US20110017437A1 - Furnace panel leak detection system - Google Patents

Furnace panel leak detection system Download PDF

Info

Publication number
US20110017437A1
US20110017437A1 US12/898,758 US89875810A US2011017437A1 US 20110017437 A1 US20110017437 A1 US 20110017437A1 US 89875810 A US89875810 A US 89875810A US 2011017437 A1 US2011017437 A1 US 2011017437A1
Authority
US
United States
Prior art keywords
panel
furnace
coolant
fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/898,758
Inventor
Louis Scott Valentas
Eric Paul Tierney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berry Metal Co
Original Assignee
Berry Metal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berry Metal Co filed Critical Berry Metal Co
Priority to US12/898,758 priority Critical patent/US20110017437A1/en
Publication of US20110017437A1 publication Critical patent/US20110017437A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3227Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/18Detecting fluid leaks

Definitions

  • the present invention relates in general to furnace apparatus and in particular to a system including method and apparatus for detecting leaks in fluid-cooled panels for industrial furnaces such as metal smelting furnaces, blast furnaces, electric arc furnaces (EAFs) or the like.
  • industrial furnaces such as metal smelting furnaces, blast furnaces, electric arc furnaces (EAFs) or the like.
  • Many industrial furnaces such as smelting furnaces, blast furnaces, EAFs and the like typically have shells comprised fluid-cooled metallic panels.
  • the panels are cooled by conduits extending through the panels that are connected to cooling circuits through which cooling fluid (typically water) is pumped and recirculated.
  • Each panel has an inlet for the cooling fluid connected to the upstream end of the cooling circuit and an outlet for the cooling liquid connected to the downstream end of the cooling circuit.
  • furnace wall panels frequently develop leaks.
  • isolating the leak to the particular cooling circuit in which the leak is located may be a cumbersome procedure when the cooling system contains several cooling circuits, as is often the case in modern industrial furnaces.
  • thermocouples are installed into the metal of the panels themselves. In the event the thermocouples detect a sudden change of panel metal temperature indicative of a leak or rupture, an alarm is activated.
  • the failure or simple delay in operation of a such a single-tier monitoring system may result in a water leak with potential attendant equipment damage and possible personal injury.
  • a “single-tier” monitoring system is a furnace panel leak detection system involving only one means or mechanism by which a coolant fluid leak may be detected.
  • An example of a thermocouple-controlled industrial furnace roof panel is described in U.S. Pat. No. 4,813,055.
  • Another common single-tier leak detection system involves the use of water flow sensors for detecting changes in water flow in the panel which may be indicative of panel failure.
  • Numerous types of flow sensors and associated instrumentation have been developed for measuring fluid flow. These sensors may include orifice meters, turbine meters, vortex meters, magnetic flow meters, and the like. One of these devices may be placed on the supply line of the cooling circuit and another one of may be placed on the return line of that circuit.
  • the flow sensors detect differences in flow rates to determine if there is any leakage in the circuit between the inlet and outlet flowmeters.
  • An example of such a system is described in U.S. Pat. No. 6,804,990.
  • U.S. Pat. No. 4,207,060 describes multiple-tier furnace wall panel leak detection system, although the system does not include thermocouples installed in the wall panels themselves for directly detecting the panel metal temperature.
  • the system includes a cooling water supply line and a cooling water discharge line for recirculating cooling water through the furnace panels.
  • the cooling water supply line includes a single water temperature sensor, a single water pressure sensor and a single water flow sensor. Following these sensors a check valve introduces the cooling water into each panel. Coolant water exiting each panel passes water temperature and pressure sensors, and thereafter a pressure relief valve, before passing through a check valve and into the cooling water return line.
  • the system includes an alarm system and furnace shut down capability in the event a problem is detected in water temperature, pressure or flow. While an improvement over the single-tier furnace panel leak detection systems described above, the multiple-tier system disclosed in U.S. Pat. No. 4,207,060 nevertheless suffers from certain disadvantages.
  • check valves present obstructions in the fluid line which cause sudden spike-like pressure drops in the fluid circuit when the check valve opening pressure is overcome.
  • the furnace panels include panels of different sizes that inherently produce different pressure drops at the inlets of each panel due to the different coolant volumes of the panels when the check valve trigger pressure is reached.
  • these variables at least temporarily affect the reliability of the data recorded by and observed from the panel outlet temperature and flow sensors.
  • the default “off” position of check valves tends to promote the buildup of foreign solid particles which could ultimately block the fluid circuit.
  • pressure relief valves at the outlets of the panels provide no meaningful data or information about conditions within the panels.
  • Pressure relief valves are passive devices. They simply release pressurized coolant vapor or steam when a predetermined pressure has been reached. In this way, they are analogous to a check valve for fluid flow in that they suddenly function at a predetermined threshold level but are otherwise inoperative. As such, they are prone to clogging. Furthermore, they do not provide the furnace operator with real-time coolant panel outlet pressure data that may be useful in understanding and possibly anticipating malfunctions that might occur in a furnace panel during operation.
  • the furnace wall panels of U.S. Pat. No. 4,207,060 consist of an elaborate array of serpentine pipes that are welded together and directly exposed to the intense heat of the interior of the furnace. Welds are notorious locations for cracks that may lead to water leakage. Additionally, despite the possibility that the surfaces of the pipes facing the interior of the furnace may become coated with slag during furnace operation and therefore afforded some level of thermal insulation, the substantial internal volume of the pipes—which constitutes the majority of the volume of the panels—requires that high quantities of coolant water be pumped through the pipes to maintain the panels at a desired temperature. This presents a problem at plant locations where coolant water is in limited supply and/or available at premium cost.
  • the present invention provides a furnace panel leak detection system that includes several types of redundant coolant panel leak detection mechanisms which continuously and actively monitor and report the condition of the panel itself or the coolant fluid that flows therethrough. In this way, several layers or tiers of protective redundancy are built into the system that serve to provide instantaneous information about the furnace panel that may be necessary for quick shut down of the coolant system flow or furnace operation.
  • the present invention relates to a furnace panel leak monitoring and control system for fluid-cooled panels in high temperature industrial furnaces such as, for example, smelting furnaces, blast furnaces and EAFs.
  • the system performs at least two and up four monitoring functions simultaneously.
  • the system includes one or more temperature sensors or thermocouples received within the body of the panel to monitor temperature within the metal of the panel itself, and pressure sensors installed proximate the inlet and outlet of each panel coolant fluid conduit, which conduits are preferably periodically automatically tested to check for leaks.
  • the system preferably includes temperature and flow sensors for monitoring the furnace panel coolant circuit(s) for temperature and flow fluctuations, respectively, which may be indicative of leaking cooling circuits.
  • Signals from any of the aforementioned sensors are continuously transmitted to a monitoring unit for observation by a human operator via a computer monitor or the like.
  • the system triggers visual and/or audible alarm means to alert the human operator of the situation.
  • the system further desirably allows local or remote monitoring, diagnosis and troubleshooting of potential problems with furnace panels that exhibit abnormal performance characteristics.
  • the furnace panels according to the invention have at least two independent coolant fluid conduits that are isolated from fluid communication from one another. Under normal operating conditions all of the conduits will be open to coolant flow therethrough for optimum cooling of the panel. However, periodically (and preferably automatically), one of the conduits is closed to fluid flow and pressure tested for leakage while the other conduit(s) remain open to fluid flow. According to the invention, each of the conduit(s) that are not presently undergoing pressure testing have sufficient flow capacity to adequately cool the panel during testing of the closed conduit or in the event a conduit must remain closed for some extended period of time before scheduled maintenance or replacement of the panel is to be performed.
  • FIG. 1 is a schematic view of a furnace panel fluid coolant leak detection system according to the present invention
  • FIG. 2 is an enlarged view of the encircled portion II, III of FIG. 1 depicting a schematic view of a furnace panel thermocouple connection;
  • FIG. 3 is an enlarged view of the encircled portion II, III of FIG. 1 depicting a schematic view of furnace panel fluid temperature, pressure and flow sensor connections;
  • FIGS. 4A-4E are front, top, rear, side and rear perspective views, respectively, of a first embodiment of a furnace panel suitable for use in the furnace panel fluid coolant leak detection system according to the present invention.
  • FIGS. 5A-5D are top, rear, side and rear perspective views, respectively, of a further embodiment of a furnace panel suitable for use in the furnace panel fluid coolant leak detection system according to the present invention.
  • FIG. 1 a furnace panel fluid coolant leak detection system according to the present invention, identified generally by reference numeral 10 .
  • the system includes a high energy, typically industrial, furnace 12 such as a metal smelting furnace, a blast furnace, an EAF or the like.
  • Furnace 12 is shown in top plan view in FIG. 1 and includes a plurality of fluid-cooled wall panels 14 , described in greater detail hereinafter, several of which are omitted for clarity of illustration.
  • a typical furnace may be about 15-30 feet in diameter and may comprise from as few as about 4 panels to as many as about 40 panels, although the furnace dimensions and number of panels may vary and will be dependent upon the requirements of the furnace installation.
  • System 10 further comprises a plurality of electrical junction boxes 16 in electrical communication with a plurality of sensors that continuously monitor and provide feedback regarding physical conditions of the panels 14 and the coolant fluid flowing therethrough.
  • a single junction box 16 simultaneously monitors the sensors associated with two or more panels 14 .
  • junction boxes 16 operate coolant fluid circuit valves (described below) that control fluid flow through the panels.
  • the panel sensor signals received by junction boxes 16 are preferably transmitted to a main junction box 18 from which the sensor data is transmitted through either a wired or wireless connection to a monitoring unit 20 .
  • panel valve control signals are transmitted from the monitoring unit 20 to the main junction box 18 to the appropriate junction box(es) 16 and thereafter to the appropriate panel fluid control valves.
  • monitoring unit 20 may be an on-site station or pulpit which includes a suitable computer, e.g., PC, laptop, or the like, equipped with a monitor and display screen whereby a human operator may observe the conditions sensed by the panel sensors of each panel 14 and enter panel valve control commands if and when necessary.
  • monitoring unit 20 may be an off-site device such as any suitable presently known or hereinafter developed PC, laptop computer, personal digital assistant or the like that can wirelessly monitor signals transmitted by the main junction box 18 .
  • monitoring unit 20 is desirably capable of interacting with the main junction box 18 in such a way as to enable rapid local or remote monitoring, diagnosis and troubleshooting of potential problems with furnace panels that exhibit abnormal performance characteristics.
  • the monitoring unit preferably includes audible and/or visual alarm means for alerting a human operator of a potential or actual panel coolant leak or other harmful condition.
  • the software and hardware of system 10 may be architected for manual and/or automatic panel valve fluid control in the event a danger condition is sensed.
  • FIG. 2 shows a top view of panel 14 , wherein reference numeral 22 represents the front wall of the panel which faces the interior of a furnace and reference numeral 24 represents the rear wall of the panel which faces the exterior of a furnace.
  • reference numeral 22 represents the front wall of the panel which faces the interior of a furnace
  • reference numeral 24 represents the rear wall of the panel which faces the exterior of a furnace.
  • at least one thermocouple or similar temperature sensor 26 is received in the rear wall 24 .
  • panel 14 includes a plurality of such temperature sensors.
  • panel carries three temperature sensors 26 generally equally spaced along the length of the panel (as is also shown in FIGS. 4B , 4 C, 4 E, 5 A, 5 B and 5 D).
  • Temperature sensors 26 are electrically connected by suitable connectors 28 ( FIGS. 4B , 4 D, 5 A, 5 B and 5 C) that preferably transmit digital electric signals to a junction box 16 ( FIG. 3 ) which, as noted above, transmits sensed data to the main junction box.
  • the purpose of temperature sensor(s) 26 is to detect wear or thinning (melting) at the working face or front wall 22 of the panel. Generally, panel wear is a gradual phenomenon that occurs throughout the service life of the panel. Consequently, temperature sensor(s) 26 provide a sort of early warning system for notifying an operator of potential future problems. If, however, one or more of the sensors 26 shows a sudden temperature spike, it will send a representative alarm signal which ultimately reaches the monitoring unit.
  • Sensors 26 thus constitute a first tier of the multiple-tiered and redundant furnace panel leak detection system according to the present invention.
  • FIG. 3 there is shown an enlarged view of the encircled portion II, III of FIG. 1 , in particular, a schematic view of furnace panel fluid temperature, pressure and flow sensor connections.
  • FIG. 3 shows a top view of panel 14 , wherein reference numeral 22 again represents the front wall of the panel which faces the interior of a furnace and reference numeral 24 again represents the rear wall of the panel which faces the exterior of a furnace.
  • thermocouple or similar temperature sensor 28 is in communication with each furnace panel coolant panel supply line 30 proximate furnace panel coolant conduit inlets 32 a and 32 b (discussed below) and another thermocouple or similar temperature sensor 34 is in communication with each furnace panel coolant panel return line 36 proximate furnace panel coolant conduit outlets 38 a and 38 b (also discussed below).
  • temperature sensors 28 and 34 continuously monitor the temperature of coolant entering and leaving panel 14 and those signals are continuously transmitted, as indicated by dashed schematic arrows 40 and 42 , respectively, through the junction boxes to the monitoring unit (neither of which are shown in FIG. 3 ).
  • the system software indicates an alarm condition at the monitoring unit.
  • the alarm condition sensed by temperature sensors 28 and 34 may either cause automatic closure of or permit a human operator to manually close coolant fluid inlet valves 44 a and 44 b and/or coolant fluid outlet valves 46 a and 46 b , the structure and function of which is described in greater detail below.
  • a plurality of pressure gauges or sensors 48 a and 48 b are in communication with each furnace panel coolant panel supply line 30 proximate furnace panel coolant conduit inlets 32 a and 32 b and a plurality of pressure sensors or gauges 50 a and 50 b in communication with in each furnace panel coolant panel return line 36 proximate furnace panel coolant conduit outlets 38 a and 38 b .
  • Pressure sensors 48 a , 48 b , 50 a and 50 b continuously monitor the pressure of coolant entering and leaving panel 14 and those signals are continuously transmitted, as indicated by dashed schematic arrows 40 and 42 , respectively, through the junction boxes to the monitoring unit.
  • the system software indicates an alarm condition at the monitoring unit.
  • the alarm condition sensed by sensors 48 a , 48 b , 50 a and 50 b may cause either automatic closure of or permit a human operator to manually close coolant fluid inlet valves 44 a and 44 b and/or coolant fluid outlet valves 46 a and 46 b.
  • a plurality of flow meters or sensors 52 a and 52 b are in communication with each furnace panel coolant panel supply line 30 proximate furnace panel coolant conduit inlets 32 a and 32 b and a plurality of flow meters or sensors 54 a and 54 b in communication with in each furnace panel coolant panel return line 36 proximate furnace panel coolant conduit outlets 38 a and 38 b .
  • Flow sensors 52 a , 52 b , 54 a and 54 b continuously monitor the flow of coolant entering and leaving panel 14 and those signals are continuously transmitted, as indicated by dashed schematic arrows 40 and 42 , respectively, through the junction boxes to the monitoring unit.
  • the system software indicates an alarm condition at the monitoring unit.
  • the alarm condition sensed by sensors 52 a , 52 b , 54 a and 54 b may either cause automatic closure of or permit a human operator to manually close coolant fluid inlet valves 44 a and 44 b and/or coolant fluid outlet valves 46 a and 46 b.
  • FIG. 3 schematically represents a presently preferred of the instant invention in which the coolant fluid supply and return lines 30 and 36 are each equipped with all three sets of the aforesaid temperature, pressure and flow sensors. It will be understood, however, that the furnace panel leak detection system of the invention may include just one set of the temperature, pressure and flow sensors or any combination of two sets thereof.
  • the furnace panel leak detection system desirably comprises furnace panels 14 that include a plurality of internal coolant fluid flow conduits each of which are isolated from fluid communication from one another.
  • the plurality of conduits are represented by reference numerals 56 a and 56 b .
  • FIG. 3 and subsequent drawing figures depict a furnace panel containing two such conduits.
  • the present invention is not limited to a furnace panel including only two separate coolant conduits but may encompass panels possessing three or more discrete conduits.
  • each coolant flow conduit present in panel 14 will be in fluid communication with coolant fluid supply and return lines equipped with any one or more sets of the aforementioned temperature, pressure and flow sensors.
  • furnace panels 14 have at least two independent coolant fluid conduits that are isolated from fluid communication from one another. Under normal operating conditions all of the conduits will be open to coolant flow therethrough for optimum cooling of the panels. However, periodically (and preferably automatically), one of the conduits is closed to fluid flow and pressure tested for leakage while the other conduit(s) remain open to fluid flow, whereby furnace operation is uninterrupted during pressure testing.
  • the conduit(s) that are not presently undergoing pressure testing will be designed to have sufficient flow capacity to adequately cool the panel during testing of the closed conduit or in the event a conduit must remain closed for some extended period of time before maintenance or replacement of the panel is to be performed.
  • the method for testing the various independent furnace panel coolant fluid conduits is generally as follows: (1) closing one of the plurality of panel conduits to fluid flow, (2) testing the closed conduit for fluid leakage, and (3) opening the closed conduit. The method is then repeated for each of the other panel conduits. If leakage is discovered in any of the conduits, the appropriate inlet and outlet valves in communication therewith are closed to block fluid flow through the compromised conduit.
  • valves 44 a , 44 b , 46 a and 46 b are preferably accurate, electronically-controlled, motor-operated valves, such as a knife/gate valves, ball valves or the like.
  • valves of this sort assume either “on” or “off” positions and thus effectively cut off all potential coolant water flow when in the “off” position.
  • check valves merely impede water flow in one direction.
  • Ball valves are generally preferred because of their favorable combination of low cost, low leakage rates and low pressure drop.
  • the valve motors have fixed or variable valve element opening and closure rates of between about two to five seconds in order to minimize the likelihood of water hammer that might rupture or otherwise damage coolant fluid supply and return lines 30 and 36 .
  • coolant fluid outlet valve 46 a is first closed, followed thereafter by coolant fluid outlet valve 44 a , thereby creating a closed circuit for precise testing across conduit 56 a of a selected panel 14 .
  • pressure sensor 50 a is electronically monitored to determine whether the pressure in conduit 56 a is within predetermined specifications. If the detected pressure drops beyond a predetermined level, it indicates a leak in the conduit. In such case, a signal will be sent back to the monitoring unit and an alarm will activate. The circuit incorporating conduit 56 a will then be automatically shut off hence eliminating the possibility of any water entering the furnace. If it is determined the system is working properly with regard to conduit 56 a , the water inlet and outlet valves 44 a and 46 a will be reopened and the second conduit 56 b (and any additional conduits) will be similarly and sequentially tested.
  • Monitoring preferably takes place at predetermined intervals (e.g., every 15 to 30 minutes). This enables the monitoring and testing of the panels to be performed while the furnace remains in uninterrupted service. Preferably all testing data will be stored and archived for future reference. The testing data can be monitored on-site or independently from an off-site location, thereby minimizing response time for problem solving, if necessary.
  • a particular advantage of the instant plural conduit or plural circuit design is that if one fluid conduit or circuit is compromised, the other circuit can continue to cool the panel until the next scheduled furnace outage. In contrast, if a failure occurs in the single circuit or single conduit furnace panels presently known in the art, the panel must be immediately shut off and replaced thereby necessitating immediate shut down of the furnace, which is a far less desirable and inefficient manner of furnace operation.
  • FIGS. 4A-4E and 5 A- 5 D reveal alternative embodiments of fluid-cooled furnace panels constructed in accordance with the present invention.
  • the furnace panel is identified generally by reference numeral 14 ′ in FIGS. 4A-4E and by reference numeral 14 ′′ in FIGS. 5A-5D .
  • FIGS. 4A-4E and 5 A- 5 D variously include several other previously discussed structural features, such as thermocouples 26 , electrical connectors 28 , furnace panel coolant conduit inlets 32 a and 32 b and furnace panel coolant conduit outlets 38 a and 38 b as they might appear in a typical panel construction.
  • Panels 14 ′ and 14 ′′ are preferably comprised of a solid metallic body cast around a plurality of internal metal fluid conduits, such as conduits 56 a and 56 b of FIG. 3 , that are isolated from communication with on another in the manner described above.
  • the conduits which typically may range from about 1-1.5 inches in diameter, may be formed of any durable and thermally conductive metal or metal alloy.
  • a presently preferred construction is copper/nickel alloy pipe.
  • panels 14 ′ and 14 ′′ may be fabricated from any durable and thermally conductive metal or metal alloy.
  • a presently preferred material is primarily formed from cast copper because of its high thermal conductivity and demonstrated durability in high energy industrial furnace applications.
  • the front wall or working face 22 of panel 14 ′ is formed to define a grid or waffle-like pattern including a plurality of slag retention depressions or pockets 58 .
  • the slag retention pockets are cast in working face 22 to hold furnace slag and reduce heat loading on to the panel. This helps to create a uniform heat load and extends the life of the panel. It is believed that these panels can last for several years or up to 100,000 furnace heats. Accordingly, they can be expected to last on average 3 to 4 times longer than a tubular steel pipe panel such as that shown, for example, in U.S. Pat. No. 4,207,060.
  • Panel 14 ′ is normally designed to be mounted vertically in a furnace and may be used in new furnace constructions or to replace existing single fluid circuit panels. The dimensions of panel 14 ′ can be of almost any size and shape.
  • the front wall or working face 22 of panel 14 ′′ is defined by a plurality of fins or vanes 60 spaced apart by gaps or troughs 62 .
  • the rear wall 24 includes a recess 64 .
  • Panel 14 ′′ is designed to be placed on or into a furnace's refractory brick. This panel is generally not intended to replace existing furnace panels.
  • the fins 60 are positioned below a standard panel in the slag layer.
  • Panel 14 ′′ provides cooling and protection to the refractory brick, thereby extending the life of the brick.
  • the panel is typically between about 10 to 16 inches in height and the thickness ranges between about 6 to 12 inches in thickness. Its length typically may range from about 3 to about 10 feet.
  • the water cooling provided by the internal conduits is about one inch from the hot or working face of the panels (i.e., the bottom of pockets 58 of panel 14 ′ or the bottom of troughs 62 of panel 14 ′′) thus providing effective cooling of the hot face.
  • neither panel 14 ′ nor panel 14 ′′ contain any welds, which are potential sources of structural weakness and therefore susceptible to cracks and coolant leaks. This is in stark contrast to the many welds that are necessary to fabricate the serpentine tubular panel of U.S. Pat. No. 4,207,060.
  • the instant system is thus a durable, leak-resistant, multiple-tiered furnace panel leak detection system which provides a fail-safe system that simultaneously monitors panel temperature and one or more of coolant water temperature, flow and pressure to give continuous and comprehensive leak detection surveillance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

A furnace panel leak monitoring and control system for fluid-cooled panels in high temperature industrial furnaces such as, for example, smelting furnaces, blast furnaces and electric arc furnaces. The system performs at least two and up four functions simultaneously. At minimum, the system includes one or more temperature sensors received within the body of the panel to monitor temperature within the metal of the panel itself, and pressure sensors installed proximate the inlet and outlet of each panel coolant fluid circuit, which circuits are preferably periodically automatically tested, to check for leaks in the coolant circuits. In addition, the system preferably includes temperature and flow sensors for monitoring the furnace panel coolant circuit(s) for temperature and flow fluctuations, respectively, which may be indicative of leaking cooling circuits. The system triggers visual and/or audible alarm means to alert a human operator of an apparent coolant fluid leak situation.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 11/999,464 filed Dec. 5, 2007.
  • FIELD OF THE INVENTION
  • The present invention relates in general to furnace apparatus and in particular to a system including method and apparatus for detecting leaks in fluid-cooled panels for industrial furnaces such as metal smelting furnaces, blast furnaces, electric arc furnaces (EAFs) or the like.
  • BACKGROUND OF THE INVENTION
  • Many industrial furnaces such as smelting furnaces, blast furnaces, EAFs and the like typically have shells comprised fluid-cooled metallic panels. The panels are cooled by conduits extending through the panels that are connected to cooling circuits through which cooling fluid (typically water) is pumped and recirculated. Each panel has an inlet for the cooling fluid connected to the upstream end of the cooling circuit and an outlet for the cooling liquid connected to the downstream end of the cooling circuit.
  • Because of the high temperature and severe reaction conditions inside many industrial furnaces, furnace wall panels frequently develop leaks. However, isolating the leak to the particular cooling circuit in which the leak is located may be a cumbersome procedure when the cooling system contains several cooling circuits, as is often the case in modern industrial furnaces.
  • It is important to rapidly detect such leaks. Failure to do so may cause sudden chilling and potential structural shock to the furnace caused by injection of potentially large volumes of cooling water into the furnace when water in the leaky cooling member is at a pressure higher than the furnace internal gas pressure. Alternatively, when the water in the leaky cooling member is at a pressure lower than the furnace internal gas pressure, failure to rapidly detect a leak may cause the loss of large amounts of furnace gas, often combustible gas, into the cooling circuit which may create serious safety problems. In addition, furnace gas entering the cooling system could be drawn into the pumping system and damage the pumps. Moreover, furnace gas leaking into, or steam generated in, a cooling plate that has or is about to fail may generate chain reaction damage in downstream cooling members in the circuit. That is, the temperature of the cooling fluid in downstream cooling members rises, thereby compromising the effectiveness of the cooling fluid in downstream cooling members which, in turn, may potentially cause a leak in one or more of those downstream members.
  • In certain prior art leak detection devices systems, one or more thermocouples are installed into the metal of the panels themselves. In the event the thermocouples detect a sudden change of panel metal temperature indicative of a leak or rupture, an alarm is activated. The failure or simple delay in operation of a such a single-tier monitoring system may result in a water leak with potential attendant equipment damage and possible personal injury. As used herein, a “single-tier” monitoring system is a furnace panel leak detection system involving only one means or mechanism by which a coolant fluid leak may be detected. An example of a thermocouple-controlled industrial furnace roof panel is described in U.S. Pat. No. 4,813,055.
  • Another single-tier system is described in U.S. Pat. No. 4,455,017 wherein a thermostatically-controlled valve monitors panel temperature to control water flow through the panel by detecting the water temperature in the panel.
  • Another common single-tier leak detection system involves the use of water flow sensors for detecting changes in water flow in the panel which may be indicative of panel failure. Numerous types of flow sensors and associated instrumentation have been developed for measuring fluid flow. These sensors may include orifice meters, turbine meters, vortex meters, magnetic flow meters, and the like. One of these devices may be placed on the supply line of the cooling circuit and another one of may be placed on the return line of that circuit. The flow sensors detect differences in flow rates to determine if there is any leakage in the circuit between the inlet and outlet flowmeters. An example of such a system is described in U.S. Pat. No. 6,804,990.
  • U.S. Pat. No. 4,207,060 describes multiple-tier furnace wall panel leak detection system, although the system does not include thermocouples installed in the wall panels themselves for directly detecting the panel metal temperature. The system includes a cooling water supply line and a cooling water discharge line for recirculating cooling water through the furnace panels. The cooling water supply line includes a single water temperature sensor, a single water pressure sensor and a single water flow sensor. Following these sensors a check valve introduces the cooling water into each panel. Coolant water exiting each panel passes water temperature and pressure sensors, and thereafter a pressure relief valve, before passing through a check valve and into the cooling water return line. The system includes an alarm system and furnace shut down capability in the event a problem is detected in water temperature, pressure or flow. While an improvement over the single-tier furnace panel leak detection systems described above, the multiple-tier system disclosed in U.S. Pat. No. 4,207,060 nevertheless suffers from certain disadvantages.
  • For example, by their very nature, check valves present obstructions in the fluid line which cause sudden spike-like pressure drops in the fluid circuit when the check valve opening pressure is overcome. As seen in FIG. 3 of U.S. Pat. No. 4,207,060, the furnace panels include panels of different sizes that inherently produce different pressure drops at the inlets of each panel due to the different coolant volumes of the panels when the check valve trigger pressure is reached. Together, these variables at least temporarily affect the reliability of the data recorded by and observed from the panel outlet temperature and flow sensors. Moreover, the default “off” position of check valves tends to promote the buildup of foreign solid particles which could ultimately block the fluid circuit. Should clogging or mechanical failure occur in either the panel inlet or outlet check valve, water flow through the panel will be stopped, thereby leading to a rapid rise in panel temperature and possible harm to the panel, the furnace and the furnace surroundings. In addition, the provision of the coolant flow check valves at the outlets of the panels can cause water hammer damage to the coolant water return line into which they are discharged because of the sudden actuation nature typical of check valves.
  • Additionally, the presence of a single water temperature sensor, a single water pressure sensor and a single water flow sensor in the cooling water supply line upstream of the panels, i.e., before the coolant water reaches any of the panels, cannot provide an operator of the furnace with optimally accurate readings of the coolant water temperature, pressure and flow rate as it enters each panel. This is especially true of the panels most distant from the cooling water supply line sensors. The significance of this feature is that the downstream temperature and flow sensors compare panel water temperature versus coolant water temperatures and flows that may be rather distant therefrom, hence producing less than desirable comparative results.
  • Still further, the pressure relief valves at the outlets of the panels provide no meaningful data or information about conditions within the panels. Pressure relief valves are passive devices. They simply release pressurized coolant vapor or steam when a predetermined pressure has been reached. In this way, they are analogous to a check valve for fluid flow in that they suddenly function at a predetermined threshold level but are otherwise inoperative. As such, they are prone to clogging. Furthermore, they do not provide the furnace operator with real-time coolant panel outlet pressure data that may be useful in understanding and possibly anticipating malfunctions that might occur in a furnace panel during operation.
  • Lastly, the furnace wall panels of U.S. Pat. No. 4,207,060 consist of an elaborate array of serpentine pipes that are welded together and directly exposed to the intense heat of the interior of the furnace. Welds are notorious locations for cracks that may lead to water leakage. Additionally, despite the possibility that the surfaces of the pipes facing the interior of the furnace may become coated with slag during furnace operation and therefore afforded some level of thermal insulation, the substantial internal volume of the pipes—which constitutes the majority of the volume of the panels—requires that high quantities of coolant water be pumped through the pipes to maintain the panels at a desired temperature. This presents a problem at plant locations where coolant water is in limited supply and/or available at premium cost.
  • It is also known in the art to periodically manually check the pressure of coolant delivered to and from a furnace panel. However, manual monitoring is undesirable because of its inherent dependence upon the diligence and competence of a human operator coupled with the reliability of the equipment used to make the pressure measurements.
  • An advantage exists, therefore, for a furnace panel leak detection system that includes several tiers of coolant panel leak detection mechanisms, each of which actively and continuously monitor and report either the condition of the panel itself or the coolant that flows therethrough.
  • A further advantage exists for a system for periodically checking the water flow pressure through a furnace panel in order to identify potential coolant problems before they evolve into potentially dangerous situations.
  • SUMMARY OF THE INVENTION
  • The present invention provides a furnace panel leak detection system that includes several types of redundant coolant panel leak detection mechanisms which continuously and actively monitor and report the condition of the panel itself or the coolant fluid that flows therethrough. In this way, several layers or tiers of protective redundancy are built into the system that serve to provide instantaneous information about the furnace panel that may be necessary for quick shut down of the coolant system flow or furnace operation.
  • More particularly, the present invention relates to a furnace panel leak monitoring and control system for fluid-cooled panels in high temperature industrial furnaces such as, for example, smelting furnaces, blast furnaces and EAFs. The system performs at least two and up four monitoring functions simultaneously. At minimum, the system includes one or more temperature sensors or thermocouples received within the body of the panel to monitor temperature within the metal of the panel itself, and pressure sensors installed proximate the inlet and outlet of each panel coolant fluid conduit, which conduits are preferably periodically automatically tested to check for leaks. In addition, the system preferably includes temperature and flow sensors for monitoring the furnace panel coolant circuit(s) for temperature and flow fluctuations, respectively, which may be indicative of leaking cooling circuits. Signals from any of the aforementioned sensors are continuously transmitted to a monitoring unit for observation by a human operator via a computer monitor or the like. In the event of what appears to be panel leak situation, the system triggers visual and/or audible alarm means to alert the human operator of the situation.
  • The system further desirably allows local or remote monitoring, diagnosis and troubleshooting of potential problems with furnace panels that exhibit abnormal performance characteristics.
  • Preferably, the furnace panels according to the invention have at least two independent coolant fluid conduits that are isolated from fluid communication from one another. Under normal operating conditions all of the conduits will be open to coolant flow therethrough for optimum cooling of the panel. However, periodically (and preferably automatically), one of the conduits is closed to fluid flow and pressure tested for leakage while the other conduit(s) remain open to fluid flow. According to the invention, each of the conduit(s) that are not presently undergoing pressure testing have sufficient flow capacity to adequately cool the panel during testing of the closed conduit or in the event a conduit must remain closed for some extended period of time before scheduled maintenance or replacement of the panel is to be performed.
  • Other details, objects and advantages of the present invention will become apparent as the following description of the presently preferred embodiments and presently preferred methods of practicing the invention proceeds.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will become more readily apparent from the following description of preferred embodiments thereof shown, by way of example only, in the accompanying drawings wherein:
  • FIG. 1 is a schematic view of a furnace panel fluid coolant leak detection system according to the present invention;
  • FIG. 2 is an enlarged view of the encircled portion II, III of FIG. 1 depicting a schematic view of a furnace panel thermocouple connection;
  • FIG. 3 is an enlarged view of the encircled portion II, III of FIG. 1 depicting a schematic view of furnace panel fluid temperature, pressure and flow sensor connections;
  • FIGS. 4A-4E are front, top, rear, side and rear perspective views, respectively, of a first embodiment of a furnace panel suitable for use in the furnace panel fluid coolant leak detection system according to the present invention; and
  • FIGS. 5A-5D are top, rear, side and rear perspective views, respectively, of a further embodiment of a furnace panel suitable for use in the furnace panel fluid coolant leak detection system according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to the drawings wherein like or similar references indicate like or similar elements throughout the several views, there is shown in FIG. 1 a furnace panel fluid coolant leak detection system according to the present invention, identified generally by reference numeral 10. the system includes a high energy, typically industrial, furnace 12 such as a metal smelting furnace, a blast furnace, an EAF or the like. Furnace 12 is shown in top plan view in FIG. 1 and includes a plurality of fluid-cooled wall panels 14, described in greater detail hereinafter, several of which are omitted for clarity of illustration. A typical furnace may be about 15-30 feet in diameter and may comprise from as few as about 4 panels to as many as about 40 panels, although the furnace dimensions and number of panels may vary and will be dependent upon the requirements of the furnace installation.
  • System 10 further comprises a plurality of electrical junction boxes 16 in electrical communication with a plurality of sensors that continuously monitor and provide feedback regarding physical conditions of the panels 14 and the coolant fluid flowing therethrough. Preferably, a single junction box 16 simultaneously monitors the sensors associated with two or more panels 14. Further, junction boxes 16 operate coolant fluid circuit valves (described below) that control fluid flow through the panels. The panel sensor signals received by junction boxes 16 are preferably transmitted to a main junction box 18 from which the sensor data is transmitted through either a wired or wireless connection to a monitoring unit 20. Conversely, panel valve control signals are transmitted from the monitoring unit 20 to the main junction box 18 to the appropriate junction box(es) 16 and thereafter to the appropriate panel fluid control valves.
  • By way of example, monitoring unit 20 may be an on-site station or pulpit which includes a suitable computer, e.g., PC, laptop, or the like, equipped with a monitor and display screen whereby a human operator may observe the conditions sensed by the panel sensors of each panel 14 and enter panel valve control commands if and when necessary. Alternatively, monitoring unit 20 may be an off-site device such as any suitable presently known or hereinafter developed PC, laptop computer, personal digital assistant or the like that can wirelessly monitor signals transmitted by the main junction box 18. Whether located on-site or off-site, monitoring unit 20 is desirably capable of interacting with the main junction box 18 in such a way as to enable rapid local or remote monitoring, diagnosis and troubleshooting of potential problems with furnace panels that exhibit abnormal performance characteristics. Additionally, the monitoring unit preferably includes audible and/or visual alarm means for alerting a human operator of a potential or actual panel coolant leak or other harmful condition. Further, the software and hardware of system 10 may be architected for manual and/or automatic panel valve fluid control in the event a danger condition is sensed.
  • Referring to FIG. 2 there is shown an enlarged view of the encircled portion II, III of FIG. 1, in particular, a schematic view of a furnace panel thermocouple connection. FIG. 2 shows a top view of panel 14, wherein reference numeral 22 represents the front wall of the panel which faces the interior of a furnace and reference numeral 24 represents the rear wall of the panel which faces the exterior of a furnace. According to the invention, at least one thermocouple or similar temperature sensor 26 is received in the rear wall 24. Preferably, panel 14 includes a plurality of such temperature sensors. Pursuant to a presently preferred, but non-limitative, embodiment, panel carries three temperature sensors 26 generally equally spaced along the length of the panel (as is also shown in FIGS. 4B, 4C, 4E, 5A, 5B and 5D).
  • Temperature sensors 26 are electrically connected by suitable connectors 28 (FIGS. 4B, 4D, 5A, 5B and 5C) that preferably transmit digital electric signals to a junction box 16 (FIG. 3) which, as noted above, transmits sensed data to the main junction box. The purpose of temperature sensor(s) 26 is to detect wear or thinning (melting) at the working face or front wall 22 of the panel. Generally, panel wear is a gradual phenomenon that occurs throughout the service life of the panel. Consequently, temperature sensor(s) 26 provide a sort of early warning system for notifying an operator of potential future problems. If, however, one or more of the sensors 26 shows a sudden temperature spike, it will send a representative alarm signal which ultimately reaches the monitoring unit. At that moment, the monitoring unit will visually and/or audibly alert the operator of the excessive temperature condition of a specific panel and the heat supplied to the furnace will be reduced or possibly shut off. Sensors 26 thus constitute a first tier of the multiple-tiered and redundant furnace panel leak detection system according to the present invention.
  • Referring to FIG. 3 there is shown an enlarged view of the encircled portion II, III of FIG. 1, in particular, a schematic view of furnace panel fluid temperature, pressure and flow sensor connections. FIG. 3 shows a top view of panel 14, wherein reference numeral 22 again represents the front wall of the panel which faces the interior of a furnace and reference numeral 24 again represents the rear wall of the panel which faces the exterior of a furnace. According to the invention, a thermocouple or similar temperature sensor 28 is in communication with each furnace panel coolant panel supply line 30 proximate furnace panel coolant conduit inlets 32 a and 32 b (discussed below) and another thermocouple or similar temperature sensor 34 is in communication with each furnace panel coolant panel return line 36 proximate furnace panel coolant conduit outlets 38 a and 38 b (also discussed below). As will be appreciated, temperature sensors 28 and 34 continuously monitor the temperature of coolant entering and leaving panel 14 and those signals are continuously transmitted, as indicated by dashed schematic arrows 40 and 42, respectively, through the junction boxes to the monitoring unit (neither of which are shown in FIG. 3). In the event a substantial temperature difference is suddenly detected between the coolant panel water supply and return lines by sensors 28 and 34, the system software indicates an alarm condition at the monitoring unit. Depending on the software and hardware architecture of the system, the alarm condition sensed by temperature sensors 28 and 34 may either cause automatic closure of or permit a human operator to manually close coolant fluid inlet valves 44 a and 44 b and/or coolant fluid outlet valves 46 a and 46 b, the structure and function of which is described in greater detail below.
  • According to a presently preferred embodiment of the invention, a plurality of pressure gauges or sensors 48 a and 48 b are in communication with each furnace panel coolant panel supply line 30 proximate furnace panel coolant conduit inlets 32 a and 32 b and a plurality of pressure sensors or gauges 50 a and 50 b in communication with in each furnace panel coolant panel return line 36 proximate furnace panel coolant conduit outlets 38 a and 38 b. Pressure sensors 48 a, 48 b, 50 a and 50 b continuously monitor the pressure of coolant entering and leaving panel 14 and those signals are continuously transmitted, as indicated by dashed schematic arrows 40 and 42, respectively, through the junction boxes to the monitoring unit. In the event a substantial pressure difference is suddenly detected between the coolant panel water supply and return lines by sensors 48 a, 48 b, 50 a and 50 b, the system software indicates an alarm condition at the monitoring unit. Again, depending on the software and hardware architecture of the system, the alarm condition sensed by sensors 48 a, 48 b, 50 a and 50 b, may cause either automatic closure of or permit a human operator to manually close coolant fluid inlet valves 44 a and 44 b and/or coolant fluid outlet valves 46 a and 46 b.
  • According to a presently preferred embodiment of the invention, a plurality of flow meters or sensors 52 a and 52 b are in communication with each furnace panel coolant panel supply line 30 proximate furnace panel coolant conduit inlets 32 a and 32 b and a plurality of flow meters or sensors 54 a and 54 b in communication with in each furnace panel coolant panel return line 36 proximate furnace panel coolant conduit outlets 38 a and 38 b. Flow sensors 52 a, 52 b, 54 a and 54 b continuously monitor the flow of coolant entering and leaving panel 14 and those signals are continuously transmitted, as indicated by dashed schematic arrows 40 and 42, respectively, through the junction boxes to the monitoring unit. In the event a substantial flow difference is suddenly detected between the coolant panel water supply and return lines by sensors 52 a, 52 b, 54 a and 54 b, the system software indicates an alarm condition at the monitoring unit. Again, depending on the software and hardware architecture of the system, the alarm condition sensed by sensors 52 a, 52 b, 54 a and 54 b, may either cause automatic closure of or permit a human operator to manually close coolant fluid inlet valves 44 a and 44 b and/or coolant fluid outlet valves 46 a and 46 b.
  • FIG. 3 schematically represents a presently preferred of the instant invention in which the coolant fluid supply and return lines 30 and 36 are each equipped with all three sets of the aforesaid temperature, pressure and flow sensors. It will be understood, however, that the furnace panel leak detection system of the invention may include just one set of the temperature, pressure and flow sensors or any combination of two sets thereof.
  • Still referring to FIG. 3, the furnace panel leak detection system according to the invention desirably comprises furnace panels 14 that include a plurality of internal coolant fluid flow conduits each of which are isolated from fluid communication from one another. As seen in FIG. 3, the plurality of conduits are represented by reference numerals 56 a and 56 b. FIG. 3 and subsequent drawing figures depict a furnace panel containing two such conduits. However, it will be understood that the present invention is not limited to a furnace panel including only two separate coolant conduits but may encompass panels possessing three or more discrete conduits. It will be likewise understood that each coolant flow conduit present in panel 14 will be in fluid communication with coolant fluid supply and return lines equipped with any one or more sets of the aforementioned temperature, pressure and flow sensors.
  • Preferably, furnace panels 14 according to the invention have at least two independent coolant fluid conduits that are isolated from fluid communication from one another. Under normal operating conditions all of the conduits will be open to coolant flow therethrough for optimum cooling of the panels. However, periodically (and preferably automatically), one of the conduits is closed to fluid flow and pressure tested for leakage while the other conduit(s) remain open to fluid flow, whereby furnace operation is uninterrupted during pressure testing. The conduit(s) that are not presently undergoing pressure testing will be designed to have sufficient flow capacity to adequately cool the panel during testing of the closed conduit or in the event a conduit must remain closed for some extended period of time before maintenance or replacement of the panel is to be performed. Since industrial furnaces may be subject to different spatial and performance considerations, the design specifications of individual conduits having sufficient flow capacity to adequately cool the panel during testing of the closed conduit may vary. The parameters and formulae for determining adequate conduit flow capacity are known to those skilled in the present art and do not form an essential part of the present invention.
  • The method for testing the various independent furnace panel coolant fluid conduits is generally as follows: (1) closing one of the plurality of panel conduits to fluid flow, (2) testing the closed conduit for fluid leakage, and (3) opening the closed conduit. The method is then repeated for each of the other panel conduits. If leakage is discovered in any of the conduits, the appropriate inlet and outlet valves in communication therewith are closed to block fluid flow through the compromised conduit.
  • More specifically, in reference to FIG. 3, valves 44 a, 44 b, 46 a and 46 b are preferably accurate, electronically-controlled, motor-operated valves, such as a knife/gate valves, ball valves or the like. Unlike check valves, valves of this sort assume either “on” or “off” positions and thus effectively cut off all potential coolant water flow when in the “off” position. In contrast, check valves merely impede water flow in one direction. Ball valves are generally preferred because of their favorable combination of low cost, low leakage rates and low pressure drop. Preferably the valve motors have fixed or variable valve element opening and closure rates of between about two to five seconds in order to minimize the likelihood of water hammer that might rupture or otherwise damage coolant fluid supply and return lines 30 and 36.
  • Taking panel conduit 56 a as a starting point in a pressure testing procedure, coolant fluid outlet valve 46 a is first closed, followed thereafter by coolant fluid outlet valve 44 a, thereby creating a closed circuit for precise testing across conduit 56 a of a selected panel 14. With conduit 56 a properly isolated, pressure sensor 50 a is electronically monitored to determine whether the pressure in conduit 56 a is within predetermined specifications. If the detected pressure drops beyond a predetermined level, it indicates a leak in the conduit. In such case, a signal will be sent back to the monitoring unit and an alarm will activate. The circuit incorporating conduit 56 a will then be automatically shut off hence eliminating the possibility of any water entering the furnace. If it is determined the system is working properly with regard to conduit 56 a, the water inlet and outlet valves 44 a and 46 a will be reopened and the second conduit 56 b (and any additional conduits) will be similarly and sequentially tested.
  • Monitoring preferably takes place at predetermined intervals (e.g., every 15 to 30 minutes). This enables the monitoring and testing of the panels to be performed while the furnace remains in uninterrupted service. Preferably all testing data will be stored and archived for future reference. The testing data can be monitored on-site or independently from an off-site location, thereby minimizing response time for problem solving, if necessary.
  • A particular advantage of the instant plural conduit or plural circuit design is that if one fluid conduit or circuit is compromised, the other circuit can continue to cool the panel until the next scheduled furnace outage. In contrast, if a failure occurs in the single circuit or single conduit furnace panels presently known in the art, the panel must be immediately shut off and replaced thereby necessitating immediate shut down of the furnace, which is a far less desirable and inefficient manner of furnace operation.
  • FIGS. 4A-4E and 5A-5D reveal alternative embodiments of fluid-cooled furnace panels constructed in accordance with the present invention. The furnace panel is identified generally by reference numeral 14′ in FIGS. 4A-4E and by reference numeral 14″ in FIGS. 5A-5D. FIGS. 4A-4E and 5A-5D variously include several other previously discussed structural features, such as thermocouples 26, electrical connectors 28, furnace panel coolant conduit inlets 32 a and 32 b and furnace panel coolant conduit outlets 38 a and 38 b as they might appear in a typical panel construction. Panels 14′ and 14″ are preferably comprised of a solid metallic body cast around a plurality of internal metal fluid conduits, such as conduits 56 a and 56 b of FIG. 3, that are isolated from communication with on another in the manner described above. The conduits, which typically may range from about 1-1.5 inches in diameter, may be formed of any durable and thermally conductive metal or metal alloy. A presently preferred construction is copper/nickel alloy pipe. Similarly, panels 14′ and 14″ may be fabricated from any durable and thermally conductive metal or metal alloy. However, a presently preferred material is primarily formed from cast copper because of its high thermal conductivity and demonstrated durability in high energy industrial furnace applications.
  • Referring more specifically to FIGS. 4A-4C, the front wall or working face 22 of panel 14′ is formed to define a grid or waffle-like pattern including a plurality of slag retention depressions or pockets 58. The slag retention pockets are cast in working face 22 to hold furnace slag and reduce heat loading on to the panel. This helps to create a uniform heat load and extends the life of the panel. It is believed that these panels can last for several years or up to 100,000 furnace heats. Accordingly, they can be expected to last on average 3 to 4 times longer than a tubular steel pipe panel such as that shown, for example, in U.S. Pat. No. 4,207,060. Panel 14′ is normally designed to be mounted vertically in a furnace and may be used in new furnace constructions or to replace existing single fluid circuit panels. The dimensions of panel 14′ can be of almost any size and shape.
  • Referring to FIGS. 5A-5D, it is seen that the front wall or working face 22 of panel 14″ is defined by a plurality of fins or vanes 60 spaced apart by gaps or troughs 62. In addition, the rear wall 24 includes a recess 64. Panel 14″ is designed to be placed on or into a furnace's refractory brick. This panel is generally not intended to replace existing furnace panels. The fins 60 are positioned below a standard panel in the slag layer. Panel 14″ provides cooling and protection to the refractory brick, thereby extending the life of the brick. The panel is typically between about 10 to 16 inches in height and the thickness ranges between about 6 to 12 inches in thickness. Its length typically may range from about 3 to about 10 feet.
  • In each of panels 14′ and 14″, the water cooling provided by the internal conduits is about one inch from the hot or working face of the panels (i.e., the bottom of pockets 58 of panel 14′ or the bottom of troughs 62 of panel 14″) thus providing effective cooling of the hot face. In addition, neither panel 14′ nor panel 14″ contain any welds, which are potential sources of structural weakness and therefore susceptible to cracks and coolant leaks. This is in stark contrast to the many welds that are necessary to fabricate the serpentine tubular panel of U.S. Pat. No. 4,207,060.
  • The instant system is thus a durable, leak-resistant, multiple-tiered furnace panel leak detection system which provides a fail-safe system that simultaneously monitors panel temperature and one or more of coolant water temperature, flow and pressure to give continuous and comprehensive leak detection surveillance.
  • Although the invention has been described in detail for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention as claimed herein.

Claims (1)

1. A fluid-cooled furnace panel comprising:
a metallic body; and
a plurality of coolant fluid conduits in said body, wherein each of said conduits is isolated from fluid communication with one another and possesses sufficient flow capacity to independently cool said body without interrupting operation of a furnace containing the panel.
US12/898,758 2007-12-05 2010-10-06 Furnace panel leak detection system Abandoned US20110017437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/898,758 US20110017437A1 (en) 2007-12-05 2010-10-06 Furnace panel leak detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/999,464 US7832367B2 (en) 2007-12-05 2007-12-05 Furnace panel leak detection system
US12/898,758 US20110017437A1 (en) 2007-12-05 2010-10-06 Furnace panel leak detection system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/999,464 Continuation US7832367B2 (en) 2007-12-05 2007-12-05 Furnace panel leak detection system

Publications (1)

Publication Number Publication Date
US20110017437A1 true US20110017437A1 (en) 2011-01-27

Family

ID=40722025

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/999,464 Active 2029-03-30 US7832367B2 (en) 2007-12-05 2007-12-05 Furnace panel leak detection system
US12/898,758 Abandoned US20110017437A1 (en) 2007-12-05 2010-10-06 Furnace panel leak detection system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/999,464 Active 2029-03-30 US7832367B2 (en) 2007-12-05 2007-12-05 Furnace panel leak detection system

Country Status (1)

Country Link
US (2) US7832367B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403883B1 (en) 2010-08-06 2013-11-08 Tenova Spa FLUID-COOLED PANEL FOR METALLURGICAL OVENS, COOLING SYSTEM FOR METALLURGICAL OVENS INCLUDING SUCH PANEL AND METALLURGICAL OVEN INCORPORATING THE SAME
US8333210B1 (en) * 2011-06-16 2012-12-18 Hamilton Sundstrand Corporation Leak isolation logic for closed-volume system
US20120324985A1 (en) * 2011-06-23 2012-12-27 General Electric Company Fluid leak detection system
US20130174649A1 (en) * 2012-01-10 2013-07-11 General Electric Company Fluid leak detection system
CN102606462A (en) * 2012-04-01 2012-07-25 中冶南方工程技术有限公司 Monitoring protection method for hydraulic station of blast shaft
FI124773B (en) * 2012-05-09 2015-01-30 Outotec Oyj PROCEDURE AND ARRANGEMENTS FOR REMOVING GROWTH IN A SUSPENSION MENT
BE1020791A3 (en) * 2012-07-13 2014-05-06 Ct Rech Metallurgiques Asbl METHOD AND DEVICE FOR MEASURING THE LEVELS OF CAST IRON AND DAIRY IN A HIGH-FURNACE
JP6188167B2 (en) * 2012-07-27 2017-08-30 ゼネラル・エレクトリック・カンパニイ System and method for contaminant detection in a fluid stream
US8857267B2 (en) * 2012-09-04 2014-10-14 King Fahd University of Pretroleum and Minerals Multiphase flow detector
CN102840953A (en) * 2012-09-27 2012-12-26 鞍钢股份有限公司 Blast furnace cooling wall cooling water pipe damage confirmation method
US20150084246A1 (en) * 2013-09-26 2015-03-26 General Electric Company Cooling system for metallurgical furnaces and methods of operation
KR101483615B1 (en) * 2014-03-03 2015-01-19 대한민국 Fluid collecting apparatus
EP3169961B1 (en) 2014-07-16 2019-06-12 Trapp, Mark, Edward Furnace cooling panel monitoring system
US10301208B2 (en) * 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
MX2019011676A (en) * 2017-04-05 2020-02-05 Tenova Goodfellow Inc Method and apparatus for acoustically detecting fluid leaks.
CN107894257A (en) * 2017-11-27 2018-04-10 河南众恒工业炉工程技术有限公司 Limekiln working of a furnace inline diagnosis and warning system
CN109916565B (en) * 2019-04-23 2021-05-14 浙江葆特电机有限公司 Water-cooling motor shell detection equipment capable of repeatedly utilizing detection liquid
CN109916564A (en) * 2019-04-23 2019-06-21 杭州铭铄机电科技有限公司 Shell detection device for water-cooled machine detection
CN109916571B (en) * 2019-04-24 2021-04-09 胡彩云 High water-cooling motor casing check out test set of stability
CN111965225B (en) * 2020-07-17 2023-09-22 沈阳广泰真空科技股份有限公司 Crucible monitoring method and device in vacuum induction melting furnace
CN113551842B (en) * 2021-06-23 2023-01-24 鞍钢蒂森克虏伯(重庆)汽车钢有限公司 Method and system for online detection of leakage of annealing furnace water cooling equipment
CN118076851A (en) * 2021-09-10 2024-05-24 美卓金属有限公司 Cooling element and method relating to a cooling element
CN115165231A (en) * 2022-09-08 2022-10-11 中国电子科技集团公司第十五研究所 Leakage detection system applied to VPX liquid cooling case

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345188A (en) * 1942-03-13 1944-03-28 Adolph L Foell Cooling plate for blast furnace inwalls and mantles
US3314668A (en) * 1964-07-07 1967-04-18 Inland Steel Co Blast furnace stack with cooling staves
US3693708A (en) * 1970-09-30 1972-09-26 Vni I Preektny I Ochistke Tekn Device for evaporative cooling of metallurgical furnaces
US3829595A (en) * 1972-01-25 1974-08-13 Ishikawajima Harima Heavy Ind Electric direct-arc furnace
US3854708A (en) * 1971-07-08 1974-12-17 Republic Steel Corp Fluid-cooled panel for furnace hood
US4133373A (en) * 1977-08-12 1979-01-09 Inland Steel Company Leak detecting apparatus
US4207060A (en) * 1977-10-11 1980-06-10 Demag, Aktiengesellschaft Vessel for metal smelting furnace
US4304369A (en) * 1980-07-14 1981-12-08 The B. F. Goodrich Company Stock servicer feeder
US4382585A (en) * 1979-02-26 1983-05-10 Kabel-u. Metallwerke Gutehoffnungshutte AG Cooling plate for furnaces
US4437651A (en) * 1980-11-07 1984-03-20 Union Siderurgique Du Nord Et De L'est De La France Cooling plate for blast-furnaces
US4453500A (en) * 1982-01-27 1984-06-12 Sidepal S.A. Cooled tube wall for metallurgical furnace
US4455017A (en) * 1982-11-01 1984-06-19 Empco (Canada) Ltd. Forced cooling panel for lining a metallurgical furnace
US4462319A (en) * 1982-10-27 1984-07-31 Detector Electronics Corp. Method and apparatus for safely controlling explosions in black liquor recovery boilers
US4787605A (en) * 1986-10-03 1988-11-29 Hoogovens Groep B.V. Coolable furnace wall structure
US4813055A (en) * 1986-08-08 1989-03-14 Union Carbide Corporation Furnace cooling system and method
US4903640A (en) * 1986-11-22 1990-02-27 P. Howard Industrial Pipework Services Limited Panel adapted for coolant through flow, and an article incorporating such panels
US5426664A (en) * 1994-02-08 1995-06-20 Nu-Core, Inc. Water cooled copper panel for a furnace and method of manufacturing same
US5883815A (en) * 1996-06-20 1999-03-16 Drakulich; Dushan Leak detection system
US5904893A (en) * 1996-07-05 1999-05-18 Sms Schloemann-Siemag Ag Plate cooler for metallurgical furnaces, blast furnaces, direct reduction reactors and gassing units provided with a refractory lining particularly for the iron and steel industry
US6031861A (en) * 1996-02-08 2000-02-29 Koester; Volkwin Electrode and cooling element for a metallurgical vessel
US6059028A (en) * 1997-03-07 2000-05-09 Amerifab, Inc. Continuously operating liquid-cooled panel
US6090342A (en) * 1998-02-13 2000-07-18 Nkk Corporation Stave for metallurgical furnace
US6237408B1 (en) * 1995-11-14 2001-05-29 Eoa Systems Incorporated Coolant safety system for automated welding apparatus
US6404799B1 (en) * 1999-02-03 2002-06-11 Nippon Steel Corporation Water-cooling panel for furnace wall and furnace cover of arc furnace
US6457483B1 (en) * 1999-12-08 2002-10-01 Innovatherm Prof. Dr. Leisenberg Gmbh & Co. Kg Process and fixture for ascertaining pressure losses
US20040194940A1 (en) * 2001-09-19 2004-10-07 Manasek Richard J. Heat exchanger system used in steel making
US6804990B2 (en) * 1999-11-18 2004-10-19 Gunther Weber Method and apparatus for detecting leaks
US20060272830A1 (en) * 2002-09-23 2006-12-07 R. Giovanni Fima Systems and methods for monitoring and controlling water consumption
US7217123B2 (en) * 2003-04-14 2007-05-15 Paul Wurth S.A. Cooled furnace wall
US7537724B2 (en) * 2002-08-20 2009-05-26 Siemens Vai Metals Technologies Gmbh & Co. Cooling plate for metallurgic furnaces
US7549463B1 (en) * 1998-12-16 2009-06-23 Paul Wurth S.A. Cooling panel for a furnace for producing iron or steel
US8038932B2 (en) * 2004-02-04 2011-10-18 Technological Resources Pty. Limited Metallurgical vessel
US20130206358A1 (en) * 2010-08-06 2013-08-15 Tenova S.P.A. Panel cooled with a fluid for metallurgic furnaces, a cooling system for metallurgic furnaces comprising such a panel and metallurgic furnace incorporating them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304396A (en) * 1979-09-18 1981-12-08 Nikko Industry Co., Ltd. Cooling box for steel-making arc furnace

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345188A (en) * 1942-03-13 1944-03-28 Adolph L Foell Cooling plate for blast furnace inwalls and mantles
US3314668A (en) * 1964-07-07 1967-04-18 Inland Steel Co Blast furnace stack with cooling staves
US3693708A (en) * 1970-09-30 1972-09-26 Vni I Preektny I Ochistke Tekn Device for evaporative cooling of metallurgical furnaces
US3854708A (en) * 1971-07-08 1974-12-17 Republic Steel Corp Fluid-cooled panel for furnace hood
US3829595A (en) * 1972-01-25 1974-08-13 Ishikawajima Harima Heavy Ind Electric direct-arc furnace
US4133373A (en) * 1977-08-12 1979-01-09 Inland Steel Company Leak detecting apparatus
US4207060A (en) * 1977-10-11 1980-06-10 Demag, Aktiengesellschaft Vessel for metal smelting furnace
US4382585A (en) * 1979-02-26 1983-05-10 Kabel-u. Metallwerke Gutehoffnungshutte AG Cooling plate for furnaces
US4304369A (en) * 1980-07-14 1981-12-08 The B. F. Goodrich Company Stock servicer feeder
US4437651A (en) * 1980-11-07 1984-03-20 Union Siderurgique Du Nord Et De L'est De La France Cooling plate for blast-furnaces
US4453500A (en) * 1982-01-27 1984-06-12 Sidepal S.A. Cooled tube wall for metallurgical furnace
US4462319A (en) * 1982-10-27 1984-07-31 Detector Electronics Corp. Method and apparatus for safely controlling explosions in black liquor recovery boilers
US4455017A (en) * 1982-11-01 1984-06-19 Empco (Canada) Ltd. Forced cooling panel for lining a metallurgical furnace
US4813055A (en) * 1986-08-08 1989-03-14 Union Carbide Corporation Furnace cooling system and method
US4787605A (en) * 1986-10-03 1988-11-29 Hoogovens Groep B.V. Coolable furnace wall structure
US4903640A (en) * 1986-11-22 1990-02-27 P. Howard Industrial Pipework Services Limited Panel adapted for coolant through flow, and an article incorporating such panels
US5426664A (en) * 1994-02-08 1995-06-20 Nu-Core, Inc. Water cooled copper panel for a furnace and method of manufacturing same
US6237408B1 (en) * 1995-11-14 2001-05-29 Eoa Systems Incorporated Coolant safety system for automated welding apparatus
US6031861A (en) * 1996-02-08 2000-02-29 Koester; Volkwin Electrode and cooling element for a metallurgical vessel
US5883815A (en) * 1996-06-20 1999-03-16 Drakulich; Dushan Leak detection system
US5904893A (en) * 1996-07-05 1999-05-18 Sms Schloemann-Siemag Ag Plate cooler for metallurgical furnaces, blast furnaces, direct reduction reactors and gassing units provided with a refractory lining particularly for the iron and steel industry
US6059028A (en) * 1997-03-07 2000-05-09 Amerifab, Inc. Continuously operating liquid-cooled panel
US6090342A (en) * 1998-02-13 2000-07-18 Nkk Corporation Stave for metallurgical furnace
US7549463B1 (en) * 1998-12-16 2009-06-23 Paul Wurth S.A. Cooling panel for a furnace for producing iron or steel
US6404799B1 (en) * 1999-02-03 2002-06-11 Nippon Steel Corporation Water-cooling panel for furnace wall and furnace cover of arc furnace
US6804990B2 (en) * 1999-11-18 2004-10-19 Gunther Weber Method and apparatus for detecting leaks
US6457483B1 (en) * 1999-12-08 2002-10-01 Innovatherm Prof. Dr. Leisenberg Gmbh & Co. Kg Process and fixture for ascertaining pressure losses
US20040194940A1 (en) * 2001-09-19 2004-10-07 Manasek Richard J. Heat exchanger system used in steel making
US7537724B2 (en) * 2002-08-20 2009-05-26 Siemens Vai Metals Technologies Gmbh & Co. Cooling plate for metallurgic furnaces
US20060272830A1 (en) * 2002-09-23 2006-12-07 R. Giovanni Fima Systems and methods for monitoring and controlling water consumption
US7217123B2 (en) * 2003-04-14 2007-05-15 Paul Wurth S.A. Cooled furnace wall
US8038932B2 (en) * 2004-02-04 2011-10-18 Technological Resources Pty. Limited Metallurgical vessel
US20130206358A1 (en) * 2010-08-06 2013-08-15 Tenova S.P.A. Panel cooled with a fluid for metallurgic furnaces, a cooling system for metallurgic furnaces comprising such a panel and metallurgic furnace incorporating them

Also Published As

Publication number Publication date
US7832367B2 (en) 2010-11-16
US20090148800A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
US7832367B2 (en) Furnace panel leak detection system
US20180356155A1 (en) Leak detection system for furnace cooling fluid circuits
CN100589670C (en) Water heater and method of operating the same
US7031851B2 (en) Method of determining valve leakage based on upstream and downstream temperature measurements
US9448018B2 (en) Expansion relief header for protecting heat transfer coils in HVAC systems
AU2019212793A1 (en) System and method for monitoring and controlling a fire suppression system
US4133373A (en) Leak detecting apparatus
IT201900006012A1 (en) Device for reading and checking the gas supply, equipped with safety functions.
US20080302316A1 (en) Automatic by-pass safety cooling system for fire pump engines
US8229696B2 (en) Overheat detection system
US7743740B2 (en) Automatic by-pass safety cooling system for fire pump engines
ES2909119T3 (en) Condition monitoring of a shaft furnace
CN102265108A (en) Method and system for monitoring the operation of a carbon block baking plant
CN104266924B (en) A kind of building vertical separation component fire resistance experimental rig sprayed water under protection
US10260823B2 (en) Freeze protection system with drainage control for heat transfer coils in HVAC systems
CN217520666U (en) Liquid leakage detection system
CN106766973B (en) A kind of oxidation furnace technology interlocking control method
KR102213658B1 (en) Piping state control system, piping map system and leakage detection system using the same
CN112802618A (en) Ice plug isolation process for nuclear power explosion valve
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
CN207933487U (en) A kind of Wall of Blast Furnace temperature monitoring device
KR100503203B1 (en) Coke descent distribution control apparatus in coke dry quenching
CN208937690U (en) A kind of battery anti-explosion chamber safety monitoring system
CN208818035U (en) A kind of Efficient powder material cooler
CN111457729A (en) Smelting furnace cooling water monitoring system and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION