US20110010807A1 - Starch branching enzyme - Google Patents

Starch branching enzyme Download PDF

Info

Publication number
US20110010807A1
US20110010807A1 US12/707,437 US70743710A US2011010807A1 US 20110010807 A1 US20110010807 A1 US 20110010807A1 US 70743710 A US70743710 A US 70743710A US 2011010807 A1 US2011010807 A1 US 2011010807A1
Authority
US
United States
Prior art keywords
wheat
starch
branching enzyme
gene
beiib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/707,437
Inventor
Matthew Morell
Sadequr Rahman
Ahmed Regina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Biogemma SAS
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Biogemma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3819853&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110010807(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO, Biogemma SAS filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Priority to US12/707,437 priority Critical patent/US20110010807A1/en
Publication of US20110010807A1 publication Critical patent/US20110010807A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1071,4-Alpha-glucan branching enzyme (2.4.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • This invention relates to a new starch branching enzyme, and to the gene encoding the enzyme.
  • the invention relates to a new starch branching enzyme type II from wheat.
  • the invention also relates to a novel method for identification of such branching enzyme type II proteins, which is useful for screening wheat germplasm for null or altered alleles of wheat branching enzyme IIb.
  • the novel gene, protein and methods of the invention are useful in production of wheat plants which produce grain with novel properties for food and industrial applications, for, example wheat grain containing high amylose or low amylopectin starch.
  • BEI starch branching enzymes
  • BEIIa starch branching enzymes
  • BEIIb starch branching enzymes
  • barley two types of genes have been reported, and shown to be differentially expressed (Sun et al., 1998).
  • An additional class of branching enzyme (50/51 kD) from barley has also been described (Sun et al., 1996).
  • du1 mutation in maize is known to reduce the expression of both BEIIa and starch synthase III.
  • the du1 mutation is now known to be due to mutation of the structural gene for starch synthase III (Gao 1998, Cao 1999).
  • BEIIb a second BEII gene from wheat, which we have designated the BEIIb gene, and discuss the uses to which this gene sequence can be applied.
  • BEIIb the expression level of the various branching enzymes is very different to that in maize and barley.
  • BEIIb in wheat is expressed at low levels in the soluble fraction of the wheat endosperm, and is predominantly found within the starch granule. This indicates that there are important differences in the regulation of gene expression in wheat compared to other cereals, suggesting that the manipulation of the amylose to amylopectin ratio in wheat will involve the manipulation of more than just the BEIIb gene.
  • BEIIa and BEIIb gene structures are highly conserved with respect to exon size and position, allowing us to prepare DNA-based diagnostics which they can distinguish not only the BEIIa and BEIIb classes of genes, but also the forms of these genes encoded on the A, B and D genomes of wheat, and to identify the BEIIb proteins expressed by the wheat A, B and D genomes, providing an essential tool for the screening of wheat germplasm for null or altered alleles of wheat branching enzyme IIa.
  • the invention provides an isolated nucleic acid molecule encoding wheat starch branching enzyme IIb (BEIIb).
  • the nucleic acid sequence is a DNA sequence, and may be genomic DNA or cDNA.
  • the nucleic acid molecule has the sequence depicted in FIG. 8 (SEQ ID NO:5), FIG. 9 (SEQ ID NO:6), or SEQ ID NO:10. It will be clearly understood that the invention also encompasses nucleic acid molecules capable of hybridising to these sequences under at least low stringency hybridization conditions, or a nucleic acid molecule with at least 70% sequence identity to at least one of these sequences. Methods for assessing ability to hybridize and % sequence identity are well known in the art. Even more preferably the nucleic acid molecule is capable of hybridizing thereto under high stringency conditions, or has at least 80%, most preferably at least 90% sequence identity. A nucleic acid molecule having at least 70%, preferably at least 90%, more preferably at least 95% sequence identity to one or more of these sequences is also within the scope of the invention.
  • Biologically-active untranslated control sequences of genomic DNA are also within the scope of the invention.
  • the invention also provides the promoter of BEIIb.
  • a genetic construct comprising a nucleic acid sequence of the invention, a biologically-active fragment thereof, or a fragment thereof encoding a biologically-active fragment of BEIIb operably linked to one or more nucleic acid sequences which are capable of facilitating expression of BEIIb in a plant, preferably a cereal plant.
  • the construct may be a plasmid or a vector, preferably one suitable for use in transformation of a plant.
  • a suitable vector is a bacterium of the genus Agrobacterium, preferably Agrobacterium tumefaciens. Methods of transforming cereal plants using Agrobacterium tumefaciens are known; see for example Australian Patent No. 667939 by Japan Tobacco Inc.; Australian Patent No. 687863 by Japan Tobacco Inc.; International Patent Application No. PCT/US97/10621 by Monsanto Company; and Tingay et al (1997).
  • the invention provides a genetic construct for targeting of a desired gene to endosperm of a cereal plant, and/or for modulating the time of expression of a desired gene in endosperm of a cereal plant, comprising a BEIIb promoter, operatively linked to a nucleic acid sequence encoding a desired protein, and optionally also operatively linked to one or more additional targeting sequences and/or one or more 3′ untranslated sequences.
  • the nucleic acid encoding the desired protein may be in either the sense orientation or in the anti-sense orientation. Alternatively it may be a duplex construct, comprising a portion of the nucleic acid sequence encoding the desired protein in both the sense and anti-sense orientations, operably linked by a spacer sequence. It is contemplated that any desired protein which is encoded by a gene which is capable of being expressed in the endosperm of a cereal plant is suitable for use in the invention.
  • the desired protein is an enzyme of the starch biosynthetic pathway.
  • the antisense sequences of GBSS, starch debranching enzyme, SBE II, low molecular weight glutenin, or grain softness protein I may be used.
  • Preferred sequences for use in sense orientation include those of bacterial isoamylase, bacterial glycogen synthase, or wheat high molecular weight glutenin Bx17.
  • the invention provides a wheat BEIIb polypeptide, comprising an amino acid sequence encoded by a nucleic acid molecule according to the invention, or a polypeptide having at least 70%, more preferably 80%, even more preferably 90% amino acid sequence identity thereto, and having the biological activity of BEIIb.
  • the polypeptide may be designed on the basis of amino acid sequences deduced from the nucleic acid sequences of the invention, or may be generated by expression of the wheat BEIIb nucleic acid molecule in a heterologous system. Suitable heterologous systems are very well known in the art, and the skilled person will readily be able to select a system suitable for the particular purpose desired.
  • the invention provides an antibody directed against BEII polypeptide.
  • the antibody may be polyclonal or monoclonal. It will be clearly understood that the invention also encompasses biologically-active antibody fragments, such as Fab, (Fab) 2 , and ScFv. Methods for production of antibodies and fragments thereof are very well known in the art.
  • the antibodies of the invention may be used for identification and separation of BEIIb proteins, for example by affinity electrophoresis. This greatly facilitates the identification and combination of altered forms of BEIIb via analysis of germplasm, and greatly assists plant breeding.
  • the antibodies of the invention are suitable for use in any affinity-based separation system, preferably using methods which overcome interference by amylases. Suitable methods are known in the art.
  • the invention provides a plant cell transformed by a genetic construct according to the invention, or a plant derived from such a cell.
  • a transformed plant cell may also comprise one or more null alleles for a gene selected from the group consisting of GBSS, BEIIa, and SSII.
  • the plant is a cereal plant, more preferably wheat or barley.
  • the invention provides a method of modifying the characteristics of starch produced by a plant, comprising the steps of:
  • BEIIb a nucleic acid molecule encoding BEIIb into a host plant
  • BEIIb decreasing the level of expression of BEIIb in the plant, for example by introducing an anti-sense nucleic acid sequence directed to a nucleic acid molecule encoding BEIIb into a host plant.
  • over-expression of a gene can be achieved by introduction of additional copies of the gene, and anti-sense sequences can be used to suppress expression of the protein to which the anti-sense sequence is complementary.
  • Other methods of suppressing expression of genes are known in the art, for example co-suppression, RNA duplex formation, or homologous recombination. It would be evident to the person skilled in the art that sense and anti-sense sequences may be chosen depending on the host plant, so as to effect a variety of different modifications of the characteristics of the starch produced by the plant.
  • the plant is a cereal plant, more preferably wheat or barley.
  • the branching of the amylopectin component of starch is modified by either of these procedures. More preferably a plant with high amylose content is produced.
  • the invention provides a method of targeting expression of a desired gene to the endosperm of a cereal plant, comprising the step of transforming the plant with a construct according to the invention.
  • the invention provides a method of identifying a null or altered allele encoding an enzyme of the starch biosynthetic pathway, comprising the step of subjecting DNA from a plant suspected to possess such an allele to a DNA fingerprinting or amplification assay, which utilizes at least one DNA probe comprising one or more of the nucleic acid molecules of the invention.
  • the nucleic acid molecule may be a genomic DNA or a cDNA, and may comprise the full-length coding sequence or a fragment thereof. Any suitable method for identification of BEIIb sequences may be used, including but not limited to PCR, rolling circle amplification, RFLP, and AFLP. Such methods are well known in the art, and any suitable technique may be used.
  • the invention provides a plant comprising one or more BEIIb null alleles, in combination with one or more other null alleles selected from the group consisting of BEIIa, GBSS, SSII and BEI.
  • the plant may also comprise a BEIIa or BEIIb gene expressed in either the sense or the anti-sense orientation.
  • the null alleles for BEIIa, GBSS SSII and BEI may be identified using methods described in PCT/AU97/00743.
  • the invention also encompasses products produced from plants according to the invention, including but not limited to whole grain, part grain, flour or starch.
  • FIG. 1 shows the sequence of the SBE9 branching enzyme cDNA encodes SBE IIa, cloned from a wheat cv Rosella cDNA library (SEQ ID NO:1).
  • FIG. 2 shows the sequence of the branching enzyme BEIIa gene (SEQ ID NO:2) contained within the F2 lambda clone isolated from an Aegilops tauschii genomic DNA library.
  • FIG. 3 shows the results of hybridisation of Aegilops tauschii DNA with probes derived from wSBE II-DA1 type sequences.
  • Enzymes used for the digest were: 1. Bam HI, 2. Dra I, 3. EcoR I, 4. EcoR V. Molecular size markers are indicated.
  • FIG. 4 shows the alignment of sequences of Intron 5 fragments from the A, B and D genomes of wheat
  • FIG. 5 shows the PCR analysis of A. tauschii genomic clones using Intron V sequences.
  • FIG. 6 shows the alignment of a 262 bp PCR fragment amplified from hexaploid wheat using the primers sr913F and WBE2E6R, and a region from the wheat branching enzyme IIb gene wSBE II-DB1.
  • FIG. 7 shows the alignment of barley branching enzyme IIb cDNA, wheat branching enzyme IIb cDNA, and SBE9 sequences with the sequence of the wheat ( A. tauschii ) branching enzyme IIb gene.
  • FIG. 8 shows the partial genomic sequence of a branching enzyme IIb gene from A. tauschii (SEQ ID NO:5).
  • FIG. 9 shows the sequence of a cDNA for branching enzyme IIb gene from hexaploid wheat (SEQ ID NO:6).
  • FIG. 10 shows the sequence alignment of branching enzyme genes.
  • the cDNA sequences used for this analysis were SBE9 (SEQ ID NO:1; FIG. 1 ), wheat BEIIb cDNA (SEQ ID NO:6; FIG. 9 ), Y11282, a wheat branching enzyme sequence (Nair et al. 1997), barley BEIIa (Sun et al. 1998), barley BEIIb (Sun et al. 1998), rice BEIII (Mizuno et al. 1993), rice BEIV (Genbank Accession No. E14723) maize BEIIa (Gao et al. 1997) and maize BEIIb (Gao et al. 1997).
  • FIG. 11 shows the dendrogram of BE sequences.
  • the sequences analysed were for wheat Y11282 (Nair et al., 1997), SBE 9 (SEQ ID NO:1; ( FIG. 1 ), wheat BEIIb (SEQ ID NO:9; FIG. 9 ), barley IIa and IIb (Sun et al. 1998), maize IIa (Gao et al. 1997), maize IIb (Fisher et al. 1993), rice III (Mizuno et al.
  • pea BE I and pea BE II sequences correspond to maize BE II and BE I respectively because of differences in nomenclature conventions.
  • FIG. 12 shows the comparison of exon/intron structure for the BEIIa and BEIIb genes.
  • wheat branching enzyme IIa gene wSBE II DA1
  • maize amylose extender BEIIb gene (3) partial wheat branching enzyme IIb gene, wSBE II DB1 (4) partial barley branching enzyme IIb gene.
  • FIG. 13 shows the results of analysis of the expression of mRNA for the BEIIa and BEIIb genes in wheat.
  • Lanes 1 and 4 contain leaf mRNA; lanes 2 and 5 contain pre-anthesis floret mRNA; lanes 3 and 6 contain mRNA from wheat endosperm collected 15 days after anthesis.
  • FIG. 14 shows the results of analysis of wheat endosperm branching enzyme IIa by affinity electrophoresis.
  • Lanes 1,4 and 7 contained 20 ⁇ g endosperm soluble protein
  • lanes 2, 5 and 8 contained 30 ⁇ g endosperm soluble protein
  • lanes 3 and 6 contained 10 ⁇ g endosperm soluble protein.
  • FIG. 15 shows the results of non-denaturing gel electrophoresis analysis of branching enzymes in the soluble fraction of wheat endosperm.
  • FIG. 16 shows the results of affinity electrophoresis separation of branching enzyme IIa forms from diverse wheat germplasm using the gel conditions described in FIG. 11 (Panel C).
  • Panel A Lane 1, Durati, T. durum; Lane 2 A. tauschii, Accession No. 24242; Lane 3, A. tauschii, Accession No. 24095; Lane 4, A. leyii, Accession No. 24092; Lane 5, Hartog, Triticum. aestivum; Lane 6, Rosella, T. aestivum; Lane 7, Corrigin, T. aestivum; Lane 8, Bodallin, T. aestivum; Lane 9, Beulah, T. aestivum; Lane 10 Bindawarra, T.
  • Lane 1 Afghanistan 006, Triticum durum; Lane 2, Persia 20, T. aestivum; Lane 3, Afghanistan 8, T. aestivum; Lane 4, Kashmir 4, T. aestivum; Lane 5, Gandum Sockhak, T. aestivum; Lane 6, Warbler, T. aestivum; Lane 7, Bayles, T. aestivum; Lane 8, Kometa; Lane 9, Kashmir 14, T. aestivum; Lane 10, Rosella, T. aestivum; Lane 11, Kashmir 8, T. aestivum; Lane 12, Beijing 10, T. aestivum; Lane 13, Savannah, T.
  • FIG. 17 shows the results of two-dimensional separation of the components of the wheat starch granule 88 kD band.
  • the wheat starch granule 88 kDa band was electrophoresed in the first dimension through an SDS-PAGE gel. Lanes were excised, renatured, and placed on top of a non-denaturing PAGE gel and electrophoresed in a second dimension. Two lanes were placed on top of each non-denaturing PAGE gel.
  • A protein staining with Coomassie blue reagent
  • B Immunoblotting of gels with either 3KLH or R6 antibodies, as indicated on the figure.
  • FIG. 18 is a diagrammatic representation of the BEII genes from various species, showing the exon/intron structure. The dark rectangles represent exons.
  • FIG. 19 shows the results of PCR amplification of SBE IIb gene from CS nullisomic lines, using the primers ARA 12F and ARA 10R.
  • FIG. 20 shows the results of PCR amplification of SBE IIb gene, using the primers ARA 6F and ARA 8R from Triticum spp. Lanes: 1) T. monococcum, 2) T. durum, 3) T. urartu, 4) T. tauschii, 5) CSDT2DS, 6) CSDT2BL-9, 7) CSDT2AS and 8) CS.
  • FIG. 21 shows the alignment of the exon 1—intron 1—exon 2 region of the SBE IIb gene from the A, B and D genomes. * indicates that the sequence could not be specifically assigned to the A or B genome.
  • FIG. 22 shows the alignment of the BEIIb sequences from each genome.
  • FIG. 23 shows the results of PCR amplification of the SBE IIb gene was carried out using the primers ARA 19F and ARA 15R, followed by restriction digestion using Rsa1. Lanes 1) CS, 2) T. monococcum, 3) T. tauschii, 4) CSDT2BL-9, which is missing part of the long arm of chromosome 2B, and 6) CSDT2AS, which is missing the long of chromosome 2A.
  • FIG. 24 shows the results of PCR amplification of intron 3 region of SBE IIb from wheat lines, using the primers ARA 19F and ARA 23R followed by Rsa 1 digestion. Lane 12 is the null mutant for the D genome
  • FIG. 25 is a schematic representation showing the development of the SBE IIa construct.
  • FIG. 26 is a schematic representation of the development of the SBE IIb construct.
  • FIG. 27 is a schematic representation of a SBE II duplex construct. A) SBE sequence inserted in between the promoter and the terminator in its linear form; B) Duplex formation of mRNA within the transgenic plant.
  • Aegilops tauschii, CPI 110799 was used for the construction of the genomic library. Previously this accession has been shown to be most like the ancestral D genome donor of wheat, on the basis of the conservation of order of genetic markers (Lagudah et al. 1991). The Triticum aestivum cultivars Rosella, Wyuna and Chinese Spring were used for the construction of different cDNA libraries.
  • a genomic library constructed from A. Wilmingtonii was screened by DNA hybridisation with SBE9, and four positive clones were purified. These were designated F1 to F4. The sequence from positions 537 to 890 of SBE9 was amplified by PCR, and used to screen the A. tauschii library again. Clones isolated from this screening are referred to as G1 and G2 and H1 to H8
  • F2 branching enzyme gene
  • a probe generated from F2, designated F2.2 contained sequences from 2704 to 4456 bp of SEQ ID NO:2, and contained exons 4-9, introns 4-8, and parts of intron 3 and 9.
  • Hybridisation of A. tauschii DNA (cut with four different restriction enzymes) with F2.2 revealed only one strongly hybridising band and several very faint bands ( FIG. 3 , panel B), consistent with the presence of a single BEII type gene in the A. tauschii genome.
  • SBE9 The cDNA clone, SBE9 (SEQ ID NO:1) has >95% identity to the exon regions of the F2 branching enzyme gene. A region of SBE9 from nucleotides 537 to 890, including exons 5 to 9, was used as a hybridisation probe, and gave a much more complex pattern ( FIG. 3 , panel A), strongly indicating that there is more than one BEII gene type in the A. tauschii genome.
  • PCR primers sr913F (5′ ATC ACT TAC CGA GAA TGG G 3′, SEQ ID NO:3) and WBE2E6R (5′ CTG CAT TTG GAT TTC AAT TG 3′, SEQ ID NO:4) were designed to anneal to Exon 5 and Exon 6 respectively of the wheat F2 gene in order to amplify the intron region (Intron 5) between these exons.
  • Analysis of the products of PCR reactions using these primers shows that the primers amplify fragments of 228 bp from the A-genome of wheat, 226 bp from the D genome and 217 bp from the B genome.
  • PCR analysis using PCR primers sr913F (5′ ATC ACT TAC CGA GAA TGG G 3′) and WBE2E6R (5′ CTG CAT TTG GAT TTC AAT TG 3′) showed that the H1 to H10 lambda clones yielded an approximately 200 bp fragment, and the G1 and G2 clones yielded an approximately 260 bp fragment ( FIG. 5 ).
  • Partial sequencing of G1 and G2 showed that the parts of the sequence analysed had 80% identity with the exons 4 and 5 of wSBE II-DA1, but the intervening intron contained a sequence that showed no homology to any sequence contained within F2.
  • FIG. 6 shows an alignment of a region corresponding to the 537 to 890 bp region of the SBE9 clone from the cDNAs for barley BEIIb (Sun et al., 1995, Sun et al., 1998), SBE9, wheat BEIIb cDNA with the sequence from clone G1. Further sequencing of G1 led to the isolation of a sequence, shown in FIG.
  • G1 and G2 therefore contain a gene which is distinct from F2, and which has high homology to barley BEIIb. We have designated this gene wSBE II-DB1.
  • a barley cDNA library was constructed using 5 ⁇ g of polyA + mRNA (1.67 ⁇ g of polyA + mRNA from 10, 12 and 15 DPA endosperm tissues were pooled).
  • cDNA was synthesised using the cDNA synthesis system marketed by Life Technology, except that the NotI-(dT) 18 primer (Pharmacia Biotech) was used to synthesise the first strand of cDNA.
  • Pfu polymerase was added to the reaction after second strand synthesis to flush the ends of cDNAs.
  • SalI-XhoI adapter (Stratagene) was then added to the cDNAs.
  • cDNAs were ligated to SalI-NotI arms of ⁇ ZipLox (Life Technology) after digestion of cDNAs with NotI followed by size fractionation (SizeSep 400 spun Column of Pharmacia Biotech). The entire ligation reaction (5 ⁇ l) was packaged using Gigapack III Gold packaging extract (Stratagene). The titre of the library was tested by transfecting either the Y1090(ZL) or the LE392 strain of E. coli.
  • This cDNA was designed wBEIIb, and its sequence is shown in FIG. 9 (SEQ ID NO:6).
  • This probe was also used to reprobe the genomic library from A. tauschii referred to above, and a clone, designated G5, was recovered from this screen.
  • G5 a clone, designated G5
  • Deduced amino acid sequences for branching enzymes from various cereals were analysed using the PILEUP program from the GCG suite of programs (Devereux 1984), and an alignment of these sequences is shown in FIG. 10 .
  • the PILEUP analysis used a penalty of 12 for insertion of a gap and 0.1 for extending the gap per residue.
  • the cDNA sequences used for this analysis were SBE9 (SEQ ID NO:1; FIG. 1 ), wheat BEIIb cDNA (SEQ ID NO:6; FIG. 9 ), Y11282, a wheat branching enzyme sequence (Nair et al.1997), barley BEIIa (Sun et al. 1998), barley BEIIb (Sun et al.
  • FIG. 11 The relationships between branching enzyme sequences are illustrated in FIG. 11 , using a dendrogram generated by the PILEUP program.
  • the sequences analysed were for wheat Y11282 (Nair et al., 1997), SBE 9 ( FIG. 1 ), wheat BEIIb ( FIG. 9 ), barley IIa and IIb (Sun et al. 1998), maize BEI (Kim et al, 1998), maize IIa (Gao et al. 1997), maize IIb (Fisher et al.
  • the branching enzyme gene contained on clone F2 was classified as a BEIIa type gene and designated wSBE II-DA1.
  • FIG. 12 shows a comparison of the exon/intron structures of the wheat wSBE II-DA1 and wSBE II-DB1 genes.
  • the structure of the wSBE II-DB1 gene is shown from the beginning of the wheat BEIIb cDNA through to exon 5.
  • Hybridisation results suggest that regions at the 3′ end of the wheat BEIIb cDNA are not contained within any of the clones G1,G2 and G5. This is not surprising, as the maize SBE II b gene extends over 16.5 kb and required the isolation of two genomic clones (Kim et al 1998).
  • the positions of the intron/exon boundaries for the first five introns of the wheat BEIIa and BEIIb genes are conserved, as shown in Table 1.
  • the size of the first five introns in wSBE II-DB1 vary considerably in size from the first five introns in wSBE II-DA1.
  • RNA from endosperm at different developmental stages was obtained from wheat grown in the glasshouse as described in Li et al. (1999). RNA was extracted by the method of Higgins et al. (1976), separated on denaturing formamide gels and blotted onto Hybond N+ paper, essentially as described in Maniatis et al. (1992).
  • Probes were prepared from the extreme 3′ ends of SBE9 (bases 2450 to 2640 of SEQ ID NO:1) and wBEIIb cDNA (bases 2700 to 2890 of SEQ ID NO:6) by PCR using the following scheme: 94° C., 2 min, 1 cycle, 94° C., 30 s, 55° C., 30 s, 72° C., 30 s, 36 cycles, 72° C. 5 min, 1 cycle, 25° C., 1 min, 1 cycle.
  • the probes were from the 3′ untranslated region, and were specific for either wSBE II-DA1 or wSBE II-DB1 type sequences.
  • An RNA species of about 2.9 kb hybridised to each probe ( FIG. 13 Panel B).
  • RNA hybridising to the wSBE II-DB1 gene was present at 2.5 to 3 fold lower concentration than RNA hybridising to the wSBE II-DA1 gene.
  • FIG. 14 shows an immunoblot of a non-denaturing polyacrylamide gel electrophoresis experiment in which the gel matrix contained the ⁇ -limit dextrin of maize amylopectin alone ( FIG. 14 , lanes 1 and 2), showing separation of three forms of branching enzyme IIa. Resolution is slightly enhanced by the addition of the ⁇ -amylase inhibitor acarbose ( FIG. 14 , lanes 3,4 and 5), and substantially enhanced by the addition of ⁇ -cyclodextrin ( FIG. 14 lanes 6, 7 and 8).
  • a non-denaturing gel was prepared, containing a stacking gel composed of 0.125 M Tris-HCl buffer (pH 6.8), 6% acrylamide, 0.06% ammonium persulphate and 0.1% TEMED.
  • the separating gel was composed of three panels.
  • the basic non-denaturing gel mix contained 0.34 M Tris-HCl buffer (pH 8.8), CHAPS (0.05%), glycerol (10.3%), acrylamide (6.2%), 0.06% ammonium persulphate, 0.1% TEMED and the ⁇ -limit dextrin of maize amylopectin (0.155%).
  • Panel A (lanes 1 and 2) contained only the basic non-denaturing gel reagents.
  • Panel B (Lanes 3, 4 and 5) contained the basic non-denaturing gel reagents and 0.066 mM acarbose.
  • Panel C (lanes 6, 7 and 8) contained the basic non-denaturing gel reagents and 0.067 mM ⁇ -cyclodextrin.
  • the proteins in the separating gel were transferred to nitrocellulose membrane according to Morell et al (1997) and immunoreacted with 1:5000 dilution of 3KLH antibodies (raised against the synthetic peptide AASPGKVLVPDESDDLGC (SEQ ID NO:7) coupled to the keyhole limpet hemocyanin via the heterobifunctional reagent m-Maleimidobenzoyl-N-hydroxysuccinimide ester).
  • ⁇ -limit dextrin provides a superior separation because it prevents interference with the separation by endogenous ⁇ -amylases in the wheat endosperm tissue, and the use of ⁇ -cyclodextrin in the assay further enhances the separation. Without wishing to limit the invention by any proposed mechanism, we believe that this enhancement may result from the inhibition of endogenous wheat endosperm ⁇ -amylases.
  • the analysis shows that three branching enzyme II proteins are present, and that each of these proteins cross-reacts with antibodies to a synthetic oligopeptide designed from the N-terminal region of the BEIIa protein in a region that shares no homology with the wheat BEIIb protein.
  • FIG. 15 shows that only 3KLH, raised against the N-terminus of BEIIa, cross-reacted with proteins (marked by arrows) in the soluble fraction which show a specific shift in mobility in the presence of the ⁇ -limit dextrin of amylopectin and ⁇ -cyclodextrin.
  • Gels were prepared as described in FIG. 14 , except that the gel used in Panel A contained the non-denaturing gel mix without the ⁇ -limit dextrin of maize amylopectin.
  • Panel B contained the non-denaturing gel mix plus ⁇ -cyclodextrin.
  • An extract of developing wheat endosperm was prepared using 3 volumes of extraction buffer per g of tissue, and 140 ⁇ l of sample applied per gel. Following electrophoresis at 100 V for 16 hours at 4° C., the proteins in the separating gel were transferred to nitrocellulose membrane according to Morell et al (1997) which was cut into 1 cm strips.
  • the antibodies prepared were 3KLH (see FIG.
  • R6 (raised in rabbit against the synthetic peptide AGGPSGEVMIGC (SEQ ID NO:8) coupled to the keyhole limpet hemocyanin via the heterobifunctional reagent m-Maleimidobenzoyl-N-hydroxysuccinimide ester); pre-immune serum from the R6 rabbit;
  • R7 (raised in rabbit against the synthetic peptide GGTPPSIDGPVQDSDGC (SEQ ID NO:9) coupled to the keyhole limpet hemocyanin via the heterobifunctional reagent m-maleimidobenzoyl-N-hydroxysuccinimide ester) and pre-immune serum from the R7 rabbit.
  • the BEIIa protein is separated into three forms (indicated by arrows in FIG. 15 , Panel B), by affinity electrophoresis in the presence of ⁇ -limit dextrin.
  • affinity electrophoresis in barley (Sun et al., 1997) and maize (Bayer and Preiss 1981) both branching enzymes IIa and IIb are present in the soluble fraction.
  • branching enzymes IIa and IIb are present in the soluble fraction.
  • BE IIb branching enzymes IIa and IIb
  • FIG. 16 The separation of the forms of BEIIa encoded by each wheat genome is demonstrated in FIG. 16 .
  • Panel (A) the diploid A. tauschii (lanes 2,3 and 4) and barley line (lane 11) yields a single band.
  • the tetraploid T. durum lines Panel A lane 1, Panel B, lanes 1, 16, and 17
  • hexaploid T. aestivum lines Panel A lanes 5-10, Panel B lanes 2-15, 18-19
  • Some hexaploid lines (panel A, lane 7 and 9, Panel B lanes 2-6, lanes 8-9, lane 13) yield 2 bands, indicating either that they are null for one genome or that the products of two genomes migrate with identical mobility in the gel system.
  • FIG. 14 Panel B
  • the wheat starch granule contains a number of proteins that have been analysed by SDS-PAGE (Rahman et al., 1995, Denyer et al., 1995, Takaoka et al, Li et al., 1999a, Li et al, 1999b) and two-dimensional gel electrophoresis (Yamamori and Endo, 1996).
  • the following bands have been identified: 60 kDa, GBSS; 75 kDa, SSI; 100 kDa, 108 kDa and 115 kDa, SSII).
  • An 88 kDa band is also observed, and has been shown to be associated with branching enzyme activity (Denyer et al., 1995) and to react to antibodies to maize BEII (Rahman et al., 1995). This protein band was shown to contain at least two protein components.
  • the granule proteins were isolated from 4.7 g of wheat starch granules by boiling in 24 ml of SDS buffer (50 mM Tris-HCl buffer pH 6.8, 10% SDS and 6.25% 2-mercaptothanol) as described by Rahman et al., (1995). Residual granular starch was removed by centrifugation, and granule proteins were separated by applying the supernatant to a 9% SDS-PAGE gel prepared in a Biorad Model 491 Prep Cell apparatus.
  • SDS buffer 50 mM Tris-HCl buffer pH 6.8, 10% SDS and 6.25% 2-mercaptothanol
  • the SDS gel contained a stacking gel composed of 0.125 M Tris-HCl buffer (pH 6.8), 0.25% SDS, 6% acrylamide, 0.06% ammonium persulphate and 0.1% TEMED and a separating gel containing 0.34 M Tris-HCl buffer (pH 8.8), 0.25% SDS, acrylamide (9%), 0.06% ammonium persulphate, and 0.1% TEMED.
  • the samples were electrophoresised at 60 mAmp constant current for 16 hours, and fractions of ractions (5 ml) collected by a pump operating at 0.5 ml/min.
  • Fractions were analysed by SDS-PAGE, and fractions containing an 88 kDA band precipitated by the addition of 3 volumes of acetone.
  • the precipitate from each 5 ml fraction was collected by centrifugation, the sample dissolved in SDS buffer, and electrophoresed through a standard 8% SDS-PAGE gel.
  • the lane was excised from the gel and renatured in 0.04 M Tris for 2 hours. To generate a two-dimensional separation, the gel was then laid across the top of a second non-denaturing PAGE gel and electrophoresed. Proteins were identified by staining with Coomassie blue (a 50:50 mixture of 2.5% Coomassie Blue R-250 and Coomassie Blue G250 solutions).
  • FIG. 17 Panel (A) shows that two proteins were visible after staining, and these were designated 88 kD (U) and 88 kD (L), as indicated by the arrows.
  • a partial genomic sequence of the SBEIIb gene was obtained, using clone G5 described in Example 4. So far approximately 8.4 kb of sequence has been obtained. This includes approximately 500 bp upstream of the start codon, presumably comprising the promoter region, and exons 1 to 14 in full. This partial sequence is set out in SEQ ID NO:10. From the sequences of the corresponding maize and Arabidopsis BEII genes, we would expect the gene to contain 22 exons. A comparison between the exon/intron structures of various BEII genes and the wheat BEIIb gene is shown in FIG. 18 , and the sizes of the exons in various SBEII genes are compared in Table 3. In this table “Arab” represents Arabidopsis.
  • the primers ARA6F and ARA8R which amplify the exon 1-intron 1-exon 2 region of SBE IIb, could distinguish the D genome from the A and B genomes, as shown in FIG. 20 . Sequence analysis of this region indicated that the genes from the A and B genomes completely lack intron 1. This is illustrated in FIG. 21 .
  • PCR amplification of the SBE IIb gene was carried out using the primers ARA 19F and ARA 15R, followed by restriction digestion using Rsa1.
  • the results of the PCR analysis, shown in FIG. 23 indicate that these primers can distinguish between the three genomes.
  • Recombinant DNA technology may be used to inhibit or abolish expression of either or both of BE IIa and BE IIb.
  • Three general approaches are used, using transformation of the target plant cells with one of the following types of construct:
  • the desired nucleic acid is operably linked to a promoter sequence in the construct.
  • RNAs with potential to form duplexes have been widely used to modulate gene expression in plants. More recently, it has been shown that the delivery of RNAs with potential to form duplexes is a particularly efficient strategy for generating post-transcriptional gene silencing in transgenic plants (Waterhouse et al., 1998; Smith et al., 2000).
  • Transformation of the target wheat cells, or cells of other plants, using these constructs is effected using methods known in the art, such as transformation with Agrobacterium tumefaciens. Once transgenic plants are obtained, they are assessed for the effects of the transgenes on BE IIa and BE IIb expression. For example, in both maize and potato it has been shown that crossing BE II mutations or BE II transgenes into BE I-deficient backgrounds greatly increases amylose content.
  • Wheat BE I null lines identified using the methods described in WO99/14314, provide a ready source of BE I-deficient genetic material into which BE IIa and BE IIb transgenics can be crossed, in order to extend further the range of starches which can be produced.
  • Sense, antisense and duplex constructs of SBE IIa and SBE IIb were generated in the vector pDV03000 (Biogemma Ltd, UK) which carries the high molecular weight gluten promoter (pHMWG) and the Nopaline synthase (Nos) terminator. These constructs are schematically represented in FIGS. 25 , 26 and 27 .
  • the Biogemma vectors are based on the well-known plasmid pBR322, and comprise a number of restriction sites, as illustrated in FIGS. 25 and 26 , for incorporation of desired DNA sequences.
  • the entire desired DNA, plus the promoter and terminator sequences referred to above, can then be excised as a Xho fragment and cloned into a suitable vector, such as Agrobacterium tumefaciens. Those skilled in the art will be aware of other suitable vectors which could be used.
  • a suitable vector such as Agrobacterium tumefaciens.
  • a sense construct of SB IIa was prepared by inserting a 2143 bp fragment of SBE IIa coding sequence in the sense orientation at the EcoR1/Sma1 site of pDV03000.
  • An SBE IIa antisense construct was prepared by inserting 1913 bp of SBE IIa coding sequence in the antisense orientation at the EcoR1/BamH1 site of pDV03000. This is also illustrated in FIG. 25 .
  • a sense construct of SBE IIb was generated by inserting a 1008 bp fragment of the SBE IIb coding sequence in the sense orientation at the EcoR1/Sma1 site of pDV03000.
  • An antisense SBE IIb construct was prepared by inserting a 955 bp sequence of the coding region for SBE IIb at the BamH1/Pst1 site of pDV03000 in the antisense orientation. This is illustrated in FIG. 26 .
  • a schematic model of a duplex construct is set out in FIG. 27 .
  • the duplex construct was prepared using the following protocol, in which all the amplification steps were performed using PCR under conventional conditions.
  • fragment 1 1) a 468 bp sequence of SBE IIa, which includes the whole of exons 1 and 2 and part of exon 3, with EcoR1 and Kpn1 restriction sites on either side, was amplified to obtain a first fragment (fragment 1);
  • fragments 1, 2 and 3 were ligated so that the sequence of fragment 3 was ligated to fragment 2 in the antisense orientation to fragment 1.
  • fragments 1, 2 and 3 were ligated so that fragment 3 was in the antisense orientation to fragment 1 when ligated to fragment 2.
  • This fragment was ligated in the anti-sense orientation.
  • This fragment was ligated in the anti-sense orientation.
  • This fragment had an EcoR1 site (GAATTC) introduced at the start of the exon 1 sequence and a Kpn1 site (GGTACC) introduced at the end of the partial exon 3 sequence.
  • This fragment had a Kpn1 site (GGTACC) introduced at the start of the partial exon 3 and a Sac1 site (GAGCTC) introduced at the end of the partial exon 4 sequence.
  • This fragment had a BamH1 site (GGATCC) introduced at the start of the complete exon 1 sequence and a Sac1 site (GAGCTC) introduced at the end of the complete exon 3 sequence.
  • GGATCC BamH1 site
  • GAGCTC Sac1 site
  • This fragment had an EcoR1 site (GAATTC) introduced at the start of exon 1 and a Kpn1 site (GGTACC) introduced at the end of the partial exon 3 sequence.
  • This fragment had a Kpn1 site (GGTACC) introduced at the start of the partial exon 3 sequence and a Sac1 site (GAGCTC) introduced at the end of the partial exon 4 sequence.
  • This fragment had a BamH1 site (GGATCC) introduced at the start of exon 1 and a Sac1 site (GAGCTC) introduced at the end of exon 3.
  • GGATCC BamH1 site
  • GAGCTC Sac1 site
  • SBE IIa and SBE IIb duplexes thus formed were respectively inserted at the EcoR1/BamH1 site of pDV03000.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Cereal-Derived Products (AREA)

Abstract

This invention relates to a new starch branching enzyme, and to the gene encoding the enzyme. In particular, the invention provides a new starch branching enzyme type II from wheat, the nucleic acid encoding the enzyme, and constructs comprising the nucleic acid. The invention also relates to a novel method for identification of branching enzyme type II proteins, which is useful for screening wheat germplasm for null or altered alleles of wheat branching enzyme IIb. The novel gene, protein and methods of the invention are useful in production of plants which produce grain with novel properties for food and industrial applications, for example wheat grain containing high amylose or low amylopectin starch.

Description

  • This invention relates to a new starch branching enzyme, and to the gene encoding the enzyme. In particular, the invention relates to a new starch branching enzyme type II from wheat. The invention also relates to a novel method for identification of such branching enzyme type II proteins, which is useful for screening wheat germplasm for null or altered alleles of wheat branching enzyme IIb. The novel gene, protein and methods of the invention are useful in production of wheat plants which produce grain with novel properties for food and industrial applications, for, example wheat grain containing high amylose or low amylopectin starch.
  • BACKGROUND OF THE INVENTION
  • In plants, two classes of genes encode starch branching enzymes, known respectively as BEI, and BEII. In the monocotyledonous cereals, there is strong evidence demonstrating that the BEII class contains two independent types of genes, known in maize as BEIIa and BEIIb (Gao et al., 1996; Fisher et al., 1996). In barley, two types of genes have been reported, and shown to be differentially expressed (Sun et al., 1998). An additional class of branching enzyme (50/51 kD) from barley has also been described (Sun et al., 1996).
  • In dicotyledonous plants, loss of BEII activity through either mutation (Bhattacharyya et al., 1990) or gene suppression technologies gives rise to starches containing high amylose levels (Safford, 1998, Jobling 1999).
  • In monocotyledonous plants, mutations giving rise to high amylose contents are known in maize, rice and barley. In neither rice (Mizuno et al., 1993) nor barley (Schondelmaier et al., 1992) have the known high amylose phenotypes been associated with the BEIIa or BEIIb mutations respectively. However, in maize it is firmly established that the high amylose phenotype is associated with down regulation of the BEIIb gene (Boyer et al., 1980; Boyer and Preiss, 1981, Fisher et al, 1996).
  • The impact of down-regulation of BEI has been investigated through antisense inhibition in potato tuber; the down-regulation has been found to alter the properties of the starch, but not its gross structural features, such as the amylose content (Filpse et al., 1996). In wheat, antisense down-regulation of BEI activity has small but significant effects on starch structure (Baga et al, 1999). The branching enzyme I gene from maize has been cloned (Kim et al., 1998), but mutants affecting branching enzyme I activity in maize are not known.
  • No mutations specifically reducing BEIIa activity have been reported, and no gene suppression experiments in plants have succeeded in reducing BEIIa activity, although the du1 mutation in maize is known to reduce the expression of both BEIIa and starch synthase III. However, the du1 mutation is now known to be due to mutation of the structural gene for starch synthase III (Gao 1998, Cao 1999).
  • In our previous patent application No. PCT/AU98/00743 (WO99/14314), we have described the structure of a BEII gene from wheat, which we have subsequently designated the BEIIa gene.
  • In the present application we describe the isolation of a second BEII gene from wheat, which we have designated the BEIIb gene, and discuss the uses to which this gene sequence can be applied. We have surprisingly found that in wheat the expression level of the various branching enzymes is very different to that in maize and barley. In this specification we show that BEIIb in wheat is expressed at low levels in the soluble fraction of the wheat endosperm, and is predominantly found within the starch granule. This indicates that there are important differences in the regulation of gene expression in wheat compared to other cereals, suggesting that the manipulation of the amylose to amylopectin ratio in wheat will involve the manipulation of more than just the BEIIb gene.
  • We have also surprisingly found that the BEIIa and BEIIb gene structures are highly conserved with respect to exon size and position, allowing us to prepare DNA-based diagnostics which they can distinguish not only the BEIIa and BEIIb classes of genes, but also the forms of these genes encoded on the A, B and D genomes of wheat, and to identify the BEIIb proteins expressed by the wheat A, B and D genomes, providing an essential tool for the screening of wheat germplasm for null or altered alleles of wheat branching enzyme IIa.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the invention provides an isolated nucleic acid molecule encoding wheat starch branching enzyme IIb (BEIIb).
  • Preferably the nucleic acid sequence is a DNA sequence, and may be genomic DNA or cDNA.
  • Preferably the nucleic acid molecule has the sequence depicted in FIG. 8 (SEQ ID NO:5), FIG. 9 (SEQ ID NO:6), or SEQ ID NO:10. It will be clearly understood that the invention also encompasses nucleic acid molecules capable of hybridising to these sequences under at least low stringency hybridization conditions, or a nucleic acid molecule with at least 70% sequence identity to at least one of these sequences. Methods for assessing ability to hybridize and % sequence identity are well known in the art. Even more preferably the nucleic acid molecule is capable of hybridizing thereto under high stringency conditions, or has at least 80%, most preferably at least 90% sequence identity. A nucleic acid molecule having at least 70%, preferably at least 90%, more preferably at least 95% sequence identity to one or more of these sequences is also within the scope of the invention.
  • Biologically-active untranslated control sequences of genomic DNA are also within the scope of the invention. Thus the invention also provides the promoter of BEIIb.
  • In a second aspect of the invention, there is provided a genetic construct comprising a nucleic acid sequence of the invention, a biologically-active fragment thereof, or a fragment thereof encoding a biologically-active fragment of BEIIb operably linked to one or more nucleic acid sequences which are capable of facilitating expression of BEIIb in a plant, preferably a cereal plant. The construct may be a plasmid or a vector, preferably one suitable for use in transformation of a plant. Such a suitable vector is a bacterium of the genus Agrobacterium, preferably Agrobacterium tumefaciens. Methods of transforming cereal plants using Agrobacterium tumefaciens are known; see for example Australian Patent No. 667939 by Japan Tobacco Inc.; Australian Patent No. 687863 by Japan Tobacco Inc.; International Patent Application No. PCT/US97/10621 by Monsanto Company; and Tingay et al (1997).
  • In a third aspect, the invention provides a genetic construct for targeting of a desired gene to endosperm of a cereal plant, and/or for modulating the time of expression of a desired gene in endosperm of a cereal plant, comprising a BEIIb promoter, operatively linked to a nucleic acid sequence encoding a desired protein, and optionally also operatively linked to one or more additional targeting sequences and/or one or more 3′ untranslated sequences.
  • The nucleic acid encoding the desired protein may be in either the sense orientation or in the anti-sense orientation. Alternatively it may be a duplex construct, comprising a portion of the nucleic acid sequence encoding the desired protein in both the sense and anti-sense orientations, operably linked by a spacer sequence. It is contemplated that any desired protein which is encoded by a gene which is capable of being expressed in the endosperm of a cereal plant is suitable for use in the invention. Preferably the desired protein is an enzyme of the starch biosynthetic pathway. For example, the antisense sequences of GBSS, starch debranching enzyme, SBE II, low molecular weight glutenin, or grain softness protein I, may be used. Preferred sequences for use in sense orientation include those of bacterial isoamylase, bacterial glycogen synthase, or wheat high molecular weight glutenin Bx17.
  • In a fourth aspect, the invention provides a wheat BEIIb polypeptide, comprising an amino acid sequence encoded by a nucleic acid molecule according to the invention, or a polypeptide having at least 70%, more preferably 80%, even more preferably 90% amino acid sequence identity thereto, and having the biological activity of BEIIb.
  • The polypeptide may be designed on the basis of amino acid sequences deduced from the nucleic acid sequences of the invention, or may be generated by expression of the wheat BEIIb nucleic acid molecule in a heterologous system. Suitable heterologous systems are very well known in the art, and the skilled person will readily be able to select a system suitable for the particular purpose desired.
  • In a fifth aspect, the invention provides an antibody directed against BEII polypeptide. The antibody may be polyclonal or monoclonal. It will be clearly understood that the invention also encompasses biologically-active antibody fragments, such as Fab, (Fab)2, and ScFv. Methods for production of antibodies and fragments thereof are very well known in the art.
  • The antibodies of the invention may be used for identification and separation of BEIIb proteins, for example by affinity electrophoresis. This greatly facilitates the identification and combination of altered forms of BEIIb via analysis of germplasm, and greatly assists plant breeding. The antibodies of the invention are suitable for use in any affinity-based separation system, preferably using methods which overcome interference by amylases. Suitable methods are known in the art.
  • In a sixth aspect, the invention provides a plant cell transformed by a genetic construct according to the invention, or a plant derived from such a cell. Additionally, a transformed plant cell may also comprise one or more null alleles for a gene selected from the group consisting of GBSS, BEIIa, and SSII. Preferably the plant is a cereal plant, more preferably wheat or barley.
  • In a seventh aspect, the invention provides a method of modifying the characteristics of starch produced by a plant, comprising the steps of:
  • a) increasing the level of expression of BEIIb in the plant, for example by introducing a nucleic acid molecule encoding BEIIb into a host plant, or
  • b) decreasing the level of expression of BEIIb in the plant, for example by introducing an anti-sense nucleic acid sequence directed to a nucleic acid molecule encoding BEIIb into a host plant.
  • As is well known in the art, over-expression of a gene can be achieved by introduction of additional copies of the gene, and anti-sense sequences can be used to suppress expression of the protein to which the anti-sense sequence is complementary. Other methods of suppressing expression of genes are known in the art, for example co-suppression, RNA duplex formation, or homologous recombination. It would be evident to the person skilled in the art that sense and anti-sense sequences may be chosen depending on the host plant, so as to effect a variety of different modifications of the characteristics of the starch produced by the plant.
  • Preferably the plant is a cereal plant, more preferably wheat or barley.
  • Preferably the branching of the amylopectin component of starch is modified by either of these procedures. More preferably a plant with high amylose content is produced.
  • In an eighth aspect, the invention provides a method of targeting expression of a desired gene to the endosperm of a cereal plant, comprising the step of transforming the plant with a construct according to the invention.
  • In a ninth aspect, the invention provides a method of identifying a null or altered allele encoding an enzyme of the starch biosynthetic pathway, comprising the step of subjecting DNA from a plant suspected to possess such an allele to a DNA fingerprinting or amplification assay, which utilizes at least one DNA probe comprising one or more of the nucleic acid molecules of the invention. The nucleic acid molecule may be a genomic DNA or a cDNA, and may comprise the full-length coding sequence or a fragment thereof. Any suitable method for identification of BEIIb sequences may be used, including but not limited to PCR, rolling circle amplification, RFLP, and AFLP. Such methods are well known in the art, and any suitable technique may be used.
  • In a tenth aspect, the invention provides a plant comprising one or more BEIIb null alleles, in combination with one or more other null alleles selected from the group consisting of BEIIa, GBSS, SSII and BEI. Optionally the plant may also comprise a BEIIa or BEIIb gene expressed in either the sense or the anti-sense orientation. The null alleles for BEIIa, GBSS SSII and BEI may be identified using methods described in PCT/AU97/00743.
  • It will clearly understood that the invention also encompasses products produced from plants according to the invention, including but not limited to whole grain, part grain, flour or starch.
  • Because of the very close relationship between Aegilops tauschii, formerly known as Triticum tauschii, and wheat, as discussed in PCT/AU97/00743, results obtained with A. tauschii can be directly applied to wheat with little if any modification. Such modification as may be required represents routine trial and error experimentation. Sequences from these genes can be used as probes to identify null or altered alleles in wheat, which can then be used in plant breeding programes to provide modifications of starch characteristics. The novel sequences of the invention can be used in genetic engineering strategies or to introduce a desired gene into a host plant, or to provide anti-sense sequences for suppression of expression of the BEIIb gene in a host plant, in order to modify the characteristics of starch produced by the plant.
  • While the invention is described in detail in relation to wheat, it will be clearly understood that it is also applicable to other cereal plants of the family Gramineae, such as maize, barley and rice.
  • Methods for transformation of monocotyledonous plants such as wheat, maize, barley and rice and for regeneration of plants from protoplasts or immature plant embryos are well known in the art. See for example Lazzeri et al, 1991; Jahne et al, 1991 and Wan and Lemaux, 1994 for barley; Wirtzens et al, 1997; Tingay et al, 1997; Canadian Patent Application No. 2092588 by Nehra; Australian Patent Application No. 61781/94 by National Research Council of Canada, and Australian Patents No. 667939 and No. 687863 by Japan Tobacco Co.
  • The sequences of ADP glucose pyrophosphorylase from barley (Australian Patent Application No. 65392/94), starch debranching enzyme and its promoter from rice (Japanese Patent Publication No. Kokai 6261787 and Japanese Patent Publication No. Kokai 5317057), and starch debranching enzyme from spinach and potato (Australian Patent Application No. 44333/96) are all known.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the sequence of the SBE9 branching enzyme cDNA encodes SBE IIa, cloned from a wheat cv Rosella cDNA library (SEQ ID NO:1).
  • FIG. 2 shows the sequence of the branching enzyme BEIIa gene (SEQ ID NO:2) contained within the F2 lambda clone isolated from an Aegilops tauschii genomic DNA library.
  • FIG. 3 shows the results of hybridisation of Aegilops tauschii DNA with probes derived from wSBE II-DA1 type sequences. A. Hybridisation with a probe from SBE9 consisting of exons 5-9. B. Hybridisation with fragment F2.2 (consisting of exons 4-9 and introns 4-8 and part of introns 3 and 9). Enzymes used for the digest were: 1. Bam HI, 2. Dra I, 3. EcoR I, 4. EcoR V. Molecular size markers are indicated.
  • FIG. 4 shows the alignment of sequences of Intron 5 fragments from the A, B and D genomes of wheat
  • FIG. 5 shows the PCR analysis of A. tauschii genomic clones using Intron V sequences.
  • FIG. 6 shows the alignment of a 262 bp PCR fragment amplified from hexaploid wheat using the primers sr913F and WBE2E6R, and a region from the wheat branching enzyme IIb gene wSBE II-DB1.
  • FIG. 7 shows the alignment of barley branching enzyme IIb cDNA, wheat branching enzyme IIb cDNA, and SBE9 sequences with the sequence of the wheat (A. tauschii) branching enzyme IIb gene.
  • FIG. 8 shows the partial genomic sequence of a branching enzyme IIb gene from A. tauschii (SEQ ID NO:5).
  • FIG. 9 shows the sequence of a cDNA for branching enzyme IIb gene from hexaploid wheat (SEQ ID NO:6).
  • FIG. 10 shows the sequence alignment of branching enzyme genes. The cDNA sequences used for this analysis were SBE9 (SEQ ID NO:1; FIG. 1), wheat BEIIb cDNA (SEQ ID NO:6; FIG. 9), Y11282, a wheat branching enzyme sequence (Nair et al. 1997), barley BEIIa (Sun et al. 1998), barley BEIIb (Sun et al. 1998), rice BEIII (Mizuno et al. 1993), rice BEIV (Genbank Accession No. E14723) maize BEIIa (Gao et al. 1997) and maize BEIIb (Gao et al. 1997). The observed N-terminal of wheat (Morell et al., 1997; Y11282) is shown in bold. FIG. 11 shows the dendrogram of BE sequences. The sequences analysed were for wheat Y11282 (Nair et al., 1997), SBE 9 (SEQ ID NO:1; (FIG. 1), wheat BEIIb (SEQ ID NO:9; FIG. 9), barley IIa and IIb (Sun et al. 1998), maize IIa (Gao et al. 1997), maize IIb (Fisher et al. 1993), rice III (Mizuno et al. 1993), rice IV (Genbank accession E14723), potato BEI (Khoshnoodi et al. 1997), potato BE II (Cangiano et al 1993), pea BEI and BEII (Burton et al. 1995), E. coli BE (Baecker et al. 1986) and bacillus (Kiel et al 1992). Note that pea BE I and pea BE II sequences correspond to maize BE II and BE I respectively because of differences in nomenclature conventions.
  • FIG. 12 shows the comparison of exon/intron structure for the BEIIa and BEIIb genes. (1) wheat branching enzyme IIa gene, wSBE II DA1 (2) maize amylose extender BEIIb gene (3) partial wheat branching enzyme IIb gene, wSBE II DB1 (4) partial barley branching enzyme IIb gene.
  • FIG. 13 shows the results of analysis of the expression of mRNA for the BEIIa and BEIIb genes in wheat. Panel (A): Hybridisation of SBE9 probe to lanes 1 to 3 and hybridisation of wheat BEIIb cDNA probe to lanes 4 to 6. Panel (B): mRNA loading for each lane.
  • Lanes 1 and 4 contain leaf mRNA; lanes 2 and 5 contain pre-anthesis floret mRNA; lanes 3 and 6 contain mRNA from wheat endosperm collected 15 days after anthesis.
  • FIG. 14 shows the results of analysis of wheat endosperm branching enzyme IIa by affinity electrophoresis.
  • Samples: Lanes 1,4 and 7 contained 20 μg endosperm soluble protein, lanes 2, 5 and 8 contained 30 μg endosperm soluble protein and lanes 3 and 6 contained 10 μg endosperm soluble protein.
  • FIG. 15 shows the results of non-denaturing gel electrophoresis analysis of branching enzymes in the soluble fraction of wheat endosperm.
  • Samples were: Lane 1, R6 pre-immune, 1:100; Lane 2, R6 pre-immune, 1:3000; Lane 3, R6, 1:100; Lane 4, R6, 1:1000; Lane 5, R6, 1:3000; Lane 6, 3KLH, 1:2000; Lane 7, 3KLH, 1:5000; Lane 8, R7 pre-immune, 1:1000; Lane 9, R7 pre-immune 1:5000; Lane 10, R7, 1:1000; Lane 11, R7, 1:3000; Lane 12, R7, 1:5000
  • FIG. 16 shows the results of affinity electrophoresis separation of branching enzyme IIa forms from diverse wheat germplasm using the gel conditions described in FIG. 11 (Panel C). Panel A. Lane 1, Durati, T. durum; Lane 2 A. tauschii, Accession No. 24242; Lane 3, A. tauschii, Accession No. 24095; Lane 4, A. tauschii, Accession No. 24092; Lane 5, Hartog, Triticum. aestivum; Lane 6, Rosella, T. aestivum; Lane 7, Corrigin, T. aestivum; Lane 8, Bodallin, T. aestivum; Lane 9, Beulah, T. aestivum; Lane 10 Bindawarra, T. aestivum; Lane 11, Barley (Hordeum vulgare). Panel B. Lane 1: Afghanistan 006, Triticum durum; Lane 2, Persia 20, T. aestivum; Lane 3, Afghanistan 8, T. aestivum; Lane 4, Kashmir 4, T. aestivum; Lane 5, Gandum Sockhak, T. aestivum; Lane 6, Warbler, T. aestivum; Lane 7, Bayles, T. aestivum; Lane 8, Kometa; Lane 9, Kashmir 14, T. aestivum; Lane 10, Rosella, T. aestivum; Lane 11, Kashmir 8, T. aestivum; Lane 12, Beijing 10, T. aestivum; Lane 13, Savannah, T. aestivum; Lane 14, Afghanistan 55-623, T. aestivum; Lane 15, Karizik, T. aestivum; Lane 16, Indore E98, T. durum; Lane 17, Iraq 17, T. durum; Lane 18, Seri 82, T. aestivum; Lane 19, Indore 19, T. aestivum.
  • FIG. 17 shows the results of two-dimensional separation of the components of the wheat starch granule 88 kD band. The wheat starch granule 88 kDa band was electrophoresed in the first dimension through an SDS-PAGE gel. Lanes were excised, renatured, and placed on top of a non-denaturing PAGE gel and electrophoresed in a second dimension. Two lanes were placed on top of each non-denaturing PAGE gel. (A) protein staining with Coomassie blue reagent (B) Immunoblotting of gels with either 3KLH or R6 antibodies, as indicated on the figure.
  • FIG. 18 is a diagrammatic representation of the BEII genes from various species, showing the exon/intron structure. The dark rectangles represent exons.
  • FIG. 19 shows the results of PCR amplification of SBE IIb gene from CS nullisomic lines, using the primers ARA 12F and ARA 10R.
  • FIG. 20 shows the results of PCR amplification of SBE IIb gene, using the primers ARA 6F and ARA 8R from Triticum spp. Lanes: 1) T. monococcum, 2) T. durum, 3) T. urartu, 4) T. tauschii, 5) CSDT2DS, 6) CSDT2BL-9, 7) CSDT2AS and 8) CS.
  • FIG. 21 shows the alignment of the exon 1—intron 1—exon 2 region of the SBE IIb gene from the A, B and D genomes. * indicates that the sequence could not be specifically assigned to the A or B genome.
  • FIG. 22 shows the alignment of the BEIIb sequences from each genome.
  • FIG. 23 shows the results of PCR amplification of the SBE IIb gene was carried out using the primers ARA 19F and ARA 15R, followed by restriction digestion using Rsa1. Lanes 1) CS, 2) T. monococcum, 3) T. tauschii, 4) CSDT2BL-9, which is missing part of the long arm of chromosome 2B, and 6) CSDT2AS, which is missing the long of chromosome 2A.
  • FIG. 24 shows the results of PCR amplification of intron 3 region of SBE IIb from wheat lines, using the primers ARA 19F and ARA 23R followed by Rsa 1 digestion. Lane 12 is the null mutant for the D genome
  • FIG. 25 is a schematic representation showing the development of the SBE IIa construct. A) Biogemma vector, pDV03000; B) pBluescript carrying the full length cDNA of SBE IIa; C) SBE IIa construct in pDV03000; D) Sense IIa construct and E) Antisense IIa construct.
  • FIG. 26 is a schematic representation of the development of the SBE IIb construct. A) Biogemma vector, pDV03000; B) pGEM-T carrying a 1046 bp fragment of SBE IIb; C) SBE IIb construct in pDV03000; D) Sense IIb construct and E) Antisense IIb construct.
  • FIG. 27 is a schematic representation of a SBE II duplex construct. A) SBE sequence inserted in between the promoter and the terminator in its linear form; B) Duplex formation of mRNA within the transgenic plant.
  • EXAMPLE 1 Isolation of BEII Genes from an A. tauschii Genomic Library and Their Characterisation by PCR Plant Material
  • Aegilops tauschii, CPI 110799, was used for the construction of the genomic library. Previously this accession has been shown to be most like the ancestral D genome donor of wheat, on the basis of the conservation of order of genetic markers (Lagudah et al. 1991). The Triticum aestivum cultivars Rosella, Wyuna and Chinese Spring were used for the construction of different cDNA libraries.
  • cDNA and Genomic Libraries
  • The construction of the cDNA and genomic libraries used in this example was as described in Rahman et al., (1997,1999) and in Li et al. (1999). Conditions for library screening were hybridisation at 25% formamide, 5×SSC, 0.1% SDS, 10× Denhardts, 100 μg/ml salmon sperm DNA at 42° C. for 16 h, followed by washing at 2×SSC, 0.1% SDS at 65° C. for 3×1 h.
  • Screening of a Wheat cDNA Library
  • Screening of a wheat cv Rosella cDNA library prepared from endosperm (mid-stage of development) with the maize SBE I clone (Baba et al., 1991) at low hybridisation stringency led to the isolation of two classes of positive plaques. One class hybridised strongly to the probe, and encoded wheat SBE I (Rahman et al., 1997,1999). The second class was weakly hybridising. The clone with the longest insert from this second class was called SBE 9, and its sequence showed greater identity to SBE II than to SBE I type sequences. This was designated SBE IIa. The sequence of SBE 9 (SEQ ID NO:1) is set out in FIG. 1.
  • Screening of A. tauschii Genomic Library
  • A genomic library constructed from A. tauschii was screened by DNA hybridisation with SBE9, and four positive clones were purified. These were designated F1 to F4. The sequence from positions 537 to 890 of SBE9 was amplified by PCR, and used to screen the A. tauschii library again. Clones isolated from this screening are referred to as G1 and G2 and H1 to H8
  • (1) Number of BEII Type Genes in Wheat
  • The sequence of a branching enzyme gene, designated F2, from Aegilops tauschii was described in WO99/14314, and is given in FIG. 2 (SEQ ID NO:2). A probe generated from F2, designated F2.2, contained sequences from 2704 to 4456 bp of SEQ ID NO:2, and contained exons 4-9, introns 4-8, and parts of intron 3 and 9. Hybridisation of A. tauschii DNA (cut with four different restriction enzymes) with F2.2 revealed only one strongly hybridising band and several very faint bands (FIG. 3, panel B), consistent with the presence of a single BEII type gene in the A. tauschii genome. The cDNA clone, SBE9 (SEQ ID NO:1) has >95% identity to the exon regions of the F2 branching enzyme gene. A region of SBE9 from nucleotides 537 to 890, including exons 5 to 9, was used as a hybridisation probe, and gave a much more complex pattern (FIG. 3, panel A), strongly indicating that there is more than one BEII gene type in the A. tauschii genome.
  • EXAMPLE 2 PCR Analysis of BEIIa—Intron 5
  • PCR primers, sr913F (5′ ATC ACT TAC CGA GAA TGG G 3′, SEQ ID NO:3) and WBE2E6R (5′ CTG CAT TTG GAT TTC AAT TG 3′, SEQ ID NO:4) were designed to anneal to Exon 5 and Exon 6 respectively of the wheat F2 gene in order to amplify the intron region (Intron 5) between these exons. Analysis of the products of PCR reactions using these primers shows that the primers amplify fragments of 228 bp from the A-genome of wheat, 226 bp from the D genome and 217 bp from the B genome. These fragments were shown to be amplified from chromosome 2A, 2D and 2B of wheat respectively by analysis of nullisomic/tetrasomic chromosome-engineered lines of wheat. In addition to these fragments, a 262 bp fragment was amplified, and this fragment (designated the 262 bp Universal fragment) was not polymorphic among the chromosome engineered lines tested. The 262 bp Universal fragment and the A, B and D regions from the F2 gene were cloned and sequenced, and the sequence comparison is shown in FIG. 4.
  • EXAMPLE 3 Classification of the G1-G2 and H1-H10 Genes
  • PCR analysis using PCR primers sr913F (5′ ATC ACT TAC CGA GAA TGG G 3′) and WBE2E6R (5′ CTG CAT TTG GAT TTC AAT TG 3′) showed that the H1 to H10 lambda clones yielded an approximately 200 bp fragment, and the G1 and G2 clones yielded an approximately 260 bp fragment (FIG. 5). Partial sequencing of G1 and G2 showed that the parts of the sequence analysed had 80% identity with the exons 4 and 5 of wSBE II-DA1, but the intervening intron contained a sequence that showed no homology to any sequence contained within F2.
  • However, the G1 and G2 clones from A. tauschii showed 92.7% identity to the sequence of the 262 bp universal fragment amplified and cloned from hexaploid wheat, and an alignment of these sequences is shown in FIG. 6. FIG. 7 shows an alignment of a region corresponding to the 537 to 890 bp region of the SBE9 clone from the cDNAs for barley BEIIb (Sun et al., 1995, Sun et al., 1998), SBE9, wheat BEIIb cDNA with the sequence from clone G1. Further sequencing of G1 led to the isolation of a sequence, shown in FIG. 8 (SEQ ID NO:5), which showed high identity with the sequence reported by Sun et al. (1998) for the 5′ end of barley IIb cDNA and the partial sequence for the cognate gene. G1 and G2 therefore contain a gene which is distinct from F2, and which has high homology to barley BEIIb. We have designated this gene wSBE II-DB1.
  • EXAMPLE 4 Isolation of a Wheat BEIIb cDNA and an Additional Genomic Fragment
  • A barley cDNA library was constructed using 5 μg of polyA+ mRNA (1.67 μg of polyA+ mRNA from 10, 12 and 15 DPA endosperm tissues were pooled). cDNA was synthesised using the cDNA synthesis system marketed by Life Technology, except that the NotI-(dT)18 primer (Pharmacia Biotech) was used to synthesise the first strand of cDNA. Pfu polymerase was added to the reaction after second strand synthesis to flush the ends of cDNAs. SalI-XhoI adapter (Stratagene) was then added to the cDNAs. cDNAs were ligated to SalI-NotI arms of λZipLox (Life Technology) after digestion of cDNAs with NotI followed by size fractionation (SizeSep 400 spun Column of Pharmacia Biotech). The entire ligation reaction (5 μl) was packaged using Gigapack III Gold packaging extract (Stratagene). The titre of the library was tested by transfecting either the Y1090(ZL) or the LE392 strain of E. coli.
  • Primers 1 and 2 (Sun et al. 1998)), were used for PCR amplification of a fragment from a barley cDNA library (Ali et al., 2000) using conditions described in Sun et al. (1998). The identity of this fragment was confirmed by sequence analysis, and the fragment was used as a probe to isolate a cDNA by hybridisation, cDNA from a cDNA library constructed from Chinese Spring (Li et al. 1999).
  • This cDNA was designed wBEIIb, and its sequence is shown in FIG. 9 (SEQ ID NO:6). This probe was also used to reprobe the genomic library from A. tauschii referred to above, and a clone, designated G5, was recovered from this screen. Analysis showed that the wBEIIb cDNA sequence showed 98.5% identity and the G5 sequence showed 100% identity to sequences already recovered from G1 and G2. G5 therefore represented the same wSBE II-DB1 gene, and the wBEIIb cDNA is a product of the orthologous gene in hexaploid wheat.
  • EXAMPLE 5 Relationships Between BEII Sequences
  • Deduced amino acid sequences for branching enzymes from various cereals were analysed using the PILEUP program from the GCG suite of programs (Devereux 1984), and an alignment of these sequences is shown in FIG. 10. The PILEUP analysis used a penalty of 12 for insertion of a gap and 0.1 for extending the gap per residue. The cDNA sequences used for this analysis were SBE9 (SEQ ID NO:1; FIG. 1), wheat BEIIb cDNA (SEQ ID NO:6; FIG. 9), Y11282, a wheat branching enzyme sequence (Nair et al.1997), barley BEIIa (Sun et al. 1998), barley BEIIb (Sun et al. 1998); rice BEIII (Mizuno et al. 1993), rice BEIV (Genbank Accession No. E14723) maize BEIIa (Gao et al. 1997) and maize BEIIb (Fisher et al., 1993). The observed N-terminal of wheat (Morell et al., 1997; Y11282) is shown in bold.
  • The relationships between branching enzyme sequences are illustrated in FIG. 11, using a dendrogram generated by the PILEUP program. The sequences analysed were for wheat Y11282 (Nair et al., 1997), SBE 9 (FIG. 1), wheat BEIIb (FIG. 9), barley IIa and IIb (Sun et al. 1998), maize BEI (Kim et al, 1998), maize IIa (Gao et al. 1997), maize IIb (Fisher et al. 1993), Arabidopsis BEII (U22428, Fisher et al., 1996), Arabidopsis BEII (U18817, Fisher et al., 1996), rice I (Kawasaki et al., 1993), rice III (Mizuno et al. 1993), rice IV (Genbank accession E14723), potato BEI (Khoshnoodi et al. 1997), potato BE II (Cangiano et al 1993), pea BEI and BEII (Burton et al. 1995), E. coli BE (Baecker et al. 1986) and bacillus (Kiel et al 1992). Note that pea BE I and pea BE II sequences correspond to maize BE II and BE I respectively because of differences in nomenclature conventions.
  • On the basis of this comparison, the branching enzyme gene contained on clone F2 was classified as a BEIIa type gene and designated wSBE II-DA1.
  • EXAMPLE 6 Structure of the wSBE II-DA1 and wSBE II-DB1 Genes
  • FIG. 12 shows a comparison of the exon/intron structures of the wheat wSBE II-DA1 and wSBE II-DB1 genes. The structure of the wSBE II-DB1 gene is shown from the beginning of the wheat BEIIb cDNA through to exon 5. Hybridisation results suggest that regions at the 3′ end of the wheat BEIIb cDNA are not contained within any of the clones G1,G2 and G5. This is not surprising, as the maize SBE II b gene extends over 16.5 kb and required the isolation of two genomic clones (Kim et al 1998). The positions of the intron/exon boundaries for the first five introns of the wheat BEIIa and BEIIb genes are conserved, as shown in Table 1. The size of the first five introns in wSBE II-DB1 vary considerably in size from the first five introns in wSBE II-DA1.
  • TABLE 1
    Exon/Intron Structures of Cereal branching Enzyme Genes
    Exons Introns
    Wheat Wheat Wheat Wheat
    wSBE Maize WSBE Barley wSBE Maize WSBE Barley
    II-DA1 BEIIb II-DB1 BEIIb II-DA1 BEIIb II-DB1 BEIIb
    1  123a  112a  148a  121a 1 327 106 148 105
    2  98 146 146 152 2 276 244 663 2064
    3 242 155 230 230 3 401 1086 465 388
    4  99  99  99  99 4 169 76 74 74
    5  43  43  43  43b 5 152 196 181
    6  60  60  60 6 335 499 442
    7  81  81  81 7 83 81 79
    8 117 117 117 8 288 567 178
    9  81  84  84 9 629 775
    10 122 122 10 175 751
    11 120 120 11 974 4020
    12 130 130 12 88 86
    13 111 111 13 201 148
    14 129 129 14 579 3051
    15 104 104 15 841 872
    16 145 145 16 1019 457
    17 148 148 17 135 144
    18 105 101 18 176 226
    19  74  78 19 201 266
    20 156 156 20 377 448
    21  75  75 21 89 96
    22 384  84
    a Exon 1 numbering begins from ATG of translation start codon
    bPartial sequence for exon or intron
  • EXAMPLE 7 Expression Analysis at the mRNA Level
  • RNA from endosperm at different developmental stages was obtained from wheat grown in the glasshouse as described in Li et al. (1999). RNA was extracted by the method of Higgins et al. (1976), separated on denaturing formamide gels and blotted onto Hybond N+ paper, essentially as described in Maniatis et al. (1992). Probes were prepared from the extreme 3′ ends of SBE9 (bases 2450 to 2640 of SEQ ID NO:1) and wBEIIb cDNA (bases 2700 to 2890 of SEQ ID NO:6) by PCR using the following scheme: 94° C., 2 min, 1 cycle, 94° C., 30 s, 55° C., 30 s, 72° C., 30 s, 36 cycles, 72° C. 5 min, 1 cycle, 25° C., 1 min, 1 cycle. The probes were from the 3′ untranslated region, and were specific for either wSBE II-DA1 or wSBE II-DB1 type sequences. An RNA species of about 2.9 kb hybridised to each probe (FIG. 13 Panel B). However, the intensity of hybridisation determined by densitometry, and normalised for differences in RNA loading), indicated that RNA hybridising to the wSBE II-DB1 gene was present at 2.5 to 3 fold lower concentration than RNA hybridising to the wSBE II-DA1 gene.
  • EXAMPLE 8 Analysis of Branching Enzymes by Affinity Electrophoresis Demonstrates that only BEIIa is Predominant in the Soluble Fraction
  • In Morell et al., (1997), we reported that only a single form of branching enzyme II could be identified in the wheat developing endosperm soluble fraction. However, this was on the basis of anion-exchange chromatography, and it remained possible that there were multiple forms, even though they could not be separated by this technique. Matsumoto has developed an affinity electrophoresis method for measuring the interaction of branching enzymes with polysaccharide substrates (Matsumoto et al., 1990), and we have further developed this technique specifically to allow the separation of the branching enzyme IIa forms encoded by each of the three wheat genomes. FIG. 14 shows an immunoblot of a non-denaturing polyacrylamide gel electrophoresis experiment in which the gel matrix contained the β-limit dextrin of maize amylopectin alone (FIG. 14, lanes 1 and 2), showing separation of three forms of branching enzyme IIa. Resolution is slightly enhanced by the addition of the α-amylase inhibitor acarbose (FIG. 14, lanes 3,4 and 5), and substantially enhanced by the addition of α-cyclodextrin (FIG. 14 lanes 6, 7 and 8).
  • A non-denaturing gel was prepared, containing a stacking gel composed of 0.125 M Tris-HCl buffer (pH 6.8), 6% acrylamide, 0.06% ammonium persulphate and 0.1% TEMED. The separating gel was composed of three panels. The basic non-denaturing gel mix contained 0.34 M Tris-HCl buffer (pH 8.8), CHAPS (0.05%), glycerol (10.3%), acrylamide (6.2%), 0.06% ammonium persulphate, 0.1% TEMED and the β-limit dextrin of maize amylopectin (0.155%). Panel A (lanes 1 and 2) contained only the basic non-denaturing gel reagents. Panel B ( Lanes 3, 4 and 5) contained the basic non-denaturing gel reagents and 0.066 mM acarbose. Panel C ( lanes 6, 7 and 8) contained the basic non-denaturing gel reagents and 0.067 mM α-cyclodextrin.
  • Following electrophoresis at 100 V for 16 hours at 4° C., the proteins in the separating gel were transferred to nitrocellulose membrane according to Morell et al (1997) and immunoreacted with 1:5000 dilution of 3KLH antibodies (raised against the synthetic peptide AASPGKVLVPDESDDLGC (SEQ ID NO:7) coupled to the keyhole limpet hemocyanin via the heterobifunctional reagent m-Maleimidobenzoyl-N-hydroxysuccinimide ester).
  • The use of a β-limit dextrin provides a superior separation because it prevents interference with the separation by endogenous β-amylases in the wheat endosperm tissue, and the use of α-cyclodextrin in the assay further enhances the separation. Without wishing to limit the invention by any proposed mechanism, we believe that this enhancement may result from the inhibition of endogenous wheat endosperm α-amylases.
  • The analysis shows that three branching enzyme II proteins are present, and that each of these proteins cross-reacts with antibodies to a synthetic oligopeptide designed from the N-terminal region of the BEIIa protein in a region that shares no homology with the wheat BEIIb protein.
  • The soluble fraction of the wheat endosperm was reacted with various antibodies raised against peptides designed on the basis of the sequences of the wheat BEIIa (see FIG. 12) or the wheat BEIIb cDNA. FIG. 15 shows that only 3KLH, raised against the N-terminus of BEIIa, cross-reacted with proteins (marked by arrows) in the soluble fraction which show a specific shift in mobility in the presence of the β-limit dextrin of amylopectin and α-cyclodextrin. Gels were prepared as described in FIG. 14, except that the gel used in Panel A contained the non-denaturing gel mix without the β-limit dextrin of maize amylopectin. Panel B contained the non-denaturing gel mix plus α-cyclodextrin. An extract of developing wheat endosperm was prepared using 3 volumes of extraction buffer per g of tissue, and 140 μl of sample applied per gel. Following electrophoresis at 100 V for 16 hours at 4° C., the proteins in the separating gel were transferred to nitrocellulose membrane according to Morell et al (1997) which was cut into 1 cm strips. The antibodies prepared were 3KLH (see FIG. 11), R6 (raised in rabbit against the synthetic peptide AGGPSGEVMIGC (SEQ ID NO:8) coupled to the keyhole limpet hemocyanin via the heterobifunctional reagent m-Maleimidobenzoyl-N-hydroxysuccinimide ester); pre-immune serum from the R6 rabbit; R7 (raised in rabbit against the synthetic peptide GGTPPSIDGPVQDSDGC (SEQ ID NO:9) coupled to the keyhole limpet hemocyanin via the heterobifunctional reagent m-maleimidobenzoyl-N-hydroxysuccinimide ester) and pre-immune serum from the R7 rabbit.
  • As in FIG. 14, the BEIIa protein is separated into three forms (indicated by arrows in FIG. 15, Panel B), by affinity electrophoresis in the presence of β-limit dextrin. In barley (Sun et al., 1997) and maize (Bayer and Preiss 1981) both branching enzymes IIa and IIb are present in the soluble fraction. In some subsequent experiments we have detected low levels of BE IIb in the soluble fraction.
  • The separation of the forms of BEIIa encoded by each wheat genome is demonstrated in FIG. 16. In Panel (A) the diploid A. tauschii ( lanes 2,3 and 4) and barley line (lane 11) yields a single band. However, the tetraploid T. durum lines (Panel A lane 1, Panel B, lanes 1, 16, and 17) and hexaploid T. aestivum lines (Panel A lanes 5-10, Panel B lanes 2-15, 18-19) give at least 2 bands. Some hexaploid lines (panel A, lane 7 and 9, Panel B lanes 2-6, lanes 8-9, lane 13) yield 2 bands, indicating either that they are null for one genome or that the products of two genomes migrate with identical mobility in the gel system.
  • The use of the separation system as a means of screening for wheat genomes with altered or null alleles of branching enzyme IIa is demonstrated by FIG. 14 (Panel B), where different lines are shown to have different numbers and mobilities of branching enzyme IIa proteins.
  • EXAMPLE 9 Presence of Two Classes of Proteins in the Starch Granule at 88 kDa and their Differential Antibody Binding
  • The wheat starch granule contains a number of proteins that have been analysed by SDS-PAGE (Rahman et al., 1995, Denyer et al., 1995, Takaoka et al, Li et al., 1999a, Li et al, 1999b) and two-dimensional gel electrophoresis (Yamamori and Endo, 1996). The following bands have been identified: 60 kDa, GBSS; 75 kDa, SSI; 100 kDa, 108 kDa and 115 kDa, SSII). An 88 kDa band is also observed, and has been shown to be associated with branching enzyme activity (Denyer et al., 1995) and to react to antibodies to maize BEII (Rahman et al., 1995). This protein band was shown to contain at least two protein components.
  • This analysis has been extended by purification and analysis of the individual granule proteins. The granule proteins were isolated from 4.7 g of wheat starch granules by boiling in 24 ml of SDS buffer (50 mM Tris-HCl buffer pH 6.8, 10% SDS and 6.25% 2-mercaptothanol) as described by Rahman et al., (1995). Residual granular starch was removed by centrifugation, and granule proteins were separated by applying the supernatant to a 9% SDS-PAGE gel prepared in a Biorad Model 491 Prep Cell apparatus. The SDS gel contained a stacking gel composed of 0.125 M Tris-HCl buffer (pH 6.8), 0.25% SDS, 6% acrylamide, 0.06% ammonium persulphate and 0.1% TEMED and a separating gel containing 0.34 M Tris-HCl buffer (pH 8.8), 0.25% SDS, acrylamide (9%), 0.06% ammonium persulphate, and 0.1% TEMED. The samples were electrophoresised at 60 mAmp constant current for 16 hours, and fractions of ractions (5 ml) collected by a pump operating at 0.5 ml/min. Fractions were analysed by SDS-PAGE, and fractions containing an 88 kDA band precipitated by the addition of 3 volumes of acetone. The precipitate from each 5 ml fraction was collected by centrifugation, the sample dissolved in SDS buffer, and electrophoresed through a standard 8% SDS-PAGE gel. The lane was excised from the gel and renatured in 0.04 M Tris for 2 hours. To generate a two-dimensional separation, the gel was then laid across the top of a second non-denaturing PAGE gel and electrophoresed. Proteins were identified by staining with Coomassie blue (a 50:50 mixture of 2.5% Coomassie Blue R-250 and Coomassie Blue G250 solutions).
  • FIG. 17, Panel (A) shows that two proteins were visible after staining, and these were designated 88 kD (U) and 88 kD (L), as indicated by the arrows. Immunoblotting of the two-dimensional gel with peptide antibodies to the N-terminal of BEIIa (3KLH) and to the N-terminus of the wheat BEIIb cDNA sequence (R6; see FIGS. 12 and 13 for details of the antibodies are set out in Example 8) indicated preferential binding of the R6 antibody to 88 kD (U) and preferential binding of 3KLH to 88 kD (L) (FIG. 17, Panel B), providing a provisional assignment of these proteins as BEIIb and BEIIa respectively.
  • The proteins were further analysed by digestion with trypsin, and the peptides released were identified by MALDI-TOF analysis at the Australian Proteome Analysis Facility, Macquarie University, Sydney. The results of this analysis, shown in Table 2, demonstrated that 88 kD (U) was the product of the wheat BEIIb gene, and that while the assignment of 88 kD (L) was inconclusive, the results were consistent with the protein being a branching enzyme encoded by either SBE9 or the wheat BEIIb cDNA.
  • TABLE 2
    (a) Comparison of 88 kD (U) and the 
    predicted protein encoded by the
    wheat BEIIb cDNA.
    Matches: 6
    MOWSE Score: 4.97e+001
    Coverage: 8.85%
    Matching Peptides:
    MW Delta Start End Sequence
     755.4766 −0.13 320 325 (K) RPKSLR (I)
    1337.7092 0.01 453 463 (R) VFNYGNKEVIR (F)
    1337.6728 −0.03 703 713 (R) RFDLGDAEFLR (Y)
    1508.7623 −0.12 785 799 (K) VVLDSDAGLFGGFGR (I)
    1589.6933 −0.08 731 743 (K) YGFMTSDHQYVSR (K)
    1692.7049 −0.17 184 198 (R) SDIDEHEGGMDVFSR (G)
    1706.8740 −0.04 340 353 (K) INTYANFRDEVLPR (I)
    (b) Comparison of 88 kD (L) and the
    predicted proteins encoded by the wheat  
    BEIIb cDNA and SBE9 cDNA.
    Matches to wheat BEIIb cDNA
    Matches: 8
    MOWSE Score: 1.32e+003
    Likelihood: 2.053+003
    Coverage: 11.72%
    Matching Peptides:
    MW Delta Start End Sequence
     819.4603 11.23 464 470 (R)FLLSNAR (W)
    1210.5090 −105.27 444 452 (R) GHHWMWDSR (V)
    1337.7092 10.53 453 463 (R) VFNYGNKEVIR (F)
    1337.6728 −16.68 703 713 (R) RFDLGDAEFLR (Y)
    1508.7623 −44.33 785 799 (K) VVLDSDAGLFGGFGR (I)
    1573.7446 −16.81 326 339 (R) IYETHVGMSSPEPK (I)
    1589.6933 −23.46 731 743 (K) YGFMTSDHQYVSR (K)
    1692.7049 −95.07 184 198 (R) SDIDEHEGGMDVFSR (G)
    1706.8740 −15.57 340 353 (K) INTYANFRDEVLPR (I)
    Matches to wheat SBE9
    Matches: 6
    MOWSE Score: 1.04e+001
    Coverage: 8.63%
    Matching Peptides:
    MW Delta Start End Sequence
     819.4603 11.23 451 457 (R)FLLSNAR (W)
    1210.5090 −105.27 431 439 (R) GHHWMWDSR (V)
    1508.7875 −27.64 145 156 (K) IYEIDPTLKDFR (S)
    1573.7446 −16.81 313 326 (R) IYESHIGMSSPEPK (I)
    1599.7641 −9.93 171 185 (R) AAIDQHEGGLEAFSR (G)
    1692.8583 −4.45 327 340 (K) INSYANFRDEVLPR (I)
  • EXAMPLE 10 Sequencing of the SBE IIb Gene
  • A partial genomic sequence of the SBEIIb gene was obtained, using clone G5 described in Example 4. So far approximately 8.4 kb of sequence has been obtained. This includes approximately 500 bp upstream of the start codon, presumably comprising the promoter region, and exons 1 to 14 in full. This partial sequence is set out in SEQ ID NO:10. From the sequences of the corresponding maize and Arabidopsis BEII genes, we would expect the gene to contain 22 exons. A comparison between the exon/intron structures of various BEII genes and the wheat BEIIb gene is shown in FIG. 18, and the sizes of the exons in various SBEII genes are compared in Table 3. In this table “Arab” represents Arabidopsis.
  • TABLE 3
    Sizes of exons in various SBE IIb genes
    Wheat Maize Barley Wheat
    Exon no Arab21 Arab22 BEIIa BEIIb BEIIb BEIIb
    1 42 124 279 212 121 148
    2 253 120 98 146 152 146
    3 236 182 243 155 230 230
    4 99 99 99 99 99 99
    5 43 43 43 43 43 43
    6 60 60 60 60 60
    7 81 81 81 81 81
    8 117 117 117 117 117
    9 84 84 84 84 84
    10 122 122 122 122 122
    11 120 120 120 120 120
    12 130 130 130 130 130
    13 111 111 111 111 111
    14 129 129 129 129 129
    15 104 104 104 104
    16 145 145 145 145
    17 148 148 148
    18 101 101 101
    19 78 78 78
    20 156 156 156
    21 75 75 75
    22 90 384 304
    17 558
    18 164
  • Using a probe specific for the 3′ end of SBE IIb, three clones designated G7, G8 and G9 respectively, have now been isolated from the T. tauschii genomic library, and are being subjected to sequence analysis to provide the 3′ region of the gene.
  • EXAMPLE 11 Development of PCR Primer Sets for the Discrimination of the BEIIb Genes from Each Genome
  • A number of primer sets, designed on the basis of comparisons between SBE IIa and SBE IIb genes, were tested on wheat genomic DNA. The sequences of these primers were as follows:
  • SEQ ID NO: 11
    ARA 12F: 5′ CCG TCC TAC ATG ACA CCT GGC CG 3′
    SEQ ID NO: 12
    ARA 10R: 5′ CCG CCG GAT CGA GGA GCC GAC GG 3′
    SEQ ID NO: 13
    ARA 6F: 5′ GGC GGC GGC GAC GGG ATG GCT GC 3′
    SEQ ID NO: 14
    ARA 8R: 5′ CGC CGT CAG GGA TCA TCA CCT CC 3′
    SEQ ID NO: 15
    ARA 19F: 5′ CAC CCA TTG TAA TTG GGT ACA CTG 3′
    SEQ ID NO: 16
    ARA 15R 5′ TCC ATG CCT CCT TCG TGT TCA TCA 3′
    SEQ ID NO: 17
    ARA 23R 5′ CTG CGC ATA AAT CCA AAC TTC TCG 3′
  • Targeting the promoter region of SBE IIb using the primers ARA 12F and ARA 13R resulted in the specific amplification of only the D genome gene. Aneuploid analysis using this pair of primers showed that the SBE IIb was located on the long arm of chromosome 2 in wheat, as illustrated in FIG. 19.
  • The primers ARA6F and ARA8R, which amplify the exon 1-intron 1-exon 2 region of SBE IIb, could distinguish the D genome from the A and B genomes, as shown in FIG. 20. Sequence analysis of this region indicated that the genes from the A and B genomes completely lack intron 1. This is illustrated in FIG. 21.
  • EXAMPLE 12 Identification of SBE IIb in Genomes A, B and D
  • Sequence analysis of the intron 3 region of SBE IIb, amplified by PCR using the primers ARA 19F and ARA 15R, followed by digestion using the restriction enzyme Rsa1, revealed significant polymorphism amongst the three genomes. This polymorphism, illustrated in the sequence alignment set out in FIG. 22, was utilised to develop genome specific markers which can distinguish between the A, B and D genomes.
  • PCR amplification of the SBE IIb gene was carried out using the primers ARA 19F and ARA 15R, followed by restriction digestion using Rsa1. The results of the PCR analysis, shown in FIG. 23, indicate that these primers can distinguish between the three genomes.
  • Screening of approximately 600 wheat lines using the genome specific primer pair, ARA 19F and ARA 23R, which amplifies the same region as ARA 19F and ARA 15R, identified one null mutant of the wheat genome. The amplification was performed as described for FIG. 23, and the results are shown in FIG. 24.
  • EXAMPLE 13 Constructs for Expression of BEII Genes
  • Recombinant DNA technology may be used to inhibit or abolish expression of either or both of BE IIa and BE IIb. Three general approaches are used, using transformation of the target plant cells with one of the following types of construct:
  • a) ‘Antisense’ constructs of SBE IIa and SBE IIb, in which the desired nucleic acid sequence is inserted into the construct in the opposite direction to the functional gene.
  • b) ‘Sense’ constructs of SBE IIa and SBE IIb, in which the desired nucleic acid is inserted in the same direction as the functional gene; this utilises co-suppression events to inhibit the expression of the target gene;
  • c) Duplex constructs of SBE IIa and SBE IIb, in which the desired nucleic acid in both the sense and antisense orientations is co-located in the construct on either side of a “spacer” loop formed by an intron sequence.
  • In all three cases, the desired nucleic acid is operably linked to a promoter sequence in the construct.
  • Sense and antisense constructs have been widely used to modulate gene expression in plants. More recently, it has been shown that the delivery of RNAs with potential to form duplexes is a particularly efficient strategy for generating post-transcriptional gene silencing in transgenic plants (Waterhouse et al., 1998; Smith et al., 2000).
  • Transformation of the target wheat cells, or cells of other plants, using these constructs is effected using methods known in the art, such as transformation with Agrobacterium tumefaciens. Once transgenic plants are obtained, they are assessed for the effects of the transgenes on BE IIa and BE IIb expression. For example, in both maize and potato it has been shown that crossing BE II mutations or BE II transgenes into BE I-deficient backgrounds greatly increases amylose content. Wheat BE I null lines, identified using the methods described in WO99/14314, provide a ready source of BE I-deficient genetic material into which BE IIa and BE IIb transgenics can be crossed, in order to extend further the range of starches which can be produced.
  • Sense, antisense and duplex constructs of SBE IIa and SBE IIb were generated in the vector pDV03000 (Biogemma Ltd, UK) which carries the high molecular weight gluten promoter (pHMWG) and the Nopaline synthase (Nos) terminator. These constructs are schematically represented in FIGS. 25, 26 and 27. The Biogemma vectors are based on the well-known plasmid pBR322, and comprise a number of restriction sites, as illustrated in FIGS. 25 and 26, for incorporation of desired DNA sequences. The entire desired DNA, plus the promoter and terminator sequences referred to above, can then be excised as a Xho fragment and cloned into a suitable vector, such as Agrobacterium tumefaciens. Those skilled in the art will be aware of other suitable vectors which could be used.
  • SHE IIa Constructs
  • A sense construct of SB IIa was prepared by inserting a 2143 bp fragment of SBE IIa coding sequence in the sense orientation at the EcoR1/Sma1 site of pDV03000. An SBE IIa antisense construct was prepared by inserting 1913 bp of SBE IIa coding sequence in the antisense orientation at the EcoR1/BamH1 site of pDV03000. This is also illustrated in FIG. 25.
  • SBE IIb Constructs
  • A sense construct of SBE IIb was generated by inserting a 1008 bp fragment of the SBE IIb coding sequence in the sense orientation at the EcoR1/Sma1 site of pDV03000. An antisense SBE IIb construct was prepared by inserting a 955 bp sequence of the coding region for SBE IIb at the BamH1/Pst1 site of pDV03000 in the antisense orientation. This is illustrated in FIG. 26.
  • Duplex Constructs
  • A schematic model of a duplex construct is set out in FIG. 27. The duplex construct was prepared using the following protocol, in which all the amplification steps were performed using PCR under conventional conditions.
  • SBE IIa Duplex
  • 1) a 468 bp sequence of SBE IIa, which includes the whole of exons 1 and 2 and part of exon 3, with EcoR1 and Kpn1 restriction sites on either side, was amplified to obtain a first fragment (fragment 1);
  • 2) a second fragment, 512 bp in length, consisting of part of exons 3 and 4, and the whole of intron 3 of SBE IIa, with Kpn1 and Sac1 sites on either side, was amplified to provide fragment 2;
  • 3) a 528 bp fragment consisting of the complete exons 1, 2 and 3 of SBE IIa, with BamH1 and Sac1 sites on either side, was amplified to provide fragment 3;
  • 4) fragments 1, 2 and 3 were ligated so that the sequence of fragment 3 was ligated to fragment 2 in the antisense orientation to fragment 1.
  • SBE IIb Duplex
  • 1) a 471 bp sequence consisting of the whole of exons 1 and 2 and part of exon 3 of SBE IIb was amplified with EcoR1 and Kpn1 restriction sites on either side to generate fragment 1;
  • 2) a 589 bp fragment consisting of part of exons 3 and 4 and the whole of intron 3 of SBE IIb, with Kpn1 and Sac1 sites on either side, was amplified to provide fragment 2;
  • 3) a 528 bp fragment consisting of the complete exons 1, 2 and 3, with BamH1 and Sac1 sites on either side was amplified to provide fragment 3;
  • 4) fragments 1, 2 and 3 were ligated so that fragment 3 was in the antisense orientation to fragment 1 when ligated to fragment 2.
  • The start and end points of the sequences used for making the constructs were as follows:
  • a) SBE IIa Sense Construct
    • Start: 461 bp of Sbe 9 (SBE IIa) cDNA
    • End: 2603 bp of Sbe 9 (SBE IIa) cDNA
    b) SBE IIa Anti-Sense Construct
    • Start: 691 bp of Sbe 9 (SBE IIa) cDNA
    • End: 2603 bp of Sbe 9 (SBE IIa) cDNA
  • This fragment was ligated in the anti-sense orientation.
  • c) SBE IIb Sense Construct
    • Start: 85 bp of SBE IIb cDNA
    • End: 1085 bp of SBE IIb cDNA
    d) SBE IIb Anti-Sense Construct
    • Start: 153 bp of SBE IIb cDNA
    • End: 1085 bp of SBe IIb cDNA
  • This fragment was ligated in the anti-sense orientation.
  • e) SBE IIa Duplex Construct i) Fragment 1
  • Full exon 1: 1151 bp-1336 bp of SBE IIa genomic sequence
  • Full exon 2: 1664 bp-1761 bp of SBE IIa genomic sequence
  • Partial exon 3: 2038 bp-2219 bp of SBE IIa genomic sequence
  • This fragment had an EcoR1 site (GAATTC) introduced at the start of the exon 1 sequence and a Kpn1 site (GGTACC) introduced at the end of the partial exon 3 sequence.
  • ii) Fragment 2
  • Partial exon 3: 2220 bp-2279 bp of SBE IIa genomic sequence
  • Full intron 3: 2280 bp-2680 bp of SBE IIa genomic sequence
  • Partial exon 4: 2681 bp-2731 bp of SBE IIa genomic sequence
  • This fragment had a Kpn1 site (GGTACC) introduced at the start of the partial exon 3 and a Sac1 site (GAGCTC) introduced at the end of the partial exon 4 sequence.
  • iii) Fragment 3
  • Full exon 1: 1151 bp-1336 bp of SBE IIa genomic sequence
  • Full exon 2: 1664 bp-1761 bp of SBE IIa genomic sequence
  • Full exon 3: 2038 bp-2279 bp of SBE IIa genomic sequence
  • This fragment had a BamH1 site (GGATCC) introduced at the start of the complete exon 1 sequence and a Sac1 site (GAGCTC) introduced at the end of the complete exon 3 sequence.
  • f) SBE IIb Duplex Construct i) Fragment 1
  • Full exon 1: 489 bp-640 bp of SBE IIb genomic sequence
  • Full exon 2: 789 bp-934 bp of SBE IIb genomic sequence
  • Partial exon 3: 1598 bp-1770 bp of SBE IIb genomic sequence
  • This fragment had an EcoR1 site (GAATTC) introduced at the start of exon 1 and a Kpn1 site (GGTACC) introduced at the end of the partial exon 3 sequence.
  • ii) Fragment 2
  • Partial exon 3: 1771 bp-1827 bp of SBE IIb genomic sequence
  • Full intron 3: 1828 bp-2292 bp of SBE IIb genomic sequence
  • Partial exon 4: 2293 bp-2359 bp of SBE IIb genomic sequence
  • This fragment had a Kpn1 site (GGTACC) introduced at the start of the partial exon 3 sequence and a Sac1 site (GAGCTC) introduced at the end of the partial exon 4 sequence.
  • iii) Fragment 3
  • Full exon 1: 489 bp-640 bp of SBE IIb genomic sequence
  • Full exon 2: 789 bp-934 bp of SBE IIb genomic sequence
  • Full exon 3: 1598 bp-1827 bp of SBE IIb genomic sequence
  • This fragment had a BamH1 site (GGATCC) introduced at the start of exon 1 and a Sac1 site (GAGCTC) introduced at the end of exon 3.
  • The SBE IIa and SBE IIb duplexes thus formed were respectively inserted at the EcoR1/BamH1 site of pDV03000.
  • Samples of λ phage clones G5 and G9 have been deposited in the Australian Government Analytical Laboratories, acting as an International Depository Authority under the Budapest Treaty on 20 Feb. 2001, under accession numbers NM01/19255 and NM01/19256 respectively.
  • It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.
  • References cited herein are listed on the following pages, and are incorporated herein by this reference.
  • REFERENCES
    • Ali, S., Holloway B., and Taylor W. C., W. C. 2000 Plant Molecular Biology Report 18 123-132.
    • Baba, T., K. Kimura, K. Mizuno, H. Etoh, Y. Ishida, O. Shida, and Y. Arai. 1991. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Bioc Biop R 181: 87-94.
    • Baecker P A, Greenberg E, Preiss J (1986). Biosynthesis of the bacterial glucan: primary structure of Escherichia coli 1,4 alpha D glucan 6-alpha-D-(1,4 alpha-D-glucano)-transferase as deduced from the nucleotide sequence of the glgB gene. J. Biol. Chem. 261, 8738-8743.
    • Baga, M., A. Repellin, T. Demeke, K. Caswell, N. Leung, E. S. M. Abdel-aal, P. Hucl, and R. N. Chibbar. 1999. Wheat starch modification through biotechnology. STARCH-STARKE 51: 111-116.
    • Bhattacharyya, M., A. M. Smith, T. H. N. Ellis, C. Hedley, and C. Martin. 1990. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60: 115-122.
    • Boyer, C. D., P. A. Damewood, and E. K. G. Simpson. 1980. Effect of gene dosage at high amylose loci on the properties of the amylopectin fractions of the starches. Starch 32: 217-222.
    • Boyer, C. D. and J. Preiss. 1981. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiology 67: 1141-1145.
    • Burton, R. A., J. D. Bewley, A. M. Smith, M. K. Bhattacharyya, H. Tatge, S. Ring, V. Bull, W. D. O. Hamilton, and C. Martin. 1995. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 7: 3-15.
    • Cangiano G, La Volpe A, Poulsen P, Kreiberg J D (1993) Starch branching enzyme cDNA from Solanum tuberosum. Plant Physiol 102: 1053-1054.
    • Cao, H. P., J. Imparl-Radosevich, H. P. Guan, P. L. Keeling, M. G. James, and A. M. Myers. 1999. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiology 120: 205-215.
    • Denyer, K., C. M. Hylton, C. F. Jenner, and A. M. Smith. 1995. Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196: 256-265.
    • Devereaux, J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387-395
    • Filpse, E., L. Suurs, and R. G. F. Visser. 1996. Introduction of sense and antisense cDNA for branching enzyme in the amylose-free potato mutant leads to physico-chemical changes in the starch. Planta 198: 340.
    • Fisher, D. K., M. Gao, K. N. Kim, C. D. Boyer, and M. J. Guiltinan. 1996. Two closely related cDNAs encoding starch branching enzyme from Arabidopsis thaliana. Plant Mol Biol 30: 97-108.
    • Fisher, D. K., M. Gao, K.-N. Kim, C. D. Boyer, and M. J. Guiltinan. 1996. Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiology 110: 611-619.
    • Fisher, D. K., C. D. Boyer, and L. C. Hannah. 1993. Starch branching enzyme II from maize endosperm. Plant Physiology 102: 1045-1046.
    • Gao, M., D. K. Fisher, K. N. Kim, J. C. Shannon, and M. J. Guiltinan. 1996. Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol Biol 30: 1223-1232.
    • Gao, M., J. Wanat, P. S. Stinard, M. G. James, and A. M. Myers. 1998. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10: 399-412.
    • Gao, M., D. K. Fisher, K. N. Kim, J. C. Shannon, and M. J. Guiltinan. 1997. Independent genetic control of maize starch-branching enzymes IIa and IIb—Isolation and characterization of a Sbe2a cDNA. Plant Physiology 114: 69-78.
    • Higgins T J V, Zwar J A, Jacobsen J V (1976) Gibberellic acid enhances the level of translatable mRNA for a amylase in barley aleurone layers. Nature 260: 166-168.
    • Jähne A., Lazzeri P. A. and Lörz H. (1991) Regeneration of fertile plants from protoplasts derived from embryonic cell suspensions of barley (Hordeum vulgare L.). Plant Cell Reports 10, 1-6.
    • Jobling, S. A., G. P. Schwan, R. J. Westcott, C. M. Sidebottom, M. Debet, M. J. Gidley, R. Jeffcoat, and R. Safford. 1999. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J 18: 163-171.
    • Kawasaki, T., K. Mizuno, T. Baba, and H. Shimada. 1993. Molecular analysis of the gene encoding a rice starch branching enzyme. Molecular and General Genetics 237: 10-16.
    • Khoshnoodi, J., A. Blennow, B. Ek, L. Rask, and H. Larsson. 1996. The multiple forms of starch-branching enzyme I in Solanum tuberosum. Eur J Biochem 242: 148-155.
    • Kiel J A K W, Boels J M, Beldman G, Venema G. (1992). The glgB gene from the thermophile Bacillus caldolyticus encodes a thermolabile branching enzyme. DNA Seq 3, 221-232.
    • Kim, K. N., D. K. Fisher, M. Gao, and M. J. Guiltinan. 1998. Genomic organization and promoter activity of the maize starch branching enzyme I gene. Gene 216: 233-243.
    • Kim, K. N., D. K. Fisher, M. Gao, and M. J. Guiltinan. 1998. Molecular cloning and characterization of the amylose-extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol 38: 945-956.
    • Lazzeri, P. A., Brettschneider, R., Luhsrs, R., and Lorz. H. Theor. Appl. Genet. 1991, 81, 437-444.
    • Lagudah E S, Appels R, McNeil D (1991) The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 34: 387-395.
    • Li, Z., S. Rahman, B. Kosar-Hashemi, G. Mouille, R. Appels, and M. K. Morell. 1999. Cloning and characterization of a gene encoding wheat starch synthase I. Theor Appl Genet 98: 1208-1216.
    • Li, Z. Y., X. S. Chu, G. Mouille, L. L. Yan, B. Kosar-Hashemi, S. Hey, J. Napier, P. Shewry, B. Clarke, R. Appels, M. K. Morell, and S. Rahman. 1999. The localization and expression of the class II starch synthases of wheat. Plant physiology. 120: 1147-1155.
    • Maniatis T, Fritsch E F, Maniatis J (1982) Molecular cloning. A Laboratory Manual. New York. Cold Spring Harbor Laboratory.
    • Matsumoto, A., T. Nakajima, and K. Matsuda. 1990. A kinetic study of the interaction between glycogen and Neurospora crassa branching enzyme. J Biochem 107: 123-126.
    • Mizuno, K., T. Kawasaki, H. Shimada, H. Satoh, E. Kobayashi, S. Okumura, Y. Arai, and T. Baba. 1993. Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem 268: 19084-19091.
    • Morell, M. K., A. Blennow, B. Kosar-Hashemi, and M. S. Samuel. 1997. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiology 113: 201-208.
    • Nair, R. B., M. Baga, G. J. Scoles, K. K. Kartha, and R. N. Chibbar. 1997. Isolation, characterization and expression analysis of a starch branching enzyme II cDNA from wheat. Plant Science 122: 153-163.
    • Rahman, S., S. Abrahams, D. Abbott, Y. Mukai, M. Samuel, M. Morell, and R. Appels. 1997. A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome 40: 465-474.
    • Rahman, S., Z. Li, S. Abrahams, D. Abbott, R. Appels, and M. K. Morell. 1999. Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. Theor Appl Genet 98: 156-163.
    • Rahman, S., B. Kosar-Hashemi, M. S. Samuel, A. Hill, D. C. Abbott, J. H. Skerritt, J. Preiss, R. Appels, and M. K. Morell. 1995. The major proteins of wheat endosperm starch granules. Aust J Plant Phys 22: 793-803.
    • Safford, R., S. A. Jobling, C. M. Sidebottom, R. J. Westcott, D. Cooke, K. J. Tober, B. H. Strongitharm, A. L. Russell, and M. J. Gidley. 1998. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydrate polymers 35: 155-168.
    • Sathish, P., C. X. Sun, A. Deiber, C. Jansson, and C. X. Sun. Cloning and anti-sense RNA constructs of a starch branching enzyme gene from barley endosperm. Mathis, P. 313-316. 1995. Photosynthesis: from light to biosphere. Volume V. Proceedings of the Xth International Photosynthesis Congress, Montpellier, France, 20-25 Aug. 1995.
    • Schondelmaier, J., A. Jacobi, G. Fischbeck, and A. Jahoor. 1992. Genetical Studies on the mode of inheritance and localization of the amo1 (High Amylose) gene in barley. Plant Breeding 109: 274-280.
    • Smith, N. A., Singh S. P., Wang M. B., Stoutjesdijk P. A., Green A. G., Waterhouse P. M. (2000) Nature 407, 319-420.
    • Sun, C. X., P. Sathish, B. Ek, A. Deiber, C. Jansson, and C. X. Sun. 1996. Demonstration of in vitro starch branching enzyme activity for a 51/50-kDa polypeptide isolated from developing barley (Hordeum vulgare) caryopses. Physiologia. Plantarum. 96: 474-483.
    • Sun, C. X., P. Sathish, S. Ahlandsberg, A. Dieber, C. Jansson, and C. X. Sun. 1997. Identification of four starch-branching enzymes in barley endosperm: partial purification of forms I, IIa and IIb. New Phytologist. 137: 215-222.
    • Sun, C. X., P. Sathish, S. Ahlandsberg, C. Jansson, and C. X. Sun. 1998. The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiology. 118: 37-49.
    • Takaoka, M., S. Watanabe, H. Sassa, M. Yamamori, T. Nakamura, T. Sasakuma, and H. Hirano. 1997. Structural characterization of high molecular weight starch granule-bound proteins in wheat (Triticum aestivum L). J. Agric. Food Chem. 45: 2929-2934.
    • Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang. M, Thornton, S. and Brettel, R. 1997, The Plant Journal, 11, 1369-1376.
    • Wan Y., and Lemaux, P. G. 1994, Plant Physiology. 104, 37-48.
  • Wirtzens, B, Brettel R I S, Murray F., McElroy D, Li Z, Dennis E S. (1998) Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust. J. Plant. Physiol. 25, 39-44.
    • Waterhouse P. M., Graham M. W., Wang M. B. (1998). Virus resistance and gene silencing can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA. 95, 13959-13964.
    • Yamamori, M. and T. R. Endo. 1996. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet 93: 275-281.

Claims (21)

1-52. (canceled)
53. Wheat grain comprising a null allele of a gene on a long arm of chromosome 2 encoding wheat starch branching enzyme IIb (BEIIb), in combination with one or more null alleles of genes which encode starch branching enzyme IIa (BEIIa), granule bound starch synthase (GBSS), starch synthase II (SSII), or starch branching enzyme I (BEI).
54. The wheat grain of claim 53, wherein the gene encoding BEIIb is a wSBEII gene on a long arm of chromosome 2D.
55. The wheat grain of claim 53, wherein the gene encoding BEIIb corresponds to the partial BEIIb gene present on λ phage clone G5, wherein a sample of G5 has been deposited with the Australian Government Analytical Laboratories under Accession No. NM01/19255.
56. The wheat grain of claim 54, wherein the wSBEII gene comprises introns of the following sizes: intron 1, 148 base pairs; intron 2, 663 base pairs; intron 3, 465 base pairs; intron 4, 74 base pairs; intron 5, 181 base pairs; intron 6, 442 base pairs; intron 7, 79 base pairs; and intron 8, 178 base pairs.
57. The wheat grain of claim 53, wherein the gene encoding BEIIb encodes an RNA corresponding to a cDNA having a nucleotide sequence as set forth in SEQ ID NO: 6.
58. The wheat grain of claim 53, further comprising a null allele of a second gene encoding BEIIb.
59. The wheat grain of claim 53, wherein the grain of the plant comprises an altered amylose-to-amylopectin ratio.
60. The wheat grain of claim 54, further comprising a null allele of a second gene encoding BEIIb.
61. The wheat grain of claim 53, comprising more than one null alleles of genes which encodes BEIIa.
62. The wheat grain of claim 53, which is whole grain.
63. Wheat flour comprising a null allele of a gene on a long arm of chromosome 2 encoding wheat starch branching enzyme IIb (BEIIb), in combination with one or more null alleles of genes which encode starch branching enzyme IIa (BEIIa), granule bound starch synthase (GBSS), starch synthase II (SSII), or starch branching enzyme I (BEI).
64. A food product comprising wheat grain or wheat flour, wherein the wheat grain or wheat flour comprises a null allele of a gene on a long arm of chromosome 2 encoding wheat starch branching enzyme IIb (BEIIb), in combination with one or more null alleles of genes which encode starch branching enzyme IIa (BEIIa), granule bound starch synthase (GBSS), starch synthase II (SSII), or starch branching enzyme I (BEI).
65. The food product of claim 64, which is selected from the group consisting of breads, pasta, noodles, breakfast cereals, snack foods, cakes, pastries, foods containing flour and starch-based sauces.
66. A process of preparing a food product, comprising
(i) obtaining wheat grain or wheat flour, wherein the wheat grain or wheat flour comprises a null allele of a gene on a long arm of chromosome 2 encoding wheat starch branching enzyme IIb (BEIIb), in combination with one or more null alleles of genes which encode starch branching enzyme IIa (BEIIa), granule bound starch synthase (GBSS), starch synthase II (SSII), or starch branching enzyme I (BEI), and
(ii) processing the wheat grain or wheat flour to prepare the food product.
67. The process of claim 66, wherein the food product is selected from the group consisting of breads, pasta, noodles, breakfast cereals, snack foods, cakes, pastries, foods containing flour and starch-based sauces.
68. A process of preparing a product, comprising (i) obtaining wheat grain or wheat flour, wherein the wheat grain or wheat flour comprises a null allele of a gene on a long arm of chromosome 2 encoding wheat starch branching enzyme IIb (BEIIb), in combination with one or more null alleles of genes which encode starch branching enzyme IIa (BEIIa), granule bound starch synthase (GBSS), starch synthase II (SSII), or starch branching enzyme I (BEI),
(ii) isolating starch from the wheat grain or wheat flour, and
(iii) preparing the product from the starch.
69. The process of claim 68, wherein the product is a food product.
70. The process of claim 69, wherein the food product is selected from the group consisting of breads, pasta, noodles, breakfast cereals, snack foods, cakes, pastries, foods containing flour and starch-based sauces.
71. The process of claim 68, wherein the product is a non-food product.
72. The process of claim 71, wherein the non-food product is selected from the group consisting of films, coatings, adhesives, building materials, disposable goods and packaging materials.
US12/707,437 2000-02-21 2010-02-17 Starch branching enzyme Abandoned US20110010807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/707,437 US20110010807A1 (en) 2000-02-21 2010-02-17 Starch branching enzyme

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AUPQ5742 2000-02-21
AUPQ5742A AUPQ574200A0 (en) 2000-02-21 2000-02-21 Starch branching enzyme
PCT/AU2001/000175 WO2001062934A1 (en) 2000-02-21 2001-02-21 Starch branching enzyme
US10/204,347 US7667114B2 (en) 2000-02-21 2001-02-21 Starch branching enzyme
US12/707,437 US20110010807A1 (en) 2000-02-21 2010-02-17 Starch branching enzyme

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/AU2001/000175 Division WO2001062934A1 (en) 2000-02-21 2001-02-21 Starch branching enzyme
US10/204,347 Division US7667114B2 (en) 2000-02-21 2001-02-21 Starch branching enzyme

Publications (1)

Publication Number Publication Date
US20110010807A1 true US20110010807A1 (en) 2011-01-13

Family

ID=3819853

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/204,347 Active 2024-08-15 US7667114B2 (en) 2000-02-21 2001-02-21 Starch branching enzyme
US12/707,437 Abandoned US20110010807A1 (en) 2000-02-21 2010-02-17 Starch branching enzyme

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/204,347 Active 2024-08-15 US7667114B2 (en) 2000-02-21 2001-02-21 Starch branching enzyme

Country Status (8)

Country Link
US (2) US7667114B2 (en)
EP (1) EP1263961B1 (en)
JP (1) JP2003523773A (en)
AU (3) AUPQ574200A0 (en)
CA (1) CA2400710C (en)
ES (1) ES2433471T3 (en)
NZ (1) NZ520904A (en)
WO (1) WO2001062934A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286186A1 (en) * 2004-12-30 2006-12-21 Bird Anthony R Method and means for improving bowel health
US20100330253A1 (en) * 2000-11-09 2010-12-30 Commonwealth Scientific And Industrial Research Organisation Barely with reduced SSII activity and starch and starch containing products with a reduced amylopectin content
US20110059225A1 (en) * 2003-10-27 2011-03-10 Commonwealth Scientific And Industrial Research Org. Rice and products thereof having starch with an increased proportion of amylose
US20110070352A1 (en) * 2003-06-30 2011-03-24 Commonwealth Scientific And Industrial Research Organisation Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom
US20110212916A1 (en) * 2004-12-30 2011-09-01 Commonwealth Scientific And Industrial Research Organisation Method and means for improving bowel health
US9060533B2 (en) 2010-11-04 2015-06-23 Arista Cereal Technologies Pty Limited High amylose wheat
US9357722B2 (en) 2011-11-04 2016-06-07 Arista Cereal Technologies Pty Limited High amylose wheat-II
US20170036248A1 (en) * 2015-08-06 2017-02-09 0959690 B.C. LTD. dba MAT PROCESSING SYSTEMS Mat cleaning and drying apparatus and method
US9752157B2 (en) 2008-07-17 2017-09-05 Commonwealth Scientific And Industrial Research Organisation High fructan cereal plants
US9826764B2 (en) 2011-02-03 2017-11-28 Commonwealth Scientific And Industrial Research Organisation Production of food and beverage products from barley grain
US10100324B2 (en) 2007-11-27 2018-10-16 Commonwealth Scientific And Industrial Research Organisation Plants with modified starch metabolism
US10154632B2 (en) 2009-07-30 2018-12-18 Commonwealth Scientific And Industrial Research Organisation Barley and uses thereof
US10246716B2 (en) 2011-10-04 2019-04-02 Arcadia Biosciences, Inc. Wheat with increased resistant starch levels

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ005299A0 (en) 1999-04-29 1999-05-27 Commonwealth Scientific And Industrial Research Organisation Novel genes encoding wheat starch synthases and uses therefor
WO2003023024A1 (en) * 2001-09-10 2003-03-20 Japan Science And Technology Agency Starch synthases
AUPS219802A0 (en) 2002-05-09 2002-06-06 Commonwealth Scientific And Industrial Research Organisation Barley with altered branching enzyme activity and starch and starch containing products with a reduced amylopectin content
JP5638736B2 (en) * 2004-12-30 2014-12-10 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Methods and means for improving intestinal health
CA2693630C (en) 2006-07-14 2021-08-31 Commonwealth Scientific And Industrial Research Organisation Altering the fatty acid composition of rice
CN102202498B (en) 2008-07-21 2016-09-07 澳大利亚联邦科学与工业研究组织 The Oleum Gossypii semen of improvement and application
AU2009273755A1 (en) * 2008-07-21 2010-01-28 Commonwealth Scientific And Industrial Research Organisation Improved vegetable oils and uses therefor
US10323209B2 (en) 2012-04-25 2019-06-18 Commonwealth Scientific And Industrial Research Organisation High oleic acid oils
JP6882160B2 (en) 2014-07-07 2021-06-02 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション The process of manufacturing industrial products from plant lipids
BR112019004530A2 (en) 2016-09-02 2019-10-22 Commw Scient Ind Res Org plants with modified traits

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866793A (en) * 1996-06-03 1999-02-02 National Research Council Of Canada Promoter for expressing foreign genes in monocotyledonous plants
US6730825B1 (en) * 1998-09-10 2004-05-04 Monsanto Uk Ltd. Isoforms of starch branching enzyme II (SBE-IIa and SBE-IIb) from wheat
US6916976B1 (en) * 1997-09-12 2005-07-12 Commonwealth Scientific & Industrial Research Organisation Regulation of gene expression in plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1684697A (en) 1995-12-20 1997-07-14 E.I. Du Pont De Nemours And Company Novel starches via modification of expression of starch biosynthetic enzyme genes
SE509968C2 (en) * 1997-02-14 1999-03-29 Ericsson Telefon Ab L M Variable amplifier optical amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866793A (en) * 1996-06-03 1999-02-02 National Research Council Of Canada Promoter for expressing foreign genes in monocotyledonous plants
US6916976B1 (en) * 1997-09-12 2005-07-12 Commonwealth Scientific & Industrial Research Organisation Regulation of gene expression in plants
US6730825B1 (en) * 1998-09-10 2004-05-04 Monsanto Uk Ltd. Isoforms of starch branching enzyme II (SBE-IIa and SBE-IIb) from wheat

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330253A1 (en) * 2000-11-09 2010-12-30 Commonwealth Scientific And Industrial Research Organisation Barely with reduced SSII activity and starch and starch containing products with a reduced amylopectin content
US8178759B2 (en) 2000-11-09 2012-05-15 Commonwealth Scientific And Industrial Research Organisation Barely with reduced SSII activity and starch and starch containing products with a reduced amylopectin content
US8115087B2 (en) 2003-06-30 2012-02-14 Commonwealth Scientific And Industrial Research Organisation Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom
US8829315B2 (en) 2003-06-30 2014-09-09 Commonwealth Scientific And Industrial Research Organisation Wheat with altered branching enzyme activity and starch containing products derived therefrom
US20110070352A1 (en) * 2003-06-30 2011-03-24 Commonwealth Scientific And Industrial Research Organisation Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom
US9212351B2 (en) 2003-10-27 2015-12-15 Commonwealth Scientific And Industrial Research Organisation Rice and products thereof having starch with an increased proportion of amylose
US8188336B2 (en) 2003-10-27 2012-05-29 Commonwealth Scientific And Industrial Research Organisation Rice and products thereof having starch with an increased proportion of amylose
US20110059225A1 (en) * 2003-10-27 2011-03-10 Commonwealth Scientific And Industrial Research Org. Rice and products thereof having starch with an increased proportion of amylose
US20110212916A1 (en) * 2004-12-30 2011-09-01 Commonwealth Scientific And Industrial Research Organisation Method and means for improving bowel health
US7993686B2 (en) 2004-12-30 2011-08-09 Commonwealth Scientific And Industrial Organisation Method and means for improving bowel health
US8501262B2 (en) 2004-12-30 2013-08-06 Commonwealth Scientific And Industrial Research Organisation Method and means for improving bowel health
US20060286186A1 (en) * 2004-12-30 2006-12-21 Bird Anthony R Method and means for improving bowel health
US10100324B2 (en) 2007-11-27 2018-10-16 Commonwealth Scientific And Industrial Research Organisation Plants with modified starch metabolism
US9752157B2 (en) 2008-07-17 2017-09-05 Commonwealth Scientific And Industrial Research Organisation High fructan cereal plants
US11111498B2 (en) 2008-07-17 2021-09-07 Commonwealth Scientific And Industrial Research Organisation High fructan cereal plants
US10154632B2 (en) 2009-07-30 2018-12-18 Commonwealth Scientific And Industrial Research Organisation Barley and uses thereof
US11026384B2 (en) 2009-07-30 2021-06-08 The Healthy Grain Pty Limited Barley and uses thereof
US11304432B2 (en) 2010-11-04 2022-04-19 Arista Cereal Technologies Pty Limited Food ingredients produced from high amylose wheat
US9585413B2 (en) 2010-11-04 2017-03-07 Arista Cereal Technology Pty Limited Food ingredients produced from high amylose wheat
US10750766B2 (en) 2010-11-04 2020-08-25 Arista Cereal Technologies Pty Limited Food ingredients produced from high amylose wheat
US9060533B2 (en) 2010-11-04 2015-06-23 Arista Cereal Technologies Pty Limited High amylose wheat
US11266171B2 (en) 2011-02-03 2022-03-08 The Healthy Grain Pty Limited Production of food and beverage products from barley grain
US9826764B2 (en) 2011-02-03 2017-11-28 Commonwealth Scientific And Industrial Research Organisation Production of food and beverage products from barley grain
US10212959B2 (en) 2011-02-03 2019-02-26 Commonwealth Scientific And Industrial Research Organisation Production of food and beverage products from barley grain
US10246716B2 (en) 2011-10-04 2019-04-02 Arcadia Biosciences, Inc. Wheat with increased resistant starch levels
US10934557B2 (en) 2011-10-04 2021-03-02 Arcadia Biosciences, Inc. Wheat with increased resistant starch levels
US10563217B2 (en) 2011-10-04 2020-02-18 Arcadia Biosciences, Inc. Wheat with increased resistant starch levels
US10246717B2 (en) 2011-10-04 2019-04-02 Arcadia Biosciences, Inc. Wheat with increased resistant starch levels
US11649464B2 (en) 2011-10-04 2023-05-16 Arcadia Biosciences, Inc. Wheat with increased resistant starch levels
US9357722B2 (en) 2011-11-04 2016-06-07 Arista Cereal Technologies Pty Limited High amylose wheat-II
US20170036248A1 (en) * 2015-08-06 2017-02-09 0959690 B.C. LTD. dba MAT PROCESSING SYSTEMS Mat cleaning and drying apparatus and method

Also Published As

Publication number Publication date
US7667114B2 (en) 2010-02-23
WO2001062934A1 (en) 2001-08-30
AUPQ574200A0 (en) 2000-03-16
AU2001235237B2 (en) 2007-02-08
CA2400710C (en) 2017-03-28
ES2433471T3 (en) 2013-12-11
AU3523701A (en) 2001-09-03
EP1263961A4 (en) 2004-12-08
EP1263961B1 (en) 2013-07-31
CA2400710A1 (en) 2001-08-30
NZ520904A (en) 2004-06-25
EP1263961A1 (en) 2002-12-11
JP2003523773A (en) 2003-08-12
US20050164178A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US20110010807A1 (en) Starch branching enzyme
CA2603919C (en) High-phosphate starch
US7465851B2 (en) Isoforms of starch branching enzyme II (SBE-IIa and SBE-IIb) from wheat
EP1012250B1 (en) Regulation of gene expression in plants
EP2310514B1 (en) Wheat starch and wheat flours and foodstuffs containing these wheat starch/wheat flours
Nakamura et al. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties
US7112718B2 (en) Transgenic plants synthesizing high amylose starch
US20040107461A1 (en) Glucan chain length domains
Li et al. Cloning and characterization of a gene encoding wheat starch synthase I
Kortstee et al. Expression of Escherichia coli branching enzyme in tubers of amylose‐free transgenic potato leads to an increased branching degree of the amylopectin
EP0719338A1 (en) Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom
PT1725667E (en) Plants with increased activity of multiple starch phosphorylating enzymes
JP2003523773A5 (en)
US7041484B1 (en) Starch branching enzymes
WO1995007355A1 (en) Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom
WO2001032886A2 (en) Starch branching enzymes
Morell et al. Starch biosynthesis in the small grained cereals: Wheat and barley
AU780523B2 (en) Novel genes encoding wheat starch synthases and uses therefor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION