US20110023678A1 - Miter saw with increased cutting capacity - Google Patents

Miter saw with increased cutting capacity Download PDF

Info

Publication number
US20110023678A1
US20110023678A1 US12/904,353 US90435310A US2011023678A1 US 20110023678 A1 US20110023678 A1 US 20110023678A1 US 90435310 A US90435310 A US 90435310A US 2011023678 A1 US2011023678 A1 US 2011023678A1
Authority
US
United States
Prior art keywords
saw
assembly
pivot
track
miter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/904,353
Inventor
Jason D. Hardebeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/904,353 priority Critical patent/US20110023678A1/en
Publication of US20110023678A1 publication Critical patent/US20110023678A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D45/00Sawing machines or sawing devices with circular saw blades or with friction saw discs
    • B23D45/04Sawing machines or sawing devices with circular saw blades or with friction saw discs with a circular saw blade or the stock carried by a pivoted lever
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7684With means to support work relative to tool[s]
    • Y10T83/7693Tool moved relative to work-support during cutting
    • Y10T83/7697Tool angularly adjustable relative to work-support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7755Carrier for rotatable tool movable during cutting
    • Y10T83/7763Tool carrier reciprocable rectilinearly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7755Carrier for rotatable tool movable during cutting
    • Y10T83/7788Tool carrier oscillated or rotated

Definitions

  • This invention relates to miter saws, specifically those miter saws used to cut wood, metals, and plastics.
  • Saws and other apparatuses designed for cutting or performing other working operations on a workpiece typically include mechanisms for moving the saw blade or cutting tool in relationship to the workpiece.
  • Examples of such equipment include miter saws that are adapted for allowing the user to selectively move the saw blade in a vertical plane for cutting.
  • Miter saws are used to make a precise end cuts in these materials, and one of the primary defining characteristics of these types of saws is the maximum capacity in length and depth of cut. It is generally desirable to have a saw with enough capacity to cut the most commonly encountered materials for the job at hand.
  • Two methods of increasing capacity are well understood by the industry. The first method is to increase the diameter of the cutting blade in order to increase the effective cross section of the cut. The primary drawbacks of this method is that the entire saw must be made larger to accommodate a larger saw blade, which adds weight, volume, and cost to the saw.
  • the second method typically uses a rail and bearing assembly that allows the cutting head to traverse across the material to be cut, thereby increasing the effective cross section of the cut. This method also has significant drawbacks, due to increases in material costs, weight, and complexity.
  • the intent of the discovery process was to determine if there was another method to increase the capacity of a miter saw that avoided or minimized the increase in weight, volume, cost, and complexity. Such a saw would be very beneficial to a user who is interested in a miter saw with the capacity of a larger saw without increased size and weight. Saws with large capacity tend to be heavy, bulky, and expensive. On the other hand, saws that are less heavy and more compact often do not have the capacity necessary to meet the user's requirements. From the foregoing, it is apparent that there is a need for a miter saw with increased saw capacity without adding significantly to the cost, weight, and size of the unit.
  • U.S. Pat. No. 7,201,091 which was granted on Apr. 10, 2007, describes a miter saw design that uses a “floating pivot” mechanism to accommodate workpieces that are larger than conventional miter saws with the same diameter cutting blade. This design also allows for a lighter, more compact, and less complex unit than a sliding miter saw.
  • U.S. Pat. No. 7,201,091 envisions a pivot assembly consisting of two bearing surfaces and a fixed track to constrain and guide the saw's motor assembly in the preferred cutting path. This mechanism is constructed in a way such that the pivot point of the cutting arc is not fixed at a single point. Instead, the pivot point is allowed to move in the same plane as the cutting surface, which has the effect of increasing the effective radius of the cutting edge.
  • Another object of the present invention is to provide a miter saw that can safely make a longer cut.
  • a related object is to provide a miter saw having a floating pivot point.
  • This improvement results in a miter saw with the capacity of a larger saw without increasing the diameter of the saw blade or the addition of a sliding rail assembly.
  • the improved miter saw can be made smaller, lighter, and for less cost than a typical unit can.
  • This invention improves some of the features described in U.S. Pat. No. 7,201,091, which uses smooth bearings as pivot surfaces and a smooth track to guide the bearings.
  • One advantage of this arrangement is increased cutting capacity with a simple, lightweight, and compact design.
  • such bearing arrangement also has the potential for sideways movement, which is due to the tendency for the low friction surfaces of the pivot bearings and track to slide in all directions, providing the potential for the cutting blade to move slightly from side to side. Unintended movement of the cutting blade can introduce inaccuracy into the cutting path of the saw blade, which is undesirable in a miter saw.
  • the present invention introduces geared surfaces to the pivot bearing and pivot track assembly. It will be understood by those skilled in the mechanical arts that different gear tooth styles and configurations may be utilized in this assembly. One of the benefits of using geared surfaces is the tendency for the gear teeth to control the off-axis movement of the pivot mechanism as the saw blade traverses through its full range of cutting motion.
  • the present invention contemplates the use of linear gears on one or both sides of the track.
  • the pivot gears engage the linear gear on whichever side each respective pivot gear is biased towards.
  • the movement of the pivot gears within the linear gear provides the cutting path of the saw blade.
  • This invention enables a miter saw with increased cutting capacity, having a cutting surface that is mounted on a rigid arm with an improved pivot mechanism.
  • the pivot mechanism is constructed in a way such that the pivot point of the cutting arc is not fixed at a single point. Instead, the pivot point is allowed to move in the same plane as the cutting surface, which has the effect of increasing the effective radius of the cutting edge.
  • FIG. 1 is a right-side perspective view of a prior art miter saw design, showing the cutting blade affixed to an arm that pivots about a fixed point.
  • FIG. 2 is a right-side perspective of a prior art sliding-type miter saw design, showing the cutting blade affixed to an arm that pivots about a fixed point.
  • FIG. 3 is a right-side perspective of a miter saw with a pivot mechanism that incorporates the present invention.
  • FIG. 4 is an enlarged view of a portion of FIG. 3 .
  • FIG. 1 is a right-side perspective view of a typical prior art miter saw design that shows a circular saw blade 10 affixed to a rotating motor shaft at 13 .
  • This assembly is mounted to an arm 15 that is pivotably attached to a stationary table 18 at a single pivot point 20 .
  • Pivot point 20 becomes the origin of the XYZ axes where the cutting surface is defined by the X-Z plane.
  • the cutting path, indicated generally at 22 is described by an arc of radius R, which is the fixed distance between the pivot point 20 and the motor shaft 13 in the Y-Z plane.
  • the depth and width of cut is defined by a chord of the saw blade as it passes into a slot on the stationary table 18 and the distance from the motor shaft 13 to the surface of the table 18 .
  • FIG. 2 is a right-side perspective view of a typical prior art sliding miter saw design that shows the circular saw blade 10 affixed to rotating motor shaft 13 .
  • This assembly is mounted to an arm 15 that is pivotably mounted to the front part of the sliding rail assembly 25 at a single pivot point 20 .
  • Rail assembly 25 is constrained along the Z-axis by a stationary bearing assembly 28 .
  • the lateral movement of rail assembly 25 produces an action that causes the pivot point 20 to move along the cutting plane for a distance L. This increases the width of cut by enabling the cutting path 22 with radius R to traverse across the work surface.
  • FIG. 3 shows a right-side perspective of one example of an improved miter saw that employs a “floating pivot” as contemplated by the present invention.
  • the saw indicated generally as 30 , comprises blade 33 affixed to motor shaft 35 to form a blade and motor assembly 37 , which is affixed to a rigid arm 40 .
  • the rigid arm 40 is movably attached to a stationary bracket 43 on the back of stationary table 46 .
  • arm 40 is attached to post 43 by a pivot assembly 51 comprising two bearing surfaces 53 , 54 .
  • bearing surfaces 53 , 54 may be rolling bearings or other suitable bearings.
  • the pivot assembly 51 further comprises a fixed track 58 , such that bearings 53 , 54 are constrained in the fixed track 58 in the post 43 .
  • Such track 58 is sized and configured to enable the bearings 53 , 54 to move within the track 58 , causing the pivot point of arm 40 to shift.
  • the bearing surfaces 53 , 54 may comprise toothed gears or pinions and the track 58 may also include a toothed rack that enables the toothed gears or pinions to engage therein.
  • the drawings show the use of straight cut pinions and a linear gear for the pivot track.
  • the gear in the track 58 will only be included on one side of the track 58 .
  • One skilled in the relevant art can readily determine whether the gear should be on the top or bottom side of the track 58 . In some embodiments, such gear may be on the top side for one portion of the track 58 and on the bottom side for another portion of the track 58 .
  • the bearings 53 , 54 and track 58 in pivot assembly 51 cause the effective (or floating) pivot 60 to move in an eccentric arc.
  • This produces a cutting path 63 with radius R that is not semicircular. Instead, the cutting path 63 follows an eccentric path in the Y-Z plane that results in an increased width of cut at the work surface.
  • the disclosed embodiment shows the pivot assembly comprising a pair of toothed gears and a toothed rack.
  • the floating pivot can be achieved by a cam assembly, by a pulley system, or by a gear assembly. Other methods of achieving such floating pivot will become apparent to those skilled in the art by following the teaching of the present invention.
  • the track 58 will be contained in the post 43 and the bearings 53 , 54 will be contained in the arm 40 . In other embodiments, the track 58 will be contained in the arm 40 and the bearings 53 , 54 will be contained in the post 43 .
  • a user operates the improved miter saw 30 in a normal manner by placing the material to be cut on the stationary saw table 46 and moving the blade assembly 37 and arm 40 down toward the material using a typical handle assembly (not shown).
  • the pivot assembly 51 described by bearings 53 , 54 and fixed track 58 enables the blade 33 to move along the cutting arc 63 without deviation.
  • the user is able to make a wider cut because the blade 33 moves parallel to the surface of table 46 as the cutting path 63 changes from an eccentric curve to a straight path along the Z-axis.
  • a biasing mechanism such as a spring assembly, can be incorporated into the pivot assembly 51 to enable the cutting arm 40 to return to the upright position easily and safely.

Abstract

A miter saw design with a cutting arm pivot mechanism that allows the pivot point of the cutting arc to move in a predetermined path in the plane described by the rotating cutting surface. The “floating pivot” enables the tool to accommodate larger pieces of material than conventional miter saws with the same diameter cutting blade. This design also allows the saw to be more compact, lighter in weight, and less complex in comparison to the sliding miter saw. Thus, a miter saw can be provided that provides the cutting capacity of a larger saw with less weight, bulk, and cost than the current alternatives.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This Application is a continuation of application Ser. No. 11/786,070, filed with the U.S. Patent and Trademark Office on Apr. 10, 2007, and a continuation-in-part of application Ser. No. 10/796,666 entitled Miter Saw with Increased Cutting Capacity, filed with the U.S. Patent and Trademark Office on Mar. 8, 2004 , now U.S. Pat. No. 7,201,091.
  • BACKGROUND
  • 1. Field of the Invention
  • This invention relates to miter saws, specifically those miter saws used to cut wood, metals, and plastics.
  • 2. Background of the Invention
  • Saws and other apparatuses designed for cutting or performing other working operations on a workpiece, particularly miter saws, typically include mechanisms for moving the saw blade or cutting tool in relationship to the workpiece. Examples of such equipment include miter saws that are adapted for allowing the user to selectively move the saw blade in a vertical plane for cutting. Miter saws are used to make a precise end cuts in these materials, and one of the primary defining characteristics of these types of saws is the maximum capacity in length and depth of cut. It is generally desirable to have a saw with enough capacity to cut the most commonly encountered materials for the job at hand. Two methods of increasing capacity are well understood by the industry. The first method is to increase the diameter of the cutting blade in order to increase the effective cross section of the cut. The primary drawbacks of this method is that the entire saw must be made larger to accommodate a larger saw blade, which adds weight, volume, and cost to the saw.
  • The second method typically uses a rail and bearing assembly that allows the cutting head to traverse across the material to be cut, thereby increasing the effective cross section of the cut. This method also has significant drawbacks, due to increases in material costs, weight, and complexity.
  • The intent of the discovery process was to determine if there was another method to increase the capacity of a miter saw that avoided or minimized the increase in weight, volume, cost, and complexity. Such a saw would be very beneficial to a user who is interested in a miter saw with the capacity of a larger saw without increased size and weight. Saws with large capacity tend to be heavy, bulky, and expensive. On the other hand, saws that are less heavy and more compact often do not have the capacity necessary to meet the user's requirements. From the foregoing, it is apparent that there is a need for a miter saw with increased saw capacity without adding significantly to the cost, weight, and size of the unit.
  • U.S. Pat. No. 7,201,091, which was granted on Apr. 10, 2007, describes a miter saw design that uses a “floating pivot” mechanism to accommodate workpieces that are larger than conventional miter saws with the same diameter cutting blade. This design also allows for a lighter, more compact, and less complex unit than a sliding miter saw. U.S. Pat. No. 7,201,091 envisions a pivot assembly consisting of two bearing surfaces and a fixed track to constrain and guide the saw's motor assembly in the preferred cutting path. This mechanism is constructed in a way such that the pivot point of the cutting arc is not fixed at a single point. Instead, the pivot point is allowed to move in the same plane as the cutting surface, which has the effect of increasing the effective radius of the cutting edge.
  • SUMMARY
  • It is, therefore, an object of the present invention to provide a miter saw with increased capacity that avoids the disadvantages of the prior art.
  • Another object of the present invention is to provide a miter saw that can safely make a longer cut. A related object is to provide a miter saw having a floating pivot point.
  • This improvement results in a miter saw with the capacity of a larger saw without increasing the diameter of the saw blade or the addition of a sliding rail assembly. The improved miter saw can be made smaller, lighter, and for less cost than a typical unit can.
  • This invention improves some of the features described in U.S. Pat. No. 7,201,091, which uses smooth bearings as pivot surfaces and a smooth track to guide the bearings. One advantage of this arrangement is increased cutting capacity with a simple, lightweight, and compact design. However, such bearing arrangement also has the potential for sideways movement, which is due to the tendency for the low friction surfaces of the pivot bearings and track to slide in all directions, providing the potential for the cutting blade to move slightly from side to side. Unintended movement of the cutting blade can introduce inaccuracy into the cutting path of the saw blade, which is undesirable in a miter saw.
  • The present invention introduces geared surfaces to the pivot bearing and pivot track assembly. It will be understood by those skilled in the mechanical arts that different gear tooth styles and configurations may be utilized in this assembly. One of the benefits of using geared surfaces is the tendency for the gear teeth to control the off-axis movement of the pivot mechanism as the saw blade traverses through its full range of cutting motion.
  • Accordingly, the present invention contemplates the use of linear gears on one or both sides of the track. The pivot gears engage the linear gear on whichever side each respective pivot gear is biased towards. The movement of the pivot gears within the linear gear provides the cutting path of the saw blade.
  • This invention enables a miter saw with increased cutting capacity, having a cutting surface that is mounted on a rigid arm with an improved pivot mechanism. The pivot mechanism is constructed in a way such that the pivot point of the cutting arc is not fixed at a single point. Instead, the pivot point is allowed to move in the same plane as the cutting surface, which has the effect of increasing the effective radius of the cutting edge.
  • The various features of novelty that characterize the invention will be pointed out with particularity in the claims of this application.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features, aspects, and advantages of the present invention are considered in more detail, in relation to the following description of embodiments thereof shown in the accompanying drawings, in which:
  • FIG. 1 is a right-side perspective view of a prior art miter saw design, showing the cutting blade affixed to an arm that pivots about a fixed point.
  • FIG. 2 is a right-side perspective of a prior art sliding-type miter saw design, showing the cutting blade affixed to an arm that pivots about a fixed point.
  • FIG. 3 is a right-side perspective of a miter saw with a pivot mechanism that incorporates the present invention.
  • FIG. 4 is an enlarged view of a portion of FIG. 3.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The invention summarized above and defined by the enumerated claims may be better understood by referring to the following description, which should be read in conjunction with the accompanying drawings in which like reference symbols are used for like parts. This description of an embodiment, set out below to enable one to build and use an implementation of the invention, is not intended to limit the enumerated claims, but to serve as a particular example thereof. Those skilled in the art should appreciate that they may readily use the conception and specific embodiments disclosed as a basis for modifying or designing other methods and systems for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent assemblies do not depart from the spirit and scope of the invention in its broadest form.
  • FIG. 1 is a right-side perspective view of a typical prior art miter saw design that shows a circular saw blade 10 affixed to a rotating motor shaft at 13. This assembly is mounted to an arm 15 that is pivotably attached to a stationary table 18 at a single pivot point 20. Pivot point 20 becomes the origin of the XYZ axes where the cutting surface is defined by the X-Z plane. The cutting path, indicated generally at 22, is described by an arc of radius R, which is the fixed distance between the pivot point 20 and the motor shaft 13 in the Y-Z plane. The depth and width of cut is defined by a chord of the saw blade as it passes into a slot on the stationary table 18 and the distance from the motor shaft 13 to the surface of the table 18.
  • FIG. 2 is a right-side perspective view of a typical prior art sliding miter saw design that shows the circular saw blade 10 affixed to rotating motor shaft 13. This assembly is mounted to an arm 15 that is pivotably mounted to the front part of the sliding rail assembly 25 at a single pivot point 20. Rail assembly 25 is constrained along the Z-axis by a stationary bearing assembly 28. The lateral movement of rail assembly 25 produces an action that causes the pivot point 20 to move along the cutting plane for a distance L. This increases the width of cut by enabling the cutting path 22 with radius R to traverse across the work surface.
  • FIG. 3 shows a right-side perspective of one example of an improved miter saw that employs a “floating pivot” as contemplated by the present invention. The saw, indicated generally as 30, comprises blade 33 affixed to motor shaft 35 to form a blade and motor assembly 37, which is affixed to a rigid arm 40. The rigid arm 40 is movably attached to a stationary bracket 43 on the back of stationary table 46.
  • Referring to FIG. 4, arm 40 is attached to post 43 by a pivot assembly 51 comprising two bearing surfaces 53, 54. Such bearing surfaces 53, 54 may be rolling bearings or other suitable bearings. In a preferred embodiment, the pivot assembly 51 further comprises a fixed track 58, such that bearings 53, 54 are constrained in the fixed track 58 in the post 43. Such track 58 is sized and configured to enable the bearings 53, 54 to move within the track 58, causing the pivot point of arm 40 to shift. As shown in FIG. 4, the bearing surfaces 53, 54 may comprise toothed gears or pinions and the track 58 may also include a toothed rack that enables the toothed gears or pinions to engage therein. For purposes of illustration, the drawings show the use of straight cut pinions and a linear gear for the pivot track. Typically, the gear in the track 58 will only be included on one side of the track 58. One skilled in the relevant art can readily determine whether the gear should be on the top or bottom side of the track 58. In some embodiments, such gear may be on the top side for one portion of the track 58 and on the bottom side for another portion of the track 58. As the blade and motor assembly 37 moves down towards a work surface, the bearings 53, 54 and track 58 in pivot assembly 51 cause the effective (or floating) pivot 60 to move in an eccentric arc. This in turn produces a cutting path 63 with radius R that is not semicircular. Instead, the cutting path 63 follows an eccentric path in the Y-Z plane that results in an increased width of cut at the work surface.
  • The disclosed embodiment shows the pivot assembly comprising a pair of toothed gears and a toothed rack. In an alternate embodiment, the floating pivot can be achieved by a cam assembly, by a pulley system, or by a gear assembly. Other methods of achieving such floating pivot will become apparent to those skilled in the art by following the teaching of the present invention. In some embodiments, the track 58 will be contained in the post 43 and the bearings 53, 54 will be contained in the arm 40. In other embodiments, the track 58 will be contained in the arm 40 and the bearings 53, 54 will be contained in the post 43.
  • In operation a user operates the improved miter saw 30 in a normal manner by placing the material to be cut on the stationary saw table 46 and moving the blade assembly 37 and arm 40 down toward the material using a typical handle assembly (not shown). As the user applies downward pressure on the blade assembly 37, the pivot assembly 51 described by bearings 53, 54 and fixed track 58 enables the blade 33 to move along the cutting arc 63 without deviation. The user is able to make a wider cut because the blade 33 moves parallel to the surface of table 46 as the cutting path 63 changes from an eccentric curve to a straight path along the Z-axis.
  • In an alternate embodiment, a biasing mechanism, such as a spring assembly, can be incorporated into the pivot assembly 51 to enable the cutting arm 40 to return to the upright position easily and safely.
  • The invention has been described with references to a preferred embodiment. While specific values, relationships, materials and steps have been set forth for purposes of describing concepts of the invention, it will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the basic concepts and operating principles of the invention as broadly described. It should be recognized that, in the light of the above teachings, those skilled in the art could modify those specifics without departing from the invention taught herein. Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with said underlying concept. It is intended to include all such modifications, alternatives and other embodiments insofar as they come within the scope of the appended claims or equivalents thereof. It should be understood, therefore, that the invention might be practiced otherwise than as specifically set forth herein. Consequently, the present embodiments are to be considered in all respects as illustrative and not restrictive.

Claims (13)

1. A miter saw, comprising:
a base;
a pivot arm;
a saw assembly attached to a first end of said pivot arm; and
a support housing connected to said base, wherein
said pivot arm is pivotably attached to said support housing at a second end of said pivot arm by a pivot assembly; and
said pivot assembly comprises a gear assembly engaged in a common track, said track being configured to engage said gear assembly and adapted for moving said saw assembly in an eccentric arc in a plane perpendicular to said base.
2. The miter saw of claim 1, said pivot assembly further comprising:
a fixed arcuate track having said gear assembly engaged therein.
3. The miter saw of claim 2, further comprising means to connect said gear assembly to said pivot arm.
4. The miter saw of claim 1 said saw assembly further comprising:
a blade; and
a motor operatively connected to said blade.
5. A table saw, comprising:
a base; a saw assembly pivotably mounted to said base, said saw assembly comprising:
an arm, moveable relative to said base; and
a pivot assembly operatively connected to said arm and adapted for moving said saw assembly in an eccentric arc in a plane perpendicular to said base, said pivot assembly comprising a gear assembly engaged in a common track, said track being configured to engage said gear assembly.
6. The table saw of claim 5, said pivot assembly further comprising:
a fixed arcuate track having said gear assembly engaged therein.
7. The table saw of claim 5, further comprising means to connect said gear assembly to said pivot arm.
8. The table saw of claim 5, further comprising a rotatable cutting tool supported by said arm.
9. The table saw of claim 8, said saw assembly further comprising:
a blade; and
a motor operatively connected to said blade.
10. A miter saw, comprising:
a base;
a pivot arm;
a saw assembly attached to a first end of said pivot arm; and
a support housing connected to said base, wherein
said pivot arm is pivotably attached to said support housing at a second end of said pivot arm by a pivot assembly; and
said pivot assembly comprises a pair of spaced-apart gears engaged in a common track, said track having a rack configured to engage said spaced-apart gears.
11. The miter saw of claim 1, said pivot assembly further comprising:
a fixed arcuate track having said gears engaged therein.
12. The miter saw of claim 2, further comprising a pair of pivot pins connecting said gears to said pivot arm.
13. The miter saw of claim 1 said saw assembly further comprising:
a blade; and
a motor operatively connected to said blade.
US12/904,353 2004-03-08 2010-10-14 Miter saw with increased cutting capacity Abandoned US20110023678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/904,353 US20110023678A1 (en) 2004-03-08 2010-10-14 Miter saw with increased cutting capacity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/796,666 US7201091B2 (en) 2004-03-08 2004-03-08 Miter saw with increased cutting capacity
US11/786,070 US20070186743A1 (en) 2004-03-08 2007-04-10 Miter saw with increased cutting capacity
US12/904,353 US20110023678A1 (en) 2004-03-08 2010-10-14 Miter saw with increased cutting capacity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/786,070 Continuation US20070186743A1 (en) 2004-03-08 2007-04-10 Miter saw with increased cutting capacity

Publications (1)

Publication Number Publication Date
US20110023678A1 true US20110023678A1 (en) 2011-02-03

Family

ID=34912595

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/796,666 Expired - Fee Related US7201091B2 (en) 2004-03-08 2004-03-08 Miter saw with increased cutting capacity
US11/786,070 Abandoned US20070186743A1 (en) 2004-03-08 2007-04-10 Miter saw with increased cutting capacity
US12/904,353 Abandoned US20110023678A1 (en) 2004-03-08 2010-10-14 Miter saw with increased cutting capacity

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/796,666 Expired - Fee Related US7201091B2 (en) 2004-03-08 2004-03-08 Miter saw with increased cutting capacity
US11/786,070 Abandoned US20070186743A1 (en) 2004-03-08 2007-04-10 Miter saw with increased cutting capacity

Country Status (1)

Country Link
US (3) US7201091B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139382A1 (en) * 2007-12-04 2009-06-04 Clack James B Portable miter saw
US9649703B2 (en) 2012-03-15 2017-05-16 Rexon Industrial Corp., Ltd. Circular saw with a moving mechanism
US10150171B2 (en) * 2016-02-16 2018-12-11 Viktor Bliznyuk Miter saw linear movement assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US46003A (en) * 1865-01-24 Improved bread-cutter
US1764965A (en) * 1928-04-25 1930-06-17 Curtis Companies Inc Straight-line overhead cut-off saw
US2389296A (en) * 1941-07-07 1945-11-20 Everett E Crane Tool support
US2999519A (en) * 1959-06-22 1961-09-12 Tony E Petersen Multi-purpose power tool
US4574670A (en) * 1983-11-17 1986-03-11 Lockheed Corporation Multiple angle cutting apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US886055A (en) * 1907-10-18 1908-04-28 Andrew A Hillback Power miter-saw.
US1602357A (en) * 1923-02-10 1926-10-05 George H Georgelis Pruning machine
US1662087A (en) * 1927-01-31 1928-03-13 Daniel H Thomas Pumping jack
US2121069A (en) * 1937-06-14 1938-06-21 Atlas Press Company Circular saw
US2546277A (en) * 1947-01-29 1951-03-27 Howard V Schwandt Straight-line swinging saw
US2704560A (en) * 1953-02-12 1955-03-22 Gibraltar Mfg Co Inc Tilt arbor bench saw
US3578043A (en) * 1968-08-15 1971-05-11 Troy Steel Corp Lumber cutting apparatus
US3565136A (en) * 1969-04-21 1971-02-23 Black & Decker Mfg Co Depth of cut adjustment construction for a radial-arm saw
US3780436A (en) * 1971-05-24 1973-12-25 Utica Cutlery Co Device to cut or separate masses of frozen food
DE2452960A1 (en) * 1974-11-08 1976-05-13 Dieter Kaltenbach COLD CIRCULAR SAW WITH A SAW ARM SWIVELING FOR THE FEED ABOUT THE TOP TO THE BOTTOM AGAINST A SAEGETABLE
US5404779A (en) * 1993-06-09 1995-04-11 Tapco Products Company, Inc. Saw table with compound movement of saw
US6865976B2 (en) * 2002-09-11 2005-03-15 Black & Decker Inc. Bevel stop mechanism for a miter saw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US46003A (en) * 1865-01-24 Improved bread-cutter
US1764965A (en) * 1928-04-25 1930-06-17 Curtis Companies Inc Straight-line overhead cut-off saw
US2389296A (en) * 1941-07-07 1945-11-20 Everett E Crane Tool support
US2999519A (en) * 1959-06-22 1961-09-12 Tony E Petersen Multi-purpose power tool
US4574670A (en) * 1983-11-17 1986-03-11 Lockheed Corporation Multiple angle cutting apparatus

Also Published As

Publication number Publication date
US20050193882A1 (en) 2005-09-08
US7201091B2 (en) 2007-04-10
US20070186743A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
EP2090393B1 (en) Reciprocating power tool
US6244149B1 (en) Blade and motor carrier with height/angle adjustment mechanism
US7669510B2 (en) Miter saw having holder fixing mechanism
US7730914B2 (en) Feeding mechanism for a woodworking machine
US20070074613A1 (en) Worktable having adjustable shield
US6508151B1 (en) Reciprocating saw with rocker motion
EP1579938B1 (en) Miter saw having circular saw blade section pivotally movable upward and downward and tiltable leftward and rightward
US8813377B2 (en) Reciprocating cutting tools
EP1958722A1 (en) Power miter saw with hinge linkage linear guides
US6880595B2 (en) Apparatus for adjustably positioning a power tool over a work surface
TW200726556A (en) Power miter saw with hinge linkage linear guides
US20110023678A1 (en) Miter saw with increased cutting capacity
US20110154921A1 (en) Reciprocating cutting tool
JP2005279934A5 (en)
EP1398123A3 (en) Bevel stop mechanism for a miter saw
US7228775B2 (en) Sliding miter saw
EP2301700A1 (en) Mitre saw
US20070277660A1 (en) Plunge-cut circular saw
EP1690622A2 (en) Powered saw apparatus
US20230356309A1 (en) Miter saw including a multi-link sliding assembly
EP1156902B1 (en) Reciprocating saw with rocker motion
US20210129241A1 (en) Miter saw
CN116767822A (en) Push mechanism and fruit processingequipment
CN216462167U (en) Miter saw
CN109773268B (en) Saw

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION