US20110002813A1 - Analysis method, analysis device and production method therefor - Google Patents

Analysis method, analysis device and production method therefor Download PDF

Info

Publication number
US20110002813A1
US20110002813A1 US12/880,604 US88060410A US2011002813A1 US 20110002813 A1 US20110002813 A1 US 20110002813A1 US 88060410 A US88060410 A US 88060410A US 2011002813 A1 US2011002813 A1 US 2011002813A1
Authority
US
United States
Prior art keywords
light
wavelength
analyzing device
detection
reference board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/880,604
Inventor
Hideki Tanji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to US12/880,604 priority Critical patent/US20110002813A1/en
Publication of US20110002813A1 publication Critical patent/US20110002813A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates to a technique for analyzing the concentration of a specific component in a sample liquid.
  • An optical method is utilized to determine the quantity of a specific component in a sample liquid such as urine or blood.
  • a reaction system including a sample liquid and a coloring substance is irradiated with light, and amount of reflected light, transmitting light, or scattering light is measured as a response from the reaction system. The measured amount of light is compared with a predetermined calibration curve to calculate the concentration of the specific component.
  • a difference in the concentration of a specific component between different sample liquids needs to be reflected as a relatively large difference between measured amounts of light for providing a high resolution.
  • light selected to be irradiated onto the reaction system needs to have a wavelength which shows large light absorbance at the reaction system (more specifically, a reaction product between the specific component and the coloring reagent).
  • p-nitroaniline or p-nitrophenol may be used as a coloring substance which is irradiated with light having a wavelength of 450 nm to determine the concentration of GGT (gamma glutamyl transpeptidase), ALP (alkaline phosphatase), and Amy (amylase) based on the response from the coloring substance.
  • GGT gamma glutamyl transpeptidase
  • ALP alkaline phosphatase
  • Amy amylase
  • An example of wavelength selecting filter is an interference filter.
  • the interference filter utilizes interference occurring at a transparent thin film having a thickness nearly equal to a desired wavelength of light, for transmitting or reflecting a light component with the desired wavelength.
  • the transparent thin film may be formed by vapor deposition for example. Therefore, even if an attempt is made to produce thin films, there will be some degree of variations in selectable wavelength due to thickness variations of the product films. Improvement in measurement accuracy requires an interference filter having a reduced variation in selectable wavelength. As a result, interference filters having a large extent of errors cannot be used, which causes a problem that the production yield of interference filters reduces to result in a cost increase.
  • an example of light source for light irradiation is an LED which emits light having a temperature-dependent wavelength.
  • the wavelength of emitted light changes due to a rise of environmental measurement temperature or due to a temperature rise of the actuated LED itself.
  • Such a change in wavelength ranges to about ⁇ 10 nm of the peak wavelength.
  • FIGS. 10A-10C illustrate the results of simulation with respect to GGT, ALP, and Amy, taking the relationship between wavelength deviations from the wavelength setting and measurement errors when the measurement wavelength is set at 405 nm. As seen from the figures, the measurement error increases as the deviation from the wavelength setting increases, regardless of the concentration of the measured component.
  • An object of the present invention is to determine the quantity of a specific component in a sample liquid by an optical method with high accuracy, even if the wavelength of light irradiated onto a reaction system deviates from an intended wavelength.
  • a first aspect of the present invention provides an analyzing method which comprises: a first detection step for irradiating light onto a reaction system to detect a response from the reaction system as a first detection result, the reaction system including a sample liquid and a reagent; a second detection step for irradiating light onto a reference board to detect a response from the reference board as a second detection result, the response from the reference board being dependent on wavelength; and a calculation step for calculating a concentration of a specific component in the sample liquid based on the first and second detection results.
  • the calculation step includes selecting a most suitable calibration curve from a plurality of pre-created calibration curves based on the second detection result, and calculating the concentration of the specific component based on the selected calibration curve and the first detection result.
  • the calculation step may further include correcting the first detection result based on the second detection result, and calculating the concentration of the specific component based on the correction and the calibration curve.
  • the calculation step may include performing primary calculation of the concentration of the specific component, and obtaining a final calculated value by correcting the primary calculated value.
  • At least one of the responses in the first and second detection steps is detected as an amount of regular reflection light, transmitting light, or scattering reflection light, for example.
  • a second aspect of the present invention provides an analyzing device which comprises a light irradiator; a detector for detecting a first response from a reaction system under light irradiation from the light irradiator, the reaction system including a sample liquid and a reagent, the detector detecting a second response from a reference board under light irradiation from the light irradiator, the second response from the reference board being dependent on wavelength; and a calculator for calculating a concentration of a specific component in the sample liquid based on the first and second responses.
  • the analyzing device may further comprise a storage for storing a plurality of calibration curves each representing relationship between a first detection result corresponding to the first response and the concentration of the specific component, and a selector for selecting a most suitable calibration curve for calculation from the plurality of calibration curves based on a second detection result corresponding to the second response.
  • the calculator calculates the concentration of the specific component based on the calibration curve selected by the selector and the first detection result.
  • the calculator may correct the first detection result corresponding to the first response based on the second detection result corresponding to the second response, and then calculates the concentration of the specific component based on the correction.
  • the calculator may perform primary calculation of the concentration of the specific component based on the first detection result, and then calculates a final value by correcting the primary calculated value.
  • the analyzing device of the present invention may further include a controller for controlling timing for detection of the second response at the detector.
  • the controller may control the detector for detecting the second response before or after the detection of the first response.
  • the controller may control the detector for detecting the second response simultaneously with the detection of the first response.
  • the controller may also control the detector for detecting the second response upon start-up of the analyzing device.
  • the light irradiator may comprise a light source.
  • the light source include an LED and a halogen lamp.
  • the light irradiator may further include a filter, such as an interference filter or colored filter, for selecting the wavelength of emitted light.
  • At least one of the first and second responses may be detected as an amount of regular reflection light, transmitting light, or scattering reflection light.
  • a third aspect of the present invention provides a method of producing an analyzing device which comprises a light irradiator for irradiating light onto a reaction system which includes a sample liquid and a reagent, a detector for detecting a response from the reaction system under light irradiation, a calculator for calculating a concentration of a specific component in the sample liquid based on the detection at the detector, and a storage for storing information necessary for calculation as to the specific component.
  • the method comprises: a detection step for irradiating light from the light irradiator onto a reference board to detect a response from the reference board under light irradiation for determining a light emitting state of the light irradiator, the response from the reference board being dependent on wavelength; and a storage step for storing the light emitting state in the storage as information for use in calculation at the calculator.
  • the analyzing device production method may further comprise a calibration curve selecting step for selecting a calibration curve corresponding to the light emitting state, from a plurality of calibration curves representing relationship between the detection result at the detector and the concentration of the specific component, based on the detection in the detection step.
  • the storage step includes storage of the calibration curve selected in the calibration curve selecting step for use in calculation at the calculator.
  • the light emitting state is detected as a peak wavelength of emitted light in the detection step, and the peak wavelength is stored by the storage in the storage step.
  • the peak wavelength is stored by the storage in the storage step.
  • a plurality of calibration curves may be stored in the storage in advance, and a most suitable calibration curve may be selected with reference to the peak wavelength stored in the storage for use in calculation at the calculator.
  • the peak wavelength may be also used by the calculator to correct the calculated concentration, or to correct the detection result at the detector for calculating the concentration based on the corrected detection result.
  • the reference board used in the detection step may be incorporated in the analyzing device beforehand. Alternatively, the reference board may be prepared separately from the analyzing device.
  • FIG. 1 is a block diagram showing an analyzing device according to the present invention.
  • FIG. 2 is a graph illustrating concentration-absorbance relationship with respect to a plurality of measurement wavelengths.
  • FIG. 3 is a schematic diagram illustrating a detecting unit of the analyzing device shown in FIG. 1 .
  • FIG. 4 is a graph illustrating an example of relationship between the wavelength of irradiated light and the reflectivity of a reference board.
  • FIG. 5 is a flow chart illustrating the process for checking the measurement wavelength upon start-up of the analyzing device.
  • FIG. 6 is a flow chart illustrating the measurement wavelength checking process.
  • FIG. 7 is a flow chart illustrating concentration measurement at the analyzing device.
  • FIGS. 8A-8C are flow charts illustrating concentration measurement at the analyzing device.
  • FIG. 9 is a graph illustrating relationship between the measurement wavelength and the absorbance with respect to a specific component (GGT) at a plurality of concentrations.
  • FIGS. 10A-10C are graphs illustrating relationship between the measurement wavelength and the measurement error.
  • An analyzing device X shown in FIG. 1 includes a controller 1 , a storage 2 , a selector 3 , a calculator 4 , and a detecting unit 5 .
  • the controller 1 controls the elements 2 - 5 based on a control program stored in the storage 2 .
  • the storage 2 stores information which includes a plurality of calibration curves corresponding to various programs or measurement wavelengths, while also storing information used for correcting measured values and calculated values. As shown in FIG. 2 , the calibration curves represent the relationship between the light absorbance and the concentration of a specific component.
  • the information regarding the calibration curves is stored as mathematical formulas or tables. According to the present embodiment, a plurality of calibration curves are stored in the storage 2 in consideration of and in corresponding relationship to possible deviations of measurement wavelength.
  • the selector 3 shown in FIG. 1 selects a calibration curve, which best fits to the actual measurement wavelength, out of the calibration curves stored in the storage 2 based on the detection at the detecting unit 5 .
  • the calculator 4 performs calculation necessary for analyzing the specific component in the sample liquid based on the detection at the detecting unit 5 and on the calibration curve selected by the selector 3 .
  • the detecting unit 5 includes a light source 50 , a wavelength selecting filter 51 , a first and a second light-sensitive elements 52 , 53 , a reference board 54 , and a detection-calculator 55 .
  • the detecting unit is designed to support an analytical piece 56 supplied with a sample liquid.
  • the light source 50 is movable in directions A 1 and A 2 in the figure for light irradiation onto the reference board 54 and the analytical piece 56 .
  • the light source 50 may be an LED, for example.
  • the light source may be provided by another light emitting medium such as a halogen lamp.
  • the wavelength selecting filter 51 extracts a light component of a specific wavelength from the light rays emitted by the light source 50 , and is movable with the light source 50 in the directions A 1 and A 2 in the figure.
  • the wavelength selecting filter 51 may comprise an interference filter or a color filter, for example.
  • the analyzing device X is designed to test a plurality of items, use may be made of a plurality of wavelength selecting filters each having a different wavelength selectivity.
  • the light source and the wavelength selecting filter are not necessarily movable. Instead, plural sets of a light source and one or more wavelength selecting filters may be provided, or, a set of a light source and one or more wavelength selecting filters may be provided at a fixed position from which the light passing through the wavelength selecting filter is selectively guided to a plurality of portions utilizing optical fibers, for example. If the light source is able to emit light of a single wavelength, the wavelength selecting filter may be omitted.
  • the first light-sensitive element 52 receives light reflected by the reference board 54
  • the second light-sensitive element 53 receives light reflected by the analytical piece 56 .
  • the light-sensitive elements 52 , 53 may comprise photodiodes, for example.
  • the reference board 54 is so designed that the reflectivity at the surface of the reference board depends on the wavelength of light irradiated thereon. In other words, measurement of the reflectivity of light irradiated onto the reference board 54 enables measurement of the wavelength of light irradiated on the reference board 54 .
  • the detection-calculator 55 shown in FIG. 3 calculates the reflectivity or the wavelength of light irradiated onto the reference board 54 based on the amount of light received at the first light-sensitive element 52 , while also calculating the light absorbance at the analytical piece 56 based on the amount of light received at the second light-sensitive element 53 .
  • the detection-calculator 55 may be omitted and the calculator 4 may play the role of the calculation portion 55 .
  • Each of the controller 1 , storage 2 , selector 3 , calculator 4 , and detection-calculator 55 may be provided by one or a combination of CPU, ROM, and RAM. Alternatively, the above-described elements may be provided collectively by a single CPU connected to a plurality of memories.
  • checking of measurement wavelength need only be performed either upon power switch-on (start-up of the device) or upon concentration measurement. However, for purposes of the following description, checking of measurement wavelength is performed at both steps of switch-on and concentration measurement.
  • the checking of measurement wavelength is performed through the procedures shown in FIG. 6 .
  • the light source 50 is driven to emit light which passes through the wavelength selecting filter 51 for irradiation onto the reference board 54 (S 20 ).
  • the irradiated light is reflected by the reference board 54 and received by the first light-sensitive element 52 where the amount of the reflected light is measured (S 21 ).
  • the measured amount of the reflected light is detected by the detection-calculator 55 .
  • the detection-calculator 55 calculates the reflectivity at the reference board 54 based on the amount of the reflected light (S 22 ).
  • the reflectivity at the surface of the reference board 54 has wavelength dependence.
  • the detection-calculator 55 determines the wavelength of the light irradiated onto the reference board 54 ; that is, the wavelength of light (measurement wavelength) to be later irradiated onto the analytical piece 56 (S 23 ).
  • the relationship between the reflectivity and wavelength is stored in the storage 2 beforehand, for example, so that the measurement wavelength is determined based on the relationship stored in the storage 2 and on the calculated reflectivity.
  • the analyzing device X is brought into a standby state (S 12 ) as shown in FIG. 5 , thereby finishing the start-up of the device.
  • Concentration measurement at the analyzing device X is performed through the procedures shown in FIGS. 7 and 8A .
  • the light source 50 is driven to emit light, and the light from the light source 50 is caused to pass through the wavelength selecting filter 51 for irradiation onto the analytical piece 56 (S 30 ).
  • the irradiated light is reflected by the analytical piece 56 and received by the second light-sensitive element 53 where the amount of the light is measured (S 31 ).
  • the measured amount of the reflected light is detected by the detection-calculator 55 , whereby the detection-calculator 55 calculates the absorbance at the analytical piece 56 based on the amount of the reflected light (S 32 ).
  • the detecting unit 5 checks the measurement wavelength (S 33 ).
  • the checking of the measurement wavelength is performed through the procedures similar to the ones described above with reference to FIG. 6 .
  • the checking of the measurement wavelength may be performed before or together with the absorbance calculation.
  • the selector 3 selects, among a plurality of calibration curves stored in the storage 2 , a calibration curve which best fits to the check result (S 34 ).
  • the calculator 4 calculates the concentration based on the calculated absorbance and on the calibration curve selected by the selector 3 (S 35 ).
  • steps S 34 and S 35 shown in FIG. 8A may be replaced with steps S 44 and S 45 shown in FIG. 8B or with steps S 54 and S 55 shown in FIG. 8C . It should be noted that, in the examples shown in FIGS. 8B and 8C , only one calibration curve is stored in the storage 4 with respect to each of the measurement items.
  • the absorbance calculated at the detection-calculator 55 is corrected based on a predetermined wavelength checked by the detecting unit 5 (S 44 ), and then the concentration is calculated based on the corrected absorbance and on the calibration curve stored in the storage 4 (S 45 ).
  • the concentration is calculated based on the absorbance calculated at the detection-calculator 55 and on the calibration curve stored in the storage 4 (S 54 ), and then the calculated concentration is corrected based on the measurement wavelength checked by the detecting unit 5 (S 55 ).
  • the measurement wavelength is checked at least either upon start-up of the analyzing device X or upon concentration measurement. Therefore, even if an actual measurement wavelength deviates from an expected measurement wavelength due to deterioration of e.g. the wavelength selecting filter or the light source, or due to production errors, such a deviation can be corrected for enabling concentration measurement with high accuracy.
  • the measurement wavelength is checked upon start-up of the analyzing device X, there is no need to perform such checking upon every concentration measurement, whereby the measuring time is not increased by the checking of measurement wavelength.
  • a correction can be made to account for fluctuations of measurement wavelength due to environmental factors, or, when LED is used as a light source, due to a temperature increase of LED which causes wavelength fluctuations, thereby enabling concentration measurement with high accuracy.
  • the measurement wavelength is checked based on reflected light from the reference board.
  • the measurement wavelength may also be checked based on light scattering from or transmitting through the reference board.
  • the absorbance at the analytical piece which is used for calculation of the concentration, may also be calculated based on scattering or transmitting light.
  • checking of measurement wavelength may be performed directly using the amount of the reflected light without calculating the reflectivity before calculating the measurement wavelength.
  • the concentration may be calculated by using the amount of light (response) from the analytical piece, instead of using the absorbance at the analytical piece.
  • the above-described checking of the measurement wavelength at the analyzing device may be performed before shipment of the analyzing device.
  • the checking of the measurement wavelength before shipment is performed after, at the earliest, assembling the detecting unit which includes the light source and the light-sensitive element.
  • the checking of the measurement wavelength may be performed after the entire analyzing device is made, or when the detecting unit is assembled for used.
  • such checking of the measurement wavelength is performed using the reference board, and the reference board may be incorporated in the detecting unit for checking the measurement wavelength after shipment of the analyzing device.
  • a reference board for such checking may be prepared separately for use in subsequently checking the measurement wavelength.
  • a calibration curve which best fits to the checked measurement wavelength is selected from a plurality of calibration curves corresponding to various measurement wavelengths, and the selected calibration curve may be stored in the storage of the analyzing device.
  • the plurality calibration curves may be stored in the storage beforehand, and a program is installed so that the selected calibration curve is used to perform calculation.
  • only the selected calibration curve may be stored in the storage. Selection of a calibration curve which fits to the measurement wavelength may be performed directly using the amount of reflected light from the reference board without calculating the measurement wavelength.
  • Information regarding the measurement wavelength may be stored in the storage based on the response from the irradiated reference board.
  • the analyzing device performs calculation at the calculator using the information regarding the measurement wavelength. Specifically, the analyzing device corrects the absorbance calculated by the detecting unit and then calculates the concentration based on the corrected absorbance, or calculates the concentration based on the absorbance and then corrects the calculated concentration.
  • checking of the measurement wavelength before shipment of the analyzing device removes the influences of production errors of the wavelength selecting filter or the light source in advance, thereby enabling to provide an analyzing device for calculating concentration with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Holo Graphy (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a technique for analyzing the concentration of a specific component in a sample liquid, such as a method for analyzing a sample. The analyzing method includes a first detection step for irradiating light from a light source (50) onto a reaction system to detect a response from the reaction system (56) as a first detection result. The reaction system contains a sample liquid and a reagent. The method also includes a second detection step for irradiating light onto a reference board (54) to detect a response from the reference board as a second detection result. The response from the reference board under light irradiation is dependent on wavelength. The method further includes a calculation step for calculating the concentration of the specific component in the sample liquid based on the first and second detection results.

Description

  • This application is a Division of U.S. Ser. No. 10/530,725, filed Jan. 27, 2006, which is a National Stage of PCT/JP2003/012849, filed Oct. 7, 2003, which applications are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a technique for analyzing the concentration of a specific component in a sample liquid.
  • BACKGROUND ART
  • An optical method is utilized to determine the quantity of a specific component in a sample liquid such as urine or blood. In this method, a reaction system including a sample liquid and a coloring substance is irradiated with light, and amount of reflected light, transmitting light, or scattering light is measured as a response from the reaction system. The measured amount of light is compared with a predetermined calibration curve to calculate the concentration of the specific component.
  • In an optical method, a difference in the concentration of a specific component between different sample liquids needs to be reflected as a relatively large difference between measured amounts of light for providing a high resolution. Thus, light selected to be irradiated onto the reaction system needs to have a wavelength which shows large light absorbance at the reaction system (more specifically, a reaction product between the specific component and the coloring reagent). For example, p-nitroaniline or p-nitrophenol may be used as a coloring substance which is irradiated with light having a wavelength of 450 nm to determine the concentration of GGT (gamma glutamyl transpeptidase), ALP (alkaline phosphatase), and Amy (amylase) based on the response from the coloring substance. For this purpose, light emitted from a light source is caused to pass through a wavelength selecting filter where a light component having a specific wavelength is extracted for irradiation onto the reaction system.
  • An example of wavelength selecting filter is an interference filter. The interference filter utilizes interference occurring at a transparent thin film having a thickness nearly equal to a desired wavelength of light, for transmitting or reflecting a light component with the desired wavelength. The transparent thin film may be formed by vapor deposition for example. Therefore, even if an attempt is made to produce thin films, there will be some degree of variations in selectable wavelength due to thickness variations of the product films. Improvement in measurement accuracy requires an interference filter having a reduced variation in selectable wavelength. As a result, interference filters having a large extent of errors cannot be used, which causes a problem that the production yield of interference filters reduces to result in a cost increase.
  • On the other hand, an example of light source for light irradiation is an LED which emits light having a temperature-dependent wavelength. Thus, the wavelength of emitted light changes due to a rise of environmental measurement temperature or due to a temperature rise of the actuated LED itself. Such a change in wavelength ranges to about ±10 nm of the peak wavelength.
  • The above-described variation or change in the peak wavelength affects the measured amount of light from the reaction system. As schematically shown in FIG. 9 with respect to GGT for example, even if the absorbance is constant at the reaction system, the calculation result largely varies as the measurement wavelength varies. Therefore, the measurement accuracy lowers due to irregularities of the measurement wavelength. This fact can be seen also from the simulation graph shown in FIG. 10.
  • FIGS. 10A-10C illustrate the results of simulation with respect to GGT, ALP, and Amy, taking the relationship between wavelength deviations from the wavelength setting and measurement errors when the measurement wavelength is set at 405 nm. As seen from the figures, the measurement error increases as the deviation from the wavelength setting increases, regardless of the concentration of the measured component.
  • DISCLOSURE OF THE INVENTION
  • An object of the present invention is to determine the quantity of a specific component in a sample liquid by an optical method with high accuracy, even if the wavelength of light irradiated onto a reaction system deviates from an intended wavelength.
  • A first aspect of the present invention provides an analyzing method which comprises: a first detection step for irradiating light onto a reaction system to detect a response from the reaction system as a first detection result, the reaction system including a sample liquid and a reagent; a second detection step for irradiating light onto a reference board to detect a response from the reference board as a second detection result, the response from the reference board being dependent on wavelength; and a calculation step for calculating a concentration of a specific component in the sample liquid based on the first and second detection results.
  • The calculation step includes selecting a most suitable calibration curve from a plurality of pre-created calibration curves based on the second detection result, and calculating the concentration of the specific component based on the selected calibration curve and the first detection result. The calculation step may further include correcting the first detection result based on the second detection result, and calculating the concentration of the specific component based on the correction and the calibration curve. Alternatively, the calculation step may include performing primary calculation of the concentration of the specific component, and obtaining a final calculated value by correcting the primary calculated value.
  • At least one of the responses in the first and second detection steps is detected as an amount of regular reflection light, transmitting light, or scattering reflection light, for example.
  • A second aspect of the present invention provides an analyzing device which comprises a light irradiator; a detector for detecting a first response from a reaction system under light irradiation from the light irradiator, the reaction system including a sample liquid and a reagent, the detector detecting a second response from a reference board under light irradiation from the light irradiator, the second response from the reference board being dependent on wavelength; and a calculator for calculating a concentration of a specific component in the sample liquid based on the first and second responses.
  • The analyzing device may further comprise a storage for storing a plurality of calibration curves each representing relationship between a first detection result corresponding to the first response and the concentration of the specific component, and a selector for selecting a most suitable calibration curve for calculation from the plurality of calibration curves based on a second detection result corresponding to the second response. The calculator calculates the concentration of the specific component based on the calibration curve selected by the selector and the first detection result.
  • The calculator may correct the first detection result corresponding to the first response based on the second detection result corresponding to the second response, and then calculates the concentration of the specific component based on the correction. The calculator may perform primary calculation of the concentration of the specific component based on the first detection result, and then calculates a final value by correcting the primary calculated value.
  • Preferably, the analyzing device of the present invention may further include a controller for controlling timing for detection of the second response at the detector. The controller may control the detector for detecting the second response before or after the detection of the first response. Of course, the controller may control the detector for detecting the second response simultaneously with the detection of the first response. The controller may also control the detector for detecting the second response upon start-up of the analyzing device.
  • The light irradiator may comprise a light source. Examples of the light source include an LED and a halogen lamp. The light irradiator may further include a filter, such as an interference filter or colored filter, for selecting the wavelength of emitted light.
  • At least one of the first and second responses may be detected as an amount of regular reflection light, transmitting light, or scattering reflection light.
  • A third aspect of the present invention provides a method of producing an analyzing device which comprises a light irradiator for irradiating light onto a reaction system which includes a sample liquid and a reagent, a detector for detecting a response from the reaction system under light irradiation, a calculator for calculating a concentration of a specific component in the sample liquid based on the detection at the detector, and a storage for storing information necessary for calculation as to the specific component. The method comprises: a detection step for irradiating light from the light irradiator onto a reference board to detect a response from the reference board under light irradiation for determining a light emitting state of the light irradiator, the response from the reference board being dependent on wavelength; and a storage step for storing the light emitting state in the storage as information for use in calculation at the calculator.
  • The analyzing device production method may further comprise a calibration curve selecting step for selecting a calibration curve corresponding to the light emitting state, from a plurality of calibration curves representing relationship between the detection result at the detector and the concentration of the specific component, based on the detection in the detection step. In this case, the storage step includes storage of the calibration curve selected in the calibration curve selecting step for use in calculation at the calculator.
  • The light emitting state is detected as a peak wavelength of emitted light in the detection step, and the peak wavelength is stored by the storage in the storage step. In this case, a plurality of calibration curves may be stored in the storage in advance, and a most suitable calibration curve may be selected with reference to the peak wavelength stored in the storage for use in calculation at the calculator. The peak wavelength may be also used by the calculator to correct the calculated concentration, or to correct the detection result at the detector for calculating the concentration based on the corrected detection result.
  • The reference board used in the detection step may be incorporated in the analyzing device beforehand. Alternatively, the reference board may be prepared separately from the analyzing device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing an analyzing device according to the present invention.
  • FIG. 2 is a graph illustrating concentration-absorbance relationship with respect to a plurality of measurement wavelengths.
  • FIG. 3 is a schematic diagram illustrating a detecting unit of the analyzing device shown in FIG. 1.
  • FIG. 4 is a graph illustrating an example of relationship between the wavelength of irradiated light and the reflectivity of a reference board.
  • FIG. 5 is a flow chart illustrating the process for checking the measurement wavelength upon start-up of the analyzing device.
  • FIG. 6 is a flow chart illustrating the measurement wavelength checking process.
  • FIG. 7 is a flow chart illustrating concentration measurement at the analyzing device.
  • FIGS. 8A-8C are flow charts illustrating concentration measurement at the analyzing device.
  • FIG. 9 is a graph illustrating relationship between the measurement wavelength and the absorbance with respect to a specific component (GGT) at a plurality of concentrations.
  • FIGS. 10A-10C are graphs illustrating relationship between the measurement wavelength and the measurement error.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • An analyzing device X shown in FIG. 1 includes a controller 1, a storage 2, a selector 3, a calculator 4, and a detecting unit 5.
  • The controller 1 controls the elements 2-5 based on a control program stored in the storage 2.
  • The storage 2 stores information which includes a plurality of calibration curves corresponding to various programs or measurement wavelengths, while also storing information used for correcting measured values and calculated values. As shown in FIG. 2, the calibration curves represent the relationship between the light absorbance and the concentration of a specific component. The information regarding the calibration curves is stored as mathematical formulas or tables. According to the present embodiment, a plurality of calibration curves are stored in the storage 2 in consideration of and in corresponding relationship to possible deviations of measurement wavelength.
  • The selector 3 shown in FIG. 1 selects a calibration curve, which best fits to the actual measurement wavelength, out of the calibration curves stored in the storage 2 based on the detection at the detecting unit 5.
  • The calculator 4 performs calculation necessary for analyzing the specific component in the sample liquid based on the detection at the detecting unit 5 and on the calibration curve selected by the selector 3.
  • As shown in FIG. 3, the detecting unit 5 includes a light source 50, a wavelength selecting filter 51, a first and a second light- sensitive elements 52, 53, a reference board 54, and a detection-calculator 55. The detecting unit is designed to support an analytical piece 56 supplied with a sample liquid.
  • The light source 50 is movable in directions A1 and A2 in the figure for light irradiation onto the reference board 54 and the analytical piece 56. The light source 50 may be an LED, for example. Alternatively, the light source may be provided by another light emitting medium such as a halogen lamp.
  • The wavelength selecting filter 51 extracts a light component of a specific wavelength from the light rays emitted by the light source 50, and is movable with the light source 50 in the directions A1 and A2 in the figure. The wavelength selecting filter 51 may comprise an interference filter or a color filter, for example.
  • If the analyzing device X is designed to test a plurality of items, use may be made of a plurality of wavelength selecting filters each having a different wavelength selectivity. The light source and the wavelength selecting filter are not necessarily movable. Instead, plural sets of a light source and one or more wavelength selecting filters may be provided, or, a set of a light source and one or more wavelength selecting filters may be provided at a fixed position from which the light passing through the wavelength selecting filter is selectively guided to a plurality of portions utilizing optical fibers, for example. If the light source is able to emit light of a single wavelength, the wavelength selecting filter may be omitted.
  • The first light-sensitive element 52 receives light reflected by the reference board 54, whereas the second light-sensitive element 53 receives light reflected by the analytical piece 56. The light- sensitive elements 52, 53 may comprise photodiodes, for example.
  • As shown in FIG. 4, the reference board 54 is so designed that the reflectivity at the surface of the reference board depends on the wavelength of light irradiated thereon. In other words, measurement of the reflectivity of light irradiated onto the reference board 54 enables measurement of the wavelength of light irradiated on the reference board 54.
  • The detection-calculator 55 shown in FIG. 3 calculates the reflectivity or the wavelength of light irradiated onto the reference board 54 based on the amount of light received at the first light-sensitive element 52, while also calculating the light absorbance at the analytical piece 56 based on the amount of light received at the second light-sensitive element 53. However, the detection-calculator 55 may be omitted and the calculator 4 may play the role of the calculation portion 55.
  • Each of the controller 1, storage 2, selector 3, calculator 4, and detection-calculator 55 may be provided by one or a combination of CPU, ROM, and RAM. Alternatively, the above-described elements may be provided collectively by a single CPU connected to a plurality of memories.
  • Next, the function of the analyzing device X is described with reference to the flow charts shown in FIGS. 5-8 in addition to FIGS. 1-3. It should be noted that checking of measurement wavelength need only be performed either upon power switch-on (start-up of the device) or upon concentration measurement. However, for purposes of the following description, checking of measurement wavelength is performed at both steps of switch-on and concentration measurement.
  • As shown in FIG. 5, on start-up of the analyzing device X, determination is made on whether the analyzing device X is switched on or not (S10). If the device is switched on (S10: YES), the respective electrical circuits are started up for checking measurement wavelength (S11).
  • The checking of measurement wavelength is performed through the procedures shown in FIG. 6. First, the light source 50 is driven to emit light which passes through the wavelength selecting filter 51 for irradiation onto the reference board 54 (S20). The irradiated light is reflected by the reference board 54 and received by the first light-sensitive element 52 where the amount of the reflected light is measured (S21). The measured amount of the reflected light is detected by the detection-calculator 55. The detection-calculator 55 calculates the reflectivity at the reference board 54 based on the amount of the reflected light (S22).
  • As described above, the reflectivity at the surface of the reference board 54 has wavelength dependence. Thus, based on the reflectivity at the reference board 54, the detection-calculator 55 determines the wavelength of the light irradiated onto the reference board 54; that is, the wavelength of light (measurement wavelength) to be later irradiated onto the analytical piece 56 (S23). The relationship between the reflectivity and wavelength is stored in the storage 2 beforehand, for example, so that the measurement wavelength is determined based on the relationship stored in the storage 2 and on the calculated reflectivity. When the measurement wavelength is determined (S23), the analyzing device X is brought into a standby state (S12) as shown in FIG. 5, thereby finishing the start-up of the device.
  • Concentration measurement at the analyzing device X is performed through the procedures shown in FIGS. 7 and 8A.
  • As shown in FIG. 7, first, the light source 50 is driven to emit light, and the light from the light source 50 is caused to pass through the wavelength selecting filter 51 for irradiation onto the analytical piece 56 (S30). The irradiated light is reflected by the analytical piece 56 and received by the second light-sensitive element 53 where the amount of the light is measured (S31). The measured amount of the reflected light is detected by the detection-calculator 55, whereby the detection-calculator 55 calculates the absorbance at the analytical piece 56 based on the amount of the reflected light (S32).
  • Further, the detecting unit 5 checks the measurement wavelength (S33). The checking of the measurement wavelength is performed through the procedures similar to the ones described above with reference to FIG. 6. The checking of the measurement wavelength may be performed before or together with the absorbance calculation.
  • Next, as shown in FIG. 8A, based on the checked measurement wavelength, the selector 3 selects, among a plurality of calibration curves stored in the storage 2, a calibration curve which best fits to the check result (S34). The calculator 4 calculates the concentration based on the calculated absorbance and on the calibration curve selected by the selector 3 (S35).
  • In concentration measurement, the steps S34 and S35 shown in FIG. 8A may be replaced with steps S44 and S45 shown in FIG. 8B or with steps S54 and S55 shown in FIG. 8C. It should be noted that, in the examples shown in FIGS. 8B and 8C, only one calibration curve is stored in the storage 4 with respect to each of the measurement items.
  • In the example shown FIG. 8B, the absorbance calculated at the detection-calculator 55 is corrected based on a predetermined wavelength checked by the detecting unit 5 (S44), and then the concentration is calculated based on the corrected absorbance and on the calibration curve stored in the storage 4 (S45). In the example shown in FIG. 8C, the concentration is calculated based on the absorbance calculated at the detection-calculator 55 and on the calibration curve stored in the storage 4 (S54), and then the calculated concentration is corrected based on the measurement wavelength checked by the detecting unit 5 (S55).
  • In the present embodiment, the measurement wavelength is checked at least either upon start-up of the analyzing device X or upon concentration measurement. Therefore, even if an actual measurement wavelength deviates from an expected measurement wavelength due to deterioration of e.g. the wavelength selecting filter or the light source, or due to production errors, such a deviation can be corrected for enabling concentration measurement with high accuracy.
  • If the measurement wavelength is checked upon start-up of the analyzing device X, there is no need to perform such checking upon every concentration measurement, whereby the measuring time is not increased by the checking of measurement wavelength. On the other hand, if the measurement wavelength is performed upon concentration measurement, a correction can be made to account for fluctuations of measurement wavelength due to environmental factors, or, when LED is used as a light source, due to a temperature increase of LED which causes wavelength fluctuations, thereby enabling concentration measurement with high accuracy.
  • In the present embodiment, is checked based on reflected light from the reference board. However, the measurement wavelength may also be checked based on light scattering from or transmitting through the reference board. Further, the absorbance at the analytical piece, which is used for calculation of the concentration, may also be calculated based on scattering or transmitting light. Further, when the measurement wavelength is checked based on reflected light from the reference board, checking of measurement wavelength may be performed directly using the amount of the reflected light without calculating the reflectivity before calculating the measurement wavelength. Similarly, the concentration may be calculated by using the amount of light (response) from the analytical piece, instead of using the absorbance at the analytical piece.
  • The above-described checking of the measurement wavelength at the analyzing device may be performed before shipment of the analyzing device.
  • The checking of the measurement wavelength before shipment is performed after, at the earliest, assembling the detecting unit which includes the light source and the light-sensitive element. In other words, the checking of the measurement wavelength may be performed after the entire analyzing device is made, or when the detecting unit is assembled for used. As described above, such checking of the measurement wavelength is performed using the reference board, and the reference board may be incorporated in the detecting unit for checking the measurement wavelength after shipment of the analyzing device. On the other hand, if the checking of the measurement wavelength is not performed after shipment of the analyzing device, a reference board for such checking may be prepared separately for use in subsequently checking the measurement wavelength.
  • After the checking of the measurement wavelength, a calibration curve which best fits to the checked measurement wavelength is selected from a plurality of calibration curves corresponding to various measurement wavelengths, and the selected calibration curve may be stored in the storage of the analyzing device. In this case, the plurality calibration curves may be stored in the storage beforehand, and a program is installed so that the selected calibration curve is used to perform calculation. Of course, only the selected calibration curve may be stored in the storage. Selection of a calibration curve which fits to the measurement wavelength may be performed directly using the amount of reflected light from the reference board without calculating the measurement wavelength.
  • Information regarding the measurement wavelength may be stored in the storage based on the response from the irradiated reference board. In this case, the analyzing device performs calculation at the calculator using the information regarding the measurement wavelength. Specifically, the analyzing device corrects the absorbance calculated by the detecting unit and then calculates the concentration based on the corrected absorbance, or calculates the concentration based on the absorbance and then corrects the calculated concentration.
  • In this way, checking of the measurement wavelength before shipment of the analyzing device removes the influences of production errors of the wavelength selecting filter or the light source in advance, thereby enabling to provide an analyzing device for calculating concentration with high accuracy.

Claims (6)

1-13. (canceled)
14. A method of producing an analyzing device which comprises a light irradiator for irradiating light onto a reaction system which includes a sample liquid and a reagent, a detector for detecting a response from the reaction system under light irradiation, a calculator for calculating a concentration of a specific component in the sample liquid based on the detection at the detector, and a storage for storing information necessary for calculation as to the specific component, the method comprising:
a detection step for irradiating light from the light irradiator onto a reference board to detect a response from the reference board under light irradiation for determining a light emitting state of the light irradiator, the response from the reference board being dependent on wavelength; and
a storage step for storing the light emitting state in the storage as information for use in calculation at the calculator.
15. The analyzing device production method according to claim 14, further comprising
a calibration curve selecting step for selecting a calibration curve corresponding to the light emitting state, from a plurality of calibration curves representing relationship between the detection result at the detector and the concentration of the specific component, based on the detection in the detection step,
wherein the storage step includes storage of the calibration curve selected in the calibration curve selecting step for use in calculation at the calculator.
16. The analyzing device production method according to claim 14,
wherein the light emitting state is detected as a peak wavelength of emitted light in the detection step,
the peak wavelength being stored by the storage in the storage step.
17. The analyzing device production method according to claim 14, wherein the reference board used in the detection step is incorporated in the analyzing device beforehand.
18. The analyzing device production method according to claim 14, wherein the reference board used in the detection step is prepared separately from the analyzing device.
US12/880,604 2002-10-08 2010-09-13 Analysis method, analysis device and production method therefor Abandoned US20110002813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/880,604 US20110002813A1 (en) 2002-10-08 2010-09-13 Analysis method, analysis device and production method therefor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002-294448 2002-10-08
JP2002294448A JP3991267B2 (en) 2002-10-08 2002-10-08 Analytical apparatus and manufacturing method thereof
US10/530,725 US7815861B2 (en) 2002-10-08 2003-10-07 Analysis method, analysis device and production method therefor
PCT/JP2003/012849 WO2004034040A1 (en) 2002-10-08 2003-10-07 Analysis method, analysis device and production method therefor
US12/880,604 US20110002813A1 (en) 2002-10-08 2010-09-13 Analysis method, analysis device and production method therefor

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/012849 Division WO2004034040A1 (en) 2002-10-08 2003-10-07 Analysis method, analysis device and production method therefor
US11/530,725 Division US8594084B2 (en) 2005-09-09 2006-09-11 Network router security method

Publications (1)

Publication Number Publication Date
US20110002813A1 true US20110002813A1 (en) 2011-01-06

Family

ID=32089176

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/530,725 Expired - Lifetime US7815861B2 (en) 2002-10-08 2003-10-07 Analysis method, analysis device and production method therefor
US12/880,604 Abandoned US20110002813A1 (en) 2002-10-08 2010-09-13 Analysis method, analysis device and production method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/530,725 Expired - Lifetime US7815861B2 (en) 2002-10-08 2003-10-07 Analysis method, analysis device and production method therefor

Country Status (8)

Country Link
US (2) US7815861B2 (en)
EP (1) EP1550859B1 (en)
JP (1) JP3991267B2 (en)
CN (1) CN100487434C (en)
AT (1) ATE483964T1 (en)
AU (1) AU2003272932A1 (en)
DE (1) DE60334472D1 (en)
WO (1) WO2004034040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894433A4 (en) * 2012-09-10 2016-05-11 Toshiba Kk X ray thickness meter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884239B2 (en) * 2007-01-12 2012-02-29 ベックマン コールター, インコーポレイテッド Wavelength identification method and analyzer
JP2008170340A (en) * 2007-01-12 2008-07-24 Olympus Corp Method for specifying wavelength, and analyzer
JP2009002864A (en) * 2007-06-22 2009-01-08 Olympus Corp Analysis apparatus and analysis method
WO2011156701A2 (en) 2010-06-10 2011-12-15 C2C Development, Llc Trajectory guide, access port, and fiducial marker alignment
JP5216051B2 (en) * 2010-06-23 2013-06-19 株式会社日立ハイテクノロジーズ Automatic analyzer and automatic analysis method
CN102384890B (en) * 2011-08-05 2014-04-30 广州万孚生物技术股份有限公司 Test detecting judging device and method
US20150377788A1 (en) * 2013-02-14 2015-12-31 Sharp Kabushiki Kaisha Optical sensor head and optical sensor system
KR101498096B1 (en) * 2013-11-19 2015-03-06 대한민국 Apparatus and method for discriminating of geographical origin of agricutural products using hyperspectral imaging
JP6435856B2 (en) * 2014-12-26 2018-12-12 株式会社サタケ Grain quality discrimination device
JP6435858B2 (en) * 2014-12-26 2018-12-12 株式会社サタケ Grain quality discrimination device
JP6435847B2 (en) * 2014-12-19 2018-12-12 株式会社サタケ Grain quality discrimination device
US10578557B2 (en) 2014-12-19 2020-03-03 Satake Corporation Grain quality level discrimination device
WO2022026444A1 (en) * 2020-07-29 2022-02-03 Baker Hughes Oilfield Operations Llc Automated contamination prediction based on downhole fluid sampling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986665A (en) * 1987-08-06 1991-01-22 Minolta Camera Kabushiki Kaisha Optical density detector
US5259381A (en) * 1986-08-18 1993-11-09 Physio-Control Corporation Apparatus for the automatic calibration of signals employed in oximetry
US5728352A (en) * 1994-11-14 1998-03-17 Advanced Care Products Disposable electronic diagnostic instrument
US5780304A (en) * 1994-09-08 1998-07-14 Lifescan, Inc. Method and apparatus for analyte detection having on-strip standard

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460447A (en) 1990-06-28 1992-02-26 Konica Corp Colored standard for correction of interference filter of optical density measuring apparatus and correcting method of interference filter
JP2000105196A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Photometer
EP1118859A2 (en) 2000-01-21 2001-07-25 Wako Pure Chemical Industries Ltd A test device for a multi-items test and the method for producing the same as well as measuring instrument for the test device
JP4341153B2 (en) 2000-05-17 2009-10-07 和光純薬工業株式会社 Test paper analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259381A (en) * 1986-08-18 1993-11-09 Physio-Control Corporation Apparatus for the automatic calibration of signals employed in oximetry
US4986665A (en) * 1987-08-06 1991-01-22 Minolta Camera Kabushiki Kaisha Optical density detector
US5780304A (en) * 1994-09-08 1998-07-14 Lifescan, Inc. Method and apparatus for analyte detection having on-strip standard
US5728352A (en) * 1994-11-14 1998-03-17 Advanced Care Products Disposable electronic diagnostic instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894433A4 (en) * 2012-09-10 2016-05-11 Toshiba Kk X ray thickness meter

Also Published As

Publication number Publication date
AU2003272932A1 (en) 2004-05-04
WO2004034040A1 (en) 2004-04-22
EP1550859A1 (en) 2005-07-06
JP3991267B2 (en) 2007-10-17
DE60334472D1 (en) 2010-11-18
EP1550859A4 (en) 2006-01-11
CN100487434C (en) 2009-05-13
EP1550859B1 (en) 2010-10-06
JP2004132706A (en) 2004-04-30
CN1703616A (en) 2005-11-30
US7815861B2 (en) 2010-10-19
ATE483964T1 (en) 2010-10-15
US20060153738A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US20110002813A1 (en) Analysis method, analysis device and production method therefor
US6980285B1 (en) Method in quality control of a spectrophotometer
US7616317B2 (en) Reflectometer and associated light source for use in a chemical analyzer
US7758812B2 (en) Analysis system for determining an analyte concentration, taking into consideration sample-and analyte-independent light-intensity changes
KR101230791B1 (en) Ozone concentration sensor
US7054759B2 (en) Concentration measuring method
JPH0371064B2 (en)
US7068366B2 (en) Simulated calibration sample for a spectrographic measurement sensor and method for use
JP3650558B2 (en) Reflectance measuring device
US5612782A (en) Calibration method and calibration unit for calibrating a spectrometric device based upon two calibration samples
CN113777334A (en) Automatic analyzer, light source monitoring method, calibration method and storage medium thereof
JP2002228658A (en) Analyzer
JP7192602B2 (en) Calibration method for gas concentration measuring device
JP2012215467A (en) Biological substance analyzer and biological substance analysis method
CN113777333A (en) Automatic analyzer, method for determining contamination of reaction cup of automatic analyzer, and storage medium
JPH10104215A (en) Absorbance detector, chromatographic device, absorbance detecting method, and chromatographic analyzing method
JPH0915048A (en) Spectrophotometer
US11828705B2 (en) Apparatus and method for spectroscopically detecting a sample
JP5093379B2 (en) Chromatography quantitative measurement method
JP5146565B2 (en) Chromatographic quantitative measurement method
JP5093380B2 (en) Chromatographic quantitative measurement method
JP5539254B2 (en) Biological material analysis apparatus and biological material analysis method
CN118130406A (en) Water quality analysis method, device and equipment
JPH01297535A (en) Inspecting method for contamination of reaction container

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION