US20100309056A1 - Method and system for scanning rf channels utilizing leaky wave antennas - Google Patents
Method and system for scanning rf channels utilizing leaky wave antennas Download PDFInfo
- Publication number
- US20100309056A1 US20100309056A1 US12/797,133 US79713310A US2010309056A1 US 20100309056 A1 US20100309056 A1 US 20100309056A1 US 79713310 A US79713310 A US 79713310A US 2010309056 A1 US2010309056 A1 US 2010309056A1
- Authority
- US
- United States
- Prior art keywords
- leaky wave
- wave antennas
- antennas
- integrated
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000001419 dependent effect Effects 0.000 claims abstract description 12
- 238000004891 communication Methods 0.000 claims description 13
- 238000010408 sweeping Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 16
- 230000005236 sound signal Effects 0.000 description 9
- 239000004020 conductor Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910004611 CdZnTe Inorganic materials 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 229910005533 GaO Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2283—Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10009—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
- G06K7/10316—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/22—Longitudinal slot in boundary wall of waveguide or transmission line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
- H01Q15/0066—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/23—Combinations of reflecting surfaces with refracting or diffracting devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0458—Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/72—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
Definitions
- Certain embodiments of the invention relate to wireless communication. More specifically, certain embodiments of the invention relate to a method and system for scanning RF channels utilizing leaky wave antennas.
- Mobile communications have changed the way people communicate and mobile phones have been transformed from a luxury item to an essential part of every day life.
- the use of mobile phones is today dictated by social situations, rather than hampered by location or technology.
- voice connections fulfill the basic need to communicate, and mobile voice connections continue to filter even further into the fabric of every day life, the mobile Internet is the next step in the mobile communication revolution.
- the mobile Internet is poised to become a common source of everyday information, and easy, versatile mobile access to this data will be taken for granted.
- FIG. 1 is a block diagram of an exemplary wireless system with leaky wave antennas for scanning RF channels, which may be utilized in accordance with an embodiment of the invention.
- FIG. 2 is a block diagram illustrating an exemplary leaky wave antenna, in accordance with an embodiment of the invention.
- FIG. 3 is a block diagram illustrating a plan view of exemplary partially reflective surfaces, in accordance with an embodiment of the invention.
- FIG. 4 is a block diagram illustrating an exemplary phase dependence of a leaky wave antenna, in accordance with an embodiment of the invention.
- FIG. 5A is a block diagram illustrating exemplary in-phase and out-of-phase beam shapes for a leaky wave antenna, in accordance with an embodiment of the invention.
- FIG. 5B is a block diagram illustrating RF source scanning utilizing leaky wave antennas, in accordance with an embodiment of the invention.
- FIG. 6 is a block diagram illustrating a leaky wave antenna with variable input impedance feed points, in accordance with an embodiment of the invention.
- FIG. 7 is a block diagram illustrating a cross-sectional view of coplanar and microstrip waveguides, in accordance with an embodiment of the invention.
- FIG. 8 is a diagram illustrating leaky wave antennas for scanning RF channels, in accordance with an embodiment of the invention.
- FIG. 9 is a block diagram illustrating exemplary steps for scanning RF channels utilizing leaky wave antennas, in accordance with an embodiment of the invention.
- Certain aspects of the invention may be found in a method and system for scanning RF channels utilizing a leaky wave antenna.
- Exemplary aspects of the invention may comprise configuring a receiving angle of a plurality of leaky wave antennas in a wireless device to receive RF signals at a desired starting angle.
- the receiving angle of the plurality of leaky wave antennas may be swept while measuring RF signal strength for each of the leaky wave antennas.
- a location of one or more RF signal sources may be determined from the measured RF signal strength versus angle of reception of the plurality of leaky wave antennas.
- a resonant frequency of the plurality of leaky wave antennas may be configured utilizing micro-electro-mechanical systems (MEMS) deflection.
- MEMS micro-electro-mechanical systems
- the plurality of leaky wave antennas may be situated along a plurality of axes in the wireless device.
- the plurality of leaky wave antennas may comprise microstrip waveguides, where a cavity height of the plurality of leaky wave antennas is dependent on spacing between conductive lines in the microstrip waveguides.
- the plurality of leaky wave antennas may comprise coplanar waveguides, where a cavity height of the plurality of leaky wave antennas is dependent on spacing between conductive lines in the coplanar waveguides.
- the plurality of leaky wave antennas may be integrated in one or more integrated circuits that are flip-chip bonded to one or more integrated circuit packages, in one or more integrated circuit packages that are flip-chip bonded to one or more printed circuit boards, and/or in one or more printed circuit boards.
- FIG. 1 is a block diagram of an exemplary wireless system with leaky wave antennas for scanning RF channels, which may be utilized in accordance with an embodiment of the invention.
- the wireless device 150 may comprise an antenna 151 , a transceiver 152 , a baseband processor 154 , a processor 156 , a system memory 158 , a logic block 160 , a chip 162 , leaky wave antennas 164 A- 164 C, switches 165 , an external headset port 166 , and an integrated circuit package 167 .
- the wireless device 150 may also comprise an analog microphone 168 , integrated hands-free (IHF) stereo speakers 170 , a printed circuit board 171 , a hearing aid compatible (HAC) coil 174 , a dual digital microphone 176 , a vibration transducer 178 , a keypad and/or touchscreen 180 , and a display 182 .
- IHF integrated hands-free
- HAC hearing aid compatible
- the transceiver 152 may comprise suitable logic, circuitry, interface(s), and/or code that may be enabled to modulate and upconvert baseband signals to RF signals for transmission by one or more antennas, which may be represented generically by the antenna 151 .
- the transceiver 152 may also be enabled to downconvert and demodulate received RF signals to baseband signals.
- the RF signals may be received by one or more antennas, which may be represented generically by the antenna 151 , or the leaky wave antennas 164 A- 164 C. Different wireless systems may use different antennas for transmission and reception.
- the transceiver 152 may be enabled to execute other functions, for example, filtering the baseband and/or RF signals, and/or amplifying the baseband and/or RF signals.
- the transceiver 152 may be implemented as a separate transmitter and a separate receiver.
- the plurality of transceivers, transmitters and/or receivers may enable the wireless device 150 to handle a plurality of wireless protocols and/or standards including cellular, WLAN and PAN.
- Wireless technologies handled by the wireless device 150 may comprise GSM, CDMA, CDMA2000, WCDMA, GMS, GPRS, EDGE, WIMAX, WLAN, 3GPP, UMTS, BLUETOOTH, and ZigBee, for example.
- the baseband processor 154 may comprise suitable logic, circuitry, interface(s), and/or code that may be enabled to process baseband signals for transmission via the transceiver 152 and/or the baseband signals received from the transceiver 152 .
- the processor 156 may be any suitable processor or controller such as a CPU, DSP, ARM, or any type of integrated circuit processor.
- the processor 156 may comprise suitable logic, circuitry, and/or code that may be enabled to control the operations of the transceiver 152 and/or the baseband processor 154 .
- the processor 156 may be utilized to update and/or modify programmable parameters and/or values in a plurality of components, devices, and/or processing elements in the transceiver 152 and/or the baseband processor 154 . At least a portion of the programmable parameters may be stored in the system memory 158 .
- Control and/or data information which may comprise the programmable parameters, may be transferred from other portions of the wireless device 150 , not shown in FIG. 1 , to the processor 156 .
- the processor 156 may be enabled to transfer control and/or data information, which may include the programmable parameters, to other portions of the wireless device 150 , not shown in FIG. 1 , which may be part of the wireless device 150 .
- the processor 156 may utilize the received control and/or data information, which may comprise the programmable parameters, to determine an operating mode of the transceiver 152 .
- the processor 156 may be utilized to select a specific frequency for a local oscillator, a specific gain for a variable gain amplifier, configure the local oscillator and/or configure the variable gain amplifier for operation in accordance with various embodiments of the invention.
- the specific frequency selected and/or parameters needed to calculate the specific frequency, and/or the specific gain value and/or the parameters, which may be utilized to calculate the specific gain may be stored in the system memory 158 via the processor 156 , for example.
- the information stored in system memory 158 may be transferred to the transceiver 152 from the system memory 158 via the processor 156 .
- the system memory 158 may comprise suitable logic, circuitry, interface(s), and/or code that may be enabled to store a plurality of control and/or data information, including parameters needed to calculate frequencies and/or gain, and/or the frequency value and/or gain value.
- the system memory 158 may store at least a portion of the programmable parameters that may be manipulated by the processor 156 .
- the logic block 160 may comprise suitable logic, circuitry, interface(s), and/or code that may enable controlling of various functionalities of the wireless device 150 .
- the logic block 160 may comprise one or more state machines that may generate signals to control the transceiver 152 and/or the baseband processor 154 .
- the logic block 160 may also comprise registers that may hold data for controlling, for example, the transceiver 152 and/or the baseband processor 154 .
- the logic block 160 may also generate and/or store status information that may be read by, for example, the processor 156 .
- Amplifier gains and/or filtering characteristics, for example, may be controlled by the logic block 160 .
- the BT radio/processor 163 may comprise suitable circuitry, logic, interface(s), and/or code that may enable transmission and reception of Bluetooth signals.
- the BT radio/processor 163 may enable processing and/or handling of BT baseband signals.
- the BT radio/processor 163 may process or handle BT signals received and/or BT signals transmitted via a wireless communication medium.
- the BT radio/processor 163 may also provide control and/or feedback information to/from the baseband processor 154 and/or the processor 156 , based on information from the processed BT signals.
- the BT radio/processor 163 may communicate information and/or data from the processed BT signals to the processor 156 and/or to the system memory 158 .
- the BT radio/processor 163 may receive information from the processor 156 and/or the system memory 158 , which may be processed and transmitted via the wireless communication medium a Bluetooth headset, for example.
- the CODEC 172 may comprise suitable circuitry, logic, interface(s), and/or code that may process audio signals received from and/or communicated to input/output devices.
- the input devices may be within or communicatively coupled to the wireless device 150 , and may comprise the analog microphone 168 , the stereo speakers 170 , the hearing aid compatible (HAC) coil 174 , the dual digital microphone 176 , and the vibration transducer 178 , for example.
- the CODEC 172 may be operable to up-convert and/or down-convert signal frequencies to desired frequencies for processing and/or transmission via an output device.
- the CODEC 172 may enable utilizing a plurality of digital audio inputs, such as 16 or 18-bit inputs, for example.
- the CODEC 172 may also enable utilizing a plurality of data sampling rate inputs.
- the CODEC 172 may accept digital audio signals at sampling rates such as 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and/or 48 kHz.
- the CODEC 172 may also support mixing of a plurality of audio sources.
- the CODEC 172 may support audio sources such as general audio, polyphonic ringer, I 2 S FM audio, vibration driving signals, and voice.
- the general audio and polyphonic ringer sources may support the plurality of sampling rates that the audio CODEC 172 is enabled to accept, while the voice source may support a portion of the plurality of sampling rates, such as 8 kHz and 16 kHz, for example.
- the chip 162 may comprise an integrated circuit with multiple functional blocks integrated within, such as the transceiver 152 , the processor 156 , the baseband processor 154 , the BT radio/processor 163 , the leaky wave antennas 164 A, and the CODEC 172 .
- the number of functional blocks integrated in the chip 162 is not limited to the number shown in FIG. 1 . Accordingly, any number of blocks may be integrated on the chip 162 depending on chip space and wireless device 150 requirements, for example.
- the chip 162 may be flip-chip bonded, for example, to the package 167 , as described further with respect to FIG. 8 .
- the leaky wave antennas 164 A- 164 C may comprise a resonant cavity with a highly reflective surface and a lower reflectivity surface, and may be integrated in and/or on the chip 162 , the package 167 , and or the printed circuit board 171 .
- the lower reflectivity surface may allow the resonant mode to “leak” out of the cavity.
- the lower reflectivity surface of the leaky wave antennas 164 A- 164 C may be configured with slots in a metal surface, or a pattern of metal patches, as described further in FIGS. 2 and 3 .
- the physical dimensions of the leaky wave antennas 164 A- 164 C may be configured to optimize bandwidth of transmission and/or the beam pattern radiated or received.
- the leaky wave antennas 164 A- 164 C may be configured to sweep the angle of reception of RF signals by sweeping the frequency of the feed signal across the resonant frequency of the leaky wave antennas. By configuring leaky wave antennas so that they are along two axes, the leaky wave antennas 164 A- 164 C may be utilized to determine the existence of RF sources.
- the switches 165 may comprise switches such as CMOS or MEMS switches that may be operable to switch different antennas of the leaky wave antennas 164 A- 164 C to the transceiver 152 and/or switch elements in and/or out of the leaky wave antennas 164 A- 164 C, such as the patches and slots described in FIG. 3 .
- the switches 165 may enable the coupling of PA's to different feed points on the leaky wave antennas 164 A- 164 C, depending on the desired impedance seen at the feed point, or to different antennas to optimize resolution of channel scanning, such as by coupling to the antennas separated by the largest distance in the desired scanning axis.
- the external headset port 166 may comprise a physical connection for an external headset to be communicatively coupled to the wireless device 150 .
- the analog microphone 168 may comprise suitable circuitry, logic, interface(s), and/or code that may detect sound waves and convert them to electrical signals via a piezoelectric effect, for example.
- the electrical signals generated by the analog microphone 168 may comprise analog signals that may require analog to digital conversion before processing.
- the package 167 may comprise a ceramic package, a printed circuit board, or other support structure for the chip 162 and other components of the wireless device 150 .
- the chip 162 may be bonded to the package 167 .
- the package 167 may comprise insulating and conductive material, for example, and may provide isolation between electrical components mounted on the package 167 .
- the stereo speakers 170 may comprise a pair of speakers that may be operable to generate audio signals from electrical signals received from the CODEC 172 .
- the HAC coil 174 may comprise suitable circuitry, logic, and/or code that may enable communication between the wireless device 150 and a T-coil in a hearing aid, for example. In this manner, electrical audio signals may be communicated to a user that utilizes a hearing aid, without the need for generating sound signals via a speaker, such as the stereo speakers 170 , and converting the generated sound signals back to electrical signals in a hearing aid, and subsequently back into amplified sound signals in the user's ear, for example.
- the dual digital microphone 176 may comprise suitable circuitry, logic, interface(s), and/or code that may be operable to detect sound waves and convert them to electrical signals.
- the electrical signals generated by the dual digital microphone 176 may comprise digital signals, and thus may not require analog to digital conversion prior to digital processing in the CODEC 172 .
- the dual digital microphone 176 may enable beamforming capabilities, for example.
- the vibration transducer 178 may comprise suitable circuitry, logic, interface(s), and/or code that may enable notification of an incoming call, alerts and/or message to the wireless device 150 without the use of sound.
- the vibration transducer may generate vibrations that may be in synch with, for example, audio signals such as speech or music.
- control and/or data information which may comprise the programmable parameters, may be transferred from other portions of the wireless device 150 , not shown in FIG. 1 , to the processor 156 .
- the processor 156 may be enabled to transfer control and/or data information, which may include the programmable parameters, to other portions of the wireless device 150 , not shown in FIG. 1 , which may be part of the wireless device 150 .
- the processor 156 may utilize the received control and/or data information, which may comprise the programmable parameters, to determine an operating mode of the transceiver 152 .
- the processor 156 may be utilized to select a specific frequency for a local oscillator, a specific gain for a variable gain amplifier, configure the local oscillator and/or configure the variable gain amplifier for operation in accordance with various embodiments of the invention.
- the specific frequency selected and/or parameters needed to calculate the specific frequency, and/or the specific gain value and/or the parameters, which may be utilized to calculate the specific gain may be stored in the system memory 158 via the processor 156 , for example.
- the information stored in system memory 158 may be transferred to the transceiver 152 from the system memory 158 via the processor 156 .
- the CODEC 172 in the wireless device 150 may communicate with the processor 156 in order to transfer audio data and control signals.
- Control registers for the CODEC 172 may reside within the processor 156 .
- the processor 156 may exchange audio signals and control information via the system memory 158 .
- the CODEC 172 may up-convert and/or down-convert the frequencies of multiple audio sources for processing at a desired sampling rate.
- the leaky wave antennas 164 A- 164 C may be operable to transmit and/or receive wireless signals.
- the leaky wave antennas may be configured so that they are situated along two or more axes such that when the frequency of transmission or reception is swept across the resonant frequency of the leaky wave antennas, the angle of the beam transmitted or reflected is swept along these axes. In this manner, the presence of a transmission source or receiver may be determined.
- the frequency of the transmission and/or reception may be determined by the cavity height of the leaky wave antennas 164 A- 164 C. Accordingly, the reflective surfaces may be integrated at different heights or lateral spacing in the chip 162 , the package 167 , and/or the printed circuit board 171 , thereby configuring leaky wave antennas with different resonant frequencies.
- the resonant cavity frequency of the leaky wave antennas 164 A- 164 C may be configured by tuning the cavity height using MEMS actuation. Accordingly, a bias voltage may be applied such that one or both of the reflective surfaces of the leaky wave antennas 164 A- 164 C may be deflected by the applied potential. In this manner, the cavity height, and thus the resonant frequency of the cavity, may be configured. Similarly, the patterns of slots and/or patches in the partially reflected surface may be configured by the switches 165 .
- Different frequency signals may be transmitted and/or received by the leaky wave antennas 164 A- 164 C by selectively coupling the transceiver 152 to leaky wave antennas with different cavity heights.
- leaky wave antennas with reflective surfaces on the top and the bottom of the package 167 may have the largest cavity height, and thus provide the lowest resonant frequency.
- leaky wave antennas with a reflective surface on the surface of the package 167 and another reflective surface just below the surface of the package 167 may provide a higher resonant frequency.
- the selective coupling may be enabled by the switches 165 and/or CMOS devices in the chip 162 .
- FIG. 2 is a block diagram illustrating an exemplary leaky wave antenna, in accordance with an embodiment of the invention.
- the leaky wave antennas 164 A- 164 C comprising a partially reflective surface 201 A, a reflective surface 201 B, and a feed point 203 .
- the space between the partially reflective surface 201 A and the reflective surface 201 B may be filled with dielectric material, for example, and the height, h, between the partially reflective surface 201 A and the reflective surface 201 B may be utilized to configure the frequency of transmission of the leaky wave antennas 164 A- 164 C.
- an air gap may be integrated in the space between the partially reflective surface 201 A and the reflective surface 201 B to enable MEMS actuation.
- MEMS actuation There is also shown (micro-electromechanical systems) MEMS bias voltages, +V MEMS and ⁇ V MEMS .
- the feed point 203 may comprise an input terminal for applying an input voltage to or receiving an output voltage from the leaky wave antennas 164 A- 164 C.
- the invention is not limited to a single feed point 203 , as there may be any amount of feed points for different phases of signal or a plurality of signal sources, for example, to be applied to the leaky wave antennas 164 A- 164 C.
- the height, h may be one-half the wavelength of the desired transmitted mode from the leaky wave antennas 164 A- 164 C.
- the phase of an electromagnetic mode that traverses the cavity twice may be coherent with the input signal at the feed point 203 , thereby configuring a resonant cavity known as a Fabry-Perot cavity.
- the magnitude of the resonant mode may decay exponentially in the lateral direction from the feed point 203 , thereby reducing or eliminating the need for confinement structures to the sides of the leaky wave antennas 164 A- 164 C.
- the input impedance of the leaky wave antennas 164 A- 164 C may be configured by the vertical placement of the feed point 203 , as described further in FIG. 6 .
- a signal to be transmitted via a power amplifier in the transceiver 152 may be communicated to the feed point 203 of the leaky wave antennas 164 A- 164 C with a frequency f, or a signal to be received by the leaky wave antennas 164 A- 164 C may be directed at the antenna.
- the cavity height, h may be configured to correlate to one half the wavelength of a harmonic of the signal of frequency f.
- the signal may traverse the height of the cavity and may be reflected by the partially reflective surface 201 A, and then traverse the height back to the reflective surface 201 B. Since the wave will have travelled a distance corresponding to a full wavelength, constructive interference may result and a resonant mode may thereby be established.
- Leaky wave antennas may enable the configuration of high gain antennas without the need for a large array of antennas which require a complex feed network and suffer from loss due to feed lines.
- the leaky wave antennas 164 A- 164 C may be operable to transmit and/or receive wireless signals via conductive layers in and/or on the package 167 and/or the printed circuit board 171 . In this manner, the resonant frequency of the cavity may cover a wider range due to the larger size of the package 167 and the printed circuit board 171 , compared to the chip 162 , without requiring large areas needed for conventional antennas and associated circuitry.
- leaky wave antennas in a plurality of packages on one or more printed circuit boards, wireless communication between packages may be enabled.
- the frequency of transmission and/or reception of the leaky wave antennas 164 A- 164 C may be configured by selecting one of the leaky wave antennas 164 A- 164 C with the appropriate cavity height for the desired frequency.
- the angle of transmission may be configured by tuning the frequency of a signal communicated to the feed point 203 .
- the angle of reception of signals received from the leaky wave antenna may be configured by tuning the frequency of the signal received from the feed point 203 , such as by filtering out other frequencies at the feed point 203 .
- the cavity height, h may be configured by MEMS actuation.
- the bias voltages +V MEMS and ⁇ V MEMS may deflect one or both of the reflective surfaces 201 A and 201 B compared to zero bias, thereby configuring the resonant frequency of the cavity.
- FIG. 3 is a block diagram illustrating a plan view of exemplary partially reflective surfaces, in accordance with an embodiment of the invention.
- a partially reflective surface 300 comprising periodic slots in a metal surface
- a partially reflective surface 320 comprising periodic metal patches.
- the partially reflective surfaces 300 / 320 may comprise different embodiments of the partially reflective surface 201 A described with respect to FIG. 2 .
- the spacing, dimensions, shape, and orientation of the slots and/or patches in the partially reflective surfaces 300 / 320 may be utilized to configure the bandwidth, and thus Q-factor, of the resonant cavity defined by the partially reflective surfaces 300 / 320 and a reflective surface, such as the reflective surface 201 B, described with respect to FIG. 2 .
- the partially reflective surfaces 300 / 320 may thus comprise frequency selective surfaces due to the narrow bandwidth of signals that may leak out of the structure as configured by the slots and/or patches.
- the spacing between the patches and/or slots may be related to wavelength of the signal transmitted and/or received, which may be somewhat similar to beamforming with multiple antennas.
- the length of the slots and/or patches may be several times larger than the wavelength of the transmitted and/or received signal or less, for example, since the leakage from the slots and/or regions surround the patches may add up, similar to beamforming with multiple antennas.
- the slots/patches may be configured via CMOS and/or micro-electromechanical system (MEMS) switches, such as the switches 165 described with respect to FIG. 1 , to tune the Q of the resonant cavity.
- MEMS micro-electromechanical system
- the slots and/or patches may be configured in conductive layers in and/or on the package 167 and may be shorted together or switched open utilizing the switches 165 .
- RF signals such as 60 GHz signals, for example, may be transmitted from various locations without the need for additional circuitry and conventional antennas with their associated circuitry that require valuable chip space.
- the slots or patches may be configured in conductive layers in a vertical plane of the chip 162 , the package 167 , and/or the printed circuit board 171 , thereby enabling the communication of wireless signals in a horizontal direction in the structure.
- the partially reflective surfaces 300 / 320 may be integrated in and/or on the package 167 .
- different frequency signals may be transmitted and/or received.
- a partially reflective surface 300 / 320 integrated within the package 167 and a reflective surface 201 B may transmit and/or receive signals at a higher frequency signal than from a resonant cavity defined by a partially reflective surface 300 / 320 on surface of the package 167 and a reflective surface 201 B on the other surface of the package 167 .
- FIG. 4 is a block diagram illustrating an exemplary phase dependence of a leaky wave antenna, in accordance with an embodiment of the invention.
- a leaky wave antenna comprising the partially reflective surface 201 A, the reflective surface 201 B, and the feed point 203 .
- In-phase condition 400 illustrates the relative beam shape transmitted by the leaky wave antennas 164 A- 164 C when the frequency of the signal communicated to the feed point 203 matches that of the resonant cavity as defined by the cavity height, h, and the dielectric constant of the material between the reflective surfaces.
- out-of-phase condition 420 illustrates the relative beam shape transmitted by the leaky wave antennas 164 A- 164 C when the frequency of the signal communicated to the feed point 203 does not match that of the resonant cavity.
- the resulting beam shape may be conical, as opposed to a single main vertical node. These are illustrated further with respect to FIG. 5 .
- the leaky wave antennas 164 A- 164 C may be integrated at various heights in the chip 162 , the package 167 , and/or the printed circuit board 171 , thereby providing a plurality of transmission and reception sites with varying resonant frequency.
- the leaky wave antennas 164 A- 164 C may be operable to receive RF signals, such as 60 GHz signals, for example.
- the direction in which the signals are received may be configured by the in-phase and out-of-phase conditions.
- leaky wave antennas may be configured so that they are located on perpendicular axes, such that two antennas on a single axis can delineate the presence of an RF source along that axis, and antennas along a perpendicular axis may be determine the presence of the source along that axis.
- the location of an RF source may be determined across an entire field-of-view of the plurality of leaky wave antennas.
- FIG. 5A is a block diagram illustrating exemplary in-phase and out-of-phase beam shapes for a leaky wave antenna, in accordance with an embodiment of the invention. Referring to FIG. 5A , there is shown a plot 500 of transmitted signal beam shape versus angle, ⁇ , for the in-phase and out-of-phase conditions for a leaky wave antenna.
- the In-phase curve in the plot 500 may correlate to the case where the frequency of the signal communicated to a leaky wave antenna matches the resonant frequency of the cavity. In this manner, a single vertical main node may result. In instances where the frequency of the signal at the feed point is not at the resonant frequency, a double, or conical-shaped node may be generated as shown by the Out-of-phase curve in the plot 500 .
- the leaky wave antennas for in-phase and out-of-phase conditions, signals may be directed out of or into the chip 162 , package 167 , and/or the printed circuit board 171 in desired directions.
- FIG. 5B is a block diagram illustrating RF source scanning utilizing leaky wave antennas, in accordance with an embodiment of the invention.
- the wireless device 150 and RF sources 501 A- 501 C.
- the wireless device 150 is as described with respect to FIG. 1 , and is shown in two views in FIG. 5B to illustrate an exemplary arrangement of leaky wave antennas on two perpendicular axes and how the receive beams may be scanned.
- the RF sources 501 may comprise wireless devices that may communicate high frequency RF signals.
- transmitted signals are highly directional, such as from leaky wave antennas, for example, the direction of transmission/reception of antennas may be swept to determine the presence of these directional RF sources.
- the leaky wave antennas 503 A- 503 D may be substantially similar to the leaky wave antennas 164 A- 164 D and may be integrated in the chip 162 , the package 167 , and/or the printed circuit board 171 , for example.
- the leaky wave antennas 503 A- 503 D may be operable to scan the angle of reception of RF signals by tuning the frequency of signals received from the feed points of the antennas.
- the RF sources 501 may transmit directional RF signals.
- the wireless device 150 may be operable to scan the received frequency of the leaky wave antennas 503 A- 503 D, such as by scanning a filter frequency, for example, thereby scanning the angle of reception of the received signals.
- the angle of reception of the leaky wave antennas 503 A- 503 D may be configured by MEMS actuation of one or more reflective surfaces in the antennas. By scanning a plurality of leaky wave antennas on perpendicular axes and monitoring the received signals, a direction of the transmitting sources may be determined.
- FIG. 6 is a block diagram illustrating a leaky wave antenna with variable input impedance feed points, in accordance with an embodiment of the invention.
- a leaky wave antenna 600 comprising the partially reflective surface 201 A and the reflective surface 201 B.
- feed points 601 A- 601 C may be located at different positions along the height, h, of the cavity thereby configuring different impedance points for the leaky wave antenna.
- a leaky wave antenna may be utilized to couple to a plurality of power amplifiers, or a configurable power amplifier with varying output impedances.
- a power amplifier may be coupled to a low impedance feed point, such as the feed point 601 A.
- the impedance of the leaky wave antenna may be matched to the power amplifier without impedance variations that may result with conventional antennas and their proximity or distance to associated driver electronics.
- leaky wave antennas with both different impedances and resonant frequencies may be enabled.
- the heights of the feed points 601 A- 601 C may be configured by MEMS actuation.
- FIG. 7 is a block diagram illustrating a cross-sectional view of coplanar and microstrip waveguides, in accordance with an embodiment of the invention.
- the microstrip waveguide 720 may comprise signal conductive lines 723 , a ground plane 725 , a resonant cavity 711 A, and an insulating layer 727 .
- the coplanar waveguide 730 may comprise signal conductive lines 731 and 733 , a resonant cavity 711 B, the insulating layer 727 , and a multi-layer support structure 701 .
- the support structure 701 may comprise the chip 162 , the package 167 , and/or the printed circuit board 171 , for example.
- the signal conductive lines 723 , 731 , and 733 may comprise metal traces or layers deposited in and/or on the insulating layer 727 .
- the signal conductive lines 723 , 731 , and 733 may comprise poly-silicon or other conductive material.
- the separation and the voltage potential between the signal conductive line 723 and the ground plane 725 may determine the electric field generated therein.
- the dielectric constant of the insulating layer 727 may also determine the electric field between the signal conductive line 723 and the ground plane 725 .
- the resonant cavities 711 A and 711 B may comprise the insulating layer 727 , an air gap, or a combination of an air gap and the insulating layer 727 , thereby enabling MEMS actuation and thus frequency tuning.
- the insulating layer 727 may comprise SiO 2 or other insulating material that may provide a high resistance layer between the signal conductive line 723 and the ground plane 725 , and the signal conductive lines 731 and 733 .
- the electric field between the signal conductive line 723 and the ground plane 725 may be dependent on the dielectric constant of the insulating layer 727 .
- the thickness and the dielectric constant of the insulating layer 727 may determine the electric field strength generated by the applied signal.
- the resonant cavity thickness of a leaky wave antenna may be dependent on the spacing between the signal conductive line 723 and the ground plane 725 , or the signal conductive lines 731 and 733 , for example.
- the signal conductive lines 731 and 733 , and the signal conductive line 723 and the ground plane 725 may define resonant cavities for leaky wave antennas.
- Each layer may comprise a reflective surface or a partially reflective surface depending on the pattern of conductive material.
- a partially reflective surface may be configured by alternating conductive and insulating material in a desired pattern.
- signals may be directed out of, or received into, a surface of the chip 162 , the package 167 , and/or the printed circuit board 171 , as illustrated with the microstrip waveguide 720 .
- signals may be communicated in the horizontal plane of the chip 162 , the package 167 , and/or the printed circuit board 171 utilizing the coplanar waveguide 730 .
- the support structure 701 may provide mechanical support for the microstrip waveguide 720 , the coplanar waveguide 730 , and other devices that may be integrated within.
- the chip 162 , the package 167 , and/or the printed circuit board 171 may comprise Si, GaAs, sapphire, InP, GaO, ZnO, CdTe, CdZnTe, ceramics, polytetrafluoroethylene, and/or Al 2 O 3 , for example, or any other substrate material that may be suitable for integrating microstrip structures.
- a bias and/or a signal voltage may be applied across the signal conductive line 723 and the ground plane 725 , and/or the signal conductive lines 731 and 733 to transmit RF signals.
- a voltage may be measured across the signal conductive line 723 and the ground plane 725 , and/or the signal conductive lines 731 and 733 , to measure received RF signals.
- the thickness of a leaky wave antenna resonant cavity may be dependent on the distance between the conductive lines in the microstrip waveguide 720 and/or the coplanar transmission waveguide 730 .
- a partially reflective surface may result, which may allow a signal to “leak out” in that direction, as shown by the Leaky Wave arrows in FIG. 7 .
- wireless signals may be directed in to or out of the surface plane of the support structure 710 , or parallel to the surface of the support structure 710 .
- wireless signals may be received by the package 167 .
- Wireless signals may be communicated between packages in the horizontal or vertical planes depending on which type of leaky wave antenna is enabled, such as a coplanar or microstrip structure.
- Feed points may be integrated at different heights or lateral distances within the resonant cavity gaps 711 A and 711 B, respectively, thereby resulting in different impedances.
- the different impedance feed points may be coupled to a PA depending on the output impedance of the PA in a given output power configuration.
- a plurality of leaky wave antennas may be configured in the support structure 701 in an arrangement that enables scanning in two or more axes. In this manner, the presence of RF sources may be determined by scanning over a field of view.
- FIG. 8 is a diagram illustrating leaky wave antennas for scanning RF channels, in accordance with an embodiment of the invention.
- metal layers 801 A- 801 L there is shown metal layers 801 A- 801 L, solder balls 803 , thermal epoxy 807 , leaky wave antennas 809 A- 809 F, and metal interconnects 811 A- 811 C.
- the chip 162 , the package 167 , and the printed circuit board 171 may be as described previously.
- the chip 162 may comprise one or more components and/or systems within the wireless system 150 .
- the chip 162 may be bump-bonded or flip-chip bonded to the package 167 utilizing the solder balls 803 .
- the package 167 may be flip-chip bonded to the printed circuit board 171 .
- wire bonds connecting the chip 162 to the package 167 and the package 167 to the printed circuit board 171 may be eliminated, thereby reducing and/or eliminating uncontrollable stray inductances due to wire bonds, for example.
- the thermal conductance out of the chip 162 may be greatly improved utilizing the solder balls 803 and the thermal epoxy 807 .
- the thermal epoxy 807 may be electrically insulating but thermally conductive to allow for thermal energy to be conducted out of the chip 162 to the much larger thermal mass of the package 167 .
- the metal layers 801 A- 801 L and the metal interconnects 811 A- 811 C may comprise deposited metal layers utilized to delineate and couple to leaky wave antennas in and/or on the chip 162 , the package 167 , and the printed circuit board 171 .
- the leaky wave antennas 809 A- 809 F may be utilized to scan for RF signal sources by scanning the angle of reception of the antennas.
- the leaky wave antenna 809 F may comprise conductive and insulating layers integrated in and/or on the printed circuit board 171 extending into the cross-sectional view plane to enable communication of signals horizontally in the plane of the printed circuit board 171 , as illustrated by the coplanar waveguide 730 described with respect to FIG. 7 .
- This coplanar structure may also be utilized in the chip 162 and/or the package 167 .
- the spacing between pairs of metal layers may define vertical resonant cavities of leaky wave antennas.
- a partially reflective surface as shown in FIGS. 2 and 3 , for example, may enable the resonant electromagnetic mode in the cavity to leak out from that surface.
- the metal layers 801 A- 801 J comprising the leaky wave antennas 809 A- 809 E may comprise microstrip structures as described with respect to FIG. 7 .
- the region between the metal layers 801 A- 801 L may comprise a resistive material that may provide electrical isolation between the metal layers 801 A- 801 L thereby creating a resonant cavity.
- the region between the metal layers 801 A- 801 L may comprise air and/or a combination of air and dielectric material, thereby enabling MEMS actuation of the metal layers 801 A- 801 L.
- the number of metal layers is not limited to the number of metal layers 801 A- 801 L shown in FIG. 8 . Accordingly, there may be any number of layers embedded within and/or on the chip 162 , the package 167 , and/or the printed circuit board 171 , depending on the number of leaky wave antennas, traces, waveguides and other devices fabricated.
- the solder balls 803 may comprise spherical balls of metal to provide electrical, thermal and physical contact between the chip 162 , the package 167 , and/or the printed circuit board 171 .
- the chip 162 and/or the package 167 may be pressed with enough force to squash the metal spheres somewhat, and may be performed at an elevated temperature to provide suitable electrical resistance and physical bond strength.
- the thermal epoxy 807 may fill the volume between the solder balls 803 and may provide a high thermal conductance path for heat transfer out of the chip 162 .
- the chip 162 may comprise an RF front end, such as the RF transceiver 152 , described with respect to FIG. 1 , and may be utilized to transmit and/or receive RF signals, at 60 GHz, for example.
- the chip 162 may be electrically coupled to the package 167 .
- the package 167 may be electrically coupled to the printed circuit board 171 .
- leaky wave antennas in the chip 162 , the package 167 , and/or the printed circuit board 171 may be utilized to transmit signals to external devices.
- Lower frequency signals may be communicated via leaky wave antennas with larger resonant cavity heights, such as the leaky wave antenna 809 E integrated in the printed circuit board 171 .
- higher frequency signal signals may also be communicated from leaky wave antennas integrated in the printed circuit board 171 by utilizing coplanar waveguide leaky wave antennas, such as the leaky wave antenna 809 F, or by utilizing microstrip waveguide leaky wave antennas with lower cavity heights, such as the leaky wave antennas 809 D.
- the leaky wave antenna 809 F may comprise a coplanar waveguide structure, and may be operable to communicate wireless signals in the horizontal plane, parallel to the surface of the printed circuit board 171 . In this manner, signals may be communicated between laterally situated structures without the need to run lossy electrical signal lines.
- Coplanar waveguides on thinner structures, such as the chip 162 may have electromagnetic field lines that extend into the substrate, which can cause excessive absorption in lower resistivity substrates, such as silicon. For this reason, microstrip waveguides with a large ground plane may be used with lossy substrates.
- coplanar structures can be used when a high resistivity substrate is utilized for the chip 162 .
- the leaky wave antennas 809 A- 809 E may comprise microstrip waveguide structures, for example, that may be operable to wirelessly communicate signals perpendicular to the plane of the supporting structure, such as the chip 162 , the package 167 , and the printed circuit board 171 . In this manner, wireless signals may be communicated between the chip 162 , the package 167 , and the printed circuit board 171 , and also to devices external to the wireless device 150 in the vertical direction.
- leaky wave antennas in the chip 162 , the package 167 , and the printed circuit board 171 may result in the reduction of stray impedances when compared to wire-bonded connections between structures as in conventional systems, particularly for higher frequencies, such as 60 GHz. In this manner, volume requirements may be reduced and performance may be improved due to lower losses and accurate control of impedances via switches in the chip 162 or on the package 167 , for example.
- leaky wave antennas may be configured so that they are along a plurality of axes, thereby enabling RF signal scanning capability.
- the leaky wave antennas 809 A- 809 C may be situated along one axes, with the leaky wave antenna 809 B plus one or more leaky wave antennas along the axis into the plane of the drawing defining the perpendicular axis.
- the presence of RF signal sources may be determined over the field of view of the wireless device 150 .
- the location of the RF sources may be determined.
- FIG. 9 is a block diagram illustrating exemplary steps for scanning RF channels utilizing leaky wave antennas, in accordance with an embodiment of the invention.
- the leaky wave antennas may be configured to receive signals at a starting angle.
- the leaky wave antennas may be swept across a field of view while measuring the signal strength from each antenna
- the presence and/or location of RF signal sources may be determined by triangulating a location from the signal strength measurements for a plurality of leaky wave antennas located on different axes.
- the exemplary steps may proceed to end step 911 .
- the exemplary steps may proceed to step 903 to configure the leaky wave antennas at a desired starting angle of reception.
- a method and system are disclosed for configuring a receiving angle, ⁇ , of a plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F in a wireless device 150 to receive RF signals at a desired starting angle.
- the receiving angle of the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F may be swept while measuring RF signal strength for each of the leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F.
- a location of one or more RF signal sources 501 A- 501 C may be determined from the measured RF signal strength versus angle of reception, ⁇ , of the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F.
- a resonant frequency of the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F may be configured utilizing micro-electro-mechanical systems (MEMS) deflection.
- MEMS micro-electro-mechanical systems
- the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F may be situated along a plurality of axes in the wireless device 150 .
- the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F may comprise microstrip waveguides 720 , where a cavity height, h, of the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F is dependent on a spacing between conductive lines 723 and 725 in the microstrip waveguides 720 .
- the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F may comprise coplanar waveguides 730 , where a cavity height of the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F is dependent on a spacing between conductive lines 731 and 733 in the coplanar waveguides 730 .
- the plurality of leaky wave antennas 164 A- 164 C, 400 , 420 , 503 A- 503 D, 600 , 720 , 730 , 809 A- 809 F may be integrated in one or more integrated circuits 162 that are flip-chip bonded to one or more integrated circuit packages 167 , in one or more integrated circuit packages 167 that are flip-chip bonded to one or more printed circuit boards 171 , and/or in one or more printed circuit boards 171 .
- inventions may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for scanning RF channels utilizing leaky wave antennas.
- aspects of the invention may be realized in hardware, software, firmware or a combination thereof.
- the invention may be realized in a centralized fashion in at least one computer system or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited.
- a typical combination of hardware, software and firmware may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
- One embodiment of the present invention may be implemented as a board level product, as a single chip, application specific integrated circuit (ASIC), or with varying levels integrated on a single chip with other portions of the system as separate components.
- the degree of integration of the system will primarily be determined by speed and cost considerations. Because of the sophisticated nature of modern processors, it is possible to utilize a commercially available processor, which may be implemented external to an ASIC implementation of the present system. Alternatively, if the processor is available as an ASIC core or logic block, then the commercially available processor may be implemented as part of an ASIC device with various functions implemented as firmware.
- the present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods.
- Computer program in the present context may mean, for example, any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
- other meanings of computer program within the understanding of those skilled in the art are also contemplated by the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Amplifiers (AREA)
- Near-Field Transmission Systems (AREA)
- Transmitters (AREA)
- Transceivers (AREA)
- Radar Systems Or Details Thereof (AREA)
- Micromachines (AREA)
Abstract
Description
- This application makes reference to, claims the benefit from, and claims priority to U.S. Provisional Application Ser. No. 61/246,618 filed on Sep. 29, 2009, and U.S. Provisional Application Ser. No. 61/185,245 filed on Jun. 9, 2009.
- This application also makes reference to:
- U.S. patent application Ser. No. 12/650,212 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,295 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,277 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,192 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,224 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,176 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,246 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,292 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/650,324 filed on Dec. 30, 2009;
- U.S. patent application Ser. No. 12/708,366 filed on Feb. 18, 2010;
- U.S. patent application Ser. No. 12/751,550 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,768 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,759 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,593 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,772 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,777 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,782 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/751,792 filed on Mar. 31, 2010;
- U.S. patent application Ser. No. 12/790,279 filed on May 28, 2010;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21204US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21215US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21216US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21217US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21219US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21221US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21223US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21224US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21225US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21226US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21228US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21229US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21234US02) filed on even date herewith;
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21235US02) filed on even date herewith; and
- U.S. patent application Ser. No. ______ (Attorney Docket No. 21236US02) filed on even date herewith.
- Each of the above stated applications is hereby incorporated herein by reference in its entirety.
- [Not Applicable]
- [Not Applicable]
- Certain embodiments of the invention relate to wireless communication. More specifically, certain embodiments of the invention relate to a method and system for scanning RF channels utilizing leaky wave antennas.
- Mobile communications have changed the way people communicate and mobile phones have been transformed from a luxury item to an essential part of every day life. The use of mobile phones is today dictated by social situations, rather than hampered by location or technology. While voice connections fulfill the basic need to communicate, and mobile voice connections continue to filter even further into the fabric of every day life, the mobile Internet is the next step in the mobile communication revolution. The mobile Internet is poised to become a common source of everyday information, and easy, versatile mobile access to this data will be taken for granted.
- As the number of electronic devices enabled for wireline and/or mobile communications continues to increase, significant efforts exist with regard to making such devices more power efficient. For example, a large percentage of communications devices are mobile wireless devices and thus often operate on battery power. Additionally, transmit and/or receive circuitry within such mobile wireless devices often account for a significant portion of the power consumed within these devices. Moreover, in some conventional communication systems, transmitters and/or receivers are often power inefficient in comparison to other blocks of the portable communication devices. Accordingly, these transmitters and/or receivers have a significant impact on battery life for these mobile wireless devices.
- Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with the present invention as set forth in the remainder of the present application with reference to the drawings.
- A system and/or method for scanning RF channels utilizing leaky wave antennas as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
- Various advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
-
FIG. 1 is a block diagram of an exemplary wireless system with leaky wave antennas for scanning RF channels, which may be utilized in accordance with an embodiment of the invention. -
FIG. 2 is a block diagram illustrating an exemplary leaky wave antenna, in accordance with an embodiment of the invention. -
FIG. 3 is a block diagram illustrating a plan view of exemplary partially reflective surfaces, in accordance with an embodiment of the invention. -
FIG. 4 is a block diagram illustrating an exemplary phase dependence of a leaky wave antenna, in accordance with an embodiment of the invention. -
FIG. 5A is a block diagram illustrating exemplary in-phase and out-of-phase beam shapes for a leaky wave antenna, in accordance with an embodiment of the invention. -
FIG. 5B is a block diagram illustrating RF source scanning utilizing leaky wave antennas, in accordance with an embodiment of the invention. -
FIG. 6 is a block diagram illustrating a leaky wave antenna with variable input impedance feed points, in accordance with an embodiment of the invention. -
FIG. 7 is a block diagram illustrating a cross-sectional view of coplanar and microstrip waveguides, in accordance with an embodiment of the invention. -
FIG. 8 is a diagram illustrating leaky wave antennas for scanning RF channels, in accordance with an embodiment of the invention. -
FIG. 9 is a block diagram illustrating exemplary steps for scanning RF channels utilizing leaky wave antennas, in accordance with an embodiment of the invention. - Certain aspects of the invention may be found in a method and system for scanning RF channels utilizing a leaky wave antenna. Exemplary aspects of the invention may comprise configuring a receiving angle of a plurality of leaky wave antennas in a wireless device to receive RF signals at a desired starting angle. The receiving angle of the plurality of leaky wave antennas may be swept while measuring RF signal strength for each of the leaky wave antennas. A location of one or more RF signal sources may be determined from the measured RF signal strength versus angle of reception of the plurality of leaky wave antennas. A resonant frequency of the plurality of leaky wave antennas may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The plurality of leaky wave antennas may be situated along a plurality of axes in the wireless device. The plurality of leaky wave antennas may comprise microstrip waveguides, where a cavity height of the plurality of leaky wave antennas is dependent on spacing between conductive lines in the microstrip waveguides. The plurality of leaky wave antennas may comprise coplanar waveguides, where a cavity height of the plurality of leaky wave antennas is dependent on spacing between conductive lines in the coplanar waveguides. The plurality of leaky wave antennas may be integrated in one or more integrated circuits that are flip-chip bonded to one or more integrated circuit packages, in one or more integrated circuit packages that are flip-chip bonded to one or more printed circuit boards, and/or in one or more printed circuit boards.
-
FIG. 1 is a block diagram of an exemplary wireless system with leaky wave antennas for scanning RF channels, which may be utilized in accordance with an embodiment of the invention. Referring toFIG. 1 , thewireless device 150 may comprise anantenna 151, atransceiver 152, abaseband processor 154, aprocessor 156, asystem memory 158, alogic block 160, achip 162,leaky wave antennas 164A-164C, switches 165, anexternal headset port 166, and anintegrated circuit package 167. Thewireless device 150 may also comprise ananalog microphone 168, integrated hands-free (IHF)stereo speakers 170, a printedcircuit board 171, a hearing aid compatible (HAC)coil 174, a dualdigital microphone 176, avibration transducer 178, a keypad and/ortouchscreen 180, and adisplay 182. - The
transceiver 152 may comprise suitable logic, circuitry, interface(s), and/or code that may be enabled to modulate and upconvert baseband signals to RF signals for transmission by one or more antennas, which may be represented generically by theantenna 151. Thetransceiver 152 may also be enabled to downconvert and demodulate received RF signals to baseband signals. The RF signals may be received by one or more antennas, which may be represented generically by theantenna 151, or theleaky wave antennas 164A-164C. Different wireless systems may use different antennas for transmission and reception. Thetransceiver 152 may be enabled to execute other functions, for example, filtering the baseband and/or RF signals, and/or amplifying the baseband and/or RF signals. Although asingle transceiver 152 is shown, the invention is not so limited. Accordingly, thetransceiver 152 may be implemented as a separate transmitter and a separate receiver. In addition, there may be a plurality of transceivers, transmitters and/or receivers. In this regard, the plurality of transceivers, transmitters and/or receivers may enable thewireless device 150 to handle a plurality of wireless protocols and/or standards including cellular, WLAN and PAN. Wireless technologies handled by thewireless device 150 may comprise GSM, CDMA, CDMA2000, WCDMA, GMS, GPRS, EDGE, WIMAX, WLAN, 3GPP, UMTS, BLUETOOTH, and ZigBee, for example. - The
baseband processor 154 may comprise suitable logic, circuitry, interface(s), and/or code that may be enabled to process baseband signals for transmission via thetransceiver 152 and/or the baseband signals received from thetransceiver 152. Theprocessor 156 may be any suitable processor or controller such as a CPU, DSP, ARM, or any type of integrated circuit processor. Theprocessor 156 may comprise suitable logic, circuitry, and/or code that may be enabled to control the operations of thetransceiver 152 and/or thebaseband processor 154. For example, theprocessor 156 may be utilized to update and/or modify programmable parameters and/or values in a plurality of components, devices, and/or processing elements in thetransceiver 152 and/or thebaseband processor 154. At least a portion of the programmable parameters may be stored in thesystem memory 158. - Control and/or data information, which may comprise the programmable parameters, may be transferred from other portions of the
wireless device 150, not shown inFIG. 1 , to theprocessor 156. Similarly, theprocessor 156 may be enabled to transfer control and/or data information, which may include the programmable parameters, to other portions of thewireless device 150, not shown inFIG. 1 , which may be part of thewireless device 150. - The
processor 156 may utilize the received control and/or data information, which may comprise the programmable parameters, to determine an operating mode of thetransceiver 152. For example, theprocessor 156 may be utilized to select a specific frequency for a local oscillator, a specific gain for a variable gain amplifier, configure the local oscillator and/or configure the variable gain amplifier for operation in accordance with various embodiments of the invention. Moreover, the specific frequency selected and/or parameters needed to calculate the specific frequency, and/or the specific gain value and/or the parameters, which may be utilized to calculate the specific gain, may be stored in thesystem memory 158 via theprocessor 156, for example. The information stored insystem memory 158 may be transferred to thetransceiver 152 from thesystem memory 158 via theprocessor 156. - The
system memory 158 may comprise suitable logic, circuitry, interface(s), and/or code that may be enabled to store a plurality of control and/or data information, including parameters needed to calculate frequencies and/or gain, and/or the frequency value and/or gain value. Thesystem memory 158 may store at least a portion of the programmable parameters that may be manipulated by theprocessor 156. - The
logic block 160 may comprise suitable logic, circuitry, interface(s), and/or code that may enable controlling of various functionalities of thewireless device 150. For example, thelogic block 160 may comprise one or more state machines that may generate signals to control thetransceiver 152 and/or thebaseband processor 154. Thelogic block 160 may also comprise registers that may hold data for controlling, for example, thetransceiver 152 and/or thebaseband processor 154. Thelogic block 160 may also generate and/or store status information that may be read by, for example, theprocessor 156. Amplifier gains and/or filtering characteristics, for example, may be controlled by thelogic block 160. - The BT radio/
processor 163 may comprise suitable circuitry, logic, interface(s), and/or code that may enable transmission and reception of Bluetooth signals. The BT radio/processor 163 may enable processing and/or handling of BT baseband signals. In this regard, the BT radio/processor 163 may process or handle BT signals received and/or BT signals transmitted via a wireless communication medium. The BT radio/processor 163 may also provide control and/or feedback information to/from thebaseband processor 154 and/or theprocessor 156, based on information from the processed BT signals. The BT radio/processor 163 may communicate information and/or data from the processed BT signals to theprocessor 156 and/or to thesystem memory 158. Moreover, the BT radio/processor 163 may receive information from theprocessor 156 and/or thesystem memory 158, which may be processed and transmitted via the wireless communication medium a Bluetooth headset, for example. - The
CODEC 172 may comprise suitable circuitry, logic, interface(s), and/or code that may process audio signals received from and/or communicated to input/output devices. The input devices may be within or communicatively coupled to thewireless device 150, and may comprise theanalog microphone 168, thestereo speakers 170, the hearing aid compatible (HAC)coil 174, the dualdigital microphone 176, and thevibration transducer 178, for example. TheCODEC 172 may be operable to up-convert and/or down-convert signal frequencies to desired frequencies for processing and/or transmission via an output device. TheCODEC 172 may enable utilizing a plurality of digital audio inputs, such as 16 or 18-bit inputs, for example. TheCODEC 172 may also enable utilizing a plurality of data sampling rate inputs. For example, theCODEC 172 may accept digital audio signals at sampling rates such as 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and/or 48 kHz. TheCODEC 172 may also support mixing of a plurality of audio sources. For example, theCODEC 172 may support audio sources such as general audio, polyphonic ringer, I2S FM audio, vibration driving signals, and voice. In this regard, the general audio and polyphonic ringer sources may support the plurality of sampling rates that theaudio CODEC 172 is enabled to accept, while the voice source may support a portion of the plurality of sampling rates, such as 8 kHz and 16 kHz, for example. - The
chip 162 may comprise an integrated circuit with multiple functional blocks integrated within, such as thetransceiver 152, theprocessor 156, thebaseband processor 154, the BT radio/processor 163, theleaky wave antennas 164A, and theCODEC 172. The number of functional blocks integrated in thechip 162 is not limited to the number shown inFIG. 1 . Accordingly, any number of blocks may be integrated on thechip 162 depending on chip space andwireless device 150 requirements, for example. Thechip 162 may be flip-chip bonded, for example, to thepackage 167, as described further with respect toFIG. 8 . - The
leaky wave antennas 164A-164C may comprise a resonant cavity with a highly reflective surface and a lower reflectivity surface, and may be integrated in and/or on thechip 162, thepackage 167, and or the printedcircuit board 171. The lower reflectivity surface may allow the resonant mode to “leak” out of the cavity. The lower reflectivity surface of theleaky wave antennas 164A-164C may be configured with slots in a metal surface, or a pattern of metal patches, as described further inFIGS. 2 and 3 . The physical dimensions of theleaky wave antennas 164A-164C may be configured to optimize bandwidth of transmission and/or the beam pattern radiated or received. By integrating theleaky wave antennas 164A-164C on thepackage 167 and/or the printedcircuit board 171, the dimensions of theleaky wave antennas 164A-164C may not be limited by the size of thechip 162. - In an exemplary embodiment of the invention, the
leaky wave antennas 164A-164C may be configured to sweep the angle of reception of RF signals by sweeping the frequency of the feed signal across the resonant frequency of the leaky wave antennas. By configuring leaky wave antennas so that they are along two axes, theleaky wave antennas 164A-164C may be utilized to determine the existence of RF sources. - The
switches 165 may comprise switches such as CMOS or MEMS switches that may be operable to switch different antennas of theleaky wave antennas 164A-164C to thetransceiver 152 and/or switch elements in and/or out of theleaky wave antennas 164A-164C, such as the patches and slots described inFIG. 3 . Theswitches 165 may enable the coupling of PA's to different feed points on theleaky wave antennas 164A-164C, depending on the desired impedance seen at the feed point, or to different antennas to optimize resolution of channel scanning, such as by coupling to the antennas separated by the largest distance in the desired scanning axis. - The
external headset port 166 may comprise a physical connection for an external headset to be communicatively coupled to thewireless device 150. Theanalog microphone 168 may comprise suitable circuitry, logic, interface(s), and/or code that may detect sound waves and convert them to electrical signals via a piezoelectric effect, for example. The electrical signals generated by theanalog microphone 168 may comprise analog signals that may require analog to digital conversion before processing. - The
package 167 may comprise a ceramic package, a printed circuit board, or other support structure for thechip 162 and other components of thewireless device 150. In this regard, thechip 162 may be bonded to thepackage 167. Thepackage 167 may comprise insulating and conductive material, for example, and may provide isolation between electrical components mounted on thepackage 167. - The
stereo speakers 170 may comprise a pair of speakers that may be operable to generate audio signals from electrical signals received from theCODEC 172. TheHAC coil 174 may comprise suitable circuitry, logic, and/or code that may enable communication between thewireless device 150 and a T-coil in a hearing aid, for example. In this manner, electrical audio signals may be communicated to a user that utilizes a hearing aid, without the need for generating sound signals via a speaker, such as thestereo speakers 170, and converting the generated sound signals back to electrical signals in a hearing aid, and subsequently back into amplified sound signals in the user's ear, for example. - The dual
digital microphone 176 may comprise suitable circuitry, logic, interface(s), and/or code that may be operable to detect sound waves and convert them to electrical signals. The electrical signals generated by the dualdigital microphone 176 may comprise digital signals, and thus may not require analog to digital conversion prior to digital processing in theCODEC 172. The dualdigital microphone 176 may enable beamforming capabilities, for example. - The
vibration transducer 178 may comprise suitable circuitry, logic, interface(s), and/or code that may enable notification of an incoming call, alerts and/or message to thewireless device 150 without the use of sound. The vibration transducer may generate vibrations that may be in synch with, for example, audio signals such as speech or music. - In operation, control and/or data information, which may comprise the programmable parameters, may be transferred from other portions of the
wireless device 150, not shown inFIG. 1 , to theprocessor 156. Similarly, theprocessor 156 may be enabled to transfer control and/or data information, which may include the programmable parameters, to other portions of thewireless device 150, not shown inFIG. 1 , which may be part of thewireless device 150. - The
processor 156 may utilize the received control and/or data information, which may comprise the programmable parameters, to determine an operating mode of thetransceiver 152. For example, theprocessor 156 may be utilized to select a specific frequency for a local oscillator, a specific gain for a variable gain amplifier, configure the local oscillator and/or configure the variable gain amplifier for operation in accordance with various embodiments of the invention. Moreover, the specific frequency selected and/or parameters needed to calculate the specific frequency, and/or the specific gain value and/or the parameters, which may be utilized to calculate the specific gain, may be stored in thesystem memory 158 via theprocessor 156, for example. The information stored insystem memory 158 may be transferred to thetransceiver 152 from thesystem memory 158 via theprocessor 156. - The
CODEC 172 in thewireless device 150 may communicate with theprocessor 156 in order to transfer audio data and control signals. Control registers for theCODEC 172 may reside within theprocessor 156. Theprocessor 156 may exchange audio signals and control information via thesystem memory 158. TheCODEC 172 may up-convert and/or down-convert the frequencies of multiple audio sources for processing at a desired sampling rate. - The
leaky wave antennas 164A-164C may be operable to transmit and/or receive wireless signals. In an exemplary embodiment of the invention, the leaky wave antennas may be configured so that they are situated along two or more axes such that when the frequency of transmission or reception is swept across the resonant frequency of the leaky wave antennas, the angle of the beam transmitted or reflected is swept along these axes. In this manner, the presence of a transmission source or receiver may be determined. - In addition, the frequency of the transmission and/or reception may be determined by the cavity height of the
leaky wave antennas 164A-164C. Accordingly, the reflective surfaces may be integrated at different heights or lateral spacing in thechip 162, thepackage 167, and/or the printedcircuit board 171, thereby configuring leaky wave antennas with different resonant frequencies. - In an exemplary embodiment of the invention, the resonant cavity frequency of the
leaky wave antennas 164A-164C may be configured by tuning the cavity height using MEMS actuation. Accordingly, a bias voltage may be applied such that one or both of the reflective surfaces of theleaky wave antennas 164A-164C may be deflected by the applied potential. In this manner, the cavity height, and thus the resonant frequency of the cavity, may be configured. Similarly, the patterns of slots and/or patches in the partially reflected surface may be configured by theswitches 165. - Different frequency signals may be transmitted and/or received by the
leaky wave antennas 164A-164C by selectively coupling thetransceiver 152 to leaky wave antennas with different cavity heights. For example, leaky wave antennas with reflective surfaces on the top and the bottom of thepackage 167 may have the largest cavity height, and thus provide the lowest resonant frequency. Conversely, leaky wave antennas with a reflective surface on the surface of thepackage 167 and another reflective surface just below the surface of thepackage 167, may provide a higher resonant frequency. The selective coupling may be enabled by theswitches 165 and/or CMOS devices in thechip 162. -
FIG. 2 is a block diagram illustrating an exemplary leaky wave antenna, in accordance with an embodiment of the invention. Referring toFIG. 2 , there is shown theleaky wave antennas 164A-164C comprising a partiallyreflective surface 201A, areflective surface 201B, and afeed point 203. The space between the partiallyreflective surface 201A and thereflective surface 201B may be filled with dielectric material, for example, and the height, h, between the partiallyreflective surface 201A and thereflective surface 201B may be utilized to configure the frequency of transmission of theleaky wave antennas 164A-164C. In another embodiment of the invention, an air gap may be integrated in the space between the partiallyreflective surface 201A and thereflective surface 201B to enable MEMS actuation. There is also shown (micro-electromechanical systems) MEMS bias voltages, +VMEMS and −VMEMS. - The
feed point 203 may comprise an input terminal for applying an input voltage to or receiving an output voltage from theleaky wave antennas 164A-164C. The invention is not limited to asingle feed point 203, as there may be any amount of feed points for different phases of signal or a plurality of signal sources, for example, to be applied to theleaky wave antennas 164A-164C. - In an embodiment of the invention, the height, h, may be one-half the wavelength of the desired transmitted mode from the
leaky wave antennas 164A-164C. In this manner, the phase of an electromagnetic mode that traverses the cavity twice may be coherent with the input signal at thefeed point 203, thereby configuring a resonant cavity known as a Fabry-Perot cavity. The magnitude of the resonant mode may decay exponentially in the lateral direction from thefeed point 203, thereby reducing or eliminating the need for confinement structures to the sides of theleaky wave antennas 164A-164C. The input impedance of theleaky wave antennas 164A-164C may be configured by the vertical placement of thefeed point 203, as described further inFIG. 6 . - In operation, a signal to be transmitted via a power amplifier in the
transceiver 152 may be communicated to thefeed point 203 of theleaky wave antennas 164A-164C with a frequency f, or a signal to be received by theleaky wave antennas 164A-164C may be directed at the antenna. The cavity height, h, may be configured to correlate to one half the wavelength of a harmonic of the signal of frequency f. The signal may traverse the height of the cavity and may be reflected by the partiallyreflective surface 201A, and then traverse the height back to thereflective surface 201B. Since the wave will have travelled a distance corresponding to a full wavelength, constructive interference may result and a resonant mode may thereby be established. - Leaky wave antennas may enable the configuration of high gain antennas without the need for a large array of antennas which require a complex feed network and suffer from loss due to feed lines. The
leaky wave antennas 164A-164C may be operable to transmit and/or receive wireless signals via conductive layers in and/or on thepackage 167 and/or the printedcircuit board 171. In this manner, the resonant frequency of the cavity may cover a wider range due to the larger size of thepackage 167 and the printedcircuit board 171, compared to thechip 162, without requiring large areas needed for conventional antennas and associated circuitry. In addition, by integrating leaky wave antennas in a plurality of packages on one or more printed circuit boards, wireless communication between packages may be enabled. - In an exemplary embodiment of the invention, the frequency of transmission and/or reception of the
leaky wave antennas 164A-164C may be configured by selecting one of theleaky wave antennas 164A-164C with the appropriate cavity height for the desired frequency. The angle of transmission may be configured by tuning the frequency of a signal communicated to thefeed point 203. Similarly, the angle of reception of signals received from the leaky wave antenna may be configured by tuning the frequency of the signal received from thefeed point 203, such as by filtering out other frequencies at thefeed point 203. - In another embodiment of the invention, the cavity height, h, may be configured by MEMS actuation. For example, the bias voltages +VMEMS and −VMEMS may deflect one or both of the
reflective surfaces -
FIG. 3 is a block diagram illustrating a plan view of exemplary partially reflective surfaces, in accordance with an embodiment of the invention. Referring toFIG. 3 , there is shown a partiallyreflective surface 300 comprising periodic slots in a metal surface, and a partiallyreflective surface 320 comprising periodic metal patches. The partiallyreflective surfaces 300/320 may comprise different embodiments of the partiallyreflective surface 201A described with respect toFIG. 2 . - The spacing, dimensions, shape, and orientation of the slots and/or patches in the partially
reflective surfaces 300/320 may be utilized to configure the bandwidth, and thus Q-factor, of the resonant cavity defined by the partiallyreflective surfaces 300/320 and a reflective surface, such as thereflective surface 201B, described with respect toFIG. 2 . The partiallyreflective surfaces 300/320 may thus comprise frequency selective surfaces due to the narrow bandwidth of signals that may leak out of the structure as configured by the slots and/or patches. - The spacing between the patches and/or slots may be related to wavelength of the signal transmitted and/or received, which may be somewhat similar to beamforming with multiple antennas. The length of the slots and/or patches may be several times larger than the wavelength of the transmitted and/or received signal or less, for example, since the leakage from the slots and/or regions surround the patches may add up, similar to beamforming with multiple antennas.
- In an embodiment of the invention, the slots/patches may be configured via CMOS and/or micro-electromechanical system (MEMS) switches, such as the
switches 165 described with respect toFIG. 1 , to tune the Q of the resonant cavity. The slots and/or patches may be configured in conductive layers in and/or on thepackage 167 and may be shorted together or switched open utilizing theswitches 165. In this manner, RF signals, such as 60 GHz signals, for example, may be transmitted from various locations without the need for additional circuitry and conventional antennas with their associated circuitry that require valuable chip space. - In another embodiment of the invention, the slots or patches may be configured in conductive layers in a vertical plane of the
chip 162, thepackage 167, and/or the printedcircuit board 171, thereby enabling the communication of wireless signals in a horizontal direction in the structure. - In another exemplary embodiment of the invention, the partially
reflective surfaces 300/320 may be integrated in and/or on thepackage 167. In this manner, different frequency signals may be transmitted and/or received. Accordingly, a partiallyreflective surface 300/320 integrated within thepackage 167 and areflective surface 201B may transmit and/or receive signals at a higher frequency signal than from a resonant cavity defined by a partiallyreflective surface 300/320 on surface of thepackage 167 and areflective surface 201B on the other surface of thepackage 167. -
FIG. 4 is a block diagram illustrating an exemplary phase dependence of a leaky wave antenna, in accordance with an embodiment of the invention. Referring toFIG. 4 , there is shown a leaky wave antenna comprising the partiallyreflective surface 201A, thereflective surface 201B, and thefeed point 203. In-phase condition 400 illustrates the relative beam shape transmitted by theleaky wave antennas 164A-164C when the frequency of the signal communicated to thefeed point 203 matches that of the resonant cavity as defined by the cavity height, h, and the dielectric constant of the material between the reflective surfaces. - Similarly, out-of-
phase condition 420 illustrates the relative beam shape transmitted by theleaky wave antennas 164A-164C when the frequency of the signal communicated to thefeed point 203 does not match that of the resonant cavity. The resulting beam shape may be conical, as opposed to a single main vertical node. These are illustrated further with respect toFIG. 5 . Theleaky wave antennas 164A-164C may be integrated at various heights in thechip 162, thepackage 167, and/or the printedcircuit board 171, thereby providing a plurality of transmission and reception sites with varying resonant frequency. - By configuring the leaky wave antennas for in-phase and out-of-phase conditions, signals possessing different characteristics may be directed out of and/or into the
chip 162, thepackage 167, and/or the printedcircuit board 171 in desired directions, thereby enabling wireless communication between a plurality of devices and directions. In an exemplary embodiment of the invention, the angle at which signals may be transmitted by a leaky wave antenna may be dynamically controlled so that signal may be directed to desired receiving leaky wave antennas. In another embodiment of the invention, theleaky wave antennas 164A-164C may be operable to receive RF signals, such as 60 GHz signals, for example. The direction in which the signals are received may be configured by the in-phase and out-of-phase conditions. - Similarly, by utilizing a plurality of leaky wave antennas and scanning the angle of reception for each antenna, the presence of RF signal sources may be determined. For example, leaky wave antennas may be configured so that they are located on perpendicular axes, such that two antennas on a single axis can delineate the presence of an RF source along that axis, and antennas along a perpendicular axis may be determine the presence of the source along that axis. Thus, the location of an RF source may be determined across an entire field-of-view of the plurality of leaky wave antennas.
-
FIG. 5A is a block diagram illustrating exemplary in-phase and out-of-phase beam shapes for a leaky wave antenna, in accordance with an embodiment of the invention. Referring toFIG. 5A , there is shown aplot 500 of transmitted signal beam shape versus angle, Θ, for the in-phase and out-of-phase conditions for a leaky wave antenna. - The In-phase curve in the
plot 500 may correlate to the case where the frequency of the signal communicated to a leaky wave antenna matches the resonant frequency of the cavity. In this manner, a single vertical main node may result. In instances where the frequency of the signal at the feed point is not at the resonant frequency, a double, or conical-shaped node may be generated as shown by the Out-of-phase curve in theplot 500. By configuring the leaky wave antennas for in-phase and out-of-phase conditions, signals may be directed out of or into thechip 162,package 167, and/or the printedcircuit board 171 in desired directions. -
FIG. 5B is a block diagram illustrating RF source scanning utilizing leaky wave antennas, in accordance with an embodiment of the invention. Referring toFIG. 5B , there is shown thewireless device 150 andRF sources 501A-501C. Thewireless device 150 is as described with respect toFIG. 1 , and is shown in two views inFIG. 5B to illustrate an exemplary arrangement of leaky wave antennas on two perpendicular axes and how the receive beams may be scanned. - The RF sources 501 may comprise wireless devices that may communicate high frequency RF signals. In instances where transmitted signals are highly directional, such as from leaky wave antennas, for example, the direction of transmission/reception of antennas may be swept to determine the presence of these directional RF sources.
- The
leaky wave antennas 503A-503D may be substantially similar to theleaky wave antennas 164A-164D and may be integrated in thechip 162, thepackage 167, and/or the printedcircuit board 171, for example. Theleaky wave antennas 503A-503D may be operable to scan the angle of reception of RF signals by tuning the frequency of signals received from the feed points of the antennas. - In operation, the RF sources 501 may transmit directional RF signals. The
wireless device 150 may be operable to scan the received frequency of theleaky wave antennas 503A-503D, such as by scanning a filter frequency, for example, thereby scanning the angle of reception of the received signals. In another exemplary embodiment of the invention, the angle of reception of theleaky wave antennas 503A-503D may be configured by MEMS actuation of one or more reflective surfaces in the antennas. By scanning a plurality of leaky wave antennas on perpendicular axes and monitoring the received signals, a direction of the transmitting sources may be determined. -
FIG. 6 is a block diagram illustrating a leaky wave antenna with variable input impedance feed points, in accordance with an embodiment of the invention. Referring toFIG. 6 , there is shown aleaky wave antenna 600 comprising the partiallyreflective surface 201A and thereflective surface 201B. There is also shown feed points 601A-601C. The feed points 601A-601C may be located at different positions along the height, h, of the cavity thereby configuring different impedance points for the leaky wave antenna. - In this manner, a leaky wave antenna may be utilized to couple to a plurality of power amplifiers, or a configurable power amplifier with varying output impedances. For example, in instances where a power amplifier is operated in a high gain, low output impedance configuration, it may be coupled to a low impedance feed point, such as the
feed point 601A. - Similarly, by integrating leaky wave antennas in conductive layers in the
chip 162, thepackage 167, and/or the printedcircuit board 171, the impedance of the leaky wave antenna may be matched to the power amplifier without impedance variations that may result with conventional antennas and their proximity or distance to associated driver electronics. In addition, by integrating reflective and partially reflective surfaces with varying cavity heights and varying feed points, leaky wave antennas with both different impedances and resonant frequencies may be enabled. In an embodiment of the invention, the heights of the feed points 601A-601C may be configured by MEMS actuation. -
FIG. 7 is a block diagram illustrating a cross-sectional view of coplanar and microstrip waveguides, in accordance with an embodiment of the invention. Referring toFIG. 7 , there is shown amicrostrip waveguide 720 and acoplanar waveguide 730 and asupport structure 701. Themicrostrip waveguide 720 may comprise signalconductive lines 723, aground plane 725, aresonant cavity 711A, and an insulatinglayer 727. Thecoplanar waveguide 730 may comprise signalconductive lines resonant cavity 711B, the insulatinglayer 727, and amulti-layer support structure 701. Thesupport structure 701 may comprise thechip 162, thepackage 167, and/or the printedcircuit board 171, for example. - The signal
conductive lines layer 727. In another embodiment of the invention, the signalconductive lines conductive line 723 and theground plane 725 may determine the electric field generated therein. In addition, the dielectric constant of the insulatinglayer 727 may also determine the electric field between the signalconductive line 723 and theground plane 725. - The
resonant cavities layer 727, an air gap, or a combination of an air gap and the insulatinglayer 727, thereby enabling MEMS actuation and thus frequency tuning. - The insulating
layer 727 may comprise SiO2 or other insulating material that may provide a high resistance layer between the signalconductive line 723 and theground plane 725, and the signalconductive lines conductive line 723 and theground plane 725 may be dependent on the dielectric constant of the insulatinglayer 727. - The thickness and the dielectric constant of the insulating
layer 727 may determine the electric field strength generated by the applied signal. The resonant cavity thickness of a leaky wave antenna may be dependent on the spacing between the signalconductive line 723 and theground plane 725, or the signalconductive lines - The signal
conductive lines conductive line 723 and theground plane 725 may define resonant cavities for leaky wave antennas. Each layer may comprise a reflective surface or a partially reflective surface depending on the pattern of conductive material. For example, a partially reflective surface may be configured by alternating conductive and insulating material in a desired pattern. In this manner, signals may be directed out of, or received into, a surface of thechip 162, thepackage 167, and/or the printedcircuit board 171, as illustrated with themicrostrip waveguide 720. In another embodiment of the invention, signals may be communicated in the horizontal plane of thechip 162, thepackage 167, and/or the printedcircuit board 171 utilizing thecoplanar waveguide 730. - The
support structure 701 may provide mechanical support for themicrostrip waveguide 720, thecoplanar waveguide 730, and other devices that may be integrated within. In another embodiment of the invention, thechip 162, thepackage 167, and/or the printedcircuit board 171 may comprise Si, GaAs, sapphire, InP, GaO, ZnO, CdTe, CdZnTe, ceramics, polytetrafluoroethylene, and/or Al2O3, for example, or any other substrate material that may be suitable for integrating microstrip structures. - In operation, a bias and/or a signal voltage may be applied across the signal
conductive line 723 and theground plane 725, and/or the signalconductive lines conductive line 723 and theground plane 725, and/or the signalconductive lines microstrip waveguide 720 and/or thecoplanar transmission waveguide 730. - By alternating patches of conductive material with insulating material, or slots of conductive material in dielectric material, a partially reflective surface may result, which may allow a signal to “leak out” in that direction, as shown by the Leaky Wave arrows in
FIG. 7 . In this manner, wireless signals may be directed in to or out of the surface plane of the support structure 710, or parallel to the surface of the support structure 710. - Similarly, by sequentially placing the
conductive signal lines - By integrating the
conductive signal lines ground plane 725 in thepackage 167, wireless signals may be received by thepackage 167. Wireless signals may be communicated between packages in the horizontal or vertical planes depending on which type of leaky wave antenna is enabled, such as a coplanar or microstrip structure. Feed points may be integrated at different heights or lateral distances within theresonant cavity gaps - In an exemplary embodiment of the invention, a plurality of leaky wave antennas may be configured in the
support structure 701 in an arrangement that enables scanning in two or more axes. In this manner, the presence of RF sources may be determined by scanning over a field of view. -
FIG. 8 is a diagram illustrating leaky wave antennas for scanning RF channels, in accordance with an embodiment of the invention. Referring toFIG. 8 , there is shownmetal layers 801A-801L,solder balls 803,thermal epoxy 807,leaky wave antennas 809A-809F, andmetal interconnects 811A-811C. Thechip 162, thepackage 167, and the printedcircuit board 171 may be as described previously. - The
chip 162, or integrated circuit, may comprise one or more components and/or systems within thewireless system 150. Thechip 162 may be bump-bonded or flip-chip bonded to thepackage 167 utilizing thesolder balls 803. Similarly, thepackage 167 may be flip-chip bonded to the printedcircuit board 171. In this manner, wire bonds connecting thechip 162 to thepackage 167 and thepackage 167 to the printedcircuit board 171 may be eliminated, thereby reducing and/or eliminating uncontrollable stray inductances due to wire bonds, for example. In addition, the thermal conductance out of thechip 162 may be greatly improved utilizing thesolder balls 803 and thethermal epoxy 807. Thethermal epoxy 807 may be electrically insulating but thermally conductive to allow for thermal energy to be conducted out of thechip 162 to the much larger thermal mass of thepackage 167. - The metal layers 801A-801L and the metal interconnects 811A-811C may comprise deposited metal layers utilized to delineate and couple to leaky wave antennas in and/or on the
chip 162, thepackage 167, and the printedcircuit board 171. Theleaky wave antennas 809A-809F may be utilized to scan for RF signal sources by scanning the angle of reception of the antennas. In addition, theleaky wave antenna 809F may comprise conductive and insulating layers integrated in and/or on the printedcircuit board 171 extending into the cross-sectional view plane to enable communication of signals horizontally in the plane of the printedcircuit board 171, as illustrated by thecoplanar waveguide 730 described with respect toFIG. 7 . This coplanar structure may also be utilized in thechip 162 and/or thepackage 167. - In an embodiment of the invention, the spacing between pairs of metal layers, for example 801A and 801B, 801C and 801D, 801E and 801F, and 801G and 801H, may define vertical resonant cavities of leaky wave antennas. In this regard, a partially reflective surface, as shown in
FIGS. 2 and 3 , for example, may enable the resonant electromagnetic mode in the cavity to leak out from that surface. - The metal layers 801A-801J comprising the
leaky wave antennas 809A-809E may comprise microstrip structures as described with respect toFIG. 7 . The region between the metal layers 801A-801L may comprise a resistive material that may provide electrical isolation between the metal layers 801A-801L thereby creating a resonant cavity. In an embodiment of the invention, the region between the metal layers 801A-801L may comprise air and/or a combination of air and dielectric material, thereby enabling MEMS actuation of the metal layers 801A-801L. - The number of metal layers is not limited to the number of
metal layers 801A-801L shown inFIG. 8 . Accordingly, there may be any number of layers embedded within and/or on thechip 162, thepackage 167, and/or the printedcircuit board 171, depending on the number of leaky wave antennas, traces, waveguides and other devices fabricated. - The
solder balls 803 may comprise spherical balls of metal to provide electrical, thermal and physical contact between thechip 162, thepackage 167, and/or the printedcircuit board 171. In making the contact with thesolder balls 803, thechip 162 and/or thepackage 167 may be pressed with enough force to squash the metal spheres somewhat, and may be performed at an elevated temperature to provide suitable electrical resistance and physical bond strength. Thethermal epoxy 807 may fill the volume between thesolder balls 803 and may provide a high thermal conductance path for heat transfer out of thechip 162. - In operation, the
chip 162 may comprise an RF front end, such as theRF transceiver 152, described with respect toFIG. 1 , and may be utilized to transmit and/or receive RF signals, at 60 GHz, for example. Thechip 162 may be electrically coupled to thepackage 167. Thepackage 167 may be electrically coupled to the printedcircuit board 171. In instances where high frequency signals, 60 GHz or greater, for example, may be communicated, leaky wave antennas in thechip 162, thepackage 167, and/or the printedcircuit board 171 may be utilized to transmit signals to external devices. - Lower frequency signals may be communicated via leaky wave antennas with larger resonant cavity heights, such as the
leaky wave antenna 809E integrated in the printedcircuit board 171. However, higher frequency signal signals may also be communicated from leaky wave antennas integrated in the printedcircuit board 171 by utilizing coplanar waveguide leaky wave antennas, such as theleaky wave antenna 809F, or by utilizing microstrip waveguide leaky wave antennas with lower cavity heights, such as theleaky wave antennas 809D. - The
leaky wave antenna 809F may comprise a coplanar waveguide structure, and may be operable to communicate wireless signals in the horizontal plane, parallel to the surface of the printedcircuit board 171. In this manner, signals may be communicated between laterally situated structures without the need to run lossy electrical signal lines. Coplanar waveguides on thinner structures, such as thechip 162, may have electromagnetic field lines that extend into the substrate, which can cause excessive absorption in lower resistivity substrates, such as silicon. For this reason, microstrip waveguides with a large ground plane may be used with lossy substrates. However, coplanar structures can be used when a high resistivity substrate is utilized for thechip 162. - The
leaky wave antennas 809A-809E may comprise microstrip waveguide structures, for example, that may be operable to wirelessly communicate signals perpendicular to the plane of the supporting structure, such as thechip 162, thepackage 167, and the printedcircuit board 171. In this manner, wireless signals may be communicated between thechip 162, thepackage 167, and the printedcircuit board 171, and also to devices external to thewireless device 150 in the vertical direction. - The integration of leaky wave antennas in the
chip 162, thepackage 167, and the printedcircuit board 171 may result in the reduction of stray impedances when compared to wire-bonded connections between structures as in conventional systems, particularly for higher frequencies, such as 60 GHz. In this manner, volume requirements may be reduced and performance may be improved due to lower losses and accurate control of impedances via switches in thechip 162 or on thepackage 167, for example. - In an exemplary embodiment of the invention, leaky wave antennas may be configured so that they are along a plurality of axes, thereby enabling RF signal scanning capability. For example, the
leaky wave antennas 809A-809C may be situated along one axes, with theleaky wave antenna 809B plus one or more leaky wave antennas along the axis into the plane of the drawing defining the perpendicular axis. In this manner, by sweeping the angle of transmission/reception of theleaky wave antennas 809A-809F and measuring RF signal strength, the presence of RF signal sources may be determined over the field of view of thewireless device 150. By triangulating measured RF signal strengths from a plurality of leaky wave antennas, the location of the RF sources may be determined. -
FIG. 9 is a block diagram illustrating exemplary steps for scanning RF channels utilizing leaky wave antennas, in accordance with an embodiment of the invention. Referring toFIG. 9 , instep 903 afterstart step 901, the leaky wave antennas may be configured to receive signals at a starting angle. Instep 905, the leaky wave antennas may be swept across a field of view while measuring the signal strength from each antenna Instep 907, the presence and/or location of RF signal sources may be determined by triangulating a location from the signal strength measurements for a plurality of leaky wave antennas located on different axes. Instep 909, in instances where thewireless device 150 is to be powered down, the exemplary steps may proceed to endstep 911. Instep 909, in instances where thewireless device 150 is not to be powered down, the exemplary steps may proceed to step 903 to configure the leaky wave antennas at a desired starting angle of reception. - In an embodiment of the invention, a method and system are disclosed for configuring a receiving angle, Θ, of a plurality of
leaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F in awireless device 150 to receive RF signals at a desired starting angle. The receiving angle of the plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F may be swept while measuring RF signal strength for each of theleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F. A location of one or moreRF signal sources 501A-501C may be determined from the measured RF signal strength versus angle of reception, Θ, of the plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F. A resonant frequency of the plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. - The plurality of
leaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F may be situated along a plurality of axes in thewireless device 150. The plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F may comprisemicrostrip waveguides 720, where a cavity height, h, of the plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F is dependent on a spacing betweenconductive lines microstrip waveguides 720. The plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F may comprisecoplanar waveguides 730, where a cavity height of the plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F is dependent on a spacing betweenconductive lines coplanar waveguides 730. The plurality ofleaky wave antennas 164A-164C, 400, 420, 503A-503D, 600, 720, 730, 809A-809F may be integrated in one or moreintegrated circuits 162 that are flip-chip bonded to one or more integrated circuit packages 167, in one or moreintegrated circuit packages 167 that are flip-chip bonded to one or more printedcircuit boards 171, and/or in one or more printedcircuit boards 171. - Other embodiments of the invention may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for scanning RF channels utilizing leaky wave antennas.
- Accordingly, aspects of the invention may be realized in hardware, software, firmware or a combination thereof. The invention may be realized in a centralized fashion in at least one computer system or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware, software and firmware may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
- One embodiment of the present invention may be implemented as a board level product, as a single chip, application specific integrated circuit (ASIC), or with varying levels integrated on a single chip with other portions of the system as separate components. The degree of integration of the system will primarily be determined by speed and cost considerations. Because of the sophisticated nature of modern processors, it is possible to utilize a commercially available processor, which may be implemented external to an ASIC implementation of the present system. Alternatively, if the processor is available as an ASIC core or logic block, then the commercially available processor may be implemented as part of an ASIC device with various functions implemented as firmware.
- The present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context may mean, for example, any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form. However, other meanings of computer program within the understanding of those skilled in the art are also contemplated by the present invention.
- While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiments disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/797,133 US20100309056A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for scanning rf channels utilizing leaky wave antennas |
US14/661,322 US9442190B2 (en) | 2009-06-09 | 2015-03-18 | Method and system for a RFID transponder with configurable feed point for RFID communications |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18524509P | 2009-06-09 | 2009-06-09 | |
US24661809P | 2009-09-29 | 2009-09-29 | |
US12/797,133 US20100309056A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for scanning rf channels utilizing leaky wave antennas |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100309056A1 true US20100309056A1 (en) | 2010-12-09 |
Family
ID=43300218
Family Applications (45)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/650,176 Active 2031-02-25 US8521106B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for a sub-harmonic transmitter utilizing a leaky wave antenna |
US12/650,224 Active 2031-12-04 US8660500B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for a voltage-controlled oscillator with a leaky wave antenna |
US12/650,295 Expired - Fee Related US8422967B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for amplitude modulation utilizing a leaky wave antenna |
US12/650,192 Expired - Fee Related US8301092B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for a low noise amplifier utilizing a leaky wave antenna |
US12/650,277 Active 2030-12-08 US8457581B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for receiving I and Q RF signals without a phase shifter utilizing a leaky wave antenna |
US12/650,324 Active 2031-03-07 US8447250B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for an integrated voltage controlled oscillator-based transmitter and on-chip power distribution network |
US12/650,246 Expired - Fee Related US8295788B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for an N-phase transmitter utilizing a leaky wave antenna |
US12/650,292 Expired - Fee Related US8285231B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for an integrated leaky wave antenna-based transmitter and on-chip power distribution |
US12/708,366 Active 2032-12-17 US8743002B2 (en) | 2009-06-09 | 2010-02-18 | Method and system for a 60 GHz leaky wave high gain antenna |
US12/751,593 Abandoned US20100309073A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for cascaded leaky wave antennas on an integrated circuit, integrated circuit package, and/or printed circuit board |
US12/751,759 Abandoned US20100311369A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for communicating via leaky wave antennas within a flip-chip bonded structure |
US12/751,777 Active 2031-09-05 US9329261B2 (en) | 2009-06-09 | 2010-03-31 | Method and system for dynamic control of output power of a leaky wave antenna |
US12/751,792 Abandoned US20100309076A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for communicating via leaky wave antennas on high resistivity substrates |
US12/751,782 Expired - Fee Related US8787997B2 (en) | 2009-06-09 | 2010-03-31 | Method and system for a distributed leaky wave antenna |
US12/751,550 Expired - Fee Related US9088075B2 (en) | 2009-06-09 | 2010-03-31 | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
US12/751,751 Abandoned US20100309074A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for a leaky wave antenna on an integrated circuit package |
US12/751,768 Abandoned US20100309075A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for an on-chip leaky wave antenna |
US12/751,772 Abandoned US20100309077A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for wireless communication utilizing leaky wave antennas on a printed circuit board |
US12/796,841 Expired - Fee Related US8618937B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for controlling cavity height of a leaky wave antenna for RFID communications |
US12/797,177 Expired - Fee Related US8242957B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for dynamic tracking utilizing leaky wave antennas |
US12/796,862 Active US8849214B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for point-to-point wireless communications utilizing leaky wave antennas |
US12/797,029 Active 2032-11-02 US8995937B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for controlling power for a power amplifier utilizing a leaky wave antenna |
US12/796,975 Abandoned US20100309824A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for a duplexing leaky wave antenna |
US12/796,822 Active 2031-04-15 US8761669B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for chip-to-chip communication via on-chip leaky wave antennas |
US12/797,232 Abandoned US20100308767A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for distributed battery charging utilizing leaky wave antennas |
US12/797,254 Active 2032-03-26 US8929841B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a touchscreen interface utilizing leaky wave antennas |
US12/797,316 Expired - Fee Related US8432326B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a smart antenna utilizing leaky wave antennas |
US12/797,273 Abandoned US20100308885A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for clock distribution utilizing leaky wave antennas |
US12/797,214 Active 2031-02-13 US8843061B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for power transfer utilizing leaky wave antennas |
US12/797,041 Active 2033-05-01 US9013311B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a RFID transponder with configurable feed point for RFID communications |
US12/797,162 Active 2030-12-14 US8849194B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a mesh network utilizing leaky wave antennas |
US12/797,068 Abandoned US20100311324A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for wireless communication utilizing on-package leaky wave antennas |
US12/797,133 Abandoned US20100309056A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for scanning rf channels utilizing leaky wave antennas |
US12/797,203 Expired - Fee Related US8577314B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for dynamic range detection and positioning utilizing leaky wave antennas |
US13/646,297 Active US8660505B2 (en) | 2009-06-09 | 2012-10-05 | Integrated transmitter with on-chip power distribution |
US13/655,868 Active US8666335B2 (en) | 2009-06-09 | 2012-10-19 | Wireless device with N-phase transmitter |
US13/860,826 Active US8831540B2 (en) | 2009-06-09 | 2013-04-11 | Amplitude modulation utilizing a leaky wave antenna |
US13/871,776 Active US8766864B2 (en) | 2009-06-09 | 2013-04-26 | Smart antenna utilizing leaky wave antennas |
US13/896,720 Active US8811923B2 (en) | 2009-06-09 | 2013-05-17 | Integrated voltage controlled oscillator-based transmitter |
US13/907,715 Active US8958768B2 (en) | 2009-06-09 | 2013-05-31 | System and method for receiving I and Q RF signals without a phase shifter |
US13/969,554 Abandoned US20130336423A1 (en) | 2009-06-09 | 2013-08-17 | Transmitter Utilizing a Leaky Wave Antenna |
US14/069,781 Active 2030-06-29 US9157994B2 (en) | 2009-06-09 | 2013-11-01 | Dynamic range detection and positioning utilizing leaky wave antennas |
US14/080,678 Active US8983386B2 (en) | 2009-06-09 | 2013-11-14 | Remote power distribution |
US14/661,322 Expired - Fee Related US9442190B2 (en) | 2009-06-09 | 2015-03-18 | Method and system for a RFID transponder with configurable feed point for RFID communications |
US14/737,895 Expired - Fee Related US9417318B2 (en) | 2009-06-09 | 2015-06-12 | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
Family Applications Before (32)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/650,176 Active 2031-02-25 US8521106B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for a sub-harmonic transmitter utilizing a leaky wave antenna |
US12/650,224 Active 2031-12-04 US8660500B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for a voltage-controlled oscillator with a leaky wave antenna |
US12/650,295 Expired - Fee Related US8422967B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for amplitude modulation utilizing a leaky wave antenna |
US12/650,192 Expired - Fee Related US8301092B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for a low noise amplifier utilizing a leaky wave antenna |
US12/650,277 Active 2030-12-08 US8457581B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for receiving I and Q RF signals without a phase shifter utilizing a leaky wave antenna |
US12/650,324 Active 2031-03-07 US8447250B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for an integrated voltage controlled oscillator-based transmitter and on-chip power distribution network |
US12/650,246 Expired - Fee Related US8295788B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for an N-phase transmitter utilizing a leaky wave antenna |
US12/650,292 Expired - Fee Related US8285231B2 (en) | 2009-06-09 | 2009-12-30 | Method and system for an integrated leaky wave antenna-based transmitter and on-chip power distribution |
US12/708,366 Active 2032-12-17 US8743002B2 (en) | 2009-06-09 | 2010-02-18 | Method and system for a 60 GHz leaky wave high gain antenna |
US12/751,593 Abandoned US20100309073A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for cascaded leaky wave antennas on an integrated circuit, integrated circuit package, and/or printed circuit board |
US12/751,759 Abandoned US20100311369A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for communicating via leaky wave antennas within a flip-chip bonded structure |
US12/751,777 Active 2031-09-05 US9329261B2 (en) | 2009-06-09 | 2010-03-31 | Method and system for dynamic control of output power of a leaky wave antenna |
US12/751,792 Abandoned US20100309076A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for communicating via leaky wave antennas on high resistivity substrates |
US12/751,782 Expired - Fee Related US8787997B2 (en) | 2009-06-09 | 2010-03-31 | Method and system for a distributed leaky wave antenna |
US12/751,550 Expired - Fee Related US9088075B2 (en) | 2009-06-09 | 2010-03-31 | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
US12/751,751 Abandoned US20100309074A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for a leaky wave antenna on an integrated circuit package |
US12/751,768 Abandoned US20100309075A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for an on-chip leaky wave antenna |
US12/751,772 Abandoned US20100309077A1 (en) | 2009-06-09 | 2010-03-31 | Method and system for wireless communication utilizing leaky wave antennas on a printed circuit board |
US12/796,841 Expired - Fee Related US8618937B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for controlling cavity height of a leaky wave antenna for RFID communications |
US12/797,177 Expired - Fee Related US8242957B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for dynamic tracking utilizing leaky wave antennas |
US12/796,862 Active US8849214B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for point-to-point wireless communications utilizing leaky wave antennas |
US12/797,029 Active 2032-11-02 US8995937B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for controlling power for a power amplifier utilizing a leaky wave antenna |
US12/796,975 Abandoned US20100309824A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for a duplexing leaky wave antenna |
US12/796,822 Active 2031-04-15 US8761669B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for chip-to-chip communication via on-chip leaky wave antennas |
US12/797,232 Abandoned US20100308767A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for distributed battery charging utilizing leaky wave antennas |
US12/797,254 Active 2032-03-26 US8929841B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a touchscreen interface utilizing leaky wave antennas |
US12/797,316 Expired - Fee Related US8432326B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a smart antenna utilizing leaky wave antennas |
US12/797,273 Abandoned US20100308885A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for clock distribution utilizing leaky wave antennas |
US12/797,214 Active 2031-02-13 US8843061B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for power transfer utilizing leaky wave antennas |
US12/797,041 Active 2033-05-01 US9013311B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a RFID transponder with configurable feed point for RFID communications |
US12/797,162 Active 2030-12-14 US8849194B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for a mesh network utilizing leaky wave antennas |
US12/797,068 Abandoned US20100311324A1 (en) | 2009-06-09 | 2010-06-09 | Method and system for wireless communication utilizing on-package leaky wave antennas |
Family Applications After (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/797,203 Expired - Fee Related US8577314B2 (en) | 2009-06-09 | 2010-06-09 | Method and system for dynamic range detection and positioning utilizing leaky wave antennas |
US13/646,297 Active US8660505B2 (en) | 2009-06-09 | 2012-10-05 | Integrated transmitter with on-chip power distribution |
US13/655,868 Active US8666335B2 (en) | 2009-06-09 | 2012-10-19 | Wireless device with N-phase transmitter |
US13/860,826 Active US8831540B2 (en) | 2009-06-09 | 2013-04-11 | Amplitude modulation utilizing a leaky wave antenna |
US13/871,776 Active US8766864B2 (en) | 2009-06-09 | 2013-04-26 | Smart antenna utilizing leaky wave antennas |
US13/896,720 Active US8811923B2 (en) | 2009-06-09 | 2013-05-17 | Integrated voltage controlled oscillator-based transmitter |
US13/907,715 Active US8958768B2 (en) | 2009-06-09 | 2013-05-31 | System and method for receiving I and Q RF signals without a phase shifter |
US13/969,554 Abandoned US20130336423A1 (en) | 2009-06-09 | 2013-08-17 | Transmitter Utilizing a Leaky Wave Antenna |
US14/069,781 Active 2030-06-29 US9157994B2 (en) | 2009-06-09 | 2013-11-01 | Dynamic range detection and positioning utilizing leaky wave antennas |
US14/080,678 Active US8983386B2 (en) | 2009-06-09 | 2013-11-14 | Remote power distribution |
US14/661,322 Expired - Fee Related US9442190B2 (en) | 2009-06-09 | 2015-03-18 | Method and system for a RFID transponder with configurable feed point for RFID communications |
US14/737,895 Expired - Fee Related US9417318B2 (en) | 2009-06-09 | 2015-06-12 | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
Country Status (3)
Country | Link |
---|---|
US (45) | US8521106B2 (en) |
EP (1) | EP2273617B1 (en) |
TW (1) | TWI493791B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100308970A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for a rfid transponder with configurable feed point for rfid communications |
US20100311368A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and System for a Leaky Wave Antenna as a Load on a Power Amplifier |
US20100311340A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for remote power distribution and networking for passive devices |
US20150349432A1 (en) * | 2014-06-02 | 2015-12-03 | Physical Devices, Llc | Wavelength compressed antennas |
US20150372530A1 (en) * | 2014-06-23 | 2015-12-24 | Htc Corporation | Power providing equipment, mobile device, operating method of mobile device |
US20160078754A1 (en) * | 2014-09-15 | 2016-03-17 | Samsung Electronics Co., Ltd. | Pointing device and controlling method thereof |
US9598945B2 (en) | 2013-03-15 | 2017-03-21 | Chevron U.S.A. Inc. | System for extraction of hydrocarbons underground |
US20230141969A1 (en) * | 2021-11-10 | 2023-05-11 | Donald M. MacKay | Cooperative Target Positioning System |
Families Citing this family (478)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
WO2008103374A2 (en) | 2007-02-19 | 2008-08-28 | Mobile Access Networks Ltd. | Method and system for improving uplink performance |
US20100054746A1 (en) | 2007-07-24 | 2010-03-04 | Eric Raymond Logan | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
US8175459B2 (en) | 2007-10-12 | 2012-05-08 | Corning Cable Systems Llc | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
EP2203799A4 (en) | 2007-10-22 | 2017-05-17 | Mobileaccess Networks Ltd. | Communication system using low bandwidth wires |
US8175649B2 (en) | 2008-06-20 | 2012-05-08 | Corning Mobileaccess Ltd | Method and system for real time control of an active antenna over a distributed antenna system |
US8644844B2 (en) | 2007-12-20 | 2014-02-04 | Corning Mobileaccess Ltd. | Extending outdoor location based services and applications into enclosed areas |
TWI400901B (en) * | 2008-01-15 | 2013-07-01 | Mstar Semiconductor Inc | Power-saving wireless input device and system |
EP2394378A1 (en) | 2009-02-03 | 2011-12-14 | Corning Cable Systems LLC | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
JP5480916B2 (en) | 2009-02-03 | 2014-04-23 | コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー | Fiber optic based distributed antenna system, components, and related methods for calibration thereof |
US9673904B2 (en) | 2009-02-03 | 2017-06-06 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
JP5649588B2 (en) | 2009-02-08 | 2015-01-07 | コーニング モバイルアクセス エルティディ. | Communication system using a cable for carrying an Ethernet signal |
US10180746B1 (en) * | 2009-02-26 | 2019-01-15 | Amazon Technologies, Inc. | Hardware enabled interpolating sensor and display |
US8508422B2 (en) * | 2009-06-09 | 2013-08-13 | Broadcom Corporation | Method and system for converting RF power to DC power utilizing a leaky wave antenna |
US8446242B2 (en) * | 2009-06-16 | 2013-05-21 | The Charles Stark Draper Laboratory, Inc. | Switchable permanent magnet and related methods |
US9590733B2 (en) | 2009-07-24 | 2017-03-07 | Corning Optical Communications LLC | Location tracking using fiber optic array cables and related systems and methods |
US8548330B2 (en) | 2009-07-31 | 2013-10-01 | Corning Cable Systems Llc | Sectorization in distributed antenna systems, and related components and methods |
US9244562B1 (en) | 2009-07-31 | 2016-01-26 | Amazon Technologies, Inc. | Gestures and touches on force-sensitive input devices |
US9082057B2 (en) * | 2009-08-19 | 2015-07-14 | Intelleflex Corporation | RF device with tamper detection |
US8280259B2 (en) | 2009-11-13 | 2012-10-02 | Corning Cable Systems Llc | Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication |
TWI423523B (en) * | 2009-12-23 | 2014-01-11 | Univ Nat Chiao Tung | Leaky-wave antenna capable of multi-plane scanning |
KR101706693B1 (en) * | 2009-12-30 | 2017-02-14 | 삼성전자주식회사 | Wireless power transmission apparatus using near field focusing |
US8275265B2 (en) | 2010-02-15 | 2012-09-25 | Corning Cable Systems Llc | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
US8442502B2 (en) | 2010-03-02 | 2013-05-14 | Empire Technology Development, Llc | Tracking an object in augmented reality |
DE102010003457A1 (en) * | 2010-03-30 | 2011-10-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Leaky wave antenna |
WO2011123336A1 (en) | 2010-03-31 | 2011-10-06 | Corning Cable Systems Llc | Localization services in optical fiber-based distributed communications components and systems, and related methods |
US9525488B2 (en) | 2010-05-02 | 2016-12-20 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
US20110268446A1 (en) | 2010-05-02 | 2011-11-03 | Cune William P | Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods |
US8462968B2 (en) * | 2010-06-18 | 2013-06-11 | Research In Motion Limited | Shared coil for inductive charging and hearing-aid-compliance requirements in mobile phones |
US20120034888A1 (en) * | 2010-08-05 | 2012-02-09 | Franco De Flaviis | Method and System for Utilizing a Touchscreen Interface as an Antenna |
US8570914B2 (en) | 2010-08-09 | 2013-10-29 | Corning Cable Systems Llc | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
EP2606707A1 (en) | 2010-08-16 | 2013-06-26 | Corning Cable Systems LLC | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
US9160449B2 (en) | 2010-10-13 | 2015-10-13 | Ccs Technology, Inc. | Local power management for remote antenna units in distributed antenna systems |
US9252874B2 (en) | 2010-10-13 | 2016-02-02 | Ccs Technology, Inc | Power management for remote antenna units in distributed antenna systems |
US11296504B2 (en) | 2010-11-24 | 2022-04-05 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
CN103314556B (en) | 2010-11-24 | 2017-09-08 | 康宁光缆系统有限责任公司 | For distributing antenna system can be with the Power entry module and associate power unit, component and method for electrically connecting and/or disconnecting |
CN203504582U (en) | 2011-02-21 | 2014-03-26 | 康宁光缆系统有限责任公司 | Distributed antenna system and power supply apparatus for distributing electric power thereof |
CN102129324B (en) * | 2011-03-17 | 2012-05-02 | 汉王科技股份有限公司 | Touch control device, control method thereof and electronic equipment with touch control device |
US20120268414A1 (en) * | 2011-04-25 | 2012-10-25 | Motorola Mobility, Inc. | Method and apparatus for exchanging data with a user computer device |
US9099956B2 (en) | 2011-04-26 | 2015-08-04 | King Abdulaziz City For Science And Technology | Injection locking based power amplifier |
EP2702710A4 (en) | 2011-04-29 | 2014-10-29 | Corning Cable Sys Llc | Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods |
CN103609146B (en) | 2011-04-29 | 2017-05-31 | 康宁光缆系统有限责任公司 | For increasing the radio frequency in distributing antenna system(RF)The system of power, method and apparatus |
JP5846204B2 (en) * | 2011-07-26 | 2016-01-20 | 住友電気工業株式会社 | Compensation device, signal generator, and wireless communication device |
JP5851042B2 (en) * | 2011-09-21 | 2016-02-03 | エンパイア テクノロジー ディベロップメント エルエルシー | Doppler ring traveling wave antenna repeater for high speed vehicle communication |
US9570420B2 (en) | 2011-09-29 | 2017-02-14 | Broadcom Corporation | Wireless communicating among vertically arranged integrated circuits (ICs) in a semiconductor package |
US8508029B2 (en) * | 2011-09-29 | 2013-08-13 | Broadcom Corporation | Semiconductor package including an integrated waveguide |
WO2013112214A2 (en) | 2011-10-18 | 2013-08-01 | California Institute Of Technology | Efficient active multi-drive radiator |
CN104025124B (en) * | 2011-10-25 | 2017-12-01 | 艾利丹尼森公司 | Equipment based on RFID and the method for being combined with sensor |
US9722319B2 (en) * | 2011-10-27 | 2017-08-01 | Kuang-Chi Innovative Technology Ltd. | Metamaterial antenna |
CN103094710B (en) * | 2011-10-27 | 2016-06-29 | 深圳光启高等理工研究院 | Super-material antenna |
CN103093161A (en) * | 2011-10-28 | 2013-05-08 | 成都高新区尼玛电子产品外观设计工作室 | Radio frequency identification devices (RFID) antenna and signal same-source dual-functional system |
US9429608B2 (en) * | 2011-11-11 | 2016-08-30 | Plantronics, Inc. | Separation of capacitive touch areas |
US9921255B2 (en) * | 2012-02-13 | 2018-03-20 | California Institute Of Technology | Sensing radiation metrics through mode-pickup sensors |
US9686070B2 (en) | 2012-02-17 | 2017-06-20 | California Institute Of Technology | Dynamic polarization modulation and control |
WO2013142662A2 (en) | 2012-03-23 | 2013-09-26 | Corning Mobile Access Ltd. | Radio-frequency integrated circuit (rfic) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
EP2832012A1 (en) | 2012-03-30 | 2015-02-04 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods |
US9781553B2 (en) | 2012-04-24 | 2017-10-03 | Corning Optical Communications LLC | Location based services in a distributed communication system, and related components and methods |
EP2842245A1 (en) | 2012-04-25 | 2015-03-04 | Corning Optical Communications LLC | Distributed antenna system architectures |
WO2013181247A1 (en) | 2012-05-29 | 2013-12-05 | Corning Cable Systems Llc | Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods |
US9275690B2 (en) | 2012-05-30 | 2016-03-01 | Tahoe Rf Semiconductor, Inc. | Power management in an electronic system through reducing energy usage of a battery and/or controlling an output power of an amplifier thereof |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US9876380B1 (en) | 2013-09-13 | 2018-01-23 | Energous Corporation | Secured wireless power distribution system |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US9973021B2 (en) * | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
USD832782S1 (en) | 2015-12-30 | 2018-11-06 | Energous Corporation | Wireless charging device |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
USD773506S1 (en) | 2014-12-30 | 2016-12-06 | Energous Corporation | Display screen with graphical user interface |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US9450449B1 (en) | 2012-07-06 | 2016-09-20 | Energous Corporation | Antenna arrangement for pocket-forming |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US9621269B2 (en) | 2012-07-26 | 2017-04-11 | California Institute Of Technology | Optically driven active radiator |
US9509351B2 (en) | 2012-07-27 | 2016-11-29 | Tahoe Rf Semiconductor, Inc. | Simultaneous accommodation of a low power signal and an interfering signal in a radio frequency (RF) receiver |
US8624658B1 (en) * | 2012-07-30 | 2014-01-07 | Maxim Integrated Products, Inc. | Frequency mixer having parallel mixer cores |
US9154222B2 (en) | 2012-07-31 | 2015-10-06 | Corning Optical Communications LLC | Cooling system control in distributed antenna systems |
EP2883416A1 (en) | 2012-08-07 | 2015-06-17 | Corning Optical Communications Wireless Ltd. | Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods |
KR101457191B1 (en) * | 2012-08-24 | 2014-10-31 | 서울대학교산학협력단 | Battery Pack, Battery Apparatus and Cell Balancing Method Therefor |
EP2901523B1 (en) * | 2012-09-26 | 2016-09-07 | Omniradar B.V. | Radiofrequency module |
US9455784B2 (en) | 2012-10-31 | 2016-09-27 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
US10257056B2 (en) | 2012-11-28 | 2019-04-09 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
WO2014085115A1 (en) | 2012-11-29 | 2014-06-05 | Corning Cable Systems Llc | HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs) |
US9647758B2 (en) | 2012-11-30 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Cabling connectivity monitoring and verification |
US9026061B2 (en) * | 2012-12-03 | 2015-05-05 | Broadcom Corporation | Waveguide for intra-package data transfer |
US8995912B2 (en) * | 2012-12-03 | 2015-03-31 | Broadcom Corporation | Transmission line for an integrated circuit package |
US9158864B2 (en) | 2012-12-21 | 2015-10-13 | Corning Optical Communications Wireless Ltd | Systems, methods, and devices for documenting a location of installed equipment |
US9497706B2 (en) | 2013-02-20 | 2016-11-15 | Corning Optical Communications Wireless Ltd | Power management in distributed antenna systems (DASs), and related components, systems, and methods |
US8947125B2 (en) * | 2013-02-21 | 2015-02-03 | Qualcomm Incorporated | Fast, low power comparator with dynamic bias background |
US9742070B2 (en) | 2013-02-28 | 2017-08-22 | Samsung Electronics Co., Ltd | Open end antenna, antenna array, and related system and method |
US9491637B2 (en) | 2013-03-15 | 2016-11-08 | Elwha Llc | Portable wireless node auxiliary relay |
US9608862B2 (en) | 2013-03-15 | 2017-03-28 | Elwha Llc | Frequency accommodation |
US9780449B2 (en) | 2013-03-15 | 2017-10-03 | Integrated Device Technology, Inc. | Phase shift based improved reference input frequency signal injection into a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation to reduce a phase-steering requirement during beamforming |
US9184498B2 (en) | 2013-03-15 | 2015-11-10 | Gigoptix, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through fine control of a tunable frequency of a tank circuit of a VCO thereof |
US20140349637A1 (en) * | 2013-03-15 | 2014-11-27 | Elwha LLC, a limited liability corporation of the State of Delaware | Facilitating wireless communication in conjunction with orientation position |
US9793596B2 (en) | 2013-03-15 | 2017-10-17 | Elwha Llc | Facilitating wireless communication in conjunction with orientation position |
US9837714B2 (en) | 2013-03-15 | 2017-12-05 | Integrated Device Technology, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through a circular configuration thereof |
US9722310B2 (en) | 2013-03-15 | 2017-08-01 | Gigpeak, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through frequency multiplication |
US9681311B2 (en) | 2013-03-15 | 2017-06-13 | Elwha Llc | Portable wireless node local cooperation |
US9531070B2 (en) | 2013-03-15 | 2016-12-27 | Christopher T. Schiller | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through accommodating differential coupling between VCOs thereof |
US9666942B2 (en) | 2013-03-15 | 2017-05-30 | Gigpeak, Inc. | Adaptive transmit array for beam-steering |
US9716315B2 (en) | 2013-03-15 | 2017-07-25 | Gigpeak, Inc. | Automatic high-resolution adaptive beam-steering |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9843763B2 (en) | 2013-05-10 | 2017-12-12 | Energous Corporation | TV system with wireless power transmitter |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
EP3008515A1 (en) | 2013-06-12 | 2016-04-20 | Corning Optical Communications Wireless, Ltd | Voltage controlled optical directional coupler |
WO2014199380A1 (en) | 2013-06-12 | 2014-12-18 | Corning Optical Communications Wireless, Ltd. | Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass) |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
US9521926B1 (en) | 2013-06-24 | 2016-12-20 | Energous Corporation | Wireless electrical temperature regulator for food and beverages |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9397393B2 (en) | 2013-07-22 | 2016-07-19 | Blackberry Limited | Method and system for multiple feed point antennas |
US9247543B2 (en) | 2013-07-23 | 2016-01-26 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
US10135149B2 (en) * | 2013-07-30 | 2018-11-20 | Samsung Electronics Co., Ltd. | Phased array for millimeter-wave mobile handsets and other devices |
US9661781B2 (en) | 2013-07-31 | 2017-05-23 | Corning Optical Communications Wireless Ltd | Remote units for distributed communication systems and related installation methods and apparatuses |
WO2015029028A1 (en) | 2013-08-28 | 2015-03-05 | Corning Optical Communications Wireless Ltd. | Power management for distributed communication systems, and related components, systems, and methods |
US9876269B2 (en) | 2013-08-30 | 2018-01-23 | Blackberry Limited | Mobile wireless communications device with split antenna feed network and related methods |
JP6636432B2 (en) * | 2013-09-23 | 2020-01-29 | アップル インコーポレイテッドApple Inc. | Electronic components embedded in ceramic material |
US9385810B2 (en) | 2013-09-30 | 2016-07-05 | Corning Optical Communications Wireless Ltd | Connection mapping in distributed communication systems |
EP3064032A1 (en) | 2013-10-28 | 2016-09-07 | Corning Optical Communications Wireless Ltd | Unified optical fiber-based distributed antenna systems (dass) for supporting small cell communications deployment from multiple small cell service providers, and related devices and methods |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US11241970B2 (en) * | 2013-11-14 | 2022-02-08 | Momentum Dynamics Corporation | Method and apparatus for the alignment of vehicles prior to wireless charging |
WO2015079435A1 (en) | 2013-11-26 | 2015-06-04 | Corning Optical Communications Wireless Ltd. | Selective activation of communications services on power-up of a remote unit(s) in a distributed antenna system (das) based on power consumption |
US9178635B2 (en) | 2014-01-03 | 2015-11-03 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9775123B2 (en) | 2014-03-28 | 2017-09-26 | Corning Optical Communications Wireless Ltd. | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
USD805066S1 (en) * | 2014-04-10 | 2017-12-12 | Energous Corporation | Laptop computer with antenna |
USD784964S1 (en) * | 2014-04-10 | 2017-04-25 | Energous Corporation | Television with antenna |
USD786836S1 (en) * | 2014-04-10 | 2017-05-16 | Energous Corporation | Television with antenna |
USD784300S1 (en) * | 2014-04-10 | 2017-04-18 | Energous Corporation | Laptop computer with antenna |
USD784301S1 (en) * | 2014-04-10 | 2017-04-18 | Energous Corporation | Monitor with antenna |
USD784302S1 (en) * | 2014-04-10 | 2017-04-18 | Energous Corporation | Monitor with antenna |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
CN106063035B (en) | 2014-05-12 | 2019-04-05 | 华为技术有限公司 | A kind of antenna and wireless device |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US9357551B2 (en) | 2014-05-30 | 2016-05-31 | Corning Optical Communications Wireless Ltd | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
US9509133B2 (en) | 2014-06-27 | 2016-11-29 | Corning Optical Communications Wireless Ltd | Protection of distributed antenna systems |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US11322969B2 (en) | 2014-08-15 | 2022-05-03 | Analog Devices International Unlimited Company | Wireless charging platform using beamforming for wireless sensor network |
US10211662B2 (en) | 2014-08-15 | 2019-02-19 | Analog Devices Global | Wireless charging platform using environment based beamforming for wireless sensor network |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
US9730228B2 (en) | 2014-08-29 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9653861B2 (en) | 2014-09-17 | 2017-05-16 | Corning Optical Communications Wireless Ltd | Interconnection of hardware components |
US9602210B2 (en) | 2014-09-24 | 2017-03-21 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US9184960B1 (en) | 2014-09-25 | 2015-11-10 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
US10659163B2 (en) | 2014-09-25 | 2020-05-19 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
US9420542B2 (en) | 2014-09-25 | 2016-08-16 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9858521B2 (en) * | 2014-10-14 | 2018-01-02 | Confidex Oy | RFID transponder and RFID transponder web |
TWI572150B (en) * | 2014-10-20 | 2017-02-21 | 財團法人資訊工業策進會 | Signal emission apparatus, signal generating system and signal power adjusting method |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
WO2016071902A1 (en) | 2014-11-03 | 2016-05-12 | Corning Optical Communications Wireless Ltd. | Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement |
WO2016075696A1 (en) | 2014-11-13 | 2016-05-19 | Corning Optical Communications Wireless Ltd. | Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
CN104463282A (en) * | 2014-12-12 | 2015-03-25 | 上海上大鼎正软件股份有限公司 | Leaky-wave antenna and radio frequency identification reader-writer integrated cable type device |
WO2016098111A1 (en) | 2014-12-18 | 2016-06-23 | Corning Optical Communications Wireless Ltd. | Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
EP3235336A1 (en) | 2014-12-18 | 2017-10-25 | Corning Optical Communications Wireless Ltd. | Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9917349B2 (en) * | 2015-01-30 | 2018-03-13 | Facebook, Inc. | Waveguides for digital communication devices |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
US20160249365A1 (en) | 2015-02-19 | 2016-08-25 | Corning Optical Communications Wireless Ltd. | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das) |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9785175B2 (en) | 2015-03-27 | 2017-10-10 | Corning Optical Communications Wireless, Ltd. | Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs) |
US9681313B2 (en) | 2015-04-15 | 2017-06-13 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9978235B2 (en) * | 2015-07-02 | 2018-05-22 | Tyco Fire & Security Gmbh | Multi-technology transponder and system |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9948349B2 (en) | 2015-07-17 | 2018-04-17 | Corning Optical Communications Wireless Ltd | IOT automation and data collection system |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9443810B1 (en) * | 2015-09-14 | 2016-09-13 | Qualcomm Incorporated | Flip-chip employing integrated cavity filter, and related components, systems, and methods |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
CN108370083B (en) * | 2015-09-25 | 2021-05-04 | 英特尔公司 | Antenna for platform level wireless interconnect |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10134489B2 (en) * | 2015-10-06 | 2018-11-20 | Convergence Systems Limited | Medical pad and a wetness reporting system with such a medical pad |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10652910B2 (en) * | 2015-11-05 | 2020-05-12 | Intel IP Corporation | Long-term evolution (LTE) and wireless local area network (WLAN) aggregation (LWA) connection procedures |
US9692478B1 (en) * | 2015-12-16 | 2017-06-27 | Dell Products L.P. | Information handling system dynamic antenna management |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
WO2017112949A1 (en) * | 2015-12-24 | 2017-06-29 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10320446B2 (en) * | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10186892B2 (en) | 2015-12-24 | 2019-01-22 | Energous Corporation | Receiver device with antennas positioned in gaps |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
USD832783S1 (en) | 2015-12-30 | 2018-11-06 | Energous Corporation | Wireless charging device |
CN208283954U (en) * | 2016-03-14 | 2018-12-25 | 株式会社村田制作所 | Basket and article management system with RFID tag reading device |
US9648580B1 (en) | 2016-03-23 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns |
US10418721B2 (en) * | 2016-03-29 | 2019-09-17 | California Institute Of Technology | Low-profile and high-gain modulated metasurface antennas from gigahertz to terahertz range frequencies |
US10236924B2 (en) | 2016-03-31 | 2019-03-19 | Corning Optical Communications Wireless Ltd | Reducing out-of-channel noise in a wireless distribution system (WDS) |
WO2017221220A1 (en) * | 2016-06-24 | 2017-12-28 | Martin Kuster | In-connector data storage device |
KR102640203B1 (en) * | 2016-06-24 | 2024-02-23 | 삼성전자주식회사 | Optical device including slot and apparatus employing the optical device |
CN106129631B (en) * | 2016-08-18 | 2018-12-18 | 昆山九华电子设备厂 | A kind of leaky-wave antenna with non-uniform attenuation's constant for microwave heating equipment |
US20180062260A1 (en) | 2016-08-26 | 2018-03-01 | Analog Devices Global | Antenna array calibration systems and methods |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US9985733B1 (en) * | 2016-11-22 | 2018-05-29 | Keysight Technologies, Inc. | System and method for performing over-the-air (OTA) testing of a device under test (DUT) having an integrated transmitter-antenna assembly |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10136255B2 (en) | 2016-12-08 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing on a communication device |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
CN116455101A (en) | 2016-12-12 | 2023-07-18 | 艾诺格思公司 | Transmitter integrated circuit |
GB201621911D0 (en) * | 2016-12-21 | 2017-02-01 | Sofant Tech Ltd | Antenna array |
CN106506748B (en) * | 2016-12-30 | 2019-05-03 | 努比亚技术有限公司 | A kind of information processing method and mobile terminal |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
DE112017007887T5 (en) * | 2017-09-29 | 2020-05-07 | Intel Corporation | ANTENNA PACKAGE WITH BALL MOUNT ARRAY TO CONNECT ANTENNA AND BASE SUBSTRATES |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11177567B2 (en) | 2018-02-23 | 2021-11-16 | Analog Devices Global Unlimited Company | Antenna array calibration systems and methods |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
EP3546957A1 (en) * | 2018-03-28 | 2019-10-02 | Siemens Healthcare GmbH | Isolated grounding effectiveness monitor |
CN110401005B (en) * | 2018-04-24 | 2021-01-29 | 华为技术有限公司 | Packaged antenna, preparation method thereof and mobile communication terminal |
US11515732B2 (en) * | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
WO2020041598A1 (en) * | 2018-08-24 | 2020-02-27 | Searete Llc | Waveguide- and cavity-backed antenna arrays with distributed signal amplifiers for transmission of a high-power beam |
US11355841B2 (en) | 2018-08-24 | 2022-06-07 | Searete Llc | Waveguide-backed antenna array with distributed signal amplifiers for transmission of a high-power beam |
US11271300B2 (en) * | 2018-08-24 | 2022-03-08 | Searete Llc | Cavity-backed antenna array with distributed signal amplifiers for transmission of a high-power beam |
US10802112B2 (en) * | 2018-09-17 | 2020-10-13 | United States Of America As Represented By The Secretary Of The Navy | Method, device, and system for simultaneously detecting different weapon threats using reflected radar return signals |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
WO2020160015A1 (en) | 2019-01-28 | 2020-08-06 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
KR20200107380A (en) * | 2019-03-07 | 2020-09-16 | 주식회사 만도 | Radar Apparatus, Method for Controlling Radar Apparatus and Detection System using Radar Apparatus |
US11404779B2 (en) | 2019-03-14 | 2022-08-02 | Analog Devices International Unlimited Company | On-chip phased array calibration systems and methods |
US11139590B2 (en) * | 2020-01-16 | 2021-10-05 | U-Blox Ag | Adaptive single-element antenna apparatus and method of operating same |
US11450952B2 (en) | 2020-02-26 | 2022-09-20 | Analog Devices International Unlimited Company | Beamformer automatic calibration systems and methods |
US11903921B2 (en) | 2020-04-05 | 2024-02-20 | Michael Mong | Systems and methods for treating coronavirus |
TWI762197B (en) * | 2021-02-18 | 2022-04-21 | 矽品精密工業股份有限公司 | Electronic package and manufacturing method thereof |
US11811957B2 (en) * | 2021-05-19 | 2023-11-07 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package and method of manufacturing the same |
US11611149B2 (en) | 2021-06-25 | 2023-03-21 | City University Of Hong Kong | Leaky-wave antenna |
EP4373139A1 (en) * | 2021-10-06 | 2024-05-22 | Samsung Electronics Co., Ltd. | Method and electronic device for searching for external device through positioning angle adjustment |
CN116706567B (en) * | 2023-08-01 | 2023-10-31 | 中国人民解放军国防科技大学 | Polarization coding array antenna |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US733090A (en) * | 1900-03-19 | 1903-07-07 | Inv S Jan Szczepanik & Cie Soc D | Optical projection apparatus. |
US2943025A (en) * | 1958-04-11 | 1960-06-28 | Rhone Poulenc Sa | Preparation of spiramycin ii |
US3725938A (en) * | 1970-10-05 | 1973-04-03 | Sperry Rand Corp | Direction finder system |
US3972049A (en) * | 1975-04-24 | 1976-07-27 | The United States Of America As Represented By The Secretary Of The Navy | Asymmetrically fed electric microstrip dipole antenna |
US4078237A (en) * | 1976-11-10 | 1978-03-07 | The United States Of America As Represented By The Secretary Of The Navy | Offset FED magnetic microstrip dipole antenna |
US4150383A (en) * | 1976-03-22 | 1979-04-17 | Telefonaktiebolaget L M Ericsson | Monopulse flat plate antenna |
US4150382A (en) * | 1973-09-13 | 1979-04-17 | Wisconsin Alumni Research Foundation | Non-uniform variable guided wave antennas with electronically controllable scanning |
US4193082A (en) * | 1978-06-23 | 1980-03-11 | International Business Machines Corporation | Multi-layer dielectric structure |
US4621267A (en) * | 1984-09-28 | 1986-11-04 | The Boeing Company | Bearing intersection deghosting by altitude comparison system and methods |
US4626861A (en) * | 1984-09-28 | 1986-12-02 | The Boeing Company | Two angle range and altitude measurement system and methods |
US4701763A (en) * | 1984-09-17 | 1987-10-20 | Matsushita Electric Industrial Co., Ltd. | Small antenna |
US5138436A (en) * | 1990-11-16 | 1992-08-11 | Ball Corporation | Interconnect package having means for waveguide transmission of rf signals |
US5349364A (en) * | 1992-06-26 | 1994-09-20 | Acvo Corporation | Electromagnetic power distribution system comprising distinct type couplers |
US5359334A (en) * | 1993-01-14 | 1994-10-25 | Hazeltine Corporation | X-scan aircraft location systems |
US5363075A (en) * | 1992-12-03 | 1994-11-08 | Hughes Aircraft Company | Multiple layer microwave integrated circuit module connector assembly |
US5387885A (en) * | 1990-05-03 | 1995-02-07 | University Of North Carolina | Salphasic distribution of timing signals for the synchronization of physically separated entities |
US5717943A (en) * | 1990-11-13 | 1998-02-10 | International Business Machines Corporation | Advanced parallel array processor (APAP) |
US5790081A (en) * | 1996-01-30 | 1998-08-04 | Unwin; Art H. | Constant impedance matching system |
US5900843A (en) * | 1997-03-18 | 1999-05-04 | Raytheon Company | Airborne VHF antennas |
US5912598A (en) * | 1997-07-01 | 1999-06-15 | Trw Inc. | Waveguide-to-microstrip transition for mmwave and MMIC applications |
US6005520A (en) * | 1998-03-30 | 1999-12-21 | The United States Of America As Represented By The Secretary Of The Army | Wideband planar leaky-wave microstrip antenna |
US6212431B1 (en) * | 1998-09-08 | 2001-04-03 | Advanced Bionics Corporation | Power transfer circuit for implanted devices |
US6285325B1 (en) * | 2000-02-16 | 2001-09-04 | The United States Of America As Represented By The Secretary Of The Army | Compact wideband microstrip antenna with leaky-wave excitation |
US20020000936A1 (en) * | 2000-06-02 | 2002-01-03 | Industrial Technology Research Institute | Wideband microstrip leaky-wave antenna |
US20020005807A1 (en) * | 2000-06-02 | 2002-01-17 | Industrial Technology Research Institute | Wideband microstrip leaky-wave antenna and its feeding system |
US20020041256A1 (en) * | 2000-08-23 | 2002-04-11 | Matsushita Electric Industrial Co., Ltd | Antenna apparatus and a portable wireless communication apparatus |
US6411824B1 (en) * | 1998-06-24 | 2002-06-25 | Conexant Systems, Inc. | Polarization-adaptive antenna transmit diversity system |
US6496155B1 (en) * | 2000-03-29 | 2002-12-17 | Hrl Laboratories, Llc. | End-fire antenna or array on surface with tunable impedance |
US20030122729A1 (en) * | 2000-10-04 | 2003-07-03 | E-Tenna Corporation | Multi-resonant, high-impedance electromagnetic surfaces |
US6597323B2 (en) * | 2000-03-03 | 2003-07-22 | Anritsu Corporation | Dielectric leaky wave antenna having mono-layer structure |
US6603915B2 (en) * | 2001-02-05 | 2003-08-05 | Fujitsu Limited | Interposer and method for producing a light-guiding structure |
US20040066251A1 (en) * | 2002-05-31 | 2004-04-08 | Eleftheriades George V. | Planar metamaterials for control of electromagnetic wave guidance and radiation |
US6735630B1 (en) * | 1999-10-06 | 2004-05-11 | Sensoria Corporation | Method for collecting data using compact internetworked wireless integrated network sensors (WINS) |
US6771935B1 (en) * | 1998-10-05 | 2004-08-03 | Alcatel | Wireless bus |
US20040227668A1 (en) * | 2003-05-12 | 2004-11-18 | Hrl Laboratories, Llc | Steerable leaky wave antenna capable of both forward and backward radiation |
US20040227667A1 (en) * | 2003-05-12 | 2004-11-18 | Hrl Laboratories, Llc | Meta-element antenna and array |
US20040263408A1 (en) * | 2003-05-12 | 2004-12-30 | Hrl Laboratories, Llc | Adaptive beam forming antenna system using a tunable impedance surface |
US20040263378A1 (en) * | 2001-10-16 | 2004-12-30 | Abraham Jossef | Method and apparatus for signal detection and jamming |
US20050012667A1 (en) * | 2003-06-20 | 2005-01-20 | Anritsu Company | Fixed-frequency beam-steerable leaky-wave microstrip antenna |
US20050052283A1 (en) * | 2003-09-09 | 2005-03-10 | Collins Timothy J. | Method and apparatus for multiple frequency RFID tag architecture |
US20050116864A1 (en) * | 2002-11-19 | 2005-06-02 | Farrokh Mohamadi | Integrated circuit waveguide |
US20050128155A1 (en) * | 2003-12-11 | 2005-06-16 | Junichi Fukuda | Antenna device and radio communication apparatus using the antenna device |
US6954236B1 (en) * | 1993-06-30 | 2005-10-11 | The United States Of America As Represented By The Secretary Of The Navy | Silicon-on-sapphire display with wireless interconnections and method of fabricating same |
US20060066326A1 (en) * | 2002-09-19 | 2006-03-30 | Steven Harold Slupsky | Non-contact tester for electronic circuits |
US20060125713A1 (en) * | 2002-10-24 | 2006-06-15 | Marc Thevenot | Multiple-beam antenna with photonic bandgap material |
US7084823B2 (en) * | 2003-02-26 | 2006-08-01 | Skycross, Inc. | Integrated front end antenna |
US20060281423A1 (en) * | 2004-10-15 | 2006-12-14 | Caimi Frank M | Methods and Apparatuses for Adaptively Controlling Antenna Parameters to Enhance Efficiency and Maintain Antenna Size Compactness |
US20070190952A1 (en) * | 2006-02-15 | 2007-08-16 | Texas Instruments Incorporated | Linearization of a transmit amplifier |
US20070273607A1 (en) * | 2004-01-26 | 2007-11-29 | Agency For Science, Technology And Research | Compact Multi-Tiered Plate Antenna Arrays |
US20070287403A1 (en) * | 2004-07-06 | 2007-12-13 | Telefonaktiebolaget L M Ericsson (Publ) | Radio-Receiver Front-End and A Method For Frequency Converting An Input Signal |
US20070285248A1 (en) * | 2002-09-23 | 2007-12-13 | Microstrain, Inc. | Remotely powered and remotely interrogated wireless digital sensor telemetry system |
US7348928B2 (en) * | 2004-12-14 | 2008-03-25 | Intel Corporation | Slot antenna having a MEMS varactor for resonance frequency tuning |
US20080105966A1 (en) * | 2005-06-01 | 2008-05-08 | Infineon Technologies Ag | Semiconductor Module Including Components in Plastic Casing |
US7394288B1 (en) * | 2004-12-13 | 2008-07-01 | Massachusetts Institute Of Technology | Transferring data in a parallel processing environment |
US20080159243A1 (en) * | 2006-12-30 | 2008-07-03 | Broadcom Corporation | Local wireless communications within a device |
US20080258981A1 (en) * | 2006-04-27 | 2008-10-23 | Rayspan Corporation | Antennas, Devices and Systems Based on Metamaterial Structures |
US20080258978A1 (en) * | 2007-04-23 | 2008-10-23 | Lucent Technologies Inc. | Strip-array antenna |
US20080278400A1 (en) * | 2007-05-09 | 2008-11-13 | Infineon Technologies Ag | Packaged antenna and method for producing same |
US20080316135A1 (en) * | 2005-08-02 | 2008-12-25 | Nxp B.V. | Antenna Structure, Transponder and Method of Manufacturing an Antenna Structure |
US20090066516A1 (en) * | 2007-09-06 | 2009-03-12 | Symbol Technologies, Inc. | Dual Mode RFID Tag Utilizing Dual Antennas |
US20090108996A1 (en) * | 2007-10-31 | 2009-04-30 | Sensormatic Electronics Corporation | Rfid antenna system and method |
US7535958B2 (en) * | 2004-06-14 | 2009-05-19 | Rambus, Inc. | Hybrid wired and wireless chip-to-chip communications |
US20090160612A1 (en) * | 2005-07-04 | 2009-06-25 | Valtion Teknillinen Tutkimuskeskus | Measurement System, Measurement Method and New Use of Antenna |
US20090167621A1 (en) * | 2004-08-03 | 2009-07-02 | Universidad Publica De Navarra | Flat antenna |
US7592957B2 (en) * | 2006-08-25 | 2009-09-22 | Rayspan Corporation | Antennas based on metamaterial structures |
US20090251362A1 (en) * | 2008-04-04 | 2009-10-08 | Alexandros Margomenos | Three dimensional integrated automotive radars and methods of manufacturing the same |
US7620424B2 (en) * | 2004-11-30 | 2009-11-17 | The Regents Of The University Of California | Method and apparatus for an adaptive multiple-input multiple-output (MIMO) wireless communications systems |
US20100110943A2 (en) * | 2008-03-25 | 2010-05-06 | Rayspan Corporation | Advanced active metamaterial antenna systems |
US20100222105A1 (en) * | 2005-04-25 | 2010-09-02 | Medtronic, Inc. | Wireless data communication card with compact antenna |
US20100309073A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for cascaded leaky wave antennas on an integrated circuit, integrated circuit package, and/or printed circuit board |
US7855696B2 (en) * | 2007-03-16 | 2010-12-21 | Rayspan Corporation | Metamaterial antenna arrays with radiation pattern shaping and beam switching |
US20110148723A1 (en) * | 2008-06-23 | 2011-06-23 | Erik Bengtsson | Tunable Antenna Arrangement |
US20120095531A1 (en) * | 2009-03-09 | 2012-04-19 | Neurds Inc. | System and Method for Wireless Power Transfer in Implantable Medical Devices |
US20120153731A9 (en) * | 2008-05-13 | 2012-06-21 | Qualcomm Incorporated | Wireless power transfer for furnishings and building elements |
US8299971B2 (en) * | 2009-03-25 | 2012-10-30 | GM Global Technology Operations LLC | Control module chassis-integrated slot antenna |
Family Cites Families (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US317342A (en) * | 1885-05-05 | Car-coupling | ||
US1000000A (en) * | 1910-04-25 | 1911-08-08 | Francis H Holton | Vehicle-tire. |
US3328800A (en) | 1964-03-12 | 1967-06-27 | North American Aviation Inc | Slot antenna utilizing variable standing wave pattern for controlling slot excitation |
NL134627C (en) * | 1966-10-27 | |||
US4780724A (en) * | 1986-04-18 | 1988-10-25 | General Electric Company | Antenna with integral tuning element |
US5068669A (en) * | 1988-09-01 | 1991-11-26 | Apti, Inc. | Power beaming system |
US5192717A (en) * | 1989-04-28 | 1993-03-09 | Canon Kabushiki Kaisha | Process for the formation of a polycrystalline semiconductor film by microwave plasma chemical vapor deposition method |
US5300875A (en) * | 1992-06-08 | 1994-04-05 | Micron Technology, Inc. | Passive (non-contact) recharging of secondary battery cell(s) powering RFID transponder tags |
AU672054B2 (en) | 1992-12-30 | 1996-09-19 | Radio Communication Systems Ltd. | Bothway RF repeater for personal communications systems |
IES930215A2 (en) * | 1993-03-22 | 1993-08-11 | Maitreya Corp Ltd | A homeopathic medicine |
US5416492A (en) * | 1993-03-31 | 1995-05-16 | Yagi Antenna Co., Ltd. | Electromagnetic radiator using a leaky NRD waveguide |
US8014059B2 (en) * | 1994-05-05 | 2011-09-06 | Qualcomm Mems Technologies, Inc. | System and method for charge control in a MEMS device |
JP3141692B2 (en) * | 1994-08-11 | 2001-03-05 | 松下電器産業株式会社 | Millimeter wave detector |
AU4758396A (en) | 1995-02-06 | 1996-08-27 | Megawave Corporation | Television antennas |
US5754948A (en) * | 1995-12-29 | 1998-05-19 | University Of North Carolina At Charlotte | Millimeter-wave wireless interconnection of electronic components |
US6429775B1 (en) * | 1996-04-03 | 2002-08-06 | Intermec Ip Corp. | Apparatus for transporting radio frequency power to energize radio frequency identification transponders |
TW293957B (en) | 1996-08-05 | 1996-12-21 | Chyng-Guang Juang | The structure and the feeding method of the microstrip leaky-wave antenna |
US8421776B2 (en) * | 1996-08-12 | 2013-04-16 | Elo Touch Solutions, Inc. | Acoustic condition sensor employing a plurality of mutually non-orthogonal waves |
US6362737B1 (en) * | 1998-06-02 | 2002-03-26 | Rf Code, Inc. | Object Identification system with adaptive transceivers and methods of operation |
JPH1093322A (en) * | 1996-09-18 | 1998-04-10 | Honda Motor Co Ltd | Antenna system |
US6633550B1 (en) | 1997-02-20 | 2003-10-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio transceiver on a chip |
US6034643A (en) * | 1997-03-28 | 2000-03-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Directional beam antenna device and directional beam controlling apparatus |
US5914873A (en) * | 1997-06-30 | 1999-06-22 | Advanced Micro Devices | Distributed voltage converter apparatus and method for high power microprocessor with array connections |
US6956574B1 (en) * | 1997-07-10 | 2005-10-18 | Paceworks, Inc. | Methods and apparatus for supporting and implementing computer based animation |
US6054886A (en) * | 1997-09-18 | 2000-04-25 | National Semiconductor Corporation | Reference buffer technique for high speed switched capacitor circuits |
SE511907C2 (en) * | 1997-10-01 | 1999-12-13 | Ericsson Telefon Ab L M | Integrated communication device |
JP3865485B2 (en) * | 1997-11-07 | 2007-01-10 | 東洋エアゾール工業株式会社 | Flow control device for aerosol containers |
US6380883B1 (en) | 1998-02-23 | 2002-04-30 | Amerigon | High performance vehicle radar system |
US6037743A (en) | 1998-06-15 | 2000-03-14 | White; Stanley A. | Battery charger and power source employing an environmental energy extractor and a method related thereto |
JP3289694B2 (en) * | 1998-07-24 | 2002-06-10 | 株式会社村田製作所 | High frequency circuit device and communication device |
US6387885B1 (en) * | 1998-08-26 | 2002-05-14 | Abbott Laboratories | 3′,3′-N-bis-desmethyl-3′-N-cycloalkyl erythromycin derivatives as LHRH antagonists |
US6317095B1 (en) * | 1998-09-30 | 2001-11-13 | Anritsu Corporation | Planar antenna and method for manufacturing the same |
TW401652B (en) | 1998-12-03 | 2000-08-11 | Juang Ching Guang | The fast-wave oscillation type antenna with multi-layer grounding |
US6542720B1 (en) * | 1999-03-01 | 2003-04-01 | Micron Technology, Inc. | Microelectronic devices, methods of operating microelectronic devices, and methods of providing microelectronic devices |
US6127799A (en) | 1999-05-14 | 2000-10-03 | Gte Internetworking Incorporated | Method and apparatus for wireless powering and recharging |
US7797367B1 (en) * | 1999-10-06 | 2010-09-14 | Gelvin David C | Apparatus for compact internetworked wireless integrated network sensors (WINS) |
US7020701B1 (en) | 1999-10-06 | 2006-03-28 | Sensoria Corporation | Method for collecting and processing data using internetworked wireless integrated network sensors (WINS) |
US6417807B1 (en) | 2001-04-27 | 2002-07-09 | Hrl Laboratories, Llc | Optically controlled RF MEMS switch array for reconfigurable broadband reflective antennas |
WO2001047063A1 (en) | 1999-12-22 | 2001-06-28 | Rangestar Wireless, Inc. | Low profile tunable circularly polarized antenna |
JP3865573B2 (en) * | 2000-02-29 | 2007-01-10 | アンリツ株式会社 | Dielectric Leaky Wave Antenna |
CN1425223A (en) * | 2000-03-01 | 2003-06-18 | 吉尔·蒙森·瓦维克 | Transponder and transponder system |
US6426755B1 (en) * | 2000-05-16 | 2002-07-30 | Sun Microsystems, Inc. | Graphics system using sample tags for blur |
WO2002009226A1 (en) * | 2000-07-20 | 2002-01-31 | Paratek Microwave, Inc. | Tunable microwave devices with auto-adjusting matching circuit |
US6625454B1 (en) * | 2000-08-04 | 2003-09-23 | Wireless Valley Communications, Inc. | Method and system for designing or deploying a communications network which considers frequency dependent effects |
JP4240780B2 (en) * | 2000-08-08 | 2009-03-18 | Tdk株式会社 | Power amplifier built-in isolator device |
JP2002076953A (en) * | 2000-08-28 | 2002-03-15 | Nec Corp | Transmission circuit and unwanted radiation suppression method |
US7911324B2 (en) * | 2001-02-16 | 2011-03-22 | Automotive Technologies International, Inc. | Method and system for obtaining information about RFID-equipped objects |
US6882128B1 (en) | 2000-09-27 | 2005-04-19 | Science Applications International Corporation | Method and system for energy reclamation and reuse |
US6885847B1 (en) * | 2000-10-10 | 2005-04-26 | Symantec Corp. | Extension mechanism and technique for enabling low-power end devices to access remote networks using short-range wireless communications means |
US7518284B2 (en) * | 2000-11-02 | 2009-04-14 | Danfoss A/S | Dielectric composite and a method of manufacturing a dielectric composite |
US7183633B2 (en) * | 2001-03-01 | 2007-02-27 | Analog Devices Inc. | Optical cross-connect system |
US6661408B2 (en) | 2001-03-23 | 2003-12-09 | Eturbotouch Technology Inc. | Touch screen capable of isolating noise signals |
CN100566198C (en) * | 2001-05-16 | 2009-12-02 | Nxp股份有限公司 | The method and the radiofrequency launcher circuit that are used for modulated RF transmitter circuit output voltage |
WO2002096166A1 (en) * | 2001-05-18 | 2002-11-28 | Corporation For National Research Initiatives | Radio frequency microelectromechanical systems (mems) devices on low-temperature co-fired ceramic (ltcc) substrates |
JP3610924B2 (en) * | 2001-05-30 | 2005-01-19 | 株式会社村田製作所 | Antenna duplexer and communication device |
US7385286B2 (en) * | 2001-06-05 | 2008-06-10 | Matsushita Electric Industrial Co., Ltd. | Semiconductor module |
CN2504706Y (en) * | 2001-09-25 | 2002-08-07 | 闽祥实业有限公司 | Panel display screen with touch control function |
US6864848B2 (en) | 2001-12-27 | 2005-03-08 | Hrl Laboratories, Llc | RF MEMs-tuned slot antenna and a method of making same |
KR100724834B1 (en) * | 2001-12-29 | 2007-06-04 | 타이구엔 테크널러지 (센_젠) 컴퍼니, 리미티드 | An electromagnetic induction electronic board with antenna appayed in gridding inside |
KR100876280B1 (en) * | 2001-12-31 | 2008-12-26 | 주식회사 케이티 | Statistical Shape Descriptor Extraction Apparatus and Method and Its Video Indexing System |
US6794119B2 (en) * | 2002-02-12 | 2004-09-21 | Iridigm Display Corporation | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
US6871049B2 (en) * | 2002-03-21 | 2005-03-22 | Cognio, Inc. | Improving the efficiency of power amplifiers in devices using transmit beamforming |
TW595128B (en) | 2002-04-09 | 2004-06-21 | Mstar Semiconductor Inc | Radio frequency data communication device in CMOS process |
US6943610B2 (en) * | 2002-04-19 | 2005-09-13 | Intel Corporation | Clock distribution network using feedback for skew compensation and jitter filtering |
US6957236B1 (en) * | 2002-05-10 | 2005-10-18 | Oracle International Corporation | Providing a useable version of a data item |
JP3969192B2 (en) * | 2002-05-30 | 2007-09-05 | 株式会社デンソー | Manufacturing method of multilayer wiring board |
US7920827B2 (en) | 2002-06-26 | 2011-04-05 | Nokia Corporation | Apparatus and method for facilitating physical browsing on wireless devices using radio frequency identification |
WO2004015764A2 (en) * | 2002-08-08 | 2004-02-19 | Leedy Glenn J | Vertical system integration |
US7138884B2 (en) * | 2002-08-19 | 2006-11-21 | Dsp Group Inc. | Circuit package integrating passive radio frequency structure |
US7373133B2 (en) * | 2002-09-18 | 2008-05-13 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Recharging method and apparatus |
US6726099B2 (en) * | 2002-09-05 | 2004-04-27 | Honeywell International Inc. | RFID tag having multiple transceivers |
US7705782B2 (en) * | 2002-10-23 | 2010-04-27 | Southern Methodist University | Microstrip array antenna |
DE60305056T2 (en) | 2002-10-24 | 2006-12-07 | Centre National De La Recherche Scientifique (C.N.R.S.) | MULTI-STREAM LENS WITH PHOTONIC BELT MATERIAL |
EP1554776A1 (en) * | 2002-10-24 | 2005-07-20 | Centre National De La Recherche Scientifique (Cnrs) | Frequency multiband antenna with photonic bandgap material |
US7740367B2 (en) * | 2002-11-12 | 2010-06-22 | Nexxus Lighting, Inc. | Detachable pool light |
KR100548204B1 (en) * | 2002-11-19 | 2006-02-02 | 삼성전자주식회사 | a planner inverted F antenna apparatus of a wireless communication device and a ??? using this antenna |
DE10301451A1 (en) * | 2003-01-10 | 2004-07-22 | Atmel Germany Gmbh | Wireless data transmission method between base station and transponder, by modulating electromagnet waves at receiver using modulation technique based on received field strength |
US7373171B2 (en) * | 2003-02-14 | 2008-05-13 | Tdk Corporation | Front end module |
US6832137B2 (en) * | 2003-04-17 | 2004-12-14 | Ford Motor Company | Leaky cable based method and system for automotive parking aid, reversing aid, and pre-collision sensing |
JP4000088B2 (en) * | 2003-05-09 | 2007-10-31 | 松下電器産業株式会社 | Wireless receiver and reception filtering method |
US7164387B2 (en) * | 2003-05-12 | 2007-01-16 | Hrl Laboratories, Llc | Compact tunable antenna |
DE10325396A1 (en) * | 2003-05-28 | 2004-12-23 | Atmel Germany Gmbh | Circuit arrangement for phase modulation for backscatter-based transponder has control unit that can selectively connect voltage sources to varactor connection(s) depending on desired phase angle |
US6972729B2 (en) * | 2003-06-20 | 2005-12-06 | Wang Electro-Opto Corporation | Broadband/multi-band circular array antenna |
US7335958B2 (en) * | 2003-06-25 | 2008-02-26 | Micron Technology, Inc. | Tailoring gate work-function in image sensors |
JP4583732B2 (en) * | 2003-06-30 | 2010-11-17 | 株式会社半導体エネルギー研究所 | Display device and driving method thereof |
JP2005027051A (en) * | 2003-07-02 | 2005-01-27 | Alps Electric Co Ltd | Method for correcting real-time data and bluetooth (r) module |
GB2414634B (en) * | 2003-08-04 | 2008-10-01 | Nec Corp | Method for deciding tilt angle of antenna in radio communication system and apparatus for deciding the same |
US20050075080A1 (en) * | 2003-10-03 | 2005-04-07 | Nanyang Technological University | Inter-chip and intra-chip wireless communications systems |
US7324824B2 (en) * | 2003-12-09 | 2008-01-29 | Awarepoint Corporation | Wireless network monitoring system |
DE60316614T2 (en) * | 2003-10-30 | 2008-07-17 | Mitsubishi Denki K.K. | MOBILE SATELLITE COMMUNICATION SYSTEM |
WO2005062424A1 (en) * | 2003-12-18 | 2005-07-07 | Fujitsu Limited | Antenna device, radio reception device, and radio transmission device |
US20050134579A1 (en) | 2003-12-19 | 2005-06-23 | Tsau-Hua Hsieh | Wirelessly driven display system |
GB0401991D0 (en) * | 2004-01-30 | 2004-03-03 | Ford Global Tech Llc | Touch screens |
JP4418250B2 (en) * | 2004-02-05 | 2010-02-17 | 株式会社ルネサステクノロジ | High frequency circuit module |
US7156172B2 (en) * | 2004-03-02 | 2007-01-02 | Halliburton Energy Services, Inc. | Method for accelerating oil well construction and production processes and heating device therefor |
US7084815B2 (en) * | 2004-03-22 | 2006-08-01 | Motorola, Inc. | Differential-fed stacked patch antenna |
FR2868216B1 (en) | 2004-03-23 | 2006-07-21 | Alcatel Sa | LINEAR POLARIZED DEHASE CELL WITH VARIABLE RESONANT LENGTH USING MEMS SWITCHES |
US7330090B2 (en) * | 2004-03-26 | 2008-02-12 | The Regents Of The University Of California | Zeroeth-order resonator |
US7196607B2 (en) * | 2004-03-26 | 2007-03-27 | Harris Corporation | Embedded toroidal transformers in ceramic substrates |
US7295788B2 (en) * | 2004-04-26 | 2007-11-13 | Ricoh Company, Ltd. | Image forming apparatus and process cartridge |
FR2870642B1 (en) | 2004-05-19 | 2008-11-14 | Centre Nat Rech Scient Cnrse | BIP MATERIAL ANTENNA (PHOTONIC PROHIBITED BAND) WITH A SIDE WALL SURROUNDING A AXIS |
US7504710B2 (en) * | 2004-06-28 | 2009-03-17 | Mitsubishi Electric Corporation | Multilayer dielectric substrate and semiconductor package |
DE102005034878B4 (en) * | 2004-07-26 | 2011-08-18 | Kyocera Corp. | Selector switch, radio frequency transceiver, radar device, vehicle equipped with the radar device, and small ship |
EP1624314A1 (en) * | 2004-08-05 | 2006-02-08 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Helmet-shaped TEM antenna for magnetic resonance measurements |
US7295161B2 (en) * | 2004-08-06 | 2007-11-13 | International Business Machines Corporation | Apparatus and methods for constructing antennas using wire bonds as radiating elements |
WO2006013677A1 (en) * | 2004-08-06 | 2006-02-09 | Brother Kogyo Kabushiki Kaisha | Radio receiving apparatus |
US7242359B2 (en) * | 2004-08-18 | 2007-07-10 | Microsoft Corporation | Parallel loop antennas for a mobile electronic device |
US7304976B2 (en) * | 2004-10-13 | 2007-12-04 | Virginia Tech Intellectual Properties, Inc. | Method and apparatus for control and routing of wireless sensor networks |
US7199713B2 (en) | 2004-11-19 | 2007-04-03 | Sirit Technologies, Inc. | Homodyne single mixer receiver and method therefor |
WO2006074477A2 (en) * | 2005-01-10 | 2006-07-13 | Ixys Corporation | Integrated packaged device having magnetic components |
TWI254483B (en) * | 2005-01-19 | 2006-05-01 | Yung-Ling Lai | Defected ground structure for coplanar waveguides |
US7348842B2 (en) * | 2005-01-19 | 2008-03-25 | Micro-Mobio | Multi-substrate RF module for wireless communication devices |
JP4645351B2 (en) * | 2005-03-18 | 2011-03-09 | 株式会社豊田中央研究所 | Antenna with periodic structure |
GB0508205D0 (en) * | 2005-04-22 | 2005-06-01 | Ttp Communications Ltd | Assessing the performance of radio devices |
WO2006124761A2 (en) * | 2005-05-13 | 2006-11-23 | Ems Technologies, Inc. | Pallet jack antenna for rfid system |
US7271680B2 (en) | 2005-06-29 | 2007-09-18 | Intel Corporation | Method, apparatus, and system for parallel plate mode radial pattern signaling |
US7511588B2 (en) * | 2005-07-19 | 2009-03-31 | Lctank Llc | Flux linked LC tank circuits forming distributed clock networks |
WO2007013354A1 (en) * | 2005-07-25 | 2007-02-01 | Anritsu Corporation | Dielectric leakage wave antenna |
US20070171076A1 (en) | 2005-08-29 | 2007-07-26 | Visible Assets, Inc. | Low-frequency radio tag encapsulating system |
DE602005020005D1 (en) * | 2005-09-09 | 2010-04-29 | St Microelectronics Srl | Inductive arrangement |
JP4670573B2 (en) * | 2005-10-06 | 2011-04-13 | 日立電線株式会社 | Antenna module, wireless device, and portable wireless terminal |
US7586193B2 (en) * | 2005-10-07 | 2009-09-08 | Nhew R&D Pty Ltd | Mm-wave antenna using conventional IC packaging |
ITTO20050822A1 (en) | 2005-11-21 | 2007-05-22 | Cts Cashpro Spa | EQUIPMENT FOR TREATING BANKNOTES IN MAZZETTA |
US7557757B2 (en) * | 2005-12-14 | 2009-07-07 | The University Of Kansas | Inductively coupled feed structure and matching circuit for RFID device |
US7791530B2 (en) * | 2006-01-05 | 2010-09-07 | Autoliv Asp, Inc. | Time duplex apparatus and method for radar sensor front-ends |
US7372408B2 (en) * | 2006-01-13 | 2008-05-13 | International Business Machines Corporation | Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas |
WO2007136435A2 (en) * | 2006-02-06 | 2007-11-29 | Olympus Communication Technology Of America, Inc. | Power management |
US7548208B2 (en) * | 2006-02-24 | 2009-06-16 | Palm, Inc. | Internal diversity antenna architecture |
JP4902250B2 (en) * | 2006-04-12 | 2012-03-21 | パナソニック株式会社 | Variable gain amplifier |
CA2547372A1 (en) * | 2006-05-18 | 2007-11-18 | Peter Popplewell | Lower power, integrated radio transmitter and receiver |
US7482893B2 (en) * | 2006-05-18 | 2009-01-27 | The Regents Of The University Of California | Power combiners using meta-material composite right/left hand transmission line at infinite wavelength frequency |
US7615863B2 (en) | 2006-06-19 | 2009-11-10 | Northrop Grumman Space & Missions Systems Corp. | Multi-dimensional wafer-level integrated antenna sensor micro packaging |
US8026854B2 (en) * | 2006-07-14 | 2011-09-27 | Yamaguchi University | Stripline-type composite right/left-handed transmission line or left-handed transmission line, and antenna that uses same |
US7336232B1 (en) * | 2006-08-04 | 2008-02-26 | Raytheon Company | Dual band space-fed array |
DE102006042386B4 (en) * | 2006-09-08 | 2009-12-10 | Siemens Ag | Method and device for displaying images |
US8570172B2 (en) | 2006-09-08 | 2013-10-29 | Intelleflex Corporation | RFID system with distributed transmitters |
US20080179404A1 (en) * | 2006-09-26 | 2008-07-31 | Advanced Microelectronic And Automation Technology Ltd. | Methods and apparatuses to produce inlays with transponders |
US7830220B2 (en) * | 2006-09-26 | 2010-11-09 | Infineon Technologies Ag | Modulator arrangement and method for signal modulation |
US7573420B2 (en) * | 2007-05-14 | 2009-08-11 | Infineon Technologies Ag | RF front-end for a radar system |
KR100826527B1 (en) * | 2006-12-04 | 2008-04-30 | 한국전자통신연구원 | System and method for measuring an antenna radiation pattern in fresnel region using phi-variation method |
GB0624584D0 (en) * | 2006-12-08 | 2007-01-17 | Medical Device Innovations Ltd | Skin treatment apparatus and method |
US7948477B2 (en) * | 2006-12-15 | 2011-05-24 | Apple Inc. | PET-based touchpad |
US7776408B2 (en) * | 2007-02-14 | 2010-08-17 | Rajneesh Bhandari | Method and apparatus for producing single crystalline diamonds |
US20080219377A1 (en) * | 2007-03-06 | 2008-09-11 | Sige Semiconductor Inc. | Transmitter crosstalk cancellation in multi-standard wireless transceivers |
US8019293B2 (en) * | 2007-03-09 | 2011-09-13 | Skyworks Solutions, Inc. | Controller and method for using a DC-DC converter in a mobile handset |
DE102007012122A1 (en) * | 2007-03-13 | 2008-09-18 | Rohde & Schwarz Gmbh & Co. Kg | Method and apparatus for measuring phase noise |
US20080233869A1 (en) * | 2007-03-19 | 2008-09-25 | Thomas Baker | Method and system for a single-chip fm tuning system for transmit and receive antennas |
US7768457B2 (en) * | 2007-06-22 | 2010-08-03 | Vubiq, Inc. | Integrated antenna and chip package and method of manufacturing thereof |
KR100882086B1 (en) * | 2007-07-20 | 2009-02-10 | 삼성전기주식회사 | Front-end module |
EP2020699A1 (en) * | 2007-07-25 | 2009-02-04 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Leaky wave antenna using waves propagating between parallel surfaces |
US7808440B2 (en) * | 2007-08-03 | 2010-10-05 | Toyota Jidosha Kabushiki Kaisha | Multiple-resonance antenna |
WO2009026719A1 (en) * | 2007-08-31 | 2009-03-05 | Allen-Vanguard Technologies Inc. | Radio antenna assembly and apparatus for controlling transmission and reception of rf signals |
US8461817B2 (en) * | 2007-09-11 | 2013-06-11 | Powercast Corporation | Method and apparatus for providing wireless power to a load device |
US8138718B2 (en) * | 2007-11-27 | 2012-03-20 | Gordon Ewbank Dower | Docking bay for conditionally supplying battery recharging energy to a vehicle utilizing non plug-in electrical contact between a pair of docking bay contacts and a pair of vehicle contacts |
US8115622B2 (en) * | 2007-11-29 | 2012-02-14 | Stolar, Inc. | Underground radio communications and personnel tracking system |
US20090153250A1 (en) | 2007-12-12 | 2009-06-18 | Ahmadreza Rofougaran | Method and system for scaling supply, device size, and load of a power amplifier |
US8270912B2 (en) * | 2007-12-12 | 2012-09-18 | Broadcom Corporation | Method and system for a transformer in an integrated circuit package |
US7911388B2 (en) * | 2007-12-12 | 2011-03-22 | Broadcom Corporation | Method and system for configurable antenna in an integrated circuit package |
US7880677B2 (en) | 2007-12-12 | 2011-02-01 | Broadcom Corporation | Method and system for a phased array antenna embedded in an integrated circuit package |
US8106829B2 (en) * | 2007-12-12 | 2012-01-31 | Broadcom Corporation | Method and system for an integrated antenna and antenna management |
US7928965B2 (en) * | 2007-12-27 | 2011-04-19 | Apple Inc. | Touch screen RFID tag reader |
EP2266166B1 (en) | 2008-03-18 | 2017-11-15 | Université Paris Sud (Paris 11) | Steerable microwave antenna |
US20090243741A1 (en) * | 2008-03-27 | 2009-10-01 | Ahmadreza Rofougaran | Method and system for processing signals via an oscillator load embedded in an integrated circuit (ic) package |
US20090243740A1 (en) | 2008-03-27 | 2009-10-01 | Ahmadreza Rofougaran | Method and system for reduced jitter signal generation |
US8086190B2 (en) * | 2008-03-27 | 2011-12-27 | Broadcom Corporation | Method and system for reconfigurable devices for multi-frequency coexistence |
US7782145B2 (en) | 2008-03-28 | 2010-08-24 | Broadcom Corporation | Method and system for frequency tuning based on characterization of an oscillator |
US8090314B2 (en) | 2008-03-28 | 2012-01-03 | Broadcom Corporation | Method and system for communicating via a frequency shifting repeater |
US8198714B2 (en) * | 2008-03-28 | 2012-06-12 | Broadcom Corporation | Method and system for configuring a transformer embedded in a multi-layer integrated circuit (IC) package |
US8106836B2 (en) * | 2008-04-11 | 2012-01-31 | Apple Inc. | Hybrid antennas for electronic devices |
US8116676B2 (en) | 2008-05-07 | 2012-02-14 | Broadcom Corporation | Method and system for inter IC communications utilizing a spatial multi-link repeater |
US8325785B2 (en) | 2008-05-07 | 2012-12-04 | Broadcom Corporation | Method and system for communicating via a spatial multilink repeater |
US8295333B2 (en) * | 2008-05-07 | 2012-10-23 | Broadcom Corporation | Method and system for inter-PCB communication utilizing a spatial multi-link repeater |
WO2009151973A2 (en) * | 2008-05-28 | 2009-12-17 | Rayspan Corporation | Power amplifier architectures |
US8095103B2 (en) * | 2008-08-01 | 2012-01-10 | Qualcomm Incorporated | Upconverter and downconverter with switched transconductance and LO masking |
US20100131369A1 (en) * | 2008-11-26 | 2010-05-27 | Richard Jude Dominguez | Group association system and method |
US20100133137A1 (en) * | 2008-12-03 | 2010-06-03 | Cooler Concepts, Llc | Expandable cooler sleeve |
US20100153431A1 (en) * | 2008-12-11 | 2010-06-17 | Louis Burger | Alert triggered statistics collections |
US7982681B2 (en) | 2008-12-18 | 2011-07-19 | Chung-Shan Institute of Science and Technology Armaments Bureau, Ministry of National Defense | Leaky-wave dual-antenna system |
US8384599B2 (en) * | 2009-02-13 | 2013-02-26 | William N. Carr | Multiple-cavity antenna |
US8467735B2 (en) * | 2009-03-23 | 2013-06-18 | Apple Inc. | Methods and apparatus for testing and integration of modules within an electronic device |
FR2944153B1 (en) * | 2009-04-02 | 2013-04-19 | Univ Rennes | PILLBOX TYPE PARALLEL PLATE MULTILAYER ANTENNA AND CORRESPONDING ANTENNA SYSTEM |
US20100283665A1 (en) * | 2009-05-05 | 2010-11-11 | Imran Bashir | Mitigation of RF Oscillator Pulling through Adjustable Phase Shifting |
US8784189B2 (en) | 2009-06-08 | 2014-07-22 | Cfph, Llc | Interprocess communication regarding movement of game devices |
US8320856B2 (en) | 2009-06-09 | 2012-11-27 | Broadcom Corporation | Method and system for a leaky wave antenna as a load on a power amplifier |
US8508422B2 (en) * | 2009-06-09 | 2013-08-13 | Broadcom Corporation | Method and system for converting RF power to DC power utilizing a leaky wave antenna |
US8588686B2 (en) | 2009-06-09 | 2013-11-19 | Broadcom Corporation | Method and system for remote power distribution and networking for passive devices |
US20100321325A1 (en) * | 2009-06-17 | 2010-12-23 | Springer Gregory A | Touch and display panel antennas |
US8487810B2 (en) * | 2009-09-16 | 2013-07-16 | Broadcom Corporation | Integrated and configurable radar system |
KR20110101026A (en) * | 2010-05-07 | 2011-09-15 | 삼성전기주식회사 | Touch screen having antenna pattern |
-
2009
- 2009-12-30 US US12/650,176 patent/US8521106B2/en active Active
- 2009-12-30 US US12/650,224 patent/US8660500B2/en active Active
- 2009-12-30 US US12/650,295 patent/US8422967B2/en not_active Expired - Fee Related
- 2009-12-30 US US12/650,192 patent/US8301092B2/en not_active Expired - Fee Related
- 2009-12-30 US US12/650,277 patent/US8457581B2/en active Active
- 2009-12-30 US US12/650,324 patent/US8447250B2/en active Active
- 2009-12-30 US US12/650,246 patent/US8295788B2/en not_active Expired - Fee Related
- 2009-12-30 US US12/650,292 patent/US8285231B2/en not_active Expired - Fee Related
-
2010
- 2010-02-18 US US12/708,366 patent/US8743002B2/en active Active
- 2010-03-31 US US12/751,593 patent/US20100309073A1/en not_active Abandoned
- 2010-03-31 US US12/751,759 patent/US20100311369A1/en not_active Abandoned
- 2010-03-31 US US12/751,777 patent/US9329261B2/en active Active
- 2010-03-31 US US12/751,792 patent/US20100309076A1/en not_active Abandoned
- 2010-03-31 US US12/751,782 patent/US8787997B2/en not_active Expired - Fee Related
- 2010-03-31 US US12/751,550 patent/US9088075B2/en not_active Expired - Fee Related
- 2010-03-31 US US12/751,751 patent/US20100309074A1/en not_active Abandoned
- 2010-03-31 US US12/751,768 patent/US20100309075A1/en not_active Abandoned
- 2010-03-31 US US12/751,772 patent/US20100309077A1/en not_active Abandoned
- 2010-05-28 EP EP20100005573 patent/EP2273617B1/en not_active Not-in-force
- 2010-06-08 TW TW099118627A patent/TWI493791B/en not_active IP Right Cessation
- 2010-06-09 US US12/796,841 patent/US8618937B2/en not_active Expired - Fee Related
- 2010-06-09 US US12/797,177 patent/US8242957B2/en not_active Expired - Fee Related
- 2010-06-09 US US12/796,862 patent/US8849214B2/en active Active
- 2010-06-09 US US12/797,029 patent/US8995937B2/en active Active
- 2010-06-09 US US12/796,975 patent/US20100309824A1/en not_active Abandoned
- 2010-06-09 US US12/796,822 patent/US8761669B2/en active Active
- 2010-06-09 US US12/797,232 patent/US20100308767A1/en not_active Abandoned
- 2010-06-09 US US12/797,254 patent/US8929841B2/en active Active
- 2010-06-09 US US12/797,316 patent/US8432326B2/en not_active Expired - Fee Related
- 2010-06-09 US US12/797,273 patent/US20100308885A1/en not_active Abandoned
- 2010-06-09 US US12/797,214 patent/US8843061B2/en active Active
- 2010-06-09 US US12/797,041 patent/US9013311B2/en active Active
- 2010-06-09 US US12/797,162 patent/US8849194B2/en active Active
- 2010-06-09 US US12/797,068 patent/US20100311324A1/en not_active Abandoned
- 2010-06-09 US US12/797,133 patent/US20100309056A1/en not_active Abandoned
- 2010-06-09 US US12/797,203 patent/US8577314B2/en not_active Expired - Fee Related
-
2012
- 2012-10-05 US US13/646,297 patent/US8660505B2/en active Active
- 2012-10-19 US US13/655,868 patent/US8666335B2/en active Active
-
2013
- 2013-04-11 US US13/860,826 patent/US8831540B2/en active Active
- 2013-04-26 US US13/871,776 patent/US8766864B2/en active Active
- 2013-05-17 US US13/896,720 patent/US8811923B2/en active Active
- 2013-05-31 US US13/907,715 patent/US8958768B2/en active Active
- 2013-08-17 US US13/969,554 patent/US20130336423A1/en not_active Abandoned
- 2013-11-01 US US14/069,781 patent/US9157994B2/en active Active
- 2013-11-14 US US14/080,678 patent/US8983386B2/en active Active
-
2015
- 2015-03-18 US US14/661,322 patent/US9442190B2/en not_active Expired - Fee Related
- 2015-06-12 US US14/737,895 patent/US9417318B2/en not_active Expired - Fee Related
Patent Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US733090A (en) * | 1900-03-19 | 1903-07-07 | Inv S Jan Szczepanik & Cie Soc D | Optical projection apparatus. |
US2943025A (en) * | 1958-04-11 | 1960-06-28 | Rhone Poulenc Sa | Preparation of spiramycin ii |
US3725938A (en) * | 1970-10-05 | 1973-04-03 | Sperry Rand Corp | Direction finder system |
US4150382A (en) * | 1973-09-13 | 1979-04-17 | Wisconsin Alumni Research Foundation | Non-uniform variable guided wave antennas with electronically controllable scanning |
US3972049A (en) * | 1975-04-24 | 1976-07-27 | The United States Of America As Represented By The Secretary Of The Navy | Asymmetrically fed electric microstrip dipole antenna |
US4150383A (en) * | 1976-03-22 | 1979-04-17 | Telefonaktiebolaget L M Ericsson | Monopulse flat plate antenna |
US4078237A (en) * | 1976-11-10 | 1978-03-07 | The United States Of America As Represented By The Secretary Of The Navy | Offset FED magnetic microstrip dipole antenna |
US4193082A (en) * | 1978-06-23 | 1980-03-11 | International Business Machines Corporation | Multi-layer dielectric structure |
US4701763A (en) * | 1984-09-17 | 1987-10-20 | Matsushita Electric Industrial Co., Ltd. | Small antenna |
US4621267A (en) * | 1984-09-28 | 1986-11-04 | The Boeing Company | Bearing intersection deghosting by altitude comparison system and methods |
US4626861A (en) * | 1984-09-28 | 1986-12-02 | The Boeing Company | Two angle range and altitude measurement system and methods |
US5387885A (en) * | 1990-05-03 | 1995-02-07 | University Of North Carolina | Salphasic distribution of timing signals for the synchronization of physically separated entities |
US5717943A (en) * | 1990-11-13 | 1998-02-10 | International Business Machines Corporation | Advanced parallel array processor (APAP) |
US5138436A (en) * | 1990-11-16 | 1992-08-11 | Ball Corporation | Interconnect package having means for waveguide transmission of rf signals |
US5349364A (en) * | 1992-06-26 | 1994-09-20 | Acvo Corporation | Electromagnetic power distribution system comprising distinct type couplers |
US5363075A (en) * | 1992-12-03 | 1994-11-08 | Hughes Aircraft Company | Multiple layer microwave integrated circuit module connector assembly |
US5359334A (en) * | 1993-01-14 | 1994-10-25 | Hazeltine Corporation | X-scan aircraft location systems |
US6954236B1 (en) * | 1993-06-30 | 2005-10-11 | The United States Of America As Represented By The Secretary Of The Navy | Silicon-on-sapphire display with wireless interconnections and method of fabricating same |
US5790081A (en) * | 1996-01-30 | 1998-08-04 | Unwin; Art H. | Constant impedance matching system |
US5900843A (en) * | 1997-03-18 | 1999-05-04 | Raytheon Company | Airborne VHF antennas |
US5912598A (en) * | 1997-07-01 | 1999-06-15 | Trw Inc. | Waveguide-to-microstrip transition for mmwave and MMIC applications |
US6005520A (en) * | 1998-03-30 | 1999-12-21 | The United States Of America As Represented By The Secretary Of The Army | Wideband planar leaky-wave microstrip antenna |
US6411824B1 (en) * | 1998-06-24 | 2002-06-25 | Conexant Systems, Inc. | Polarization-adaptive antenna transmit diversity system |
US6212431B1 (en) * | 1998-09-08 | 2001-04-03 | Advanced Bionics Corporation | Power transfer circuit for implanted devices |
US6771935B1 (en) * | 1998-10-05 | 2004-08-03 | Alcatel | Wireless bus |
US6735630B1 (en) * | 1999-10-06 | 2004-05-11 | Sensoria Corporation | Method for collecting data using compact internetworked wireless integrated network sensors (WINS) |
US6285325B1 (en) * | 2000-02-16 | 2001-09-04 | The United States Of America As Represented By The Secretary Of The Army | Compact wideband microstrip antenna with leaky-wave excitation |
US6597323B2 (en) * | 2000-03-03 | 2003-07-22 | Anritsu Corporation | Dielectric leaky wave antenna having mono-layer structure |
US6496155B1 (en) * | 2000-03-29 | 2002-12-17 | Hrl Laboratories, Llc. | End-fire antenna or array on surface with tunable impedance |
US20020005807A1 (en) * | 2000-06-02 | 2002-01-17 | Industrial Technology Research Institute | Wideband microstrip leaky-wave antenna and its feeding system |
US20020000936A1 (en) * | 2000-06-02 | 2002-01-03 | Industrial Technology Research Institute | Wideband microstrip leaky-wave antenna |
US20020041256A1 (en) * | 2000-08-23 | 2002-04-11 | Matsushita Electric Industrial Co., Ltd | Antenna apparatus and a portable wireless communication apparatus |
US20030122729A1 (en) * | 2000-10-04 | 2003-07-03 | E-Tenna Corporation | Multi-resonant, high-impedance electromagnetic surfaces |
US6603915B2 (en) * | 2001-02-05 | 2003-08-05 | Fujitsu Limited | Interposer and method for producing a light-guiding structure |
US20040263378A1 (en) * | 2001-10-16 | 2004-12-30 | Abraham Jossef | Method and apparatus for signal detection and jamming |
US7023374B2 (en) * | 2001-10-16 | 2006-04-04 | Abraham Jossef | Method and apparatus for signal detection and jamming |
US20040066251A1 (en) * | 2002-05-31 | 2004-04-08 | Eleftheriades George V. | Planar metamaterials for control of electromagnetic wave guidance and radiation |
US20060066326A1 (en) * | 2002-09-19 | 2006-03-30 | Steven Harold Slupsky | Non-contact tester for electronic circuits |
US20070285248A1 (en) * | 2002-09-23 | 2007-12-13 | Microstrain, Inc. | Remotely powered and remotely interrogated wireless digital sensor telemetry system |
US20060125713A1 (en) * | 2002-10-24 | 2006-06-15 | Marc Thevenot | Multiple-beam antenna with photonic bandgap material |
US7233299B2 (en) * | 2002-10-24 | 2007-06-19 | Centre National De La Recherche Scientifique (C.N.R.S.) | Multiple-beam antenna with photonic bandgap material |
US20050116864A1 (en) * | 2002-11-19 | 2005-06-02 | Farrokh Mohamadi | Integrated circuit waveguide |
US7084823B2 (en) * | 2003-02-26 | 2006-08-01 | Skycross, Inc. | Integrated front end antenna |
US20040227668A1 (en) * | 2003-05-12 | 2004-11-18 | Hrl Laboratories, Llc | Steerable leaky wave antenna capable of both forward and backward radiation |
US20040263408A1 (en) * | 2003-05-12 | 2004-12-30 | Hrl Laboratories, Llc | Adaptive beam forming antenna system using a tunable impedance surface |
US20040227667A1 (en) * | 2003-05-12 | 2004-11-18 | Hrl Laboratories, Llc | Meta-element antenna and array |
US7253780B2 (en) * | 2003-05-12 | 2007-08-07 | Hrl Laboratories, Llc | Steerable leaky wave antenna capable of both forward and backward radiation |
US7002517B2 (en) * | 2003-06-20 | 2006-02-21 | Anritsu Company | Fixed-frequency beam-steerable leaky-wave microstrip antenna |
US20050012667A1 (en) * | 2003-06-20 | 2005-01-20 | Anritsu Company | Fixed-frequency beam-steerable leaky-wave microstrip antenna |
US20050052283A1 (en) * | 2003-09-09 | 2005-03-10 | Collins Timothy J. | Method and apparatus for multiple frequency RFID tag architecture |
US20050128155A1 (en) * | 2003-12-11 | 2005-06-16 | Junichi Fukuda | Antenna device and radio communication apparatus using the antenna device |
US20070273607A1 (en) * | 2004-01-26 | 2007-11-29 | Agency For Science, Technology And Research | Compact Multi-Tiered Plate Antenna Arrays |
US7535958B2 (en) * | 2004-06-14 | 2009-05-19 | Rambus, Inc. | Hybrid wired and wireless chip-to-chip communications |
US20070287403A1 (en) * | 2004-07-06 | 2007-12-13 | Telefonaktiebolaget L M Ericsson (Publ) | Radio-Receiver Front-End and A Method For Frequency Converting An Input Signal |
US20090167621A1 (en) * | 2004-08-03 | 2009-07-02 | Universidad Publica De Navarra | Flat antenna |
US20060281423A1 (en) * | 2004-10-15 | 2006-12-14 | Caimi Frank M | Methods and Apparatuses for Adaptively Controlling Antenna Parameters to Enhance Efficiency and Maintain Antenna Size Compactness |
US7620424B2 (en) * | 2004-11-30 | 2009-11-17 | The Regents Of The University Of California | Method and apparatus for an adaptive multiple-input multiple-output (MIMO) wireless communications systems |
US7394288B1 (en) * | 2004-12-13 | 2008-07-01 | Massachusetts Institute Of Technology | Transferring data in a parallel processing environment |
US7348928B2 (en) * | 2004-12-14 | 2008-03-25 | Intel Corporation | Slot antenna having a MEMS varactor for resonance frequency tuning |
US20100222105A1 (en) * | 2005-04-25 | 2010-09-02 | Medtronic, Inc. | Wireless data communication card with compact antenna |
US20080105966A1 (en) * | 2005-06-01 | 2008-05-08 | Infineon Technologies Ag | Semiconductor Module Including Components in Plastic Casing |
US20090160612A1 (en) * | 2005-07-04 | 2009-06-25 | Valtion Teknillinen Tutkimuskeskus | Measurement System, Measurement Method and New Use of Antenna |
US20080316135A1 (en) * | 2005-08-02 | 2008-12-25 | Nxp B.V. | Antenna Structure, Transponder and Method of Manufacturing an Antenna Structure |
US20120263256A1 (en) * | 2006-02-15 | 2012-10-18 | Khurram Waheed | Linearization of a transmit amplifier |
US8195103B2 (en) * | 2006-02-15 | 2012-06-05 | Texas Instruments Incorporated | Linearization of a transmit amplifier |
US20070190952A1 (en) * | 2006-02-15 | 2007-08-16 | Texas Instruments Incorporated | Linearization of a transmit amplifier |
US20080258981A1 (en) * | 2006-04-27 | 2008-10-23 | Rayspan Corporation | Antennas, Devices and Systems Based on Metamaterial Structures |
US7592957B2 (en) * | 2006-08-25 | 2009-09-22 | Rayspan Corporation | Antennas based on metamaterial structures |
US20080159243A1 (en) * | 2006-12-30 | 2008-07-03 | Broadcom Corporation | Local wireless communications within a device |
US7855696B2 (en) * | 2007-03-16 | 2010-12-21 | Rayspan Corporation | Metamaterial antenna arrays with radiation pattern shaping and beam switching |
US20080258978A1 (en) * | 2007-04-23 | 2008-10-23 | Lucent Technologies Inc. | Strip-array antenna |
US20080278400A1 (en) * | 2007-05-09 | 2008-11-13 | Infineon Technologies Ag | Packaged antenna and method for producing same |
US20090066516A1 (en) * | 2007-09-06 | 2009-03-12 | Symbol Technologies, Inc. | Dual Mode RFID Tag Utilizing Dual Antennas |
US20090108996A1 (en) * | 2007-10-31 | 2009-04-30 | Sensormatic Electronics Corporation | Rfid antenna system and method |
US20100110943A2 (en) * | 2008-03-25 | 2010-05-06 | Rayspan Corporation | Advanced active metamaterial antenna systems |
US7733265B2 (en) * | 2008-04-04 | 2010-06-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Three dimensional integrated automotive radars and methods of manufacturing the same |
US20090251362A1 (en) * | 2008-04-04 | 2009-10-08 | Alexandros Margomenos | Three dimensional integrated automotive radars and methods of manufacturing the same |
US20120153731A9 (en) * | 2008-05-13 | 2012-06-21 | Qualcomm Incorporated | Wireless power transfer for furnishings and building elements |
US20110148723A1 (en) * | 2008-06-23 | 2011-06-23 | Erik Bengtsson | Tunable Antenna Arrangement |
US20120095531A1 (en) * | 2009-03-09 | 2012-04-19 | Neurds Inc. | System and Method for Wireless Power Transfer in Implantable Medical Devices |
US8299971B2 (en) * | 2009-03-25 | 2012-10-30 | GM Global Technology Operations LLC | Control module chassis-integrated slot antenna |
US20100309073A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for cascaded leaky wave antennas on an integrated circuit, integrated circuit package, and/or printed circuit board |
US8295788B2 (en) * | 2009-06-09 | 2012-10-23 | Broadcom Corporation | Method and system for an N-phase transmitter utilizing a leaky wave antenna |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100308970A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for a rfid transponder with configurable feed point for rfid communications |
US20100311332A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Roufougaran | Method and system for chip-to-chip communication via on-chip leaky wave antennas |
US20100311333A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for point-to-point wireless communications utilizing leaky wave antennas |
US20100311368A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and System for a Leaky Wave Antenna as a Load on a Power Amplifier |
US20100308767A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for distributed battery charging utilizing leaky wave antennas |
US20100311376A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and System for Receiving I and Q RF Signals without a Phase Shifter Utilizing a Leaky Wave Antenna |
US20100311367A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and System for a Sub-Harmonic Transmitter Utilizing a Leaky Wave Antenna |
US20100311472A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for an integrated voltage controlled oscillator-based transmitter and on-chip power distribution network |
US20100309075A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for an on-chip leaky wave antenna |
US20100311340A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for remote power distribution and networking for passive devices |
US20100309076A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for communicating via leaky wave antennas on high resistivity substrates |
US20100308668A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for power transfer utilizing leaky wave antennas |
US20100311380A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and System for Amplitude Modulation Utilizing a Leaky Wave Antenna |
US20100309824A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for a duplexing leaky wave antenna |
US20100309077A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for wireless communication utilizing leaky wave antennas on a printed circuit board |
US20100308885A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for clock distribution utilizing leaky wave antennas |
US20100309073A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for cascaded leaky wave antennas on an integrated circuit, integrated circuit package, and/or printed circuit board |
US20100309074A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for a leaky wave antenna on an integrated circuit package |
US20100309069A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for dynamic control of output power of a leaky wave antenna |
US20100309079A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for a smart antenna utilizing leaky wave antennas |
US20100309072A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
US20100309040A1 (en) * | 2009-06-09 | 2010-12-09 | Ahmadreza Rofougaran | Method and system for dynamic range detection and positioning utilizing leaky wave antennas |
US8422967B2 (en) | 2009-06-09 | 2013-04-16 | Broadcom Corporation | Method and system for amplitude modulation utilizing a leaky wave antenna |
US8432326B2 (en) | 2009-06-09 | 2013-04-30 | Broadcom Corporation | Method and system for a smart antenna utilizing leaky wave antennas |
US8447250B2 (en) | 2009-06-09 | 2013-05-21 | Broadcom Corporation | Method and system for an integrated voltage controlled oscillator-based transmitter and on-chip power distribution network |
US8457581B2 (en) | 2009-06-09 | 2013-06-04 | Broadcom Corporation | Method and system for receiving I and Q RF signals without a phase shifter utilizing a leaky wave antenna |
US8521106B2 (en) | 2009-06-09 | 2013-08-27 | Broadcom Corporation | Method and system for a sub-harmonic transmitter utilizing a leaky wave antenna |
US8577314B2 (en) | 2009-06-09 | 2013-11-05 | Broadcom Corporation | Method and system for dynamic range detection and positioning utilizing leaky wave antennas |
US8588686B2 (en) | 2009-06-09 | 2013-11-19 | Broadcom Corporation | Method and system for remote power distribution and networking for passive devices |
US8618937B2 (en) | 2009-06-09 | 2013-12-31 | Broadcom Corporation | Method and system for controlling cavity height of a leaky wave antenna for RFID communications |
US8660500B2 (en) | 2009-06-09 | 2014-02-25 | Broadcom Corporation | Method and system for a voltage-controlled oscillator with a leaky wave antenna |
US8660505B2 (en) | 2009-06-09 | 2014-02-25 | Broadcom Corporation | Integrated transmitter with on-chip power distribution |
US8666335B2 (en) | 2009-06-09 | 2014-03-04 | Broadcom Corporation | Wireless device with N-phase transmitter |
US8743002B2 (en) | 2009-06-09 | 2014-06-03 | Broadcom Corporation | Method and system for a 60 GHz leaky wave high gain antenna |
US8761669B2 (en) | 2009-06-09 | 2014-06-24 | Broadcom Corporation | Method and system for chip-to-chip communication via on-chip leaky wave antennas |
US8787997B2 (en) | 2009-06-09 | 2014-07-22 | Broadcom Corporation | Method and system for a distributed leaky wave antenna |
US8843061B2 (en) | 2009-06-09 | 2014-09-23 | Broadcom Corporation | Method and system for power transfer utilizing leaky wave antennas |
US8849214B2 (en) | 2009-06-09 | 2014-09-30 | Broadcom Corporation | Method and system for point-to-point wireless communications utilizing leaky wave antennas |
US8849194B2 (en) | 2009-06-09 | 2014-09-30 | Broadcom Corporation | Method and system for a mesh network utilizing leaky wave antennas |
US8929841B2 (en) | 2009-06-09 | 2015-01-06 | Broadcom Corporation | Method and system for a touchscreen interface utilizing leaky wave antennas |
US8995937B2 (en) | 2009-06-09 | 2015-03-31 | Broadcom Corporation | Method and system for controlling power for a power amplifier utilizing a leaky wave antenna |
US9013311B2 (en) | 2009-06-09 | 2015-04-21 | Broadcom Corporation | Method and system for a RFID transponder with configurable feed point for RFID communications |
US9088075B2 (en) * | 2009-06-09 | 2015-07-21 | Broadcom Corporation | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
US9329261B2 (en) * | 2009-06-09 | 2016-05-03 | Broadcom Corporation | Method and system for dynamic control of output power of a leaky wave antenna |
US9417318B2 (en) | 2009-06-09 | 2016-08-16 | Broadcom Corporation | Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems |
US9442190B2 (en) | 2009-06-09 | 2016-09-13 | Broadcom Corporation | Method and system for a RFID transponder with configurable feed point for RFID communications |
US9598945B2 (en) | 2013-03-15 | 2017-03-21 | Chevron U.S.A. Inc. | System for extraction of hydrocarbons underground |
US20150349432A1 (en) * | 2014-06-02 | 2015-12-03 | Physical Devices, Llc | Wavelength compressed antennas |
US20150372530A1 (en) * | 2014-06-23 | 2015-12-24 | Htc Corporation | Power providing equipment, mobile device, operating method of mobile device |
US10312746B2 (en) * | 2014-06-23 | 2019-06-04 | Htc Corporation | Power providing equipment, mobile device, operating method of mobile device |
US20160078754A1 (en) * | 2014-09-15 | 2016-03-17 | Samsung Electronics Co., Ltd. | Pointing device and controlling method thereof |
US9940831B2 (en) * | 2014-09-15 | 2018-04-10 | Samsung Electronics Co., Ltd. | Pointing device and controlling method thereof |
US20230141969A1 (en) * | 2021-11-10 | 2023-05-11 | Donald M. MacKay | Cooperative Target Positioning System |
US11714159B2 (en) * | 2021-11-10 | 2023-08-01 | Donald M. MacKay | Cooperative target positioning system |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8242957B2 (en) | Method and system for dynamic tracking utilizing leaky wave antennas | |
US8508422B2 (en) | Method and system for converting RF power to DC power utilizing a leaky wave antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROFOUGARAN, AHMADREZA;ROFOUGARAN, MARYAM;REEL/FRAME:026674/0444 Effective date: 20100601 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 |
|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001 Effective date: 20170119 |