 2013-07-08 | Hollow fiber membrane module and puller used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110024345A1 true US20110024345A1 (en) | 2011-02-03 |
Family
ID=41135735
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/935,528 Abandoned US20110024345A1 (en) | 2008-03-31 | 2009-03-19 | Hollow fiber membrane module and puller used therefor |
US13/936,894 Active US8623208B2 (en) | 2008-03-31 | 2013-07-08 | Hollow fiber membrane module and puller used therefor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/936,894 Active US8623208B2 (en) | 2008-03-31 | 2013-07-08 | Hollow fiber membrane module and puller used therefor |
Country Status (5)
Country | Link |
---|---|
US (2) | US20110024345A1 (en) |
KR (1) | KR101352186B1 (en) |
CN (1) | CN101980763B (en) |
TW (1) | TWI359041B (en) |
WO (1) | WO2009123403A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150101976A1 (en) * | 2009-03-23 | 2015-04-16 | Kolon Industries, Inc. | Hollow fiber membrane module, filtration apparatus using the same, and method for manufacturing the filtration apparatus |
US20170122743A1 (en) * | 2014-06-11 | 2017-05-04 | Continental Teves Ag & Co. Ohg | Method and system for adapting a navigation system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101688378B1 (en) * | 2010-05-03 | 2016-12-21 | 코오롱인더스트리 주식회사 | Hollow Fiber Membrane Module and Filtering Apparatus using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4219426A (en) * | 1976-03-19 | 1980-08-26 | Organon Teknika B.V. | Dialysis device |
US5472601A (en) * | 1993-04-20 | 1995-12-05 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Hollow fiber filter |
US6280626B1 (en) * | 1998-08-12 | 2001-08-28 | Mitsubishi Rayon Co., Ltd. | Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly |
US20040060442A1 (en) * | 2000-12-18 | 2004-04-01 | Yoshihito Nakahara | Hollow fiber membrane module, method of manufacturing the hollow fiber membrane module, and housing for hollow fiber membrane module |
US20090301961A1 (en) * | 2005-09-12 | 2009-12-10 | Friedrich Witthaus | Hollow Fiber Membrane Separation Device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000000442A (en) * | 1998-06-16 | 2000-01-07 | Nitto Denko Corp | Spiral separation-membrane module and header for spiral separation-membrane element |
CN2418942Y (en) * | 2000-03-23 | 2001-02-14 | 李红兵 | Hollow fiber membrane assembly |
JP4498557B2 (en) * | 2000-07-25 | 2010-07-07 | 三菱レイヨン株式会社 | Hollow fiber membrane module, manufacturing method thereof, and hollow fiber membrane module unit |
WO2005118117A1 (en) * | 2004-05-28 | 2005-12-15 | Siemens Water Technologies Corp. | Retractable cantilever rack support |
-
2008
- 2008-03-31 KR KR1020080029895A patent/KR101352186B1/en active IP Right Grant
-
2009
- 2009-03-19 CN CN200980110440.XA patent/CN101980763B/en not_active Expired - Fee Related
- 2009-03-19 US US12/935,528 patent/US20110024345A1/en not_active Abandoned
- 2009-03-19 WO PCT/KR2009/001406 patent/WO2009123403A1/en active Application Filing
- 2009-03-30 TW TW098110529A patent/TWI359041B/en not_active IP Right Cessation
-
2013
- 2013-07-08 US US13/936,894 patent/US8623208B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4219426A (en) * | 1976-03-19 | 1980-08-26 | Organon Teknika B.V. | Dialysis device |
US5472601A (en) * | 1993-04-20 | 1995-12-05 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Hollow fiber filter |
US6280626B1 (en) * | 1998-08-12 | 2001-08-28 | Mitsubishi Rayon Co., Ltd. | Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly |
US20040060442A1 (en) * | 2000-12-18 | 2004-04-01 | Yoshihito Nakahara | Hollow fiber membrane module, method of manufacturing the hollow fiber membrane module, and housing for hollow fiber membrane module |
US20080164203A1 (en) * | 2000-12-18 | 2008-07-10 | Mitsubishi Rayon Co., Ltd. | Hollow fiber membrane module, and a manufacturing method therefor, and housing for hollow fiber memberane module |
US20090301961A1 (en) * | 2005-09-12 | 2009-12-10 | Friedrich Witthaus | Hollow Fiber Membrane Separation Device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150101976A1 (en) * | 2009-03-23 | 2015-04-16 | Kolon Industries, Inc. | Hollow fiber membrane module, filtration apparatus using the same, and method for manufacturing the filtration apparatus |
US9597639B2 (en) * | 2009-03-23 | 2017-03-21 | Kolon Industries, Inc. | Hollow fiber membrane module, filtration apparatus using the same, and method for manufacturing the filtration apparatus |
US20170122743A1 (en) * | 2014-06-11 | 2017-05-04 | Continental Teves Ag & Co. Ohg | Method and system for adapting a navigation system |
Also Published As
Publication number | Publication date |
---|---|
KR101352186B1 (en) | 2014-01-15 |
KR20090104463A (en) | 2009-10-06 |
US20130291360A1 (en) | 2013-11-07 |
CN101980763A (en) | 2011-02-23 |
TWI359041B (en) | 2012-03-01 |
WO2009123403A1 (en) | 2009-10-08 |
US8623208B2 (en) | 2014-01-07 |
CN101980763B (en) | 2015-02-18 |
TW200940147A (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9795904B2 (en) | Filtering membrane module and filtering apparatus having the same | |
US8506805B2 (en) | System and method for installing filtering membrane module to frame structure | |
EP2111289B1 (en) | Submersible module of hollow fiber membranes | |
JP6060273B2 (en) | Filtration device | |
KR102236176B1 (en) | Filtering Apparatus | |
US9597639B2 (en) | Hollow fiber membrane module, filtration apparatus using the same, and method for manufacturing the filtration apparatus | |
US8623208B2 (en) | Hollow fiber membrane module and puller used therefor | |
US9795926B2 (en) | Aeration unit and filtering apparatus comprising the same | |
KR20090104499A (en) | Hollow Fiber Membrane Module and Filtering Apparatus using The Same | |
KR101685356B1 (en) | Vertical Type Hollow Fiber Membrane Module and Filtering System Using The Same | |
KR20180035130A (en) | Header, Hollow Fiber Membrane Module Comprising The Same, and Filtering Apparatus Comprising The Same | |
KR101428089B1 (en) | Adaptor for Switching the Use of a Filtering Apparatus and Filtering Apparatus Using The Same | |
KR101688378B1 (en) | Hollow Fiber Membrane Module and Filtering Apparatus using the same | |
KR20150078446A (en) | Submerged-Type Filtration Apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KOLON INDUSTRIES, INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, KWANG-JIN;REEL/FRAME:025080/0453 Effective date: 20100927 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |